audio overhaul; added video-or-audio priority for Teensy (can't do both)

This commit is contained in:
Jorj Bauer 2018-01-02 20:28:47 -05:00
parent a103a8ffa4
commit 81fb36789f
13 changed files with 287 additions and 303 deletions

View File

@ -475,6 +475,9 @@ uint8_t AppleMMU::readSwitches(uint16_t address)
case 0xC030: // SPEAKER case 0xC030: // SPEAKER
g_speaker->toggle(g_cpu->cycles); g_speaker->toggle(g_cpu->cycles);
g_cpu->realtime(); // cause the CPU to stop processing its outer
// loop b/c the speaker might need attention
// immediately
break; break;
case 0xC050: // CLRTEXT case 0xC050: // CLRTEXT
@ -619,6 +622,9 @@ void AppleMMU::writeSwitches(uint16_t address, uint8_t v)
// Writes toggle the speaker twice // Writes toggle the speaker twice
g_speaker->toggle(g_cpu->cycles); g_speaker->toggle(g_cpu->cycles);
g_speaker->toggle(g_cpu->cycles); g_speaker->toggle(g_cpu->cycles);
g_cpu->realtime(); // cause the CPU to stop processing its outer
// loop b/c the speaker might need attention
// immediately
break; break;
case 0xC050: // graphics mode case 0xC050: // graphics mode

12
cpu.cpp
View File

@ -511,7 +511,9 @@ void Cpu::Reset()
sp = 0xFD; sp = 0xFD;
cycles = 6; // according to the datasheet, the reset routine takes 6 clock cycles cycles = 6; // according to the datasheet, the reset routine takes 6 clock cycles
realtimeProcessing = false;
} }
void Cpu::nmi() void Cpu::nmi()
@ -582,7 +584,8 @@ void Cpu::irq()
uint8_t Cpu::Run(uint8_t numSteps) uint8_t Cpu::Run(uint8_t numSteps)
{ {
uint8_t runtime = 0; uint8_t runtime = 0;
while (runtime < numSteps) { realtimeProcessing = false;
while (runtime < numSteps && !realtimeProcessing) {
runtime += step(); runtime += step();
} }
return runtime; return runtime;
@ -1277,3 +1280,8 @@ void Cpu::stageIRQ()
{ {
irqPending = true; irqPending = true;
} }
void Cpu::realtime()
{
realtimeProcessing = true;
}

4
cpu.h
View File

@ -60,6 +60,8 @@ class Cpu {
public: public:
void SetMMU(MMU *mmu) { this->mmu = mmu; } void SetMMU(MMU *mmu) { this->mmu = mmu; }
void realtime();
public: public:
uint16_t pc; uint16_t pc;
uint8_t sp; uint8_t sp;
@ -73,6 +75,8 @@ class Cpu {
bool irqPending; bool irqPending;
MMU *mmu; MMU *mmu;
bool realtimeProcessing;
}; };

View File

@ -8,7 +8,7 @@ class PhysicalSpeaker {
virtual ~PhysicalSpeaker() {} virtual ~PhysicalSpeaker() {}
virtual void toggle(uint32_t c) = 0; virtual void toggle(uint32_t c) = 0;
virtual void maintainSpeaker(uint32_t c) = 0; virtual void maintainSpeaker(uint32_t c, uint64_t microseconds) = 0;
virtual void beginMixing() = 0; virtual void beginMixing() = 0;
virtual void mixOutput(uint8_t v) = 0; virtual void mixOutput(uint8_t v) = 0;

View File

@ -36,6 +36,8 @@ char disk2name[256] = "\0";
volatile bool wantSuspend = false; volatile bool wantSuspend = false;
volatile bool wantResume = false; volatile bool wantResume = false;
volatile uint64_t hitcount = 0, misscount = 0;
void sigint_handler(int n) void sigint_handler(int n)
{ {
send_rst = 1; send_rst = 1;
@ -78,6 +80,8 @@ void write(void *arg, uint16_t address, uint8_t v)
static void *cpu_thread(void *dummyptr) { static void *cpu_thread(void *dummyptr) {
struct timespec currentTime; struct timespec currentTime;
struct timespec nextCycleTime;
uint32_t nextSpeakerCycle = 0;
#if 0 #if 0
int policy; int policy;
@ -109,38 +113,44 @@ static void *cpu_thread(void *dummyptr) {
wantResume = false; wantResume = false;
} }
// Would like to do the old nanosleep thing, but the speaker needs
// to run. FIXME: do something more intelligent here - sleep 'til speakertime+1? (Obv. to do this below, not right here)
do_gettime(&currentTime); do_gettime(&currentTime);
// tsSubtract doesn't return negatives; it bounds at 0.
struct timespec diff = tsSubtract(nextInstructionTime, currentTime);
// do_gettime(&currentTime); /* The speaker is our priority. The CPU runs in batches anyway,
struct timespec runtime = tsSubtract(currentTime, startTime); sometimes a little behind and sometimes a little ahead; but the
double speakerCycle = cycles_since_time(&runtime); speaker has to be right on time. */
// Wait until nextSpeakerCycle
timespec_add_cycles(&startTime, nextSpeakerCycle, &nextCycleTime);
struct timespec diff = tsSubtract(nextCycleTime, currentTime);
if (diff.tv_sec >= 0 || diff.tv_nsec >= 0) {
hitcount++;
nanosleep(&diff, NULL);
} else {
misscount++;
}
// Speaker runs 48 cycles behind the CPU (an arbitrary number)
if (nextSpeakerCycle >= 48) {
timespec_add_cycles(&startTime, nextSpeakerCycle-48, &nextCycleTime);
uint64_t microseconds = nextCycleTime.tv_sec * 1000000 +
(double)nextCycleTime.tv_nsec / 1000.0;
g_speaker->maintainSpeaker(nextSpeakerCycle-48, microseconds);
}
// Bump speaker cycle for next go-round
nextSpeakerCycle++;
/* Next up is the CPU. */
// tsSubtract doesn't return negatives; it bounds at 0.
diff = tsSubtract(nextInstructionTime, currentTime);
uint8_t executed = 0; uint8_t executed = 0;
if (diff.tv_sec == 0 && diff.tv_nsec == 0) { if (diff.tv_sec == 0 && diff.tv_nsec == 0) {
// okay to run CPU
// If speakerCycle == 0, we're still starting up
// If speakerCycle > cycles, the CPU is running behind; don't bother with that just yet
// If we're about to run the CPU then we *should* have caught up the speaker - how could it possibly be this far out of skew?
if (speakerCycle && speakerCycle < g_cpu->cycles && abs(g_cpu->cycles - speakerCycle) > 24) {
#if 0
printf("Start time: %lu,%lu\n", startTime.tv_sec, startTime.tv_nsec);
printf("runtime: %lu,%lu\n", runtime.tv_sec, runtime.tv_nsec);
printf("Current time: %lu,%lu\n", currentTime.tv_sec, currentTime.tv_nsec);
printf("Next time: %lu,%lu\n", nextInstructionTime.tv_sec, nextInstructionTime.tv_nsec);
printf("Speaker calc / cycle count: %lf / %d [e %d; d %f]\n", speakerCycle, g_cpu->cycles, executed, abs(g_cpu->cycles - speakerCycle));
#endif
// If we're okay to run the CPU, then the speaker should be caught up. Not sure how it wouldn't be.
printf("About to run cpu but speaker diff > 24 - how, exactly?\n");
exit(1);
}
#ifdef DEBUGCPU #ifdef DEBUGCPU
uint8_t executed = g_cpu->Run(1); executed = g_cpu->Run(1);
#else #else
executed = g_cpu->Run(24); executed = g_cpu->Run(24);
#endif #endif
@ -152,130 +162,86 @@ static void *cpu_thread(void *dummyptr) {
// clock. That happens from the VM's CPU maintenance poller. // clock. That happens from the VM's CPU maintenance poller.
((AppleVM *)g_vm)->cpuMaintenance(g_cpu->cycles); ((AppleVM *)g_vm)->cpuMaintenance(g_cpu->cycles);
#if 0
do_gettime(&currentTime);
printf("Executed %d cycles; count %d; now %lu,%lu; next runtime at %lu,%lu\n", executed, g_cpu->cycles, currentTime.tv_sec, currentTime.tv_nsec, nextInstructionTime.tv_sec, nextInstructionTime.tv_nsec);
#endif
} else {
// printf("delta %lu,%lu\n", diff.tv_sec, diff.tv_nsec);
// printf("Current time: %lu,%lu\n", currentTime.tv_sec, currentTime.tv_nsec);
// printf("Next time: %lu,%lu\n", nextInstructionTime.tv_sec, nextInstructionTime.tv_nsec);
}
// Run the speaker a short bit delayed, based on real time rather
// than the cpu cycle count
#if 0
if (speakerCycle < g_cpu->cycles) {
printf("Start time: %lu,%lu\n", startTime.tv_sec, startTime.tv_nsec);
printf("runtime: %lu,%lu\n", runtime.tv_sec, runtime.tv_nsec);
printf("Current time: %lu,%lu\n", currentTime.tv_sec, currentTime.tv_nsec);
printf("Next time: %lu,%lu\n", nextInstructionTime.tv_sec, nextInstructionTime.tv_nsec);
printf("Speaker calc / cycle count: %lf / %d [e %d; d %f]\n", speakerCycle, g_cpu->cycles, executed, abs(g_cpu->cycles - speakerCycle));
}
#endif
int lastdrift = g_cpu->cycles - speakerCycle;
if (speakerCycle &&
speakerCycle < g_cpu->cycles &&
lastdrift > 64) {
printf("Cycle -> speakercycle drift > 64 [%f]\n", abs(g_cpu->cycles - speakerCycle));
exit(1);
}
if (speakerCycle == 0) lastdrift = 0;
g_speaker->maintainSpeaker(speakerCycle-48);
/* // recalc what the fuck is happening
do_gettime(&currentTime);
sdiff = tsSubtract(currentTime, startTime);
speakerCycle = cycles_since_time(&sdiff);
if (lastdrift && speakerCycle && speakerCycle < g_cpu->cycles && abs(g_cpu->cycles - speakerCycle) > 64)
{
int newdrift = g_cpu->cycles - speakerCycle;
printf("WTF: was %d, now %d [sc now %f]\n", lastdrift, newdrift, speakerCycle);
exit(1);
}*/
#ifdef DEBUGCPU #ifdef DEBUGCPU
{ {
uint8_t p = g_cpu->flags; uint8_t p = g_cpu->flags;
printf("OP: $%02x A: %02x X: %02x Y: %02x PC: $%04x SP: %02x Flags: %c%cx%c%c%c%c%c\n", printf("OP: $%02x A: %02x X: %02x Y: %02x PC: $%04x SP: %02x Flags: %c%cx%c%c%c%c%c\n",
g_vm->getMMU()->read(g_cpu->pc), g_vm->getMMU()->read(g_cpu->pc),
g_cpu->a, g_cpu->x, g_cpu->y, g_cpu->pc, g_cpu->sp, g_cpu->a, g_cpu->x, g_cpu->y, g_cpu->pc, g_cpu->sp,
p & (1<<7) ? 'N':' ', p & (1<<7) ? 'N':' ',
p & (1<<6) ? 'V':' ', p & (1<<6) ? 'V':' ',
p & (1<<4) ? 'B':' ', p & (1<<4) ? 'B':' ',
p & (1<<3) ? 'D':' ', p & (1<<3) ? 'D':' ',
p & (1<<2) ? 'I':' ', p & (1<<2) ? 'I':' ',
p & (1<<1) ? 'Z':' ', p & (1<<1) ? 'Z':' ',
p & (1<<0) ? 'C':' ' p & (1<<0) ? 'C':' '
); );
} }
#endif #endif
if (send_rst) {
#if 0
printf("Scheduling suspend request...\n");
wantSuspend = true;
#endif
#if 0
printf("Scheduling resume resume request...\n");
wantResume = true;
#endif
#if 0
printf("Sending reset\n");
g_cpu->Reset();
// testing startup keyboard presses - perform Apple //e self-test if (send_rst) {
//g_vm->getKeyboard()->keyDepressed(RA);
//g_vm->Reset();
//g_cpu->Reset();
//((AppleVM *)g_vm)->insertDisk(0, "disks/DIAGS.DSK");
#endif
#if 0 #if 0
// Swap disks printf("Scheduling suspend request...\n");
if (disk1name[0] && disk2name[0]) { wantSuspend = true;
printf("Swapping disks\n");
printf("Inserting disk %s in drive 1\n", disk2name);
((AppleVM *)g_vm)->insertDisk(0, disk2name);
printf("Inserting disk %s in drive 2\n", disk1name);
((AppleVM *)g_vm)->insertDisk(1, disk1name);
}
#endif #endif
#if 0 #if 0
MMU *mmu = g_vm->getMMU(); printf("Scheduling resume resume request...\n");
wantResume = true;
printf("PC: 0x%X\n", g_cpu->pc);
for (int i=g_cpu->pc; i<g_cpu->pc + 0x100; i++) {
printf("0x%X ", mmu->read(i));
}
printf("\n");
printf("Dropping to monitor\n");
// drop directly to monitor.
g_cpu->pc = 0xff69; // "call -151"
mmu->read(0xC054); // make sure we're in page 1
mmu->read(0xC056); // and that hires is off
mmu->read(0xC051); // and text mode is on
mmu->read(0xC08A); // and we have proper rom in place
mmu->read(0xc008); // main zero-page
mmu->read(0xc006); // rom from cards
mmu->write(0xc002 + mmu->read(0xc014)? 1 : 0, 0xff); // make sure aux ram read and write match
mmu->write(0x20, 0); // text window
mmu->write(0x21, 40);
mmu->write(0x22, 0);
mmu->write(0x23, 24);
mmu->write(0x33, '>');
mmu->write(0x48, 0); // from 0xfb2f: part of text init
*/
#endif #endif
send_rst = 0; #if 0
printf("Sending reset\n");
g_cpu->Reset();
// testing startup keyboard presses - perform Apple //e self-test
//g_vm->getKeyboard()->keyDepressed(RA);
//g_vm->Reset();
//g_cpu->Reset();
//((AppleVM *)g_vm)->insertDisk(0, "disks/DIAGS.DSK");
#endif
#if 0
// Swap disks
if (disk1name[0] && disk2name[0]) {
printf("Swapping disks\n");
printf("Inserting disk %s in drive 1\n", disk2name);
((AppleVM *)g_vm)->insertDisk(0, disk2name);
printf("Inserting disk %s in drive 2\n", disk1name);
((AppleVM *)g_vm)->insertDisk(1, disk1name);
}
#endif
#if 0
MMU *mmu = g_vm->getMMU();
printf("PC: 0x%X\n", g_cpu->pc);
for (int i=g_cpu->pc; i<g_cpu->pc + 0x100; i++) {
printf("0x%X ", mmu->read(i));
}
printf("\n");
printf("Dropping to monitor\n");
// drop directly to monitor.
g_cpu->pc = 0xff69; // "call -151"
mmu->read(0xC054); // make sure we're in page 1
mmu->read(0xC056); // and that hires is off
mmu->read(0xC051); // and text mode is on
mmu->read(0xC08A); // and we have proper rom in place
mmu->read(0xc008); // main zero-page
mmu->read(0xc006); // rom from cards
mmu->write(0xc002 + mmu->read(0xc014)? 1 : 0, 0xff); // make sure aux ram read and write match
mmu->write(0x20, 0); // text window
mmu->write(0x21, 40);
mmu->write(0x22, 0);
mmu->write(0x23, 24);
mmu->write(0x33, '>');
mmu->write(0x48, 0); // from 0xfb2f: part of text init
*/
#endif
send_rst = 0;
}
} }
} }
} }
@ -370,11 +336,11 @@ int main(int argc, char *argv[])
} }
while (1) { while (1) {
static uint32_t usleepcycles = 16384; // step-down for display drawing. FIXME: this constant works well for *my* machine. Dynamically generate? static uint32_t usleepcycles = 16384; // step-down for display drawing. Dynamically updated based on FPS calculations.
// static uint32_t ctr = 0; static uint8_t ctr = 0;
// if (++ctr == 0) { if (++ctr == 0) {
// printf("hit: %llu; miss: %llu; pct: %f\n", hitcount, misscount, (double)misscount / (double)(misscount + hitcount)); printf("hit: %llu; miss: %llu; pct: %f\n", hitcount, misscount, (double)misscount / (double)(misscount + hitcount));
// } }
// fill disk buffer when needed // fill disk buffer when needed
((AppleVM*)g_vm)->disk6->fillDiskBuffer(); ((AppleVM*)g_vm)->disk6->fillDiskBuffer();

View File

@ -1,5 +1,6 @@
#include "sdl-speaker.h" #include "sdl-speaker.h"
#include <pthread.h> #include <pthread.h>
#include <unistd.h>
extern "C" extern "C"
{ {
@ -7,115 +8,75 @@ extern "C"
#include <SDL_thread.h> #include <SDL_thread.h>
}; };
#include "timeutil.h"
#include "globals.h" #include "globals.h"
#include "timeutil.h"
// FIXME: Globals; ick. // FIXME: Globals; ick.
static pthread_t speakerThreadID; static volatile uint32_t bufIdx = 0;
static uint8_t curSpeakerData = 0x00; static uint8_t soundBuf[44100]; // 1 second of audio
static volatile uint16_t bufIdx = 0;
static uint8_t soundBuf[4096];
static pthread_mutex_t sndmutex = PTHREAD_MUTEX_INITIALIZER; static pthread_mutex_t sndmutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t togmutex = PTHREAD_MUTEX_INITIALIZER; static pthread_mutex_t togmutex = PTHREAD_MUTEX_INITIALIZER;
static uint64_t hitcount;
static uint64_t misscount;
static uint64_t copycount = 0;
static void audioCallback(void *unused, Uint8 *stream, int len) static void audioCallback(void *unused, Uint8 *stream, int len)
{ {
FILE *f = (FILE *)unused;
pthread_mutex_lock(&sndmutex); pthread_mutex_lock(&sndmutex);
if (bufIdx >= len) { if (bufIdx >= len) {
memcpy(stream, soundBuf, len); memcpy(stream, soundBuf, len);
fwrite(soundBuf, 1, len, f);
if (bufIdx > len) { if (bufIdx > len) {
// move the remaining data down // move the remaining data down
memcpy(soundBuf, &soundBuf[len], bufIdx - len); memcpy(soundBuf, &soundBuf[len], bufIdx - len + 1);
bufIdx -= len; bufIdx -= len;
copycount += len;
} }
} else { } else {
// Audio underrun // Audio underrun
printf("Audio underrun!\n");
memset(stream, 0, len); memset(stream, 0, len);
} }
pthread_mutex_unlock(&sndmutex); pthread_mutex_unlock(&sndmutex);
} }
static void *speaker_thread(void *dummyptr) { void ResetDCFilter(); // FIXME: remove
struct timespec currentTime;
struct timespec startTime;
struct timespec nextSampleTime;
SDLSpeaker::SDLSpeaker()
{
toggleState = false;
mixerValue = 0x8000;
toggleCount = toggleReadPtr = toggleWritePtr = 0;
pthread_mutex_init(&togmutex, NULL);
pthread_mutex_init(&sndmutex, NULL); pthread_mutex_init(&sndmutex, NULL);
_init_darwin_shim();
ResetDCFilter();
lastCycleCount = 0;
lastSampleCount = 0;
FILE *f = fopen("out.dat", "w");
SDL_AudioSpec audioDevice; SDL_AudioSpec audioDevice;
SDL_AudioSpec audioActual; SDL_AudioSpec audioActual;
SDL_memset(&audioDevice, 0, sizeof(audioDevice)); SDL_memset(&audioDevice, 0, sizeof(audioDevice));
audioDevice.freq = 22050; audioDevice.freq = 44100;
audioDevice.format = AUDIO_U8; audioDevice.format = AUDIO_U8;
audioDevice.channels = 1; audioDevice.channels = 1;
audioDevice.samples = 2048; // 2048 bytes @ 22050Hz is about 1/10th second out of sync - should be okay for this testing audioDevice.samples = 4096; // 4096 bytes @ 44100Hz is about 1/10th second out of sync - should be okay for this testing
audioDevice.callback = audioCallback; audioDevice.callback = audioCallback;
audioDevice.userdata = NULL; audioDevice.userdata = (void *)f;
SDL_OpenAudio(&audioDevice, &audioActual); // FIXME retval SDL_OpenAudio(&audioDevice, &audioActual); // FIXME retval
printf("Actual: freq %d channels %d samples %d\n", printf("Actual: freq %d channels %d samples %d\n",
audioActual.freq, audioActual.channels, audioActual.samples); audioActual.freq, audioActual.channels, audioActual.samples);
_init_darwin_shim();
do_gettime(&startTime);
do_gettime(&nextSampleTime);
SDL_PauseAudio(0); SDL_PauseAudio(0);
uint64_t sampleCount = 0;
while (1) {
do_gettime(&currentTime);
struct timespec diff = tsSubtract(nextSampleTime, currentTime);
if (diff.tv_sec >= 0 && diff.tv_nsec >= 0) {
nanosleep(&diff, NULL);
hitcount++;
} else
misscount++;
if ((sampleCount & 0xFFFF) == 0) {
printf("sound hit: %lld miss: %lld copy: %lld\n", hitcount, misscount, copycount);
}
pthread_mutex_lock(&sndmutex);
soundBuf[bufIdx++] = curSpeakerData & 0xFF;
if (bufIdx >= sizeof(soundBuf)) {
// Audio overrun; start dropping data
bufIdx--;
}
pthread_mutex_unlock(&sndmutex);
// set nextSampleTime to the absolute reference time of when the
// next sample should start (based on our start time).
timespec_add_us(&startTime, (sampleCount * 1000000) / 22050 , &nextSampleTime);
sampleCount++;
}
}
SDLSpeaker::SDLSpeaker()
{
toggleState = false;
mixerValue = 0;
_init_darwin_shim(); // set up the clock interface
toggleCount = toggleReadPtr = toggleWritePtr = 0;
pthread_mutex_init(&togmutex, NULL);
if (!pthread_create(&speakerThreadID, NULL, &speaker_thread, (void *)NULL)) {
printf("speaker thread created\n");
}
} }
SDLSpeaker::~SDLSpeaker() SDLSpeaker::~SDLSpeaker()
@ -139,16 +100,39 @@ void SDLSpeaker::toggle(uint32_t c)
printf(" %d [%d]\n", toggleTimes[(toggleReadPtr + i)%SPEAKERQUEUESIZE], printf(" %d [%d]\n", toggleTimes[(toggleReadPtr + i)%SPEAKERQUEUESIZE],
toggleTimes[(toggleReadPtr + i - 1)%SPEAKERQUEUESIZE] - toggleTimes[(toggleReadPtr + i - 1)%SPEAKERQUEUESIZE] -
toggleTimes[(toggleReadPtr + i)%SPEAKERQUEUESIZE] toggleTimes[(toggleReadPtr + i)%SPEAKERQUEUESIZE]
); );
} }
exit(1); exit(1);
} }
pthread_mutex_unlock(&togmutex); pthread_mutex_unlock(&togmutex);
} }
void SDLSpeaker::maintainSpeaker(uint32_t c) // FIXME: make methods
uint16_t dcFilterState = 0;
void ResetDCFilter()
{
dcFilterState = 32768 + 10000;
}
int16_t DCFilter(int16_t in)
{
if (dcFilterState == 0)
return 0;
if (dcFilterState >= 32768) {
dcFilterState--;
return in;
}
return ( (int32_t)in * (int32_t)dcFilterState-- ) / (int32_t)32768;
}
void SDLSpeaker::maintainSpeaker(uint32_t c, uint64_t microseconds)
{ {
bool didChange = false; bool didChange = false;
pthread_mutex_lock(&togmutex); pthread_mutex_lock(&togmutex);
while (toggleCount && c >= toggleTimes[toggleReadPtr]) { while (toggleCount && c >= toggleTimes[toggleReadPtr]) {
// Override the mixer with a 1-bit "Terribad" audio sample change // Override the mixer with a 1-bit "Terribad" audio sample change
@ -163,13 +147,31 @@ void SDLSpeaker::maintainSpeaker(uint32_t c)
// FIXME: removed all the mixing code // FIXME: removed all the mixing code
if (didChange) { // Add samples from the last time to this time
mixerValue = (toggleState ? 0x1FF : 0x00); // mixerValue = (toggleState ? 0x1FF : 0x00);
mixerValue = (toggleState ? 0x8000 : ~0x8000);
// FIXME: DC filter isn't correct yet
// mixerValue = DCFilter(mixerValue);
// FIXME: g_volume uint64_t sampleCount = (microseconds * 44100) / 1000000;
uint64_t numSamples = sampleCount - lastSampleCount;
if (numSamples) {
lastSampleCount = sampleCount;
mixerValue >>= 12; // convert from 16 bit to 8 bit; then drop volume by 50%
curSpeakerData = (mixerValue & 0xFF) >> 4; pthread_mutex_lock(&sndmutex);
if (bufIdx + numSamples >= sizeof(soundBuf)) {
printf("Sound overrun!\n");
numSamples = sizeof(soundBuf) - bufIdx - 1;
}
memset(&soundBuf[bufIdx], mixerValue, numSamples);
bufIdx += numSamples;
pthread_mutex_unlock(&sndmutex);
} }
} }
void SDLSpeaker::beginMixing() void SDLSpeaker::beginMixing()

View File

@ -13,12 +13,11 @@ class SDLSpeaker : public PhysicalSpeaker {
virtual ~SDLSpeaker(); virtual ~SDLSpeaker();
virtual void toggle(uint32_t c); virtual void toggle(uint32_t c);
virtual void maintainSpeaker(uint32_t c); virtual void maintainSpeaker(uint32_t c, uint64_t microseconds);
virtual void beginMixing(); virtual void beginMixing();
virtual void mixOutput(uint8_t v); virtual void mixOutput(uint8_t v);
private: private:
uint32_t mixerValue; int16_t mixerValue;
uint8_t numMixed;
bool toggleState; bool toggleState;
uint32_t toggleTimes[SPEAKERQUEUESIZE]; uint32_t toggleTimes[SPEAKERQUEUESIZE];
@ -26,6 +25,9 @@ class SDLSpeaker : public PhysicalSpeaker {
uint8_t toggleReadPtr; // ring buffer pointer in queue uint8_t toggleReadPtr; // ring buffer pointer in queue
uint8_t toggleWritePtr; // ring buffer pointer in queue uint8_t toggleWritePtr; // ring buffer pointer in queue
uint64_t lastCycleCount;
uint64_t lastSampleCount;
FILE *f; FILE *f;
}; };

View File

@ -28,7 +28,7 @@ static int do_gettime(struct timespec *tp) {
// adds the number of nanoseconds that 'cycles' takes to *start and // adds the number of nanoseconds that 'cycles' takes to *start and
// returns it in *out // returns it in *out
static void timespec_add_cycles(struct timespec *start, static void timespec_add_cycles(struct timespec *start,
uint32_t cycles, int32_t cycles,
struct timespec *out) struct timespec *out)
{ {
out->tv_sec = start->tv_sec; out->tv_sec = start->tv_sec;

View File

@ -24,8 +24,9 @@ enum {
ACT_VOLMINUS = 11, ACT_VOLMINUS = 11,
ACT_SUSPEND = 12, ACT_SUSPEND = 12,
ACT_RESTORE = 13, ACT_RESTORE = 13,
ACT_PRIMODE = 14,
NUM_ACTIONS = 14 NUM_ACTIONS = 15
}; };
const char *titles[NUM_ACTIONS] = { "Resume VM", const char *titles[NUM_ACTIONS] = { "Resume VM",
@ -41,7 +42,8 @@ const char *titles[NUM_ACTIONS] = { "Resume VM",
"Volume +", "Volume +",
"Volume -", "Volume -",
"Suspend", "Suspend",
"Restore" "Restore",
"Prioritize %s"
}; };
// FIXME: abstract the pin # rather than repeating it here // FIXME: abstract the pin # rather than repeating it here
@ -49,6 +51,8 @@ const char *titles[NUM_ACTIONS] = { "Resume VM",
extern int16_t g_volume; // FIXME: external global. icky. extern int16_t g_volume; // FIXME: external global. icky.
extern uint8_t debugMode; // and another. :/ extern uint8_t debugMode; // and another. :/
extern bool g_prioritizeDisplay; // And a third!
// FIXME: and these need abstracting out of the main .ino ! // FIXME: and these need abstracting out of the main .ino !
enum { enum {
D_NONE = 0, D_NONE = 0,
@ -112,6 +116,9 @@ bool BIOS::runUntilDone()
debugMode++; debugMode++;
debugMode %= 8; // FIXME: abstract max # debugMode %= 8; // FIXME: abstract max #
break; break;
case ACT_PRIMODE:
g_prioritizeDisplay = !g_prioritizeDisplay;
break;
case ACT_DISK1: case ACT_DISK1:
if (((AppleVM *)g_vm)->DiskName(0)[0] != '\0') { if (((AppleVM *)g_vm)->DiskName(0)[0] != '\0') {
((AppleVM *)g_vm)->ejectDisk(0); ((AppleVM *)g_vm)->ejectDisk(0);
@ -245,6 +252,7 @@ bool BIOS::isActionActive(int8_t action)
case ACT_MONITOR: case ACT_MONITOR:
case ACT_DISPLAYTYPE: case ACT_DISPLAYTYPE:
case ACT_DEBUG: case ACT_DEBUG:
case ACT_PRIMODE:
case ACT_DISK1: case ACT_DISK1:
case ACT_DISK2: case ACT_DISK2:
case ACT_HD1: case ACT_HD1:
@ -315,6 +323,11 @@ void BIOS::DrawMainMenu(int8_t selection)
sprintf(buf, titles[i], "Show time"); sprintf(buf, titles[i], "Show time");
break; break;
} }
} else if (i == ACT_PRIMODE) {
if (g_prioritizeDisplay)
sprintf(buf, titles[i], "display");
else
sprintf(buf, titles[i], "r/t audio");
} else { } else {
strcpy(buf, titles[i]); strcpy(buf, titles[i]);
} }
@ -328,7 +341,7 @@ void BIOS::DrawMainMenu(int8_t selection)
// draw the volume bar // draw the volume bar
uint16_t volCutoff = 300.0 * (float)((float) g_volume / 15.0); uint16_t volCutoff = 300.0 * (float)((float) g_volume / 15.0);
for (uint8_t y=220; y<=230; y++) { for (uint8_t y=234; y<=235; y++) {
((TeensyDisplay *)g_display)->moveTo(10, y); ((TeensyDisplay *)g_display)->moveTo(10, y);
for (uint16_t x = 0; x< 300; x++) { for (uint16_t x = 0; x< 300; x++) {
((TeensyDisplay *)g_display)->drawNextPixel( x <= volCutoff ? 0xFFFF : 0x0010 ); ((TeensyDisplay *)g_display)->drawNextPixel( x <= volCutoff ? 0xFFFF : 0x0010 );

View File

@ -19,8 +19,8 @@ enum {
#define cbi(reg, bitmask) *reg &= ~bitmask #define cbi(reg, bitmask) *reg &= ~bitmask
#define sbi(reg, bitmask) *reg |= bitmask #define sbi(reg, bitmask) *reg |= bitmask
#define pulse_high(reg, bitmask) sbi(reg, bitmask); cbi(reg, bitmask); #define pulse_high(reg, bitmask) { sbi(reg, bitmask); cbi(reg, bitmask); }
#define pulse_low(reg, bitmask) cbi(reg, bitmask); sbi(reg, bitmask); #define pulse_low(reg, bitmask) { cbi(reg, bitmask); sbi(reg, bitmask); }
#define cport(port, data) port &= data #define cport(port, data) port &= data
#define sport(port, data) port |= data #define sport(port, data) port |= data
@ -72,11 +72,11 @@ class TeensyDisplay : public PhysicalDisplay {
void drawPixel(uint16_t x, uint16_t y, uint16_t color); void drawPixel(uint16_t x, uint16_t y, uint16_t color);
void drawPixel(uint16_t x, uint16_t y, uint8_t r, uint8_t g, uint8_t b); void drawPixel(uint16_t x, uint16_t y, uint8_t r, uint8_t g, uint8_t b);
void LCD_Writ_Bus(uint8_t VH,uint8_t VL); inline void LCD_Writ_Bus(uint8_t VH,uint8_t VL) __attribute__((always_inline));
void LCD_Write_COM(uint8_t VL); inline void LCD_Write_COM(uint8_t VL) __attribute__((always_inline));
void LCD_Write_DATA(uint8_t VH,uint8_t VL); inline void LCD_Write_DATA(uint8_t VH,uint8_t VL) __attribute__((always_inline));
void LCD_Write_DATA(uint8_t VL); inline void LCD_Write_DATA(uint8_t VL) __attribute__((always_inline));
void LCD_Write_COM_DATA(uint8_t com1,uint16_t dat1); inline void LCD_Write_COM_DATA(uint8_t com1,uint16_t dat1) __attribute__((always_inline));
bool needsRedraw; bool needsRedraw;
bool driveIndicator[2]; bool driveIndicator[2];

View File

@ -9,8 +9,6 @@ TeensySpeaker::TeensySpeaker(uint8_t pinNum) : PhysicalSpeaker()
speakerPin = pinNum; speakerPin = pinNum;
pinMode(speakerPin, OUTPUT); // analog speaker output, used as digital volume control pinMode(speakerPin, OUTPUT); // analog speaker output, used as digital volume control
mixerValue = numMixed = 0; mixerValue = numMixed = 0;
toggleCount = toggleReadPtr = toggleWritePtr = 0;
} }
TeensySpeaker::~TeensySpeaker() TeensySpeaker::~TeensySpeaker()
@ -19,38 +17,20 @@ TeensySpeaker::~TeensySpeaker()
void TeensySpeaker::toggle(uint32_t c) void TeensySpeaker::toggle(uint32_t c)
{ {
toggleTimes[toggleWritePtr] = c; toggleState = !toggleState;
if (toggleCount < SPEAKERQUEUESIZE-1) {
toggleWritePtr++; mixerValue = (toggleState ? 0x1FF : 0x00);
if (toggleWritePtr >= SPEAKERQUEUESIZE) mixerValue >>= (16-g_volume);
toggleWritePtr = 0;
toggleCount++; // FIXME: glad it's DAC0 and all, but... how does that relate to the pin passed in the constructor?
} else { analogWriteDAC0(mixerValue);
// speaker overflow
Serial.println("spkr overflow");
}
} }
void TeensySpeaker::maintainSpeaker(uint32_t c) void TeensySpeaker::maintainSpeaker(uint32_t c, uint64_t runtimeInMicros)
{ {
bool didChange = false; // Nothing to do here. We can't run the speaker async, b/c not
// enough CPU time. So we run the CPU close to sync and hope that
while (toggleCount && c >= toggleTimes[toggleReadPtr]) { // the direct pulsing of the speaker is reasonably close to on-time.
toggleState = !toggleState;
toggleCount--;
toggleReadPtr++;
if (toggleReadPtr >= SPEAKERQUEUESIZE)
toggleReadPtr = 0;
didChange = true;
}
if (didChange) {
mixerValue = (toggleState ? 0x1FF : 0x00);
mixerValue >>= (16-g_volume);
// FIXME: glad it's DAC0 and all, but... how does that relate to the pin passed in the constructor?
analogWriteDAC0(mixerValue);
}
} }
void TeensySpeaker::beginMixing() void TeensySpeaker::beginMixing()

View File

@ -3,16 +3,13 @@
#include "physicalspeaker.h" #include "physicalspeaker.h"
// FIXME: 64 enough?
#define SPEAKERQUEUESIZE 64
class TeensySpeaker : public PhysicalSpeaker { class TeensySpeaker : public PhysicalSpeaker {
public: public:
TeensySpeaker(uint8_t pinNum); TeensySpeaker(uint8_t pinNum);
virtual ~TeensySpeaker(); virtual ~TeensySpeaker();
virtual void toggle(uint32_t c); virtual void toggle(uint32_t c);
virtual void maintainSpeaker(uint32_t c); virtual void maintainSpeaker(uint32_t c, uint64_t runtimeInMicros);
virtual void beginMixing(); virtual void beginMixing();
virtual void mixOutput(uint8_t v); virtual void mixOutput(uint8_t v);
@ -24,11 +21,6 @@ class TeensySpeaker : public PhysicalSpeaker {
uint32_t mixerValue; uint32_t mixerValue;
uint8_t numMixed; uint8_t numMixed;
uint32_t toggleTimes[SPEAKERQUEUESIZE];
uint8_t toggleCount; // # of entries still in queue
uint8_t toggleReadPtr; // ring buffer pointer in queue
uint8_t toggleWritePtr; // ring buffer pointer in queue
}; };
#endif #endif

View File

@ -20,8 +20,8 @@
#include "globals.h" #include "globals.h"
#include "teensy-crash.h" #include "teensy-crash.h"
volatile float nextInstructionMicros; uint32_t nextInstructionMicros;
volatile float startMicros; uint32_t startMicros;
FATFS fatfs; /* File system object */ FATFS fatfs; /* File system object */
BIOS bios; BIOS bios;
@ -37,6 +37,9 @@ enum {
D_SHOWTIME = 7 D_SHOWTIME = 7
}; };
uint8_t debugMode = D_NONE; uint8_t debugMode = D_NONE;
bool g_prioritizeDisplay = false; // prioritize real-time audio by default, not the display
#define SPEEDCTL 0.97751710654936461388 // that's how many microseconds per cycle @ 1.023 MHz
static time_t getTeensy3Time() { return Teensy3Clock.get(); } static time_t getTeensy3Time() { return Teensy3Clock.get(); }
@ -132,17 +135,19 @@ void setup()
Serial.println("free-running"); Serial.println("free-running");
startMicros = 0; startMicros = nextInstructionMicros = micros();
nextInstructionMicros = micros();
// Debugging: insert a disk on startup... // Debugging: insert a disk on startup...
// ((AppleVM *)g_vm)->insertDisk(0, "/A2DISKS/UTIL/mock2dem.dsk", false); // ((AppleVM *)g_vm)->insertDisk(0, "/A2DISKS/UTIL/mock2dem.dsk", false);
// ((AppleVM *)g_vm)->insertDisk(0, "/A2DISKS/JORJ/disk_s6d1.dsk", false); // ((AppleVM *)g_vm)->insertDisk(0, "/A2DISKS/JORJ/disk_s6d1.dsk", false);
// ((AppleVM *)g_vm)->insertDisk(0, "/A2DISKS/GAMES/ALIBABA.DSK", false); // ((AppleVM *)g_vm)->insertDisk(0, "/A2DISKS/GAMES/ALIBABA.DSK", false);
pinMode(56, OUTPUT); pinMode(56, OUTPUT);
pinMode(57, OUTPUT); pinMode(57, OUTPUT);
Serial.print("Free RAM: ");
Serial.println(FreeRamEstimate());
Timer1.initialize(3); Timer1.initialize(3);
Timer1.attachInterrupt(runCPU); Timer1.attachInterrupt(runCPU);
Timer1.start(); Timer1.start();
@ -198,7 +203,7 @@ void biosInterrupt()
nextInstructionMicros = micros(); nextInstructionMicros = micros();
startMicros = micros(); startMicros = micros();
// Drain the speaker queue (FIXME: a little hacky) // Drain the speaker queue (FIXME: a little hacky)
g_speaker->maintainSpeaker(-1); g_speaker->maintainSpeaker(-1, -1);
// Force the display to redraw // Force the display to redraw
((AppleDisplay*)(g_vm->vmdisplay))->modeChange(); ((AppleDisplay*)(g_vm->vmdisplay))->modeChange();
@ -214,27 +219,30 @@ void biosInterrupt()
void runCPU() void runCPU()
{ {
if (micros() >= nextInstructionMicros) { // Debugging: to watch when the speaker is triggered...
// static bool debugState = false;
// debugState = !debugState;
// digitalWrite(56, debugState);
// Relatively critical timing: CPU needs to run ahead at least 4
// cycles, b/c we're calling this interrupt (runCPU, that is) just
// about 1/3 as fast as we should; and the speaker is updated
// directly from within it, so it needs to be real-ish time.
if (micros() > nextInstructionMicros) {
// Debugging: to watch when the CPU is triggered... // Debugging: to watch when the CPU is triggered...
//debugState = !debugState; static bool debugState = false;
// digitalWrite(56, debugState); debugState = !debugState;
digitalWrite(56, debugState);
uint8_t executed = g_cpu->Run(24); uint8_t executed = g_cpu->Run(24);
// The CPU of the Apple //e ran at 1.023 MHz. Adjust when we think // The CPU of the Apple //e ran at 1.023 MHz. Adjust when we think
// the next instruction should run based on how long the execution // the next instruction should run based on how long the execution
// was ((1000/1023) * numberOfCycles) - which is about 97.8%. // was ((1000/1023) * numberOfCycles) - which is about 97.8%.
nextInstructionMicros = startMicros + (float)g_cpu->cycles * 0.978; nextInstructionMicros = startMicros + ((double)g_cpu->cycles * (double)SPEEDCTL);
// Timing-critical paddle and keyboard handling
((AppleVM *)g_vm)->cpuMaintenance(g_cpu->cycles); ((AppleVM *)g_vm)->cpuMaintenance(g_cpu->cycles);
} }
// Timing-crtical audio handling
g_speaker->beginMixing();
// estimate of current cpu cycle counter, delayed a bit
float speakerTick = ((float)micros() - 100.0 - (float)startMicros) / 0.978;
g_speaker->maintainSpeaker(speakerTick);
} }
void loop() void loop()
@ -266,9 +274,11 @@ void loop()
// //
// The Timer1.stop()/start() is bad. Using it, the display doesn't // The Timer1.stop()/start() is bad. Using it, the display doesn't
// tear; but the audio is also broken. Taking it out, audio is good // tear; but the audio is also broken. Taking it out, audio is good
// but the display tears. // but the display tears. So there's a global - g_prioritizeDisplay -
// which lets the user pick which they want.
Timer1.stop(); if (g_prioritizeDisplay)
Timer1.stop();
g_vm->vmdisplay->lockDisplay(); g_vm->vmdisplay->lockDisplay();
if (g_vm->vmdisplay->needsRedraw()) { if (g_vm->vmdisplay->needsRedraw()) {
AiieRect what = g_vm->vmdisplay->getDirtyRect(); AiieRect what = g_vm->vmdisplay->getDirtyRect();
@ -276,8 +286,9 @@ void loop()
g_display->blit(what); g_display->blit(what);
} }
g_vm->vmdisplay->unlockDisplay(); g_vm->vmdisplay->unlockDisplay();
Timer1.start(); if (g_prioritizeDisplay)
Timer1.start();
static unsigned long nextBattCheck = 0; static unsigned long nextBattCheck = 0;
static int batteryLevel = 0; // static for debugging code! When done static int batteryLevel = 0; // static for debugging code! When done
// debugging, this can become a local // debugging, this can become a local