mirror of
https://github.com/JorjBauer/aiie.git
synced 2024-12-27 14:30:22 +00:00
threads conversion
This commit is contained in:
parent
a78b4ff203
commit
e1288db403
12
bios.cpp
12
bios.cpp
@ -7,6 +7,7 @@
|
||||
#include "cpu.h"
|
||||
|
||||
#ifdef TEENSYDUINO
|
||||
#include <TeensyThreads.h>
|
||||
#include "teensy-paddles.h"
|
||||
#endif
|
||||
|
||||
@ -147,14 +148,7 @@ bool BIOS::runUntilDone()
|
||||
break;
|
||||
case ACT_SPEED:
|
||||
currentCPUSpeedIndex++;
|
||||
#ifdef TEENSYDUINO
|
||||
// The Teensy doesn't have any overhead to spare. Allow slowing
|
||||
// down the virtual CPU, but not speeding it up...
|
||||
currentCPUSpeedIndex %= 2;
|
||||
#else
|
||||
// Other variants can support double and quad speeds.
|
||||
currentCPUSpeedIndex %= 4;
|
||||
#endif
|
||||
switch (currentCPUSpeedIndex) {
|
||||
case CPUSPEED_HALF:
|
||||
g_speed = 1023000/2;
|
||||
@ -296,16 +290,18 @@ uint8_t BIOS::GetAction(int8_t selection)
|
||||
#ifndef TEENSYDUINO
|
||||
usleep(100)
|
||||
#endif
|
||||
threads.delay(1);
|
||||
;
|
||||
// Wait for either a keypress or the reset button to be pressed
|
||||
}
|
||||
|
||||
#ifdef TEENSYDUINO
|
||||
// FIXME: debounce!
|
||||
if (digitalRead(RESETPIN) == LOW) {
|
||||
// wait until it's no longer pressed
|
||||
while (digitalRead(RESETPIN) == HIGH)
|
||||
;
|
||||
delay(100); // wait long enough for it to debounce
|
||||
threads.delay(100); // wait long enough for it to debounce
|
||||
// then return an exit code
|
||||
return ACT_EXIT;
|
||||
}
|
||||
|
@ -12,7 +12,6 @@ VMui *g_ui;
|
||||
int8_t g_volume = 15;
|
||||
uint8_t g_displayType = 3; // FIXME m_perfectcolor
|
||||
VMRam g_ram;
|
||||
volatile bool g_inInterrupt = false;
|
||||
volatile uint8_t g_debugMode = D_NONE;
|
||||
bool g_prioritizeDisplay = false;
|
||||
volatile bool g_biosInterrupt = false;
|
||||
|
@ -47,11 +47,14 @@ extern VMui *g_ui;
|
||||
extern int8_t g_volume;
|
||||
extern uint8_t g_displayType;
|
||||
extern VMRam g_ram;
|
||||
extern volatile bool g_inInterrupt;
|
||||
extern volatile uint8_t g_debugMode;
|
||||
extern bool g_prioritizeDisplay;
|
||||
extern volatile bool g_biosInterrupt;
|
||||
extern uint32_t g_speed;
|
||||
extern bool g_invertPaddleX;
|
||||
extern bool g_invertPaddleY;
|
||||
|
||||
#include <TeensyThreads.h>
|
||||
extern Threads::Mutex spi_lock;
|
||||
|
||||
#endif
|
||||
|
@ -1,7 +1,8 @@
|
||||
#include <Arduino.h>
|
||||
#include <SPI.h>
|
||||
#include <TimeLib.h>
|
||||
#include <TimerOne.h>
|
||||
#include <TeensyThreads.h>
|
||||
#include <Bounce2.h>
|
||||
#include "bios.h"
|
||||
#include "cpu.h"
|
||||
#include "applevm.h"
|
||||
@ -26,9 +27,6 @@
|
||||
#include "globals.h"
|
||||
#include "teensy-crash.h"
|
||||
|
||||
uint32_t nextInstructionMicros;
|
||||
uint32_t startMicros;
|
||||
|
||||
BIOS bios;
|
||||
|
||||
// How many microseconds per cycle
|
||||
@ -38,6 +36,17 @@ static time_t getTeensy3Time() { return Teensy3Clock.get(); }
|
||||
|
||||
TeensyUSB usb;
|
||||
|
||||
int cpuThreadId;
|
||||
int displayThreadId;
|
||||
int maintenanceThreadId;
|
||||
int biosThreadId = -1;
|
||||
|
||||
Bounce resetButtonDebouncer = Bounce();
|
||||
Threads::Mutex cpulock; // For the BIOS to suspend CPU cleanly
|
||||
Threads::Mutex displaylock; // For the BIOS to shut down the display cleanly
|
||||
|
||||
volatile bool g_writePrefsFromMainLoop = false;
|
||||
|
||||
void onKeypress(int unicode)
|
||||
{
|
||||
Serial.print("onKeypress:");
|
||||
@ -186,24 +195,29 @@ void setup()
|
||||
println("Reading prefs");
|
||||
readPrefs(); // read from eeprom and set anything we need setting
|
||||
|
||||
startMicros = nextInstructionMicros = micros();
|
||||
|
||||
// Debugging: insert a disk on startup...
|
||||
//((AppleVM *)g_vm)->insertDisk(0, "/A2DISKS/UTIL/mock2dem.dsk", false);
|
||||
//((AppleVM *)g_vm)->insertDisk(0, "/A2DISKS/JORJ/disk_s6d1.dsk", false);
|
||||
// ((AppleVM *)g_vm)->insertDisk(0, "/A2DISKS/GAMES/ALIBABA.DSK", false);
|
||||
|
||||
// pinMode(56, OUTPUT);
|
||||
// pinMode(57, OUTPUT);
|
||||
|
||||
Serial.print("Free RAM: ");
|
||||
println(FreeRamEstimate());
|
||||
|
||||
resetButtonDebouncer.attach(RESETPIN);
|
||||
resetButtonDebouncer.interval(5); // ms
|
||||
|
||||
println("free-running");
|
||||
|
||||
Timer1.initialize(3);
|
||||
Timer1.attachInterrupt(runCPU);
|
||||
Timer1.start();
|
||||
threads.setMicroTimer(); // use a 100uS timer instead of a 1mS timer
|
||||
cpuThreadId = threads.addThread(runCPU);
|
||||
displayThreadId = threads.addThread(runDisplay);
|
||||
maintenanceThreadId = threads.addThread(runMaintenance);
|
||||
// Set the relative priorities of the threads by defining how long a "slice"
|
||||
// is for each (in 100uS "ticks")
|
||||
// At a ratio of 50:10:1, we get about 30FPS and 100% CPU speed.
|
||||
threads.setTimeSlice(displayThreadId, 100);
|
||||
threads.setTimeSlice(cpuThreadId, 20);
|
||||
threads.setTimeSlice(maintenanceThreadId, 1);
|
||||
}
|
||||
|
||||
// FIXME: move these memory-related functions elsewhere...
|
||||
@ -234,156 +248,229 @@ int heapSize(){
|
||||
|
||||
void biosInterrupt()
|
||||
{
|
||||
Timer1.stop();
|
||||
// Make sure the CPU and display don't run while we're in interrupt.
|
||||
Threads::Scope lock1(cpulock);
|
||||
Threads::Scope lock2(displaylock);
|
||||
|
||||
Serial.println("Waiting for button to be released");
|
||||
// wait for the interrupt button to be released
|
||||
while (digitalRead(RESETPIN) == LOW)
|
||||
while (!resetButtonDebouncer.read())
|
||||
;
|
||||
|
||||
Serial.println("Invoking BIOS");
|
||||
// invoke the BIOS
|
||||
if (bios.runUntilDone()) {
|
||||
// if it returned true, we have something to store persistently in EEPROM.
|
||||
writePrefs();
|
||||
// The EEPROM doesn't like to be written to from a thread?
|
||||
Serial.println("Writing prefs");
|
||||
g_writePrefsFromMainLoop = true;
|
||||
while (g_writePrefsFromMainLoop) {
|
||||
Serial.println("Waiting for prefs to be written");
|
||||
delay(100);
|
||||
// wait for write to complete
|
||||
}
|
||||
// Also might have changed the paddles state
|
||||
Serial.println("Updating paddle state");
|
||||
TeensyPaddles *tmp = (TeensyPaddles *)g_paddles;
|
||||
tmp->setRev(g_invertPaddleX, g_invertPaddleY);
|
||||
|
||||
}
|
||||
|
||||
Serial.println("Cleaning up");
|
||||
// if we turned off debugMode, make sure to clear the debugMsg
|
||||
if (g_debugMode == D_NONE) {
|
||||
g_display->debugMsg("");
|
||||
}
|
||||
|
||||
// clear the CPU next-step counters
|
||||
#if 0
|
||||
// FIXME: this is to prevent the CPU from racing to catch up, and we need sth in the threads world
|
||||
g_cpu->cycles = 0;
|
||||
nextInstructionMicros = micros();
|
||||
startMicros = micros();
|
||||
#endif
|
||||
// Drain the speaker queue (FIXME: a little hacky)
|
||||
g_speaker->maintainSpeaker(-1, -1);
|
||||
|
||||
Serial.println("Forcing display redraw");
|
||||
// Force the display to redraw
|
||||
g_display->redraw(); // Redraw the UI
|
||||
((AppleDisplay*)(g_vm->vmdisplay))->modeChange(); // force a full re-draw and blit
|
||||
|
||||
Serial.println("re-priming keyboard");
|
||||
// Poll the keyboard before we start, so we can do selftest on startup
|
||||
g_keyboard->maintainKeyboard();
|
||||
|
||||
Timer1.start();
|
||||
}
|
||||
|
||||
//bool debugState = false;
|
||||
//bool debugLCDState = false;
|
||||
|
||||
// FIXME: how often does this really need to run? We can threads.yield() when we're running too quickly
|
||||
void runMaintenance()
|
||||
{
|
||||
uint32_t nextRuntime = 0;
|
||||
|
||||
while (1) {
|
||||
if (millis() > nextRuntime) {
|
||||
nextRuntime = millis() + 100; // FIXME: what's a good time here
|
||||
|
||||
if (biosThreadId == -1) {
|
||||
// bios is not running; see if it should be
|
||||
if (!resetButtonDebouncer.read()) {
|
||||
// This is the BIOS interrupt. We immediately act on it.
|
||||
|
||||
biosThreadId = threads.addThread(biosInterrupt);
|
||||
}
|
||||
} else if (threads.getState(biosThreadId) != Threads::RUNNING) {
|
||||
// When the BIOS thread exits, we clean up
|
||||
Serial.println("Cleaing up bios thread");
|
||||
threads.wait(biosThreadId);
|
||||
Serial.println("BIOS thread is cleaned");
|
||||
biosThreadId = -1;
|
||||
}
|
||||
|
||||
g_keyboard->maintainKeyboard();
|
||||
usb.maintain();
|
||||
|
||||
static unsigned long nextBattCheck = millis() + 30;// debugging
|
||||
static int batteryLevel = 0; // static for debugging code! When done
|
||||
// debugging, this can become a local
|
||||
// in the appropriate block below
|
||||
if (millis() >= nextBattCheck) {
|
||||
// FIXME: what about rollover?
|
||||
nextBattCheck = millis() + 3 * 1000; // check every 3 seconds
|
||||
|
||||
// This is a bit disruptive - but the external 3.3v will drop along with the battery level, so we should use the more stable (I hope) internal 1.7v.
|
||||
// The alternative is to build a more stable buck/boost regulator for reference...
|
||||
|
||||
batteryLevel = analogRead(BATTERYPIN);
|
||||
|
||||
/* LiIon charge to a max of 4.2v; and we should not let them discharge below about 3.5v.
|
||||
* With a resistor voltage divider of Z1=39k, Z2=10k we're looking at roughly 20.4% of
|
||||
* those values: (10/49) * 4.2 = 0.857v, and (10/49) * 3.5 = 0.714v. Since the external
|
||||
* voltage reference flags as the battery drops, we can't use that as an absolute
|
||||
* reference. So using the INTERNAL 1.1v reference, that should give us a reasonable
|
||||
* range, in theory; the math shows the internal reference to be about 1.27v (assuming
|
||||
* the resistors are indeed 39k and 10k, which is almost certainly also wrong). But
|
||||
* then the high end would be 172, and the low end is about 142, which matches my
|
||||
* actual readings here very well.
|
||||
*
|
||||
* Actual measurements:
|
||||
* 3.46v = 144 - 146
|
||||
* 4.21v = 172
|
||||
*/
|
||||
#if 0
|
||||
Serial.print("battery: ");
|
||||
println(batteryLevel);
|
||||
#endif
|
||||
|
||||
if (batteryLevel < 146)
|
||||
batteryLevel = 146;
|
||||
if (batteryLevel > 168)
|
||||
batteryLevel = 168;
|
||||
|
||||
batteryLevel = map(batteryLevel, 146, 168, 0, 100);
|
||||
g_ui->drawPercentageUIElement(UIePowerPercentage, batteryLevel);
|
||||
}
|
||||
} else {
|
||||
threads.delay(10);
|
||||
// threads.yield();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: figure out how to limit this to 30 FPS (or whatver) so we can
|
||||
// appropriately use threads.yield()
|
||||
void runDisplay()
|
||||
{
|
||||
while (1) {
|
||||
{
|
||||
Threads::Scope lock(displaylock);
|
||||
doDebugging();
|
||||
|
||||
// FIXME: this is sometimes *VERY* slow.
|
||||
uint32_t startDisp = millis();
|
||||
uint32_t cpuBefore = g_cpu->cycles;
|
||||
g_ui->blit();
|
||||
g_vm->vmdisplay->lockDisplay();
|
||||
if (g_vm->vmdisplay->needsRedraw()) { // necessary for the VM to redraw
|
||||
// Used to get the dirty rect and blit just that rect. Could still do,
|
||||
// but instead, I'm just wildly wasting resources. MWAHAHAHA
|
||||
// AiieRect what = g_vm->vmdisplay->getDirtyRect();
|
||||
g_vm->vmdisplay->didRedraw();
|
||||
// g_display->blit(what);
|
||||
}
|
||||
g_display->blit(); // Blit the whole thing, including UI area
|
||||
g_vm->vmdisplay->unlockDisplay();
|
||||
uint32_t dispTime = millis() - startDisp;
|
||||
uint32_t cpuAfter = g_cpu->cycles;
|
||||
if (dispTime > 75) {
|
||||
Serial.print("Slow blit: ");
|
||||
Serial.print(dispTime);
|
||||
Serial.print(" cpu ran: ");
|
||||
Serial.println(cpuAfter - cpuBefore);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void runCPU()
|
||||
{
|
||||
g_inInterrupt = true;
|
||||
// Debugging: to watch when the speaker is triggered...
|
||||
// static bool debugState = false;
|
||||
// debugState = !debugState;
|
||||
// digitalWrite(56, debugState);
|
||||
|
||||
// Relatively critical timing: CPU needs to run ahead at least 4
|
||||
// cycles, b/c we're calling this interrupt (runCPU, that is) just
|
||||
// about 1/3 as fast as we should; and the speaker is updated
|
||||
// directly from within it, so it needs to be real-ish time.
|
||||
if (micros() > nextInstructionMicros) {
|
||||
// Debugging: to watch when the CPU is triggered...
|
||||
// static bool debugState = false;
|
||||
// debugState = !debugState;
|
||||
// digitalWrite(56, debugState);
|
||||
|
||||
uint8_t executed = g_cpu->Run(24);
|
||||
uint32_t nextInstructionMicros;
|
||||
uint32_t startMicros;
|
||||
startMicros = nextInstructionMicros = micros();
|
||||
|
||||
// The CPU of the Apple //e ran at 1.023 MHz. Adjust when we think
|
||||
// the next instruction should run based on how long the execution
|
||||
// was ((1000/1023) * numberOfCycles) - which is about 97.8%.
|
||||
nextInstructionMicros = startMicros + ((double)g_cpu->cycles * (double)SPEEDCTL);
|
||||
|
||||
((AppleVM *)g_vm)->cpuMaintenance(g_cpu->cycles);
|
||||
uint32_t startMillis = millis();
|
||||
|
||||
Serial.println("CPU thread is started");
|
||||
while (1) {
|
||||
// Relatively critical timing: CPU needs to run ahead at least 4
|
||||
// cycles, b/c we're calling this interrupt (runCPU, that is) just
|
||||
// about 1/3 as fast as we should; and the speaker is updated
|
||||
// directly from within it, so it needs to be real-ish time.
|
||||
if (micros() >= nextInstructionMicros) {
|
||||
uint32_t expectedCycles = (micros() - startMicros) * SPEEDCTL;
|
||||
|
||||
uint8_t executed;
|
||||
cpulock.lock(); // Blocking; if the BIOS is running, we stall here
|
||||
executed = g_cpu->Run(24);
|
||||
cpulock.unlock();
|
||||
|
||||
// The CPU of the Apple //e ran at 1.023 MHz. Adjust when we think
|
||||
// the next instruction should run based on how long the execution
|
||||
// was ((1000/1023) * numberOfCycles) - which is about 97.8%.
|
||||
if (expectedCycles > g_cpu->cycles) {
|
||||
nextInstructionMicros = micros();
|
||||
#if 0
|
||||
// show a warning on serial about our current performance
|
||||
double percentage = ((double)g_cpu->cycles / (double)expectedCycles) * 100.0;
|
||||
static uint32_t nextWarningTime = 0;
|
||||
if (millis() > nextWarningTime) {
|
||||
static char buf[100];
|
||||
sprintf(buf, "CPU running at %f%% of %d", percentage, g_speed);
|
||||
Serial.println(buf);
|
||||
nextWarningTime = millis() + 1000;
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
nextInstructionMicros = startMicros + ((double)g_cpu->cycles * (double)SPEEDCTL);
|
||||
}
|
||||
|
||||
((AppleVM *)g_vm)->cpuMaintenance(g_cpu->cycles);
|
||||
} else {
|
||||
// threads.yield();
|
||||
threads.delay(1);
|
||||
}
|
||||
}
|
||||
|
||||
g_inInterrupt = false;
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
if (digitalRead(RESETPIN) == LOW) {
|
||||
// This is the BIOS interrupt. We immediately act on it.
|
||||
biosInterrupt();
|
||||
}
|
||||
resetButtonDebouncer.update();
|
||||
|
||||
g_keyboard->maintainKeyboard();
|
||||
usb.maintain();
|
||||
|
||||
//debugLCDState = !debugLCDState;
|
||||
//digitalWrite(57, debugLCDState);
|
||||
|
||||
doDebugging();
|
||||
|
||||
// FIXME: this is sometimes *VERY* slow.
|
||||
uint32_t startDisp = millis();
|
||||
uint32_t cpuBefore = g_cpu->cycles;
|
||||
g_ui->blit();
|
||||
g_vm->vmdisplay->lockDisplay();
|
||||
if (g_vm->vmdisplay->needsRedraw()) { // necessary for the VM to redraw
|
||||
// Used to get the dirty rect and blit just that rect. Could still do,
|
||||
// but instead, I'm just wildly wasting resources. MWAHAHAHA
|
||||
// AiieRect what = g_vm->vmdisplay->getDirtyRect();
|
||||
g_vm->vmdisplay->didRedraw();
|
||||
// g_display->blit(what);
|
||||
}
|
||||
g_display->blit(); // Blit the whole thing, including UI area
|
||||
g_vm->vmdisplay->unlockDisplay();
|
||||
uint32_t dispTime = millis() - startDisp;
|
||||
uint32_t cpuAfter = g_cpu->cycles;
|
||||
if (dispTime > 30) {
|
||||
Serial.print("Slow blit: ");
|
||||
Serial.print(dispTime);
|
||||
Serial.print(" cpu ran: ");
|
||||
Serial.println(cpuAfter - cpuBefore);
|
||||
}
|
||||
|
||||
static unsigned long nextBattCheck = millis() + 30;// debugging
|
||||
static int batteryLevel = 0; // static for debugging code! When done
|
||||
// debugging, this can become a local
|
||||
// in the appropriate block below
|
||||
if (millis() >= nextBattCheck) {
|
||||
// FIXME: what about rollover?
|
||||
nextBattCheck = millis() + 3 * 1000; // check every 3 seconds
|
||||
|
||||
// This is a bit disruptive - but the external 3.3v will drop along with the battery level, so we should use the more stable (I hope) internal 1.7v.
|
||||
// The alternative is to build a more stable buck/boost regulator for reference...
|
||||
|
||||
batteryLevel = analogRead(BATTERYPIN);
|
||||
|
||||
/* LiIon charge to a max of 4.2v; and we should not let them discharge below about 3.5v.
|
||||
* With a resistor voltage divider of Z1=39k, Z2=10k we're looking at roughly 20.4% of
|
||||
* those values: (10/49) * 4.2 = 0.857v, and (10/49) * 3.5 = 0.714v. Since the external
|
||||
* voltage reference flags as the battery drops, we can't use that as an absolute
|
||||
* reference. So using the INTERNAL 1.1v reference, that should give us a reasonable
|
||||
* range, in theory; the math shows the internal reference to be about 1.27v (assuming
|
||||
* the resistors are indeed 39k and 10k, which is almost certainly also wrong). But
|
||||
* then the high end would be 172, and the low end is about 142, which matches my
|
||||
* actual readings here very well.
|
||||
*
|
||||
* Actual measurements:
|
||||
* 3.46v = 144 - 146
|
||||
* 4.21v = 172
|
||||
*/
|
||||
#if 1
|
||||
Serial.print("battery: ");
|
||||
println(batteryLevel);
|
||||
#endif
|
||||
|
||||
if (batteryLevel < 146)
|
||||
batteryLevel = 146;
|
||||
if (batteryLevel > 168)
|
||||
batteryLevel = 168;
|
||||
|
||||
batteryLevel = map(batteryLevel, 146, 168, 0, 100);
|
||||
g_ui->drawPercentageUIElement(UIePowerPercentage, batteryLevel);
|
||||
if (g_writePrefsFromMainLoop) {
|
||||
Serial.println("Writing prefs");
|
||||
writePrefs();
|
||||
g_writePrefsFromMainLoop = false;
|
||||
}
|
||||
}
|
||||
|
||||
@ -481,10 +568,7 @@ void writePrefs()
|
||||
TeensyPrefs np;
|
||||
prefs_t p;
|
||||
|
||||
g_display->clrScr();
|
||||
g_display->drawString(M_SELECTED, 80, 100,"Writing prefs...");
|
||||
g_display->flush();
|
||||
|
||||
Serial.println("writePrefs()");
|
||||
p.magic = PREFSMAGIC;
|
||||
p.prefsSize = sizeof(prefs_t);
|
||||
p.version = PREFSVERSION;
|
||||
@ -502,7 +586,5 @@ void writePrefs()
|
||||
strcpy(p.hd1, ((AppleVM *)g_vm)->HDName(0));
|
||||
strcpy(p.hd2, ((AppleVM *)g_vm)->HDName(1));
|
||||
|
||||
Timer1.stop();
|
||||
bool ret = np.writePrefs(&p);
|
||||
Timer1.start();
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user