moving around a few pins

This commit is contained in:
Jorj Bauer 2020-07-09 14:02:18 -04:00
parent 857f187d96
commit e17fb71d3d

View File

@ -20,8 +20,7 @@
#pragma AiiE warning: performance will improve if you overclock the Teensy to 240MHz (F_CPU=240MHz) or 256MHz (F_CPU=256MHz)
#endif
#define RESETPIN 39
#define BATTERYPIN 38
#define RESETPIN 38
#define SPEAKERPIN A16 // aka digital 40
#include "globals.h"
@ -104,11 +103,10 @@ void setup()
pinMode(RESETPIN, INPUT);
digitalWrite(RESETPIN, HIGH);
analogReadRes(8); // We only need 8 bits of resolution (0-255) for battery & paddles
analogReadRes(8); // We only need 8 bits of resolution (0-255) for paddles
analogReadAveraging(4); // ?? dunno if we need this or not.
pinMode(SPEAKERPIN, OUTPUT); // analog speaker output, used as digital volume control
pinMode(BATTERYPIN, INPUT);
println("creating virtual hardware");
g_speaker = new TeensySpeaker(SPEAKERPIN);
@ -154,7 +152,7 @@ void setup()
g_keyboard = new TeensyKeyboard(g_vm->getKeyboard());
println(" paddles");
g_paddles = new TeensyPaddles(A3, A4, g_invertPaddleX, g_invertPaddleY);
g_paddles = new TeensyPaddles(A3, A2, g_invertPaddleX, g_invertPaddleY);
// Now that all the virtual hardware is glued together, reset the VM
println("Resetting VM");
@ -286,47 +284,6 @@ void runMaintenance()
g_keyboard->maintainKeyboard();
usb.maintain();
static unsigned long nextBattCheck = millis() + 30;// debugging
static int batteryLevel = 0; // static for debugging code! When done
// debugging, this can become a local
// in the appropriate block below
if (millis() >= nextBattCheck) {
// FIXME: what about rollover?
nextBattCheck = millis() + 3 * 1000; // check every 3 seconds
// This is a bit disruptive - but the external 3.3v will drop along with the battery level, so we should use the more stable (I hope) internal 1.7v.
// The alternative is to build a more stable buck/boost regulator for reference...
batteryLevel = analogRead(BATTERYPIN);
/* LiIon charge to a max of 4.2v; and we should not let them discharge below about 3.5v.
* With a resistor voltage divider of Z1=39k, Z2=10k we're looking at roughly 20.4% of
* those values: (10/49) * 4.2 = 0.857v, and (10/49) * 3.5 = 0.714v. Since the external
* voltage reference flags as the battery drops, we can't use that as an absolute
* reference. So using the INTERNAL 1.1v reference, that should give us a reasonable
* range, in theory; the math shows the internal reference to be about 1.27v (assuming
* the resistors are indeed 39k and 10k, which is almost certainly also wrong). But
* then the high end would be 172, and the low end is about 142, which matches my
* actual readings here very well.
*
* Actual measurements:
* 3.46v = 144 - 146
* 4.21v = 172
*/
#if 0
Serial.print("battery: ");
println(batteryLevel);
#endif
if (batteryLevel < 146)
batteryLevel = 146;
if (batteryLevel > 168)
batteryLevel = 168;
batteryLevel = map(batteryLevel, 146, 168, 0, 100);
g_ui->drawPercentageUIElement(UIePowerPercentage, batteryLevel);
}
} else {
threads.delay(10);
// threads.yield();
@ -463,10 +420,6 @@ void doDebugging()
sprintf(buf, "%lX", g_cpu->cycles);
g_display->debugMsg(buf);
break;
case D_SHOWBATTERY:
sprintf(buf, "BAT %d", analogRead(BATTERYPIN));
g_display->debugMsg(buf);
break;
case D_SHOWTIME:
sprintf(buf, "%.2d:%.2d:%.2d", hour(), minute(), second());
g_display->debugMsg(buf);