#include "diskii.h" #ifdef TEENSYDUINO #include #include "teensy-println.h" #include "iocompat.h" #else #include #include #include #include #include #endif #include "applemmu.h" // for _FLOATINGBUS #include "globals.h" #include "appleui.h" #include "serialize.h" #include "diskii-rom.h" #define DISKIIMAGIC 0xAA // how many CPU cycles do we wait to spin down the disk drive? 1023000 == 1 second #define SPINDOWNDELAY (1023000) // When the drive spins down, we also need to be sure its contents are flushed. #define FLUSHDELAY SPINDOWNDELAY #define SPINFOREVER -2 #define NOTSPINNING -1 DiskII::DiskII(AppleMMU *mmu) { this->mmu = mmu; curPhase[0] = curPhase[1] = 0; curHalfTrack[0] = curHalfTrack[1] = 0; curWozTrack[0] = curWozTrack[1] = 0xFF; writeMode = false; writeProt = false; // FIXME: expose an interface to this readWriteLatch = 0x00; sequencer = 0; dataRegister = 0; driveSpinupCycles[0] = driveSpinupCycles[1] = 0; // CPU cycle number when the disk drive spins up deliveredDiskBits[0] = deliveredDiskBits[1] = 0; disk[0] = disk[1] = NULL; diskIsSpinningUntil[0] = diskIsSpinningUntil[1] = -1; flushAt[0] = flushAt[1] = 0; selectedDisk = 0; } DiskII::~DiskII() { } bool DiskII::Serialize(int8_t fd) { serializeMagic(DISKIIMAGIC); serialize8(readWriteLatch); serialize8(sequencer); serialize8(dataRegister); serialize8(writeMode); serialize8(writeProt); serialize8(selectedDisk); for (int i=0; i<2; i++) { serialize8(curHalfTrack[i]); serialize8(curWozTrack[i]); serialize8(curPhase[i]); serialize64(driveSpinupCycles[i]); serialize64(deliveredDiskBits[i]); serialize64(diskIsSpinningUntil[i]); if (disk[i]) { // Make sure we have flushed the disk images disk[i]->flush(); flushAt[i] = 0; // and there's no need to re-flush them now serialize8(1); // FIXME: this ONLY works for builds using the filemanager to read // the disk image, so it's broken until we port Woz to do that! const char *fn = disk[i]->diskName(); serializeString(fn); if (!disk[i]->Serialize(fd)) goto err; } else { serialize8(0); } } serializeMagic(DISKIIMAGIC); return true; err: return false; } bool DiskII::Deserialize(int8_t fd) { deserializeMagic(DISKIIMAGIC); deserialize8(readWriteLatch); deserialize8(sequencer); deserialize8(dataRegister); deserialize8(writeMode); deserialize8(writeProt); deserialize8(selectedDisk); for (int i=0; i<2; i++) { deserialize8(curHalfTrack[i]); deserialize8(curWozTrack[i]); deserialize8(curPhase[i]); deserialize64(driveSpinupCycles[i]); deserialize64(deliveredDiskBits[i]); deserialize64(diskIsSpinningUntil[i]); uint8_t hasDisk; deserialize8(hasDisk); if (disk[i]) delete disk[i]; if (hasDisk) { disk[i] = new WozSerializer(); // FIXME: MAXPATH check! char fn[MAXPATH]; deserializeString(fn); if (fn[0]) { printf("Restoring disk image named '%s'\n", fn); disk[i]->readFile((char *)fn, true, T_AUTO); // FIXME error checking } else { // ERROR: there's a disk but we don't have the path to its image? printf("Failed to read inserted disk name for disk %d\n", i); goto err; } if (!disk[i]->Deserialize(fd)) { printf("Failed to deserialize disk %d\n", i); goto err; } } else { disk[i] = NULL; } } deserializeMagic(DISKIIMAGIC); return true; err: return false; } void DiskII::Reset() { curPhase[0] = curPhase[1] = 0; curHalfTrack[0] = curHalfTrack[1] = 0; writeMode = false; writeProt = false; // FIXME: expose an interface to this readWriteLatch = 0x00; ejectDisk(0); ejectDisk(1); } void DiskII::driveOff() { if (diskIsSpinningUntil[selectedDisk] == SPINFOREVER) { diskIsSpinningUntil[selectedDisk] = g_cpu->cycles + SPINDOWNDELAY; // 1 second lag // The drive-is-on-indicator is turned off later, when the disk // actually spins down. } if (disk[selectedDisk]) { flushAt[selectedDisk] = g_cpu->cycles + FLUSHDELAY; if (flushAt[selectedDisk] == 0) flushAt[selectedDisk] = 1; // fudge magic number; 0 is "don't flush" } } void DiskII::driveOn() { if (diskIsSpinningUntil[selectedDisk] != SPINFOREVER) { // If the drive isn't already spinning, then start keeping track of how // many bits we've delivered (so we can honor the disk bit-delivery time // that might be in the Woz disk image). driveSpinupCycles[selectedDisk] = g_cpu->cycles; deliveredDiskBits[selectedDisk] = 0; diskIsSpinningUntil[selectedDisk] = SPINFOREVER; } // FIXME: does the sequencer get reset? Maybe if it's the selected disk? Or no? // sequencer = 0; g_ui->drawOnOffUIElement(UIeDisk1_activity + selectedDisk, true); } uint8_t DiskII::readSwitches(uint8_t s) { switch (s) { case 0x00: // change stepper motor phase break; case 0x01: setPhase(0); break; case 0x02: break; case 0x03: setPhase(1); break; case 0x04: break; case 0x05: setPhase(2); break; case 0x06: // 3 off break; case 0x07: // 3 on setPhase(3); break; case 0x08: // drive off driveOff(); break; case 0x09: // drive on driveOn(); break; case 0x0A: // select drive 1 select(0); break; case 0x0B: // select drive 2 select(1); break; case 0x0C: // shift one read or write byte readWriteLatch = readOrWriteByte(); if (readWriteLatch & 0x80) { if (!(sequencer & 0x80)) { // printf("SEQ RESET EARLY [1]\n"); } sequencer = 0; } break; case 0x0D: // load data register (latch) // This is complex and incomplete. cf. Logic State Sequencer, // UTA2E, p. 9-14 if (!writeMode) { if (isWriteProtected()) readWriteLatch |= 0x80; else readWriteLatch &= 0x7F; } if (!(sequencer & 0x80)) { // printf("SEQ RESET EARLY [2]\n"); } sequencer = 0; break; case 0x0E: // set read mode setWriteMode(false); break; case 0x0F: // set write mode setWriteMode(true); break; } // Any even address read returns the readWriteLatch (UTA2E Table 9.1, // p. 9-12, note 2) return (s & 1) ? _FLOATINGBUS : readWriteLatch; } void DiskII::writeSwitches(uint8_t s, uint8_t v) { switch (s) { case 0x00: // change stepper motor phase break; case 0x01: setPhase(0); break; case 0x02: break; case 0x03: setPhase(1); break; case 0x04: break; case 0x05: setPhase(2); break; case 0x06: // 3 off break; case 0x07: // 3 on setPhase(3); break; case 0x08: // drive off driveOff(); break; case 0x09: // drive on driveOn(); break; case 0x0A: // select drive 1 select(0); break; case 0x0B: // select drive 2 select(1); break; case 0x0C: // shift one read or write byte if (readOrWriteByte() & 0x80) { if (!(sequencer & 0x80)) { // printf("SEQ RESET EARLY [3]\n"); } sequencer = 0; } break; case 0x0D: // drive write break; case 0x0E: // set read mode setWriteMode(false); break; case 0x0F: // set write mode setWriteMode(true); break; } // All writes update the latch if (writeMode) { readWriteLatch = v; } } /* The Disk ][ has a stepper motor that moves the head across the tracks. * Switches 0-7 turn off and on the four different magnet phases; pulsing * from (e.g.) phase 0 to phase 1 makes the motor move up a track, and * (e.g.) phase 1 to phase 0 makes the motor move down a track. * * Except that's not quite true: the stepper actually moves the head a * _half_ track. * * This is a very simplified version of the stepper motor code. In theory, * we should keep track of all 4 phase magnets; and then only move up or down * a half track when two adjacent motors are on (not three adjacent motors; * and not two opposite motors). But that physical characteristic isn't * important for most diskettes, and our image formats aren't likely to * be able to provide appropriate half-track data to the programs that played * tricks with these half-tracks (for copy protection or whatever). * * This setPhase is only called when turning *on* a phase. It's assumed that * something is turning *off* the phases correctly; and that the combination * of the previous phase that was on and the current phase that's being turned * on are reliable enough to determine direction. * * The _phase_delta array is four sets of offsets - one for each * current phase, detailing what the step will be given the next * phase. This kind of emulates the messiness of going from phase 0 * to 2 -- it's going to move forward two half-steps -- but then doing * the same thing again is just going to move you back two half-steps... * */ void DiskII::setPhase(uint8_t phase) { const int8_t _phase_delta[16] = { 0, 1, 2, -1, // prev phase 0 -> 0/1/2/3 -1, 0, 1, 2, // prev phase 1 -> 0/1/2/3 -2, -1, 0, 1, // prev phase 2 -> 0/1/2/3 1, -2, -1, 0 // prev phase 3 -> 0/1/2/3 }; int8_t prevPhase = curPhase[selectedDisk]; int8_t prevHalfTrack = curHalfTrack[selectedDisk]; curHalfTrack[selectedDisk] += _phase_delta[(prevPhase * 4) + phase]; curPhase[selectedDisk] = phase; // Cap at 35 tracks (a normal disk size). Some drives let you go farther, // and we could support that by increasing this limit - but the images // would be different too, so there would be more work to abstract out... if (curHalfTrack[selectedDisk] > 35 * 2 - 1) { curHalfTrack[selectedDisk] = 35 * 2 - 1; } // Don't go past the innermost track, of course. if (curHalfTrack[selectedDisk] < 0) { curHalfTrack[selectedDisk] = 0; // recalibrate! This is where the fun noise goes DaDaDaDaDaDaDaDaDa } if (curHalfTrack[selectedDisk] != prevHalfTrack) { if (disk[selectedDisk]) { curWozTrack[selectedDisk] = disk[selectedDisk]->dataTrackNumberForQuarterTrack(curHalfTrack[selectedDisk]*2); } else { curWozTrack[selectedDisk] = 0; } } } bool DiskII::isWriteProtected() { return (writeProt ? 0xFF : 0x00); } int64_t DiskII::calcExpectedBits() { // If the disk isn't spinning, then it can't be expected to deliver data if (diskIsSpinningUntil[selectedDisk]==NOTSPINNING) return 0; int64_t cyclesPassed = g_cpu->cycles - driveSpinupCycles[selectedDisk]; // This constant defines how fast the disk drive "spins". // 4.0 is good for DOS 3.3 writes, and reads as 205ms in // Copy 2+'s drive speed verifier. // 3.99: 204.5ms // 3.90: 199.9ms // 3.91: 200.5ms // 3.51: 176ms, and is too fast for DOS to write properly. // // As-is, this won't read NIB files for some reason I haven't // fully understood; but if you slow the disk down to /5.0, // then they load? int64_t expectedDiskBits = (float)cyclesPassed / 3.90; return expectedDiskBits - deliveredDiskBits[selectedDisk]; } void DiskII::setWriteMode(bool enable) { if (enable) { // At this point we need to update the track pointer so we know // where we're going to start writing bits. int64_t db = calcExpectedBits(); if (db > 0) { // make sure the disk is at the right point for our program counter's time // before we start writing data. deliveredDiskBits[selectedDisk] += db; while (db) { sequencer <<= 1; sequencer |= disk[selectedDisk]->nextDiskBit(curWozTrack[selectedDisk]); db--; } } } writeMode = enable; } static uint8_t _lc(char c) { if (c >= 'A' && c <= 'Z') { c = c - 'A' + 'a'; } return c; } static bool _endsWithI(const char *s1, const char *s2) { if (strlen(s2) > strlen(s1)) { return false; } const char *p = &s1[strlen(s1)-1]; int16_t l = strlen(s2)-1; while (l >= 0) { if (_lc(*p--) != _lc(s2[l])) return false; l--; } return true; } void DiskII::insertDisk(int8_t driveNum, const char *filename, bool drawIt) { ejectDisk(driveNum); disk[driveNum] = new WozSerializer(); if (!disk[driveNum]->readFile(filename, true, T_AUTO)) { delete disk[driveNum]; disk[driveNum] = NULL; return; } curWozTrack[driveNum] = disk[driveNum]->dataTrackNumberForQuarterTrack(curHalfTrack[driveNum]*2); if (drawIt) g_ui->drawOnOffUIElement(UIeDisk1_state + driveNum, false); } void DiskII::ejectDisk(int8_t driveNum) { if (disk[driveNum]) { disk[driveNum]->flush(); flushAt[driveNum] = 0; delete disk[driveNum]; disk[driveNum] = NULL; g_ui->drawOnOffUIElement(UIeDisk1_state + driveNum, true); } } void DiskII::select(int8_t which) { if (which != 0 && which != 1) return; if (which != selectedDisk) { if (diskIsSpinningUntil[selectedDisk] == SPINFOREVER) { // FIXME: I'm not sure what the right behavior is here (read // UTA2E and see if the state diagrams show the right // behavior). This spins it down immediately based on something // I read about the duoDisk not having both motors on // simultaneously. diskIsSpinningUntil[selectedDisk] = NOTSPINNING; // FIXME: consume any disk bits that need to be consumed, and // spin it down g_ui->drawOnOffUIElement(UIeDisk1_activity + selectedDisk, false); // Spin up the other one though diskIsSpinningUntil[which] = SPINFOREVER; g_ui->drawOnOffUIElement(UIeDisk1_activity + which, true); } // Queue flushing the cache of the disk that's no longer selected if (disk[selectedDisk]) { flushAt[selectedDisk] = g_cpu->cycles + FLUSHDELAY; if (flushAt[selectedDisk] == 0) flushAt[selectedDisk] = 1; // fudge magic number; 0 is "don't flush" } // set the selected disk drive selectedDisk = which; // FIXME: does this reset the sequencer? sequencer = 0; } // Update the current woz track for the given disk drive if (disk[selectedDisk]) { curWozTrack[selectedDisk] = disk[selectedDisk]->dataTrackNumberForQuarterTrack(curHalfTrack[selectedDisk]*2); } } uint8_t DiskII::readOrWriteByte() { if (!disk[selectedDisk]) { return 0xFF; } int32_t bitsToDeliver; if (diskIsSpinningUntil[selectedDisk] != SPINFOREVER && diskIsSpinningUntil[selectedDisk] < g_cpu->cycles) { // Uum, disk isn't spinning? goto done; } bitsToDeliver = calcExpectedBits(); if (writeMode && !writeProt) { // It's a write request. // Write requests from DOS 3.3 start with 40 self-sync bytes // (cf. Beneath Apple DOS, p.3-8 and 3-9). These 0XFF bytes are // written in a 40-cycle loop, where a bit is written every 4 // cycles; it intentionally lets 2 0-bits slip in there to // provide the self-sync pattern. // // So the timing here is important. Figure out how many bits // should have been laid down to the track, and those are 0s. int64_t expectedBits = calcExpectedBits(); while (expectedBits > 0) { disk[selectedDisk]->writeNextWozBit(curWozTrack[selectedDisk], 0); expectedBits--; deliveredDiskBits[selectedDisk]++; } disk[selectedDisk]->writeNextWozByte(curWozTrack[selectedDisk], readWriteLatch); deliveredDiskBits[selectedDisk] += 8; goto done; } if (bitsToDeliver > 0) { // We're expected to deliver some bits to the Disk II sequencer. // Instead of piecemeal delivering a small number of bits (which we // could do, but it's kinda busywork) - instead, we'll do one of two // possible things. // // The first: if we're expecting a small number of bits to be delivered, // then we'll grab the next byte from the nibble stream and return it. // This itself has three possible cases - // (a) we should be delivering less than a full byte, but we're // actually going to deliver a full byte. bitsToDeliver will // become negative, because we're delivering these too early. // The next call will probably see that it has nothing to deliver // and, as long as the disk image we're using doesn't have a // really fine tolerance on the delivery rate of the bits, // it will all come out in the wash. // (b) we should be delivering exactly a byte, and we're doing the // absolute right thing. // (c) we are more than 1 byte, but less than 2 bytes, behind. If // this is the case, we're probably making up for a timing // problem in this code - where the bits would now have been // lost. By returning the first byte that we found, we're hoping // that the next call will be closer to on time, and we will // eventually catch back up to the stream. Hopefully this makes // the stream a little more resilient - and the error isn't // so far off that the reader notices something is weird on the // timing. (Standard RWTS doesn't, but some copy protection // might.) if (bitsToDeliver < 16) { while (bitsToDeliver > -16 && ((sequencer & 0x80) == 0)) { sequencer <<= 1; sequencer |= disk[selectedDisk]->nextDiskBit(curWozTrack[selectedDisk]); bitsToDeliver--; deliveredDiskBits[selectedDisk]++; } goto done; } // If we reach here, we're throwing away a bunch of missed data. // This might be normal (where the machine wasn't listening for the data), // or it might be exceptional (something wrong with the tuning of data // delivery, based on the magic constant in expectedDiskBits above)... deliveredDiskBits[selectedDisk] += bitsToDeliver; while (bitsToDeliver) { sequencer <<= 1; sequencer |= disk[selectedDisk]->nextDiskBit(curWozTrack[selectedDisk]); bitsToDeliver--; } } done: return sequencer; } const char *DiskII::DiskName(int8_t num) { if (disk[num]) { return disk[num]->diskName(); } // Nothing inserted in that drive return ""; } void DiskII::loadROM(uint8_t *toWhere) { #ifdef TEENSYDUINO println("loading DiskII rom"); for (uint16_t i=0; i<=0xFF; i++) { toWhere[i] = pgm_read_byte(&romData[i]); } #else printf("loading DiskII rom\n"); memcpy(toWhere, romData, 256); #endif } void DiskII::maintenance(int64_t cycle) { // Handle spin-down for the drive. Drives stay on for a second after // the stop was noticed. for (int i=0; i<2; i++) { if (diskIsSpinningUntil[i] != SPINFOREVER && g_cpu->cycles > diskIsSpinningUntil[i]) { // Stop the given disk drive spinning diskIsSpinningUntil[i] = NOTSPINNING; // FIXME: consume any disk bits that need to be consumed, and spin it down g_ui->drawOnOffUIElement(UIeDisk1_activity + i, false); } if (flushAt[i] && g_cpu->cycles > flushAt[i]) { if (disk[i]) { disk[i]->flush(); } flushAt[i] = 0; } } } uint8_t DiskII::selectedDrive() { return selectedDisk; } uint8_t DiskII::headPosition(uint8_t drive) { return curHalfTrack[drive]; }