#include "diskii.h" #ifdef TEENSYDUINO #include #else #include #include #include #include #include #endif #include "applemmu.h" // for FLOATING #include "globals.h" #include "diskii-rom.h" DiskII::DiskII(AppleMMU *mmu) { this->trackBuffer = new RingBuffer(NIBTRACKSIZE); this->rawTrackBuffer = (uint8_t *)malloc(4096); this->mmu = mmu; trackPos[0] = trackPos[1] = 0; prevTrack[0] = prevTrack[1] = 0; stepperPhases[0] = stepperPhases[1] = 0; curPhase[0] = curPhase[1] = 0; curTrack[0] = curTrack[1] = 0; trackDirty = false; trackToRead = -1; trackToFlush = -1; writeMode = false; writeProt = false; // FIXME: expose an interface to this readWriteLatch = 0x00; disk[0] = disk[1] = -1; indicatorIsOn[0] = indicatorIsOn[1] = 0; selectedDisk = 0; diskType[0] = diskType[1] = dosDisk; } DiskII::~DiskII() { delete this->trackBuffer; this->trackBuffer = NULL; free(this->rawTrackBuffer); this->rawTrackBuffer = NULL; } void DiskII::Reset() { trackPos[0] = trackPos[1] = 0; prevTrack[0] = prevTrack[1] = 0; stepperPhases[0] = stepperPhases[1] = 0; curPhase[0] = curPhase[1] = 0; curTrack[0] = curTrack[1] = 0; trackDirty = false; trackToRead = -1; trackToFlush = -1; writeMode = false; writeProt = false; // FIXME: expose an interface to this readWriteLatch = 0x00; ejectDisk(0); ejectDisk(1); } void DiskII::checkFlush(int8_t track) { if (trackDirty && trackToFlush == -1) { diskToFlush = selectedDisk; trackToFlush = track; trackDirty = false; // just so we don't overwrite disk/track to flush before continuing... } } uint8_t DiskII::readSwitches(uint8_t s) { switch (s) { case 0x00: // change stepper motor phase case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07: step(s); break; case 0x08: // drive off indicatorIsOn[selectedDisk] = 99; g_display->setDriveIndicator(selectedDisk, false); // FIXME: after a spell... checkFlush(curTrack[selectedDisk]); break; case 0x09: // drive on indicatorIsOn[selectedDisk] = 100; g_display->setDriveIndicator(selectedDisk, true); break; case 0x0A: // select drive 1 select(0); break; case 0x0B: // select drive 2 select(1); break; case 0x0C: // shift one read or write byte readWriteLatch = readOrWriteByte(); break; case 0x0D: // load data register (latch) // This is complex and incomplete. cf. Logic State Sequencer, // UTA2E, p. 9-14 if (!writeMode && indicatorIsOn[selectedDisk]) { if (isWriteProtected()) readWriteLatch |= 0x80; else readWriteLatch &= 0x7F; } break; case 0x0E: // set read mode setWriteMode(false); // FIXME: with this shortcut here, disk access speeds up ridiculously. // Is this breaking anything? return ( (readOrWriteByte() & 0x7F) | (isWriteProtected() ? 0x80 : 0x00) ); break; case 0x0F: // set write mode setWriteMode(true); break; } // FIXME: improve the spin-down here. We need a CPU cycle callback // for some period of time instead of this silly decrement counter. if (!indicatorIsOn[selectedDisk]) { // printf("Unexpected read while disk isn't on?\n"); indicatorIsOn[selectedDisk] = 100; g_display->setDriveIndicator(selectedDisk, true); } if (indicatorIsOn[selectedDisk] > 0 && indicatorIsOn[selectedDisk] < 100) { // slowly spin it down... if (--indicatorIsOn[selectedDisk] == 0) { g_display->setDriveIndicator(selectedDisk, false); } } // Any even address read returns the readWriteLatch (UTA2E Table 9.1, // p. 9-12, note 2) return (s & 1) ? FLOATING : readWriteLatch; } void DiskII::writeSwitches(uint8_t s, uint8_t v) { switch (s) { case 0x00: // change stepper motor phase case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07: step(s); break; case 0x08: // drive off break; case 0x09: // drive on break; case 0x0A: // select drive 1 select(0); break; case 0x0B: // select drive 2 select(1); break; case 0x0C: // shift one read or write byte readOrWriteByte(); break; case 0x0D: // drive write break; case 0x0E: // set read mode setWriteMode(false); break; case 0x0F: // set write mode setWriteMode(true); break; } // All writes update the latch if (writeMode) { readWriteLatch = v; } } // where a is the address poked & 0x07 (e.g. "0xC0E0 & 0x07") void DiskII::step(uint8_t a) { int phase = (a >> 1) & 3; int phase_bit = (1 << phase); if (a & 1) { stepperPhases[selectedDisk] |= phase_bit; } else { stepperPhases[selectedDisk] &= ~phase_bit; } // If the magnet opposite the cog is off, then try to move. Move in // the direction of adjacent magent - but if both adjacent magents // are on, then don't move at all. int direction = 0; int cur_phase = curPhase[selectedDisk]; if (stepperPhases[selectedDisk] & (1 << ((cur_phase + 1) & 3))) { direction++; } if (stepperPhases[selectedDisk] & (1 << ((cur_phase+3) & 3))) { direction--; } if (direction) { int next_phase = cur_phase + direction; if (next_phase < 0) { next_phase = 0; // recalibrate } // FIXME: don't go beyond the end of the media. For a 35-track disk, that's 68 == ((35-1) * 2). if (next_phase > 69) { next_phase = 69; // ... Or go to 79? or 68, which we stopped at before? Not sure // what the right behavior is here. } if ((cur_phase >> 1) != (next_phase >> 1)) { // We're about to change tracks - be sure to flush the track if we've written to it checkFlush(prevTrack[selectedDisk]); prevTrack[selectedDisk] = curTrack[selectedDisk]; curTrack[selectedDisk] = next_phase>>1; // mark it to be read trackToRead = curTrack[selectedDisk]; } curPhase[selectedDisk] = next_phase; } } bool DiskII::isWriteProtected() { return (writeProt ? 0xFF : 0x00); } void DiskII::setWriteMode(bool enable) { writeMode = enable; } static uint8_t _lc(char c) { if (c >= 'A' && c <= 'Z') { c = c - 'A' + 'a'; } return c; } static bool _endsWithI(const char *s1, const char *s2) { if (strlen(s2) > strlen(s1)) { return false; } const char *p = &s1[strlen(s1)-1]; int16_t l = strlen(s2)-1; while (l >= 0) { if (_lc(*p--) != _lc(s2[l])) return false; l--; } return true; } void DiskII::insertDisk(int8_t driveNum, const char *filename, bool drawIt) { ejectDisk(driveNum); disk[driveNum] = g_filemanager->openFile(filename); if (drawIt) g_display->drawDriveDoor(driveNum, false); if (_endsWithI(filename, ".nib")) { diskType[driveNum] = nibDisk; } else if (_endsWithI(filename, ".po")) { diskType[driveNum] = prodosDisk; } else { diskType[driveNum] = dosDisk; #ifndef TEENSYDUINO // debugging: make a nib copy of the image to play with // convertDskToNib("/tmp/debug.nib"); #endif } } void DiskII::ejectDisk(int8_t driveNum) { if (disk[driveNum] != -1) { g_filemanager->closeFile(disk[driveNum]); disk[driveNum] = -1; g_display->drawDriveDoor(driveNum, true); } } void DiskII::select(int8_t which) { if (which != 0 && which != 1) return; if (which != selectedDisk) { indicatorIsOn[selectedDisk] = 0; g_display->setDriveIndicator(selectedDisk, false); checkFlush(curTrack[selectedDisk]); } // set the selected disk drive selectedDisk = which; trackToRead = curTrack[selectedDisk]; } uint8_t DiskII::readOrWriteByte() { if (disk[selectedDisk] == -1) { return GAP; } if (writeMode && !writeProt) { if (!trackBuffer->hasData()) { // Error: writing to empty track buffer? That's a raw write w/o // knowing where we are on the disk. return GAP; } trackDirty = true; // It's possible that a badly behaving OS could try to write more // data than we have buffer to handle. Don't let it. We should // only need something like 500 bytes, at worst. In the typical // case, we're talking about something like // // ~5 bytes of GAP // 3 bytes of sector prolog // 2 bytes of volume // 2 bytes of track // 2 bytes of sector // 2 bytes of checksum // 2 bytes of epilog // ~5 bytes of GAP // 3 bytes of data prolog // 342 bytes of GRP-encoded (6:2) data // 1 byte of checksum // 3 bytes of epilog // 1 byte of GAP // == 373 bytes // // ... so if we get up to the full 1024 we've allocated, there's // something suspicious happening. if (readWriteLatch < 0x96) { // Can't write a de-nibblized byte... g_display->debugMsg("DII: bad write"); return 0; } trackBuffer->replaceByte(readWriteLatch); return 0; } // trackToRead is -1 when we have a filled buffer, or we have no data at all. // trackToRead is != -1 when we're flushing our buffer and re-filling it. // // Don't fill it right here, b/c we don't want to bog down the CPU // thread/ISR. if (trackToRead == curTrack[selectedDisk]) {// waiting for a read to complete return GAP; } if ((trackToRead != -1) || !trackBuffer->hasData()) { checkFlush(curTrack[selectedDisk]); // Need to read in a track of data and nibblize it. We'll return 0xFF // until that completes. // This might update trackToRead with a different track than the // one we're reading. When we finish the read, we'll need to check // to be sure that we're still trying to read the same track that // we started with. trackToRead = curTrack[selectedDisk]; // While we're waiting for the sector to come around, we'll return // GAP bytes. return GAP; } return trackBuffer->peekNext(); } void DiskII::fillDiskBuffer() { if (trackToFlush != -1) { flushTrack(trackToFlush, diskToFlush); // in case it's dirty: flush before changing drives trackBuffer->clear(); trackToFlush = -1; } // No work to do if trackToRead is -1 if (trackToRead == -1) return; trackDirty = false; trackBuffer->clear(); int8_t trackWeAreReading = trackToRead; int8_t diskWeAreUsing = selectedDisk; trackBuffer->clear(); trackBuffer->setPeekCursor(0); if (diskType[diskWeAreUsing] == nibDisk) { // Read one nibblized sector at a time and jam it in trackBuf // directly. We don't read the whole track at once only because // of RAM constraints on the Teensy. There's no reason we // couldn't, though, if RAM weren't at a premium. for (int i=0; i<16; i++) { g_filemanager->seekBlock(disk[diskWeAreUsing], trackWeAreReading * 16 + i, diskType[diskWeAreUsing] == nibDisk); if (!g_filemanager->readBlock(disk[diskWeAreUsing], rawTrackBuffer, diskType[diskWeAreUsing] == nibDisk)) { // FIXME: error handling? trackToRead = -1; return; } trackBuffer->addBytes(rawTrackBuffer, 416); } } else { // It's a .dsk / .po disk image. Read the whole track in to // rawTrackBuffer and nibblize it. g_filemanager->seekBlock(disk[diskWeAreUsing], trackWeAreReading * 16, diskType[diskWeAreUsing] == nibDisk); if (!g_filemanager->readTrack(disk[diskWeAreUsing], rawTrackBuffer, diskType[diskWeAreUsing] == nibDisk)) { // FIXME: error handling? trackToRead = -1; return; } nibblizeTrack(trackBuffer, rawTrackBuffer, diskType[diskWeAreUsing], curTrack[selectedDisk]); } // Make sure we're still intending to read the track we just read if (trackWeAreReading != trackToRead || diskWeAreUsing != selectedDisk) { // Abort and let it start over next time return; } // Buffer is full, we're done - reset trackToRead and that will let the reads reach the CPU! trackToRead = -1; } const char *DiskII::DiskName(int8_t num) { if (disk[num] != -1) return g_filemanager->fileName(disk[num]); return ""; } void DiskII::loadROM(uint8_t *toWhere) { #ifdef TEENSYDUINO Serial.println("loading DiskII rom"); for (uint16_t i=0; i<=0xFF; i++) { toWhere[i] = pgm_read_byte(&romData[i]); } #else printf("loading DiskII rom\n"); memcpy(toWhere, romData, 256); #endif } void DiskII::flushTrack(int8_t track, int8_t sel) { // safety check: if we're write-protected, then how did we get here? if (writeProt) { g_display->debugMsg("Write Protected"); return; } if (!trackBuffer->hasData()) { // Dunno what happened - we're writing but haven't initialized the sector buffer? return; } if (diskType[sel] == nibDisk) { // Write the whole track out exactly as we've got it. Hopefully // someone has re-calcuated appropriate checksums on it... g_display->debugMsg("Not writing Nib image"); return; } nibErr e = denibblizeTrack(trackBuffer, rawTrackBuffer, diskType[sel], curTrack[selectedDisk]); switch (e) { case errorShortTrack: g_display->debugMsg("DII: short track"); trackBuffer->clear(); return; case errorMissingSectors: g_display->debugMsg("DII: missing sectors"); trackBuffer->clear(); break; case errorNone: break; } // ok, write the track! g_filemanager->seekBlock(disk[sel], track * 16); g_filemanager->writeTrack(disk[sel], rawTrackBuffer); }