#include "diskii.h" #ifdef TEENSYDUINO #include #else #include #include #include #include #include #endif #include "applemmu.h" // for FLOATING #include "globals.h" #include "diskii-rom.h" #define DISKIIMAGIC 0xAA DiskII::DiskII(AppleMMU *mmu) { this->trackBuffer = new LRingBuffer(NIBTRACKSIZE); this->rawTrackBuffer = (uint8_t *)malloc(4096); this->mmu = mmu; curPhase[0] = curPhase[1] = 0; curHalfTrack[0] = curHalfTrack[1] = 0; trackDirty = false; trackToRead = -1; trackToFlush = -1; writeMode = false; writeProt = false; // FIXME: expose an interface to this readWriteLatch = 0x00; disk[0] = disk[1] = -1; indicatorIsOn[0] = indicatorIsOn[1] = 0; selectedDisk = 0; diskType[0] = diskType[1] = dosDisk; } DiskII::~DiskII() { delete this->trackBuffer; this->trackBuffer = NULL; free(this->rawTrackBuffer); this->rawTrackBuffer = NULL; } bool DiskII::Serialize(int8_t fd) { /* Make sure to flush anything to disk first */ checkFlush(curHalfTrack[selectedDisk]>>1); if (trackToFlush != -1) { flushTrack(trackToFlush, diskToFlush); } trackToFlush = -1; g_filemanager->writeByte(fd, DISKIIMAGIC); g_filemanager->writeByte(fd, curHalfTrack[0]); g_filemanager->writeByte(fd, curHalfTrack[1]); g_filemanager->writeByte(fd, curPhase[0]); g_filemanager->writeByte(fd, curPhase[1]); g_filemanager->writeByte(fd, readWriteLatch); g_filemanager->writeByte(fd, writeMode); g_filemanager->writeByte(fd, writeProt); // Don't save disk[0,1]; save their file names & cursors g_filemanager->SerializeFile(fd, disk[0]); g_filemanager->SerializeFile(fd, disk[1]); g_filemanager->writeByte(fd, indicatorIsOn[0]); g_filemanager->writeByte(fd, indicatorIsOn[1]); g_filemanager->writeByte(fd, diskType[0]); g_filemanager->writeByte(fd, diskType[1]); g_filemanager->writeByte(fd, selectedDisk); trackBuffer->Serialize(fd); // FIXME: don't know if we need these // trackDirty - should always be unset, since we just flushed // rawTrackBuffer - only used when reading an image // trackToRead - should be able to leave this unset & reread // trackToFlush - just flushed // diskToFlush - just flushed g_filemanager->writeByte(fd, DISKIIMAGIC); return true; } bool DiskII::Deserialize(int8_t fd) { /* Make sure to flush anything to disk first */ checkFlush(curHalfTrack[selectedDisk]>>1); if (trackToFlush != -1) { flushTrack(trackToFlush, diskToFlush); } trackToFlush = -1; if (g_filemanager->readByte(fd) != DISKIIMAGIC) { return false; } curHalfTrack[0] = g_filemanager->readByte(fd); curHalfTrack[1] = g_filemanager->readByte(fd); curPhase[0] = g_filemanager->readByte(fd); curPhase[1] = g_filemanager->readByte(fd); readWriteLatch = g_filemanager->readByte(fd); writeMode = g_filemanager->readByte(fd); writeProt = g_filemanager->readByte(fd); disk[0] = g_filemanager->DeserializeFile(fd); disk[1] = g_filemanager->DeserializeFile(fd); indicatorIsOn[0] = g_filemanager->readByte(fd); indicatorIsOn[1] = g_filemanager->readByte(fd); diskType[0] = g_filemanager->readByte(fd); diskType[1] = g_filemanager->readByte(fd); selectedDisk = g_filemanager->readByte(fd); trackBuffer->Deserialize(fd); // Reset the dirty caches and whatnot trackDirty = -1; trackToRead = -1; trackToFlush = -1; diskToFlush = -1; if (g_filemanager->readByte(fd) != DISKIIMAGIC) { return false; } return true; } void DiskII::Reset() { curPhase[0] = curPhase[1] = 0; curHalfTrack[0] = curHalfTrack[1] = 0; trackDirty = false; trackToRead = -1; trackToFlush = -1; writeMode = false; writeProt = false; // FIXME: expose an interface to this readWriteLatch = 0x00; ejectDisk(0); ejectDisk(1); } void DiskII::checkFlush(int8_t track) { if (trackDirty && trackToFlush == -1) { diskToFlush = selectedDisk; trackToFlush = track; trackDirty = false; // just so we don't overwrite disk/track to flush before continuing... } } uint8_t DiskII::readSwitches(uint8_t s) { switch (s) { case 0x00: // change stepper motor phase break; case 0x01: setPhase(0); break; case 0x02: break; case 0x03: setPhase(1); break; case 0x04: break; case 0x05: setPhase(2); break; case 0x06: // 3 off break; case 0x07: // 3 on setPhase(3); break; case 0x08: // drive off indicatorIsOn[selectedDisk] = 99; g_display->setDriveIndicator(selectedDisk, false); // FIXME: after a spell... checkFlush(curHalfTrack[selectedDisk]>>1); break; case 0x09: // drive on indicatorIsOn[selectedDisk] = 100; g_display->setDriveIndicator(selectedDisk, true); break; case 0x0A: // select drive 1 select(0); break; case 0x0B: // select drive 2 select(1); break; case 0x0C: // shift one read or write byte readWriteLatch = readOrWriteByte(); break; case 0x0D: // load data register (latch) // This is complex and incomplete. cf. Logic State Sequencer, // UTA2E, p. 9-14 if (!writeMode) { if (isWriteProtected()) readWriteLatch |= 0x80; else readWriteLatch &= 0x7F; } break; case 0x0E: // set read mode setWriteMode(false); break; case 0x0F: // set write mode setWriteMode(true); break; } // FIXME: improve the spin-down here. We need a CPU cycle callback // for some period of time instead of this silly decrement counter. if (!indicatorIsOn[selectedDisk]) { // printf("Unexpected read while disk isn't on?\n"); indicatorIsOn[selectedDisk] = 100; g_display->setDriveIndicator(selectedDisk, true); } if (indicatorIsOn[selectedDisk] > 0 && indicatorIsOn[selectedDisk] < 100) { // slowly spin it down... if (--indicatorIsOn[selectedDisk] == 0) { g_display->setDriveIndicator(selectedDisk, false); } } // Any even address read returns the readWriteLatch (UTA2E Table 9.1, // p. 9-12, note 2) // if ((s & 1) == 0 && curHalfTrack[selectedDisk] <= 3) { // printf("Read: %X\n", readWriteLatch); // fflush(stdout); // } return (s & 1) ? FLOATING : readWriteLatch; } void DiskII::writeSwitches(uint8_t s, uint8_t v) { switch (s) { case 0x00: // change stepper motor phase break; case 0x01: setPhase(0); break; case 0x02: break; case 0x03: setPhase(1); break; case 0x04: break; case 0x05: setPhase(2); break; case 0x06: // 3 off break; case 0x07: // 3 on setPhase(3); break; case 0x08: // drive off break; case 0x09: // drive on break; case 0x0A: // select drive 1 select(0); break; case 0x0B: // select drive 2 select(1); break; case 0x0C: // shift one read or write byte readOrWriteByte(); break; case 0x0D: // drive write break; case 0x0E: // set read mode setWriteMode(false); break; case 0x0F: // set write mode setWriteMode(true); break; } // All writes update the latch if (writeMode) { readWriteLatch = v; } } /* The Disk ][ has a stepper motor that moves the head across the tracks. * Switches 0-7 turn off and on the four different magnet phases; pulsing * from (e.g.) phase 0 to phase 1 makes the motor move up a track, and * (e.g.) phase 1 to phase 0 makes the motor move down a track. * * Except that's not quite true: the stepper actually moves the head a * _half_ track. * * This is a very simplified version of the stepper motor code. In theory, * we should keep track of all 4 phase magnets; and then only move up or down * a half track when two adjacent motors are on (not three adjacent motors; * and not two opposite motors). But that physical characteristic isn't * important for most diskettes, and our image formats aren't likely to * be able to provide appropriate half-track data to the programs that played * tricks with these half-tracks (for copy protection or whatever). * * This setPhase is only called when turning *on* a phase. It's assumed that * something is turning *off* the phases correctly; and that the combination * of the previous phase that was on and the current phase that's being turned * on are reliable enough to determine direction. * * The _phase_delta array is four sets of offsets - one for each * current phase, detailing what the step will be given the next * phase. This kind of emulates the messiness of going from phase 0 * to 2 -- it's going to move forward two half-steps -- but then doing * the same thing again is just going to move you back two half-steps... * */ void DiskII::setPhase(uint8_t phase) { const int8_t _phase_delta[16] = { 0, 1, 2, -1, // prev phase 0 -> 0/1/2/3 -1, 0, 1, 2, // prev phase 1 -> 0/1/2/3 -2, -1, 0, 1, // prev phase 2 -> 0/1/2/3 1, -2, -1, 0 // prev phase 3 -> 0/1/2/3 }; int8_t prevPhase = curPhase[selectedDisk]; int8_t prevHalfTrack = curHalfTrack[selectedDisk]; curHalfTrack[selectedDisk] += _phase_delta[(prevPhase * 4) + phase]; curPhase[selectedDisk] = phase; // Cap at 35 tracks (a normal disk size). Some drives let you go farther, // and we could support that by increasing this limit - but the images // would be different too, so there would be more work to abstract out... if (curHalfTrack[selectedDisk] > 35 * 2 - 1) { curHalfTrack[selectedDisk] = 35 * 2 - 1; } // Don't go past the innermost track, of course. if (curHalfTrack[selectedDisk] < 0) { curHalfTrack[selectedDisk] = 0; // recalibrate! This is where the fun noise goes DaDaDaDaDaDaDaDaDa } /* printf("phase %d => %d; curHalfTrack %d => %d\n", prevPhase, curPhase[selectedDisk], prevHalfTrack, curHalfTrack[selectedDisk]); */ if (curHalfTrack[selectedDisk]>>1 != prevHalfTrack>>1) { // We're changing track - flush the old track back to disk checkFlush(prevHalfTrack>>1); // mark the new track to be read trackToRead = curHalfTrack[selectedDisk]>>1; } } bool DiskII::isWriteProtected() { return (writeProt ? 0xFF : 0x00); } void DiskII::setWriteMode(bool enable) { writeMode = enable; } static uint8_t _lc(char c) { if (c >= 'A' && c <= 'Z') { c = c - 'A' + 'a'; } return c; } static bool _endsWithI(const char *s1, const char *s2) { if (strlen(s2) > strlen(s1)) { return false; } const char *p = &s1[strlen(s1)-1]; int16_t l = strlen(s2)-1; while (l >= 0) { if (_lc(*p--) != _lc(s2[l])) return false; l--; } return true; } void DiskII::insertDisk(int8_t driveNum, const char *filename, bool drawIt) { ejectDisk(driveNum); disk[driveNum] = g_filemanager->openFile(filename); if (drawIt) g_display->drawDriveDoor(driveNum, false); if (_endsWithI(filename, ".nib")) { diskType[driveNum] = nibDisk; } else if (_endsWithI(filename, ".po")) { diskType[driveNum] = prodosDisk; } else { diskType[driveNum] = dosDisk; #ifndef TEENSYDUINO // debugging: make a nib copy of the image to play with // convertDskToNib("/tmp/debug.nib"); #endif } } void DiskII::ejectDisk(int8_t driveNum) { if (disk[driveNum] != -1) { g_filemanager->closeFile(disk[driveNum]); disk[driveNum] = -1; g_display->drawDriveDoor(driveNum, true); } } void DiskII::select(int8_t which) { if (which != 0 && which != 1) return; if (which != selectedDisk) { indicatorIsOn[selectedDisk] = 0; g_display->setDriveIndicator(selectedDisk, false); checkFlush(curHalfTrack[selectedDisk]>>1); // set the selected disk drive selectedDisk = which; // trackToRead = curHalfTrack[selectedDisk]>>1; trackToRead = -1; // Assume we don't have to read anything on the // newly selected drive. When we get the first // read, we'll notice the track buffer is empty... trackBuffer->clear(); } } uint8_t DiskII::readOrWriteByte() { if (disk[selectedDisk] == -1) { return GAP; } if (writeMode && !writeProt) { if (!trackBuffer->hasData()) { // Error: writing to empty track buffer? That's a raw write w/o // knowing where we are on the disk. return GAP; } trackDirty = true; // It's possible that a badly behaving OS could try to write more // data than we have buffer to handle. Don't let it. We should // only need something like 500 bytes, at worst. In the typical // case, we're talking about something like // // ~5 bytes of GAP // 3 bytes of sector prolog // 2 bytes of volume // 2 bytes of track // 2 bytes of sector // 2 bytes of checksum // 2 bytes of epilog // ~5 bytes of GAP // 3 bytes of data prolog // 342 bytes of GRP-encoded (6:2) data // 1 byte of checksum // 3 bytes of epilog // 1 byte of GAP // == 373 bytes // // ... so if we get up to the full 1024 we've allocated, there's // something suspicious happening. if (readWriteLatch < 0x96) { // Can't write a de-nibblized byte... g_display->debugMsg("DII: bad write"); return 0; } trackBuffer->replaceByte(readWriteLatch); return 0; } // trackToRead is -1 when we have a filled buffer, or we have no data at all. // trackToRead is != -1 when we're flushing our buffer and re-filling it. // // Don't fill it right here, b/c we don't want to bog down the CPU // thread/ISR. if (trackToRead == curHalfTrack[selectedDisk]>>1) {// waiting for a read to complete for the current track return GAP; } // return 0x00 every other byte. Helps the logic sequencer stay in sync. // Otherwise we wind up waiting long periods of time for it to sync up, // presumably because we're overrunning it (returning data faster than // the actual drive would be able to)? static bool whitespace = false; if (whitespace) { whitespace = false; return 0x00; } whitespace = !whitespace; if ((trackToRead != -1) || !trackBuffer->hasData()) { checkFlush(curHalfTrack[selectedDisk]>>1); // Need to read in a track of data and nibblize it. We'll return 0xFF // until that completes. // This might update trackToRead with a different track than the // one we're reading. When we finish the read, we'll need to check // to be sure that we're still trying to read the same track that // we started with. trackToRead = curHalfTrack[selectedDisk]>>1; // While we're waiting for the sector to come around, we'll return // GAP bytes. return GAP; } return trackBuffer->peekNext(); } void DiskII::fillDiskBuffer() { if (trackToFlush != -1) { flushTrack(trackToFlush, diskToFlush); // in case it's dirty: flush before changing drives trackBuffer->clear(); trackToFlush = -1; } // No work to do if trackToRead is -1 if (trackToRead == -1) return; trackDirty = false; int8_t trackWeAreReading = trackToRead; int8_t diskWeAreUsing = selectedDisk; trackBuffer->clear(); trackBuffer->setPeekCursor(0); if (diskType[diskWeAreUsing] == nibDisk) { // Read one nibblized sector at a time and jam it in trackBuf // directly. We don't read the whole track at once only because // of RAM constraints on the Teensy. There's no reason we // couldn't, though, if RAM weren't at a premium. for (int i=0; i<16; i++) { g_filemanager->seekBlock(disk[diskWeAreUsing], trackWeAreReading * 16 + i, true); if (!g_filemanager->readBlock(disk[diskWeAreUsing], rawTrackBuffer, true)) { // FIXME: error handling? trackToRead = -1; return; } trackBuffer->addBytes(rawTrackBuffer, 416); } } else { // It's a .dsk / .po disk image. Read the whole track in to // rawTrackBuffer and nibblize it. g_filemanager->seekBlock(disk[diskWeAreUsing], trackWeAreReading * 16, false); if (!g_filemanager->readTrack(disk[diskWeAreUsing], rawTrackBuffer, false)) { // FIXME: error handling? trackToRead = -1; return; } nibblizeTrack(trackBuffer, rawTrackBuffer, diskType[diskWeAreUsing], curHalfTrack[selectedDisk]>>1); } // Make sure we're still intending to read the track we just read if (trackWeAreReading != trackToRead || diskWeAreUsing != selectedDisk) { // Abort and let it start over next time return; } // Buffer is full, we're done - reset trackToRead and that will let the reads reach the CPU! trackToRead = -1; } const char *DiskII::DiskName(int8_t num) { if (disk[num] != -1) return g_filemanager->fileName(disk[num]); return ""; } void DiskII::loadROM(uint8_t *toWhere) { #ifdef TEENSYDUINO Serial.println("loading DiskII rom"); for (uint16_t i=0; i<=0xFF; i++) { toWhere[i] = pgm_read_byte(&romData[i]); } #else printf("loading DiskII rom\n"); memcpy(toWhere, romData, 256); #endif } void DiskII::flushTrack(int8_t track, int8_t sel) { // safety check: if we're write-protected, then how did we get here? if (writeProt) { g_display->debugMsg("Write Protected"); return; } if (!trackBuffer->hasData()) { // Dunno what happened - we're writing but haven't initialized the sector buffer? return; } if (diskType[sel] == nibDisk) { // Write the whole track out exactly as we've got it. Hopefully // someone has re-calcuated appropriate checksums on it... g_display->debugMsg("Not writing Nib image"); return; } nibErr e = denibblizeTrack(trackBuffer, rawTrackBuffer, diskType[sel], curHalfTrack[selectedDisk]>>1); switch (e) { case errorShortTrack: g_display->debugMsg("DII: short track"); trackBuffer->clear(); return; case errorMissingSectors: g_display->debugMsg("DII: missing sectors"); trackBuffer->clear(); break; case errorNone: break; } // ok, write the track! g_filemanager->seekBlock(disk[sel], track * 16); g_filemanager->writeTrack(disk[sel], rawTrackBuffer); }