#include "nibutil.h" #ifdef TEENSYDUINO #include #else #include #include #include #include #include #endif // Long gaps are more "correct" in the sense that they're // nib-disk-like; but they mean the VM has to chew on a lot of disk // gaps to find the real data, which takes a noticeable amount of // time. With this off, we present a minimum number of gaps (that // hopefully aren't too short for the ROM to be able to write // correctly) //#define LONGGAPS #define DISK_VOLUME 254 // dos 3.3 to physical sector conversion const static uint8_t dephys[16] = { 0x00, 0x07, 0x0e, 0x06, 0x0d, 0x05, 0x0c, 0x04, 0x0b, 0x03, 0x0a, 0x02, 0x09, 0x01, 0x08, 0x0f }; // Prodos to physical sector conversion const uint8_t deProdosPhys[] = { 0x00, 0x08, 0x01, 0x09, 0x02, 0x0a, 0x03, 0x0b, 0x04, 0x0c, 0x05, 0x0d, 0x06, 0x0e, 0x07, 0x0f }; const static uint8_t _trans[64] = {0x96, 0x97, 0x9a, 0x9b, 0x9d, 0x9e, 0x9f, 0xa6, 0xa7, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, 0xcb, 0xcd, 0xce, 0xcf, 0xd3, 0xd6, 0xd7, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, 0xe5, 0xe6, 0xe7, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff}; const static uint8_t _detrans[0x80] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x08, 0x0C, 0x00, 0x10, 0x14, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1C, 0x20, 0x00, 0x00, 0x00, 0x24, 0x28, 0x2C, 0x30, 0x34, 0x00, 0x00, 0x38, 0x3C, 0x40, 0x44, 0x48, 0x4C, 0x00, 0x50, 0x54, 0x58, 0x5C, 0x60, 0x64, 0x68, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x6C, 0x00, 0x70, 0x74, 0x78, 0x00, 0x00, 0x00, 0x7C, 0x00, 0x00, 0x80, 0x84, 0x00, 0x88, 0x8C, 0x90, 0x94, 0x98, 0x9C, 0xA0, 0x00, 0x00, 0x00, 0x00, 0x00, 0xA4, 0xA8, 0xAC, 0x00, 0xB0, 0xB4, 0xB8, 0xBC, 0xC0, 0xC4, 0xC8, 0x00, 0x00, 0xCC, 0xD0, 0xD4, 0xD8, 0xDC, 0xE0, 0x00, 0xE4, 0xE8, 0xEC, 0xF0, 0xF4, 0xF8, 0xFC }; void nibblizeTrack(LRingBuffer *trackBuffer, uint8_t *rawTrackBuffer, uint8_t diskType, int8_t track) { int checksum; for (uint8_t sector=0; sector<16; sector++) { for (uint8_t i=0; #ifdef LONGGAPS i < (sector==0 ? 0x63 : 0x13); #else i < 8; #endif i++) { trackBuffer->addByte(GAP); } trackBuffer->addByte(0xD5); // prolog trackBuffer->addByte(0xAA); trackBuffer->addByte(0x96); trackBuffer->addByte(nib1(DISK_VOLUME)); trackBuffer->addByte(nib2(DISK_VOLUME)); trackBuffer->addByte(nib1(track)); trackBuffer->addByte(nib2(track)); trackBuffer->addByte(nib1(sector)); trackBuffer->addByte(nib2(sector)); checksum = DISK_VOLUME ^ track ^ sector; trackBuffer->addByte(nib1(checksum)); trackBuffer->addByte(nib2(checksum)); trackBuffer->addByte(0xDE); // epilog trackBuffer->addByte(0xAA); trackBuffer->addByte(0xEB); // Not strictly necessary, but the DiskII controller does it, so we will too. // The DiskII controller puts out 5 GAP bytes here. for (uint8_t i=0; i<5; i++) { trackBuffer->addByte(GAP); } trackBuffer->addByte(0xD5); // data prolog trackBuffer->addByte(0xAA); trackBuffer->addByte(0xAD); uint8_t physicalSector = (diskType == prodosDisk ? deProdosPhys[sector] : dephys[sector]); encodeData(trackBuffer, &rawTrackBuffer[physicalSector * 256]); trackBuffer->addByte(0xDE); // data epilog trackBuffer->addByte(0xAA); trackBuffer->addByte(0xEB); #ifdef LONGGAPS trackBuffer->addByte(GAP); #endif } } #define SIXBIT_SPAN 0x56 // 86 bytes // Pop the next 343 bytes off of trackBuffer, which should be 342 // 6:2-bit GCR encoded values, which we decode back in to 256 8-byte // output values; and one checksum byte. // // Return true if we've successfully consumed 343 bytes from // trackBuf. This reads from the circular buffer trackBuffer, so if // there's not enough data there, the results are somewhat // unpredictable. bool decodeData(LRingBuffer *trackBuffer, uint16_t startAt, uint8_t *output) { // Basic check that there's enough buffer data in trackBuffer. Note // that we're not checking it against startAt; we could be wrapping // around. if (trackBuffer->count() < 343) return false; static uint8_t workbuf[342]; for (int i=0; i<342; i++) { uint8_t in = trackBuffer->peek(startAt++) & 0x7F; // strip high bit workbuf[i] = _detrans[in]; } // fixme: collapse this in to the previous loop uint8_t prev = 0; for (int i=0; i<342; i++) { workbuf[i] = prev ^ workbuf[i]; prev = workbuf[i]; } // Put the checksum on the track - only necessary if we're about to // write the nibblized version of the track back out /* uint16_t cursor = trackBuffer->Cursor(); trackBuffer->setPeekCursor(startAt++); trackBuffer->replaceByte(prev); // 'prev' holds the checksum trackBuffer->setPeekCursor(cursor); // put it back where we found it */ // Start with all of the bytes with 6 bits of data for (uint16_t i=0; i<256; i++) { output[i] = workbuf[SIXBIT_SPAN + i] & 0xFC; // 6 bits } // Then pull in all of the 2-bit values, which are stuffed 3 to a byte. That gives us // 4 bits more than we need - the last two skip two of the bits. for (uint8_t i=0; i> 3) | ((thisbyte & 0x04) >> 1); output[ SIXBIT_SPAN + i] |= ((thisbyte & 0x20) >> 5) | ((thisbyte & 0x10) >> 3); if (i < SIXBIT_SPAN-2) { output[2*SIXBIT_SPAN + i] |= ((thisbyte & 0x80) >> 7) | ((thisbyte & 0x40) >> 5); } } // FIXME: check or update the checksum? return true; } void encodeData(LRingBuffer *trackBuffer, uint8_t *data) { int16_t i; int ptr2 = 0; int ptr6 = 0x56; static int nibbles[0x156]; for (i=0; i<0x156; i++) { nibbles[i] = 0; } int idx2 = 0x55; for (int idx6 = 0x101; idx6 >= 0; idx6--) { int val6 = data[idx6 & 0xFF]; int val2 = nibbles[ptr2 + idx2]; val2 = (val2 << 1) | (val6 & 1); val6 >>= 1; val2 = (val2 << 1) | (val6 & 1); val6 >>= 1; // There are 2 "extra" bytes of 2-bit data that we ignore here. if (ptr6 + idx6 < 0x156) { nibbles[ptr6 + idx6] = val6; } if (ptr2 + idx2 < 0x156) { nibbles[ptr2 + idx2] = val2; } if (--idx2 < 0) { idx2 = 0x55; } } int lastv = 0; for (int idx = 0; idx < 0x156; idx++) { int val = nibbles[idx]; trackBuffer->addByte(_trans[lastv ^ val]); lastv = val; } trackBuffer->addByte(_trans[lastv]); } nibErr denibblizeTrack(LRingBuffer *trackBuffer, uint8_t *rawTrackBuffer, uint8_t diskType, int8_t track) { // We can't tell exactly what the length should be, b/c there might // be varying numbers of GAP bytes. But we can tell, generally, that // this is the minimum acceptable length that might hold all the // track data. if (trackBuffer->count() < 16*MINNIBSECTORSIZE) { return errorShortTrack; } // bitmask of the sectors that we've found while decoding. We should // find all 16. uint16_t sectorsUpdated = 0; // loop through the data twice, so we make sure we read anything // that crosses the end/start boundary // FIXME: if this approach works, we probably want 1/16th extra, not 2* for (uint16_t i=0; i<2*trackBuffer->count(); ) { // Find the prolog while (trackBuffer->peek(i++) != 0xD5) ; if (trackBuffer->peek(i++) != 0xAA) { continue; } if (trackBuffer->peek(i++) != 0x96) { continue; } // And now we should be in the header section uint8_t volumeID = denib(trackBuffer->peek(i), trackBuffer->peek(i+1)); i += 2; uint8_t trackID = denib(trackBuffer->peek(i), trackBuffer->peek(i+1)); i += 2; uint8_t sectorNum = denib(trackBuffer->peek(i), trackBuffer->peek(i+1)); i += 2; uint8_t headerChecksum = denib(trackBuffer->peek(i), trackBuffer->peek(i+1)); i += 2; if (headerChecksum != (volumeID ^ trackID ^ sectorNum)) { continue; } // check for the epilog if (trackBuffer->peek(i++) != 0xDE) { continue; } if (trackBuffer->peek(i++) != 0xAA) { continue; } // Skip to the data prolog while (trackBuffer->peek(i++) != 0xD5) ; if (trackBuffer->peek(i++) != 0xAA) { continue; } if (trackBuffer->peek(i++) != 0xAD) { continue; } // Decode the data in to a temporary buffer: we don't want to overwrite // something valid with partial data uint8_t output[256]; if (!decodeData(trackBuffer, i, output)) { continue; } i += 343; // Check the data epilog if (trackBuffer->peek(i++) != 0xDE) { continue; } if (trackBuffer->peek(i++) != 0xAA) { continue; } if (trackBuffer->peek(i++) != 0xEB) { continue; } // We've got a whole block! Put it in the rawTrackBuffer and mark // the bit for it in sectorsUpdated. // FIXME: if trackID != curTrack, that's an error? uint8_t targetSector; if (diskType == prodosDisk) { targetSector = deProdosPhys[sectorNum]; } else { targetSector = dephys[sectorNum]; } memcpy(&rawTrackBuffer[targetSector * 256], output, 256); sectorsUpdated |= (1 << sectorNum); } // Check that we found all of the sectors for this track if (sectorsUpdated != 0xFFFF) { return errorMissingSectors; } return errorNone; }