aiie/apple/applemmu.cpp

1175 lines
30 KiB
C++

#ifdef TEENSYDUINO
#include <Arduino.h>
#define assert(x)
#else
#include <stdio.h>
#include <unistd.h>
#include <assert.h>
#endif
#include "applemmu.h"
#include "applemmu-rom.h"
#include "physicalspeaker.h"
#include "cpu.h"
#include "serialize.h"
#include "globals.h"
#ifdef TEENSYDUINO
#include "teensy-clock.h"
#include "iocompat.h"
#else
#include "nix-clock.h"
#endif
// Serializing token for MMU data
#define MMUMAGIC 'M'
// apple //e memory map
/*
page 0x00: zero page (straight ram)
page 0x01: stack (straight ram)
page 0x02:
page 0x03:
text/lores page 1: 0x0400 - 0x7FF
text/lores page 2: 0x0800 - 0xBFF
pages 0x0C - 0x1F: straight ram
hires page 1: pages 0x20 - 0x3F
hires page 2: pages 0x40 - 0x5F
pages 0x60 - 0xBF: straight ram
page 0xc0: I/O switches (some store 1-byte state)
pages 0xc1 - 0xcf: slot ROMs
pages 0xd0 - 0xdf: Basic ROM
pages 0xe0 - 0xff: monitor ROM
*/
/*
The memory model for this is...
page 0-1 4 pages (1k) [altzp]
2-0xBF 190 * 2 pages = 380 pages = 95k [auxRamRead/Write, S_HIRES, S_80STORE, S_PAGE2]
0xC0 1 page (256 bytes) (1-byte state for virtual I/O switches)
0xC1-0xCF 15 * 2 pages = 30 pages (7.5k) [intcxrom, slotLatch]
0xD0 - 0xDF 16 * 5 pages = 80 pages (20k) [altzp, bank2, {r,w}bsr]
0xE0 - 0xFF 32 * 3 pages = 96 pages (24k) [altzp, {r,w}bsr]
... plus 8 additional pages for the mouse ROM
= 147.75k (591 pages) stored off-chip (+ 8 more)
Current read page table [512 bytes] in real ram
Current write page table [512 bytes] in real ram
*/
// All the pages. Because we don't have enough RAM for both the
// display's DMA and the Apple's 148k (128k + ROM space), we're using
// an external SRAM for some of this. Anything that's accessed very
// often should be in the *low* pages, b/c those are in internal
// Teensy RAM. When we run out of preallocated RAM (cf. vmram.h), we
// fall over to an external 256kB SRAM (which is much slower).
//
// Zero page (and its alts) are the most used pages (the stack is in
// page 1).
//
// We want the video display pages in real RAM as much as possible,
// since blits wind up touching so much of it. If we can keep that in
// main RAM, then the blits won't try to read the external SRAM while
// the CPU is writing to it.
//
//
// After that it's all a guess. Should it be slot ROMs?
// extended RAM? Hires RAM? FIXME: do some analysis of common memory
// hotspots...
enum {
// Pages we want to fall to internal RAM:
MP_ZP = 0, // page 0/1 * 2 page variants = 4; 0..3
MP_4 = 4, // 0x04 - 0x07 (text display pages) * 2 variants = 8; 4..11
MP_20 = 12, // 0x20 - 0x5F * 2 variants = 128; 12..139
// Pages that can go to external SRAM:
MP_2 = 140, // 0x02 - 0x03 * 2 variants = 4; 140..143
MP_8 = 144, // 0x08 - 0x1F * 2 = 48; 144..191
MP_60 = 192, // 0x60 - 0xBF * 2 = 192; 192..383
MP_C1 = 384, // start of 0xC1-0xC7 * 2 page variants = 14; 384-397
MP_C8 = 398, // 0xc8 - 0xcf, 3 page variants = 24; 398 - 421
MP_D0 = 422, // start of 0xD0-0xDF * 5 page variants = 80; 422 - 501
MP_E0 = 502, // start of 0xE0-0xFF * 3 page variants = 96; 502 - 597
MP_C0 = 598
// = 599 pages in all (149.75k)
};
static uint16_t _pageNumberForRam(uint8_t highByte, uint8_t variant)
{
if (highByte <= 1) {
// zero page.
return highByte + (variant*2) + MP_ZP;
}
if (highByte <= 3) {
return ((highByte - 2) * 2 + variant + MP_2);
}
if (highByte <= 7) {
return ((highByte - 4) * 2 + variant + MP_4);
}
if (highByte <= 0x1f) {
return ((highByte - 8) * 2 + variant + MP_8);
}
if (highByte <= 0x5f) {
return ((highByte - 0x20) * 2 + variant + MP_20);
}
if (highByte <= 0xbf) {
return ((highByte - 0x60) * 2 + variant + MP_60);
}
if (highByte == 0xc0) {
return MP_C0;
}
if (highByte <= 0xC7) {
// 0xC1-0xC7
return ((highByte - 0xC1) * 2 + variant + MP_C1);
}
if (highByte <= 0xCF) {
// bank-switched ROM. 0 = built-in; 1 = 80-column (slot 3); 2 = mouse (slot 4)
return ((highByte - 0xC8) * 3 + variant + MP_C8);
}
if (highByte <= 0xDF) {
// 0xD0 - 0xDF 16 * 5 pages = 80 pages (20k)
return ((highByte - 0xD0) * 5 + variant + MP_D0);
}
// 0xE0 - 0xFF 32 * 3 pages = 96 pages (24k)
return ((highByte - 0xE0) * 3 + variant + MP_E0);
}
AppleMMU::AppleMMU(AppleDisplay *display)
{
anyKeyDown = false;
for (int8_t i=0; i<=7; i++) {
slots[i] = NULL;
}
this->display = display;
this->display->setSwitches(&switches);
resetRAM(); // initialize RAM, load ROM
#ifdef TEENSYDUINO
clock = new TeensyClock((AppleMMU *)this);
#else
clock = new NixClock((AppleMMU *)this);
#endif
}
AppleMMU::~AppleMMU()
{
delete display;
}
bool AppleMMU::Serialize(int8_t fd)
{
serializeMagic(MMUMAGIC);
serialize16(switches);
serialize8(auxRamRead ? 1 : 0);
serialize8(auxRamWrite ? 1 : 0);
serialize8(bank2 ? 1 : 0);
serialize8(readbsr ? 1 : 0);
serialize8(writebsr ? 1 : 0);
serialize8(altzp ? 1 : 0);
serialize8(intcxrom ? 1 : 0);
serialize8(slot3rom ? 1 : 0);
serialize8(slotLatch);
serialize8(preWriteFlag ? 1 : 0);
if (!g_ram.Serialize(fd)) {
printf("Failed to serialize RAM\n");
goto err;
}
// readPages & writePages don't need suspending, but we will need to
// recalculate after resume
// Not suspending/resuming slots b/c they're a fixed configuration
// in this project. Should probably checksum them though. FIXME.
serializeMagic(MMUMAGIC);
return true;
err:
return false;
}
bool AppleMMU::Deserialize(int8_t fd)
{
deserializeMagic(MMUMAGIC);
deserialize16(switches);
serialize8(auxRamRead);
serialize8(auxRamWrite);
serialize8(bank2);
serialize8(readbsr);
serialize8(writebsr);
serialize8(altzp);
serialize8(intcxrom);
serialize8(slot3rom);
serialize8(slotLatch);
serialize8(preWriteFlag);
if (!g_ram.Deserialize(fd)) {
goto err;
}
deserializeMagic(MMUMAGIC);
// Reset readPages[] and writePages[] and the display
resetDisplay();
return true;
err:
return false;
}
void AppleMMU::Reset()
{
resetRAM();
resetDisplay(); // sets the switches properly
}
uint8_t AppleMMU::read(uint16_t address)
{
uint8_t rv = 0;
if (handleNoSlotClock(address, &rv)) {
return rv;
}
if (address >= 0xC000 &&
address <= 0xC0FF) {
return readSwitches(address);
}
// If C800-CFFF isn't latched to a slot ROM, and we try to
// access a slot's memory space from C100-C7FF, then we need
// to latch in the slot's ROM.
if (slotLatch == -1 && address >= 0xc100 && address <= 0xc7ff) {
slotLatch = (address >> 8) & 0x07;
if (slotLatch == 3 && slot3rom) {
// Back off: UTA2E p. 5-28: don't latch in slot 3 ROM while
// the slot3rom flag is enabled
// fixme
slotLatch = 3;
} else {
updateMemoryPages();
}
}
// If we access CFFF, that unlatches slot ROM.
if (address == 0xCFFF) {
slotLatch = -1;
updateMemoryPages();
}
uint8_t res = g_ram.readByte((readPages[address >> 8] << 8) | (address & 0xFF));
return res;
}
// Bypass MMU and read directly from a given page - also bypasses switches
uint8_t AppleMMU::readDirect(uint16_t address, uint8_t fromPage)
{
uint16_t page = _pageNumberForRam(address >> 8, fromPage);
return g_ram.readByte((page << 8) | (address & 0xFF));
}
void AppleMMU::write(uint16_t address, uint8_t v)
{
if (handleNoSlotClock(address, NULL)) {
return;
}
if (address >= 0xC000 &&
address <= 0xC0FF) {
return writeSwitches(address, v);
}
// Don't allow writes to ROM
// Hard ROM, I/O, slots, whatnot
if (address >= 0xC100 && address <= 0xCFFF)
return;
// Bank-switched ROM/RAM areas
if (address >= 0xD000 && address <= 0xFFFF && !writebsr) {
return;
}
g_ram.writeByte((writePages[address >> 8] << 8) | (address & 0xFF), v);
if (address >= 0x400 &&
address <= 0x7FF) {
// If it's text mode, or mixed mode, or lores graphics mode, then update.
if ((switches & S_TEXT) || (switches & S_MIXED) || (!(switches & S_HIRES))) {
// Force a redraw
display->modeChange();
}
return;
}
if (address >= 0x2000 &&
address <= 0x5FFF) {
if (switches & S_HIRES) {
// Force a redraw
display->modeChange();
}
}
}
bool AppleMMU::handleNoSlotClock(uint16_t address, uint8_t *rv)
{
uint8_t ah = address >> 8;
if ( ((!intcxrom || !slot3rom) && (ah == 0xc3)) ||
(ah == 0xc8) ) {
if (rv) {
// It's a read attempt - we want a return value.
*rv = 0;
if (clock->read(address, rv)) {
return true;
}
} else {
clock->write(address);
return true;
}
}
return false;
}
// FIXME: this is no longer "MMU", is it?
void AppleMMU::resetDisplay()
{
updateMemoryPages();
display->modeChange();
}
void AppleMMU::handleMemorySwitches(uint16_t address, uint16_t lastSwitch)
{
// many of these are spelled out here:
// http://apple2.org.za/gswv/a2zine/faqs/csa2pfaq.html
switch (address) {
case 0xC000: // CLR80STORE
switches &= ~S_80STORE;
break;
case 0xC001: // SET80STORE
switches |= S_80STORE;
break;
case 0xC002: // CLRAUXRD read from main 48k RAM
auxRamRead = false;
break;
case 0xC003: // SETAUXRD read from aux/alt 48k
auxRamRead = true;
break;
case 0xC004: // CLRAUXWR write to main 48k RAM
auxRamWrite = false;
break;
case 0xC005: // SETAUXWR write to aux/alt 48k
auxRamWrite = true;
break;
case 0xC006: // CLRCXROM use ROM on cards
intcxrom = false;
break;
case 0xC007: // SETCXROM use internal ROM
intcxrom = true;
break;
case 0xC008: // CLRAUXZP use main zero page, stack, LC
altzp = false;
break;
case 0xC009: // SETAUXZP use alt zero page, stack, LC
altzp = true;
break;
case 0xC00A: // CLRC3ROM use internal slot 3 ROM
slot3rom = false;
break;
case 0xC00B: // SETC3ROM use external slot 3 ROM
slot3rom = true;
break;
// Registers C080 - C08F control bank switching.
case 0xC080:
case 0xC081:
case 0xC082:
case 0xC083:
case 0xC084:
case 0xC085:
case 0xC086:
case 0xC087:
case 0xC088:
case 0xC089:
case 0xC08A:
case 0xC08B:
case 0xC08C:
case 0xC08D:
case 0xC08E:
case 0xC08F:
// Per ITA2E, p. 286:
// (address & 0x08) controls whether or not we are selecting from bank2. Per table 8-2,
// bank2 is active if address & 0x08 is zero. So if the bit is on, it's bank 1.
bank2 = (address & 0x08) ? false : true;
// (address & 0x04) is unused.
// (address & 0x02) is read-select: if it is set the same as
// (address & 0x01) then readbsr is true.
readbsr = ((address & 0x02) >> 1) == (address & 0x01);
// (address & 0x01) is write-select: if 1, we write BSR RAM; if 0, we write ROM.
// But it's a little more complicated than readbsr.
// Per UTA2E p. 5-23:
// "Writing to high RAM is enabled when the HRAMWRT' soft switch
// is reset. ... It is reset by even read access or any write
// access in the $C08X range. HRAMWRT' is reset by odd read
// access in the $C08X range when PRE-WRITE is set. It is set by
// even access in the CC08X range. Any other type of access
// causes HRAMWRT' to hold its current state."
if (address & 0x01) {
if (preWriteFlag)
writebsr = 1;
// Per UTA2E, p. 5-23: any other preWriteFlag leaves writebsr unchanged.
} else {
writebsr = false;
}
break;
}
updateMemoryPages();
}
// many (most? all?) switches are documented here:
// http://apple2.org.za/gswv/a2zine/faqs/csa2pfaq.html
uint8_t AppleMMU::readSwitches(uint16_t address)
{
static uint16_t lastReadSwitch = 0x0000;
static uint16_t thisReadSwitch = 0x0000;
lastReadSwitch = thisReadSwitch;
thisReadSwitch = address;
// If this is a read for any of the slot switches, and we have
// hardware in that slot, then return its result.
if (address >= 0xC090 && address <= 0xC0FF) {
for (uint8_t i=1; i<=7; i++) {
if (address >= (0xC080 | (i << 4)) &&
address <= (0xC08F | (i << 4))) {
if (slots[i]) {
return slots[i]->readSwitches(address & ~(0xC080 | (i<<4)));
}
else
return FLOATING;
}
}
}
switch (address) {
case 0xC010:
// consume the keyboard strobe flag
g_ram.writeByte((writePages[0xC0] << 8) | 0x10,
g_ram.readByte((readPages[0xC0] << 8) | 0x10) & 0x7F);
return (anyKeyDown ? 0x80 : 0x00);
case 0xC080:
case 0xC081:
case 0xC082:
case 0xC083:
case 0xC084:
case 0xC085:
case 0xC086:
case 0xC087:
case 0xC088:
case 0xC089:
case 0xC08A:
case 0xC08B:
case 0xC08C:
case 0xC08D:
case 0xC08E:
case 0xC08F:
// but read does affect these, same as write
handleMemorySwitches(address, lastReadSwitch);
// UTA2E, p. 5-23: preWrite is set by odd read access, and reset
// by even read access
preWriteFlag = (address & 0x01);
return FLOATING;
case 0xC00C: // CLR80VID disable 80-col video mode
if (switches & S_80COL) {
switches &= ~S_80COL;
resetDisplay();
}
break; // fall through
case 0xC00D: // SET80VID enable 80-col video mode
if (!(switches & S_80COL)) {
switches |= S_80COL;
resetDisplay();
}
break; // fall through
case 0xC00E: // CLRALTCH use main char set - norm LC, flash UC
switches &= ~S_ALTCH;
break; // fall through
case 0xC00F: // SETALTCH use alt char set - norm inverse, LC; no flash
switches |= S_ALTCH;
break; // fall through
case 0xC011: // RDLCBNK2
return bank2 ? 0x80 : 0x00;
case 0xC012: // RDLCRAM
return readbsr ? 0x80 : 0x00;
case 0xC013: // RDRAMRD
return auxRamRead ? 0x80 : 0x00;
case 0xC014: // RDRAMWR
return auxRamWrite ? 0x80 : 0x00;
case 0xC015: // RDCXROM
return intcxrom ? 0x80 : 0x00;
case 0xC016: // RDAUXZP
return altzp ? 0x80 : 0x00;
case 0xC017: // RDC3ROM
return slot3rom ? 0x80 : 0x00;
case 0xC018: // RD80COL
return (switches & S_80STORE) ? 0x80 : 0x00;
case 0xC019: // RDVBLBAR -- vertical blanking, for 4550 cycles of every 17030
// Should return 0 for 4550 of 17030 cycles. Since we're not really
// running full speed video, instead, I'm returning 0 for 4096 (2^12)
// of every 16384 (2^14) cycles; the math is easier.
if ((g_cpu->cycles & 0x3000) == 0x3000) {
return 0x00;
} else {
return 0xFF; // FIXME: is 0xFF correct? Or 0x80?
}
case 0xC01A: // RDTEXT
return ( (switches & S_TEXT) ? 0x80 : 0x00 );
case 0xC01B: // RDMIXED
return ( (switches & S_MIXED) ? 0x80 : 0x00 );
case 0xC01C: // RDPAGE2
return ( (switches & S_PAGE2) ? 0x80 : 0x00 );
case 0xC01D: // RDHIRES
return ( (switches & S_HIRES) ? 0x80 : 0x00 );
case 0xC01E: // RDALTCH
return ( (switches & S_ALTCH) ? 0x80 : 0x00 );
case 0xC01F: // RD80VID
return ( (switches & S_80COL) ? 0x80 : 0x00 );
case 0xC030: // SPEAKER
g_speaker->toggle(g_cpu->cycles);
#ifndef SUPPRESSREALTIME
g_cpu->realtime(); // cause the CPU to stop processing its outer
// loop b/c the speaker might need attention
// immediately
#endif
return FLOATING;
case 0xC050: // CLRTEXT
if (switches & S_TEXT) {
switches &= ~S_TEXT;
resetDisplay();
}
return FLOATING;
case 0xC051: // SETTEXT
if (!(switches & S_TEXT)) {
switches |= S_TEXT;
resetDisplay();
}
return FLOATING;
case 0xC052: // CLRMIXED
if (switches & S_MIXED) {
switches &= ~S_MIXED;
resetDisplay();
}
return FLOATING;
case 0xC053: // SETMIXED
if (!(switches & S_MIXED)) {
switches |= S_MIXED;
resetDisplay();
}
return FLOATING;
case 0xC054: // PAGE1
if (switches & S_PAGE2) {
switches &= ~S_PAGE2;
if (!(switches & S_80COL)) {
resetDisplay();
} else {
updateMemoryPages();
}
}
return FLOATING;
case 0xC055: // PAGE2
if (!(switches & S_PAGE2)) {
switches |= S_PAGE2;
if (!(switches & S_80COL)) {
resetDisplay();
} else {
updateMemoryPages();
}
}
return FLOATING;
case 0xC056: // CLRHIRES
if (switches & S_HIRES) {
switches &= ~S_HIRES;
resetDisplay();
}
return FLOATING;
case 0xC057: // SETHIRES
if (!(switches & S_HIRES)) {
switches |= S_HIRES;
resetDisplay();
}
return FLOATING;
case 0xC05E: // DHIRES ON
if (!(switches & S_DHIRES)) {
switches |= S_DHIRES;
resetDisplay();
}
return FLOATING;
case 0xC05F: // DHIRES OFF
if (switches & S_DHIRES) {
switches &= ~S_DHIRES;
resetDisplay();
}
return FLOATING;
// paddles
/* Fall through for apple keys; they're just RAM in this model
case 0xC061: // OPNAPPLE
return isOpenApplePressed ? 0x80 : 0x00;
case 0xC062: // CLSAPPLE
return isClosedApplePressed ? 0x80 : 0x00;
*/
case 0xC070: // PDLTRIG
// It doesn't matter if we update readPages or writePages, because 0xC0
// has only one page.
g_ram.writeByte((writePages[0xC0] << 8) | 0x64, 0xFF);
g_ram.writeByte((writePages[0xC0] << 8) | 0x65, 0xFF);
g_paddles->startReading();
return FLOATING;
}
if (address >= 0xc000 && address <= 0xc00f) {
// This is the keyboardStrobe support referenced in the switch statement above.
return g_ram.readByte((readPages[0xC0] << 8) | 0x10);
}
/* *** FIXME:
SETIOUDIS= $C07E ;enable DHIRES & disable $C058-5F (W)
CLRIOUDIS= $C07E ;disable DHIRES & enable $C058-5F (W)
0xC05e and 0xc05f should fall through if that IOUDIS is not activated
need to see if that's a toggle, or if it's a typo (c07f, maybe?)
*/
return g_ram.readByte((readPages[address >> 8] << 8) | (address & 0xFF));
}
void AppleMMU::writeSwitches(uint16_t address, uint8_t v)
{
// fixme: combine these with the last read switch
static uint16_t lastWriteSwitch = 0x0000;
static uint16_t thisWriteSwitch = 0x0000;
lastWriteSwitch = thisWriteSwitch;
thisWriteSwitch = address;
// If this is a write for any of the slot switches, and we have
// hardware in that slot, then return its result.
if (address >= 0xC090 && address <= 0xC0FF) {
for (uint8_t i=1; i<=7; i++) {
if (address >= (0xC080 | (i << 4)) &&
address <= (0xC08F | (i << 4))) {
if (slots[i]) {
slots[i]->writeSwitches(address & ~(0xC080 | (i<<4)), v);
}
}
}
}
switch (address) {
case 0xC010:
case 0xC011: // Per Understanding the Apple //e, p. 7-3:
case 0xC012: // a write to any $C01x address causes
case 0xC013: // a clear of the keyboard strobe.
case 0xC014:
case 0xC015:
case 0xC016:
case 0xC017:
case 0xC018:
case 0xC019:
case 0xC01A:
case 0xC01B:
case 0xC01C:
case 0xC01D:
case 0xC01E:
case 0xC01F:
// Consume keyboard strobe
g_ram.writeByte((writePages[0xC0] << 8) | 0x10,
g_ram.readByte((readPages[0xC0] << 8) | 0x10) & 0x7F);
return;
case 0xC030: // SPEAKER
// Writes toggle the speaker twice
g_speaker->toggle(g_cpu->cycles);
g_speaker->toggle(g_cpu->cycles);
#ifndef SUPPRESSREALTIME
g_cpu->realtime(); // cause the CPU to stop processing its outer
// loop b/c the speaker might need attention
// immediately
#endif
return;
case 0xC050: // graphics mode
if (switches & S_TEXT) {
switches &= ~S_TEXT;
resetDisplay();
}
return;
case 0xC051:
if (!(switches & S_TEXT)) {
switches |= S_TEXT;
resetDisplay();
}
return;
case 0xC052: // "no mixed"
if (switches & S_MIXED) {
switches &= ~S_MIXED;
resetDisplay();
}
return;
case 0xC053: // "mixed"
if (!(switches & S_MIXED)) {
switches |= S_MIXED;
resetDisplay();
}
return;
case 0xC054: // page2 off
if (switches & S_PAGE2) {
switches &= ~S_PAGE2;
if (!(switches & S_80COL)) {
resetDisplay();
} else {
updateMemoryPages();
}
}
return;
case 0xC055: // page2 on
if (!(switches & S_PAGE2)) {
switches |= S_PAGE2;
if (!(switches & S_80COL)) {
resetDisplay();
} else {
updateMemoryPages();
}
}
return;
case 0xC056: // hires off
if (switches & S_HIRES) {
switches &= ~S_HIRES;
resetDisplay();
}
return;
case 0xC057: // hires on
if (!(switches & S_HIRES)) {
switches |= S_HIRES;
resetDisplay();
}
return;
case 0xC05E: // DHIRES ON
if (!(switches & S_DHIRES)) {
switches |= S_DHIRES;
resetDisplay();
}
return;
case 0xC05F: // DHIRES OFF
if (switches & S_DHIRES) {
switches &= ~S_DHIRES;
resetDisplay();
}
return;
// paddles
case 0xC070:
g_paddles->startReading();
g_ram.writeByte((writePages[0xC0] << 8) | 0x64, 0xFF);
g_ram.writeByte((writePages[0xC0] << 8) | 0x65, 0xFF);
return;
case 0xC080:
case 0xC081:
case 0xC082:
case 0xC083:
case 0xC084:
case 0xC085:
case 0xC086:
case 0xC087:
case 0xC088:
case 0xC089:
case 0xC08A:
case 0xC08B:
case 0xC08C:
case 0xC08D:
case 0xC08E:
case 0xC08F:
// UTA2E, p. 5-23: preWrite is reset by any write access to these
preWriteFlag = 0;
// fall through...
case 0xC000:
case 0xC001:
case 0xC002:
case 0xC003:
case 0xC004:
case 0xC005:
case 0xC006:
case 0xC007:
case 0xC008:
case 0xC009:
case 0xC00A:
case 0xC00B:
handleMemorySwitches(address, lastWriteSwitch);
return;
case 0xC00C: // CLR80VID disable 80-col video mode
if (switches & S_80COL) {
switches &= ~S_80COL;
resetDisplay();
}
return;
case 0xC00D: // SET80VID enable 80-col video mode
if (!(switches & S_80COL)) {
switches |= S_80COL;
resetDisplay();
}
return;
case 0xC00E: // CLRALTCH use main char set - norm LC, flash UC
switches &= ~S_ALTCH;
return;
case 0xC00F: // SETALTCH use alt char set - norm inverse, LC; no flash
switches |= S_ALTCH;
return;
}
// Anything that falls through gets written to RAM.
g_ram.writeByte((writePages[0xC0] << 8) | (address & 0xFF),
v);
}
void AppleMMU::keyboardInput(uint8_t v)
{
// Set keyboard strobe
g_ram.writeByte((writePages[0xC0] << 8) | 0x10,
v | 0x80);
anyKeyDown = true;
}
void AppleMMU::setKeyDown(bool isTrue)
{
anyKeyDown = isTrue;
}
void AppleMMU::triggerPaddleTimer(uint8_t paddle)
{
g_ram.writeByte((writePages[0xC0] << 8) | (0x64 + paddle), 0);
}
void AppleMMU::resetRAM()
{
switches = S_TEXT;
// Per UTA2E, p. 5-23:
// When a system reset occurs, all MMU soft switches are reset (turned off).
bank2 = false;
auxRamRead = auxRamWrite = false;
readbsr = writebsr = false;
altzp = false;
intcxrom = false;
slot3rom = false;
slotLatch = -1;
preWriteFlag = false;
g_ram.init();
for (uint16_t i=0; i<0x100; i++) {
readPages[i] = writePages[i] = _pageNumberForRam(i, 0);
}
// Load system ROM
for (uint16_t i=0x80; i<=0xFF; i++) {
uint16_t page0 = _pageNumberForRam(i, 0);
uint16_t page1 = _pageNumberForRam(i, 1);
for (uint16_t k=0; k<0x100; k++) {
uint16_t idx = ((i-0x80) << 8) | k;
#ifdef TEENSYDUINO
uint8_t v = pgm_read_byte(&romData[idx]);
#else
uint8_t v = romData[idx];
#endif
// The space from 0xc1 through 0xcf is ROM image territory. We
// load the C3 ROM in to page 0, but not page 1; and then we
// load c800.CFFF to both main ROM (page 0) and the C3 aux ROM
// (page 1) to convince the VM that we've got 128k of RAM and an
// 80-column card.
if (i >= 0xc1 && i <= 0xcf) {
if (i == 0xc3) {
// C300..C3FF => built-in ROM
g_ram.writeByte((page0 << 8) | (k & 0xFF), v);
}
else if (i >= 0xc8) {
// C800..CFFF => built-in ROM and slot 3 extended ROM
g_ram.writeByte((page0 << 8) | (k & 0xFF), v);
g_ram.writeByte((page1 << 8) | (k & 0xFF), v);
}
else {
// C000..C2FF and C400..c7FF are main ROM
g_ram.writeByte((page1 << 8) | (k & 0xFF), v);
}
} else {
// Everything else goes in page 0.
g_ram.writeByte((page0 << 8) | (k & 0xFF), v);
}
}
}
// have each slot load its ROM
for (uint8_t slotnum = 1; slotnum <= 7; slotnum++) {
uint16_t page0 = _pageNumberForRam(0xC0 + slotnum, 0);
if (slots[slotnum]) {
// Load the primary ROM for this peripheral (0xCsXX..0xCsFF)
uint8_t tmpBuf[256];
memset(tmpBuf, 0, sizeof(tmpBuf));
slots[slotnum]->loadROM(tmpBuf);
for (int i=0; i<256; i++) {
g_ram.writeByte( (page0 << 8) + i, tmpBuf[i] );
}
// See if there's an extended 2k ROM for this peripheral (0xC800..0xCFFF)
if (slots[slotnum]->hasExtendedRom()) {
for (int j=0; j<8; j++) {
// Load each of the 256 byte chunks separately to its own VMRam page
uint16_t slotPage = 0;
if (slotnum == 4) {
slotPage = _pageNumberForRam(0xC8 + j, 2);
} else {
#ifndef TEENSYDUINO
fprintf(stderr, "ERROR: unsupported extended ROM peripheral in slot %d\n", slotnum);
exit(1);
#endif
}
if (slotPage) {
uint8_t *p = g_ram.memPtr(slotPage << 8);
slots[slotnum]->loadExtendedRom(p, j * 256);
}
}
}
}
}
// update the memory read/write flags &c. Not strictly necessary, if
// we're really setting all the RAM flags to the right default
// settings above - but better safe than sorry?
updateMemoryPages();
}
void AppleMMU::setSlot(int8_t slotnum, Slot *peripheral)
{
if (slots[slotnum]) {
delete slots[slotnum];
}
slots[slotnum] = peripheral;
if (slots[slotnum]) {
uint16_t page0 = _pageNumberForRam(0xC0 + slotnum, 0);
uint8_t tmpBuf[256];
memset(tmpBuf, 0, sizeof(tmpBuf));
slots[slotnum]->loadROM(tmpBuf);
for (int i=0; i<256; i++) {
g_ram.writeByte( (page0 << 8) + i, tmpBuf[i] );
}
}
}
void AppleMMU::updateMemoryPages()
{
if (auxRamRead) {
for (uint8_t idx = 0x02; idx < 0xc0; idx++) {
readPages[idx] = _pageNumberForRam(idx, 1);
}
} else {
for (uint8_t idx = 0x02; idx < 0xc0; idx++) {
readPages[idx] = _pageNumberForRam(idx, 0);
}
}
if (auxRamWrite) {
for (uint8_t idx = 0x02; idx < 0xc0; idx++) {
writePages[idx] = _pageNumberForRam(idx, 1);
}
} else {
for (uint8_t idx = 0x02; idx < 0xc0; idx++) {
writePages[idx] = _pageNumberForRam(idx, 0);
}
}
if (switches & S_80STORE) {
// When S_80STORE is on, we switch 400-800 and 2000-4000 based on S_PAGE2.
// The behavior is different based on whether HIRESON/OFF is set.
if (switches & S_PAGE2) {
// Regardless of HIRESON/OFF, pages 0x400-0x7ff are switched on S_PAGE2
for (uint8_t idx = 0x04; idx < 0x08; idx++) {
readPages[idx] = writePages[idx] = _pageNumberForRam(idx, 1);
}
// but 2000-3fff switches based on S_PAGE2 only if HIRES is on.
// HIRESOFF: 400-7ff doesn't switch based on read/write flags
// b/c it switches based on S_PAGE2 instead
// HIRESON: 400-800, 2000-3fff doesn't switch
// b/c they switch based on S_PAGE2 instead
// If HIRES is on, then we honor the PAGE2 setting; otherwise, we don't
for (uint8_t idx = 0x20; idx < 0x40; idx++) {
readPages[idx] = writePages[idx] = _pageNumberForRam(idx, (switches & S_HIRES) ? 1 : 0);
}
} else {
for (uint8_t idx = 0x04; idx < 0x08; idx++) {
readPages[idx] = writePages[idx] = _pageNumberForRam(idx, 0);
}
for (uint8_t idx = 0x20; idx < 0x40; idx++) {
readPages[idx] = writePages[idx] = _pageNumberForRam(idx, 0);
}
}
}
if (intcxrom) {
for (uint8_t idx = 0xc1; idx < 0xd0; idx++) {
readPages[idx] = _pageNumberForRam(idx, 1);
}
} else {
for (uint8_t idx = 0xc1; idx < 0xd0; idx++) {
readPages[idx] = _pageNumberForRam(idx, 0);
}
if (slot3rom) {
readPages[0xc3] = _pageNumberForRam(0xc3, 1);
for (int i=0xc8; i<=0xcf; i++) {
readPages[i] = _pageNumberForRam(i, 1);
}
}
}
// If slotLatch is set (!= -1), then we are mapping 2k of ROM
// for a given peripheral to C800..CFFF.
if (slotLatch != -1) {
// FIXME: this is a hacky mess. Slot 3 (the 80-col card) is
// supported, as page "1"; and Slot 4 (the mouse card) is
// supported as page "2".
if (slotLatch == 3) {
for (int i=0xc8; i <= 0xcf; i++) {
readPages[i] = _pageNumberForRam(i, 1);
}
} else if (slotLatch == 4) {
for (int i=0xc8; i <= 0xcf; i++) {
readPages[i] = _pageNumberForRam(i, 2);
}
}
}
// set zero-page & stack pages based on altzp flag
if (altzp) {
for (uint8_t idx = 0x00; idx < 0x02; idx++) {
readPages[idx] = writePages[idx] = _pageNumberForRam(idx, 1);
}
} else {
for (uint8_t idx = 0x00; idx < 0x02; idx++) {
readPages[idx] = writePages[idx] = _pageNumberForRam(idx, 0);
}
}
// Set bank-switched ram reading from readbsr & bank2
if (readbsr) {
// 0xD0 - 0xE0 has 4 possible banks:
if (!bank2) {
// Bank 1 RAM: either in main RAM (1) or in the extended memory
// card (3):
for (uint8_t idx = 0xd0; idx < 0xe0; idx++) {
readPages[idx] = _pageNumberForRam(idx, altzp ? 3 : 1);
}
} else {
// Bank 2 RAM: either in main RAM (2) or in the extended memory
// card (4):
for (uint8_t idx = 0xd0; idx < 0xe0; idx++) {
readPages[idx] = _pageNumberForRam(idx, altzp ? 4 : 2);
}
}
// ... but 0xE0 - 0xFF has just the motherboard RAM (1) and
// extended memory card RAM (2):
for (uint16_t idx = 0xe0; idx < 0x100; idx++) {
readPages[idx] = _pageNumberForRam(idx, altzp ? 2 : 1);
}
} else {
// Built-in ROM
for (uint16_t idx = 0xd0; idx < 0x100; idx++) {
readPages[idx] = _pageNumberForRam(idx, 0);
}
}
if (writebsr) {
if (!bank2) {
for (uint8_t idx = 0xd0; idx < 0xe0; idx++) {
writePages[idx] = _pageNumberForRam(idx, altzp ? 3 : 1);
}
} else {
for (uint8_t idx = 0xd0; idx < 0xe0; idx++) {
writePages[idx] = _pageNumberForRam(idx, altzp ? 4 : 2);
}
}
for (uint16_t idx = 0xe0; idx < 0x100; idx++) {
writePages[idx] = _pageNumberForRam(idx, altzp ? 2 : 1);
}
} else {
for (uint16_t idx = 0xd0; idx < 0x100; idx++) {
writePages[idx] = _pageNumberForRam(idx, 0);
}
}
}
void AppleMMU::setAppleKey(int8_t which, bool isDown)
{
assert(which <= 1);
g_ram.writeByte((writePages[0xC0] << 8) | (0x61 + which), isDown ? 0x80 : 0x00);
}