aiie/teensy/teensy-display.cpp

384 lines
10 KiB
C++

#include <ctype.h> // isgraph
#include <DMAChannel.h>
#include "teensy-display.h"
#include "appleui.h"
// FIXME should be able to omit this include and relay on the xterns, which
// would prove it's linking properly
#include "font.h"
extern const unsigned char ucase_glyphs[512];
extern const unsigned char lcase_glyphs[256];
extern const unsigned char mousetext_glyphs[256];
extern const unsigned char interface_glyphs[256];
#include <SPI.h>
#define _clock 75000000
#define PIN_RST 8
#define PIN_DC 9
#define PIN_CS 0
#define PIN_MOSI 26
#define PIN_MISO 1
#define PIN_SCK 27
// Inside the 320x240 display, the Apple display is 280x192.
// (That's half the "correct" width, b/c of double-hi-res.)
#define apple_display_w 280
#define apple_display_h 192
// Inset inside the apple2 "frame" where we draw the display
// remember these are "starts at pixel number" values, where 0 is the first.
#define HOFFSET 18
#define VOFFSET 13
#include "globals.h"
#include "applevm.h"
#define PHYSMAXX 320
#define PHYSMAXY 240
DMAMEM uint16_t dmaBuffer[PHYSMAXY][PHYSMAXX]; // 240 rows, 320 columns
#define RGBto565(r,g,b) ((((r) & 0xF8) << 8) | (((g) & 0xFC) << 3) | ((b) >> 3))
#define _565toR(c) ( ((c) & 0xF800) >> 8 )
#define _565toG(c) ( ((c) & 0x07E0) >> 5 )
#define _565toB(c) ( ((c) & 0x001F) )
//ILI9341_t3 tft = ILI9341_t3(PIN_CS, PIN_DC, PIN_RST, PIN_MOSI, PIN_SCK, PIN_MISO);
ILI9341_t3n tft = ILI9341_t3n(PIN_CS, PIN_DC, PIN_RST, PIN_MOSI, PIN_SCK, PIN_MISO);
DMAChannel dmatx;
DMASetting dmaSetting;
// RGB map of each of the lowres colors
const uint16_t loresPixelColors[16] = { 0x0000, // 0 black
0xC006, // 1 magenta
0x0010, // 2 dark blue
0xA1B5, // 3 purple
0x0480, // 4 dark green
0x6B4D, // 5 dark grey
0x1B9F, // 6 med blue
0x0DFD, // 7 light blue
0x92A5, // 8 brown
0xF8C5, // 9 orange
0x9555, // 10 light gray
0xFCF2, // 11 pink
0x07E0, // 12 green
0xFFE0, // 13 yellow
0x87F0, // 14 aqua
0xFFFF // 15 white
};
const uint16_t loresPixelColorsGreen[16] = { 0x0000,
0x0140,
0x0040,
0x0280,
0x0300,
0x0340,
0x0300,
0x0480,
0x02C0,
0x0240,
0x0500,
0x0540,
0x0580,
0x0700,
0x0680,
0x07C0
};
const uint16_t loresPixelColorsWhite[16] = { 0x0000,
0x2945,
0x0841,
0x528A,
0x630C,
0x6B4D,
0x630C,
0x9492,
0x5ACB,
0x4A49,
0xA514,
0xAD55,
0xB596,
0xE71C,
0xD69A,
0xFFDF
};
TeensyDisplay::TeensyDisplay()
{
memset(dmaBuffer, 0x80, sizeof(dmaBuffer));
tft.begin(_clock);
tft.setRotation(3);
tft.setFrameBuffer((uint16_t *)dmaBuffer);
tft.useFrameBuffer(true);
tft.fillScreen(ILI9341_BLACK);
driveIndicator[0] = driveIndicator[1] = false;
driveIndicatorDirty = true;
}
TeensyDisplay::~TeensyDisplay()
{
}
void TeensyDisplay::redraw()
{
g_ui->drawStaticUIElement(UIeOverlay);
if (g_vm) {
g_ui->drawOnOffUIElement(UIeDisk1_state, ((AppleVM *)g_vm)->DiskName(0)[0] == '\0');
g_ui->drawOnOffUIElement(UIeDisk2_state, ((AppleVM *)g_vm)->DiskName(1)[0] == '\0');
}
}
void TeensyDisplay::clrScr(uint8_t coloridx)
{
if (coloridx == c_black) {
memset(dmaBuffer, 0x00, sizeof(dmaBuffer));
} else if (coloridx == c_white) {
memset(dmaBuffer, 0xFF, sizeof(dmaBuffer));
} else {
uint16_t color16 = loresPixelColors[c_black];
if (coloridx < 16)
color16 = loresPixelColors[coloridx];
// This could be faster - make one line, then memcpy the line to the other
// lines?
for (uint8_t y=0; y<PHYSMAXY; y++) {
for (uint16_t x=0; x<PHYSMAXX; x++) {
dmaBuffer[y][x] = color16;
}
}
}
}
void TeensyDisplay::drawUIPixel(uint16_t x, uint16_t y, uint16_t color)
{
// These pixels are just cached in the buffer; they're not drawn directly.
dmaBuffer[y][x] = color;
}
void TeensyDisplay::drawPixel(uint16_t x, uint16_t y, uint16_t color)
{
tft.drawPixel(x,y,color);
}
void TeensyDisplay::drawPixel(uint16_t x, uint16_t y, uint8_t r, uint8_t g, uint8_t b)
{
uint16_t color16 = ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | ((b & 0xF8) >> 3);
drawPixel(x,y,color16);
}
void TeensyDisplay::flush()
{
blit({0,0,191,279});
}
void TeensyDisplay::blit()
{
// Start DMA transfers if they aren't running
if (!tft.asyncUpdateActive())
tft.updateScreenAsync(true);
// draw overlay, if any, occasionally
{
static uint32_t nextMessageTime = 0;
if (millis() >= nextMessageTime) {
if (overlayMessage[0]) {
drawString(M_SELECTDISABLED, 1, PHYSMAXY - 16 - 12, overlayMessage);
}
nextMessageTime = millis() + 1000;
}
}
}
void TeensyDisplay::blit(AiieRect r)
{
// Nothing to do here, since we're regularly blitting the whole screen via DMA
}
void TeensyDisplay::drawCharacter(uint8_t mode, uint16_t x, uint8_t y, char c)
{
int8_t xsize = 8,
ysize = 0x07;
uint16_t offPixel, onPixel;
switch (mode) {
case M_NORMAL:
onPixel = 0xFFFF;
offPixel = 0x0010;
break;
case M_SELECTED:
onPixel = 0x0000;
offPixel = 0xFFFF;
break;
case M_DISABLED:
default:
onPixel = 0x7BEF;
offPixel = 0x0000;
break;
case M_SELECTDISABLED:
onPixel = 0x7BEF;
offPixel = 0xFFE0;
break;
case M_PLAIN:
onPixel = 0xFFFF;
offPixel = 0x0000;
break;
}
// This does not scale when drawing, because drawPixel scales.
const unsigned char *ch = asciiToAppleGlyph(c);
for (int8_t y_off = 0; y_off <= ysize; y_off++) {
if (y + y_off < PHYSMAXY) {
for (int8_t x_off = 0; x_off <= xsize; x_off++) {
if (x+x_off < PHYSMAXX) {
if (*ch & (1 << (x_off))) {
dmaBuffer[y+y_off][x+x_off] = onPixel;
} else {
dmaBuffer[y+y_off][x+x_off] = offPixel;
}
}
}
}
ch++;
}
}
void TeensyDisplay::drawString(uint8_t mode, uint16_t x, uint8_t y, const char *str)
{
int8_t xsize = 8; // width of a char in this font
for (int8_t i=0; i<strlen(str); i++) {
drawCharacter(mode, x, y, str[i]);
x += xsize;
if (x >= PHYSMAXX) break;
}
}
void TeensyDisplay::drawImageOfSizeAt(const uint8_t *img,
uint16_t sizex, uint8_t sizey,
uint16_t wherex, uint8_t wherey)
{
uint8_t r, g, b;
for (uint8_t y=0; y<sizey; y++) {
for (uint16_t x=0; x<sizex; x++) {
r = pgm_read_byte(&img[(y*sizex + x)*3 + 0]);
g = pgm_read_byte(&img[(y*sizex + x)*3 + 1]);
b = pgm_read_byte(&img[(y*sizex + x)*3 + 2]);
dmaBuffer[y+wherey][x+wherex] = RGBto565(r,g,b);
}
}
}
// "DoubleWide" means "please double the X because I'm in low-res
// width mode". But we only have half the horizontal width required on
// the Teensy, so it's divided in half.
void TeensyDisplay::cacheDoubleWidePixel(uint16_t x, uint16_t y, uint8_t color)
{
uint16_t color16;
color16 = loresPixelColors[(( color & 0x0F ) )];
dmaBuffer[y+VOFFSET][x+HOFFSET] = color16;
}
// This exists for 4bpp optimization. We could totally call
// cacheDoubleWidePixel twice, but the (x&1) pfutzing is messy if
// we're just storing both halves anyway...
void TeensyDisplay::cache2DoubleWidePixels(uint16_t x, uint16_t y,
uint8_t colorA, uint8_t colorB)
{
dmaBuffer[y+VOFFSET][x+ HOFFSET] = loresPixelColors[colorB&0xF];
dmaBuffer[y+VOFFSET][x+1+HOFFSET] = loresPixelColors[colorA&0xF];
}
inline double logfn(double x)
{
// At a value of x=255, log(base 1.022)(x) is 254.636.
return log(x)/log(1.022);
}
inline uint16_t blendColors(uint16_t a, uint16_t b)
{
// Straight linear average doesn't work well for inverted text, because the
// whites overwhelm the blacks.
//return ((uint32_t)a + (uint32_t)b)/2;
#if 0
// Testing a logarithmic color scale. My theory was that, since our
// colors here are mostly black or white, it would be reasonable to
// use a log scale of the average to bump up the brightness a
// little. In practice, it's not really legible.
return RGBto565( (uint8_t)(logfn((_565toR(a) + _565toR(b))/2)),
(uint8_t)(logfn((_565toG(a) + _565toG(b))/2)),
(uint8_t)(logfn((_565toB(a) + _565toB(b))/2)) );
#endif
// Doing an R/G/B average works okay for legibility. It's not great for
// inverted text.
return RGBto565( (_565toR(a) + _565toR(b))/2,
(_565toG(a) + _565toG(b))/2,
(_565toB(a) + _565toB(b))/2 );
}
// This is the full 560-pixel-wide version -- and we only have 280
// pixels in our buffer b/c the display is only 320 pixels wide
// itself. So we'll divide x by 2. On odd-numbered X pixels, we also
// blend the colors of the two virtual pixels that share an onscreen
// pixel
void TeensyDisplay::cachePixel(uint16_t x, uint16_t y, uint8_t color)
{
#if 0
static uint8_t previousColor = 0;
#endif
if (x&1) {
// Blend the two pixels. This takes advantage of the fact that we
// always call this linearly for 80-column text drawing -- we never
// do partial screen blits, but always draw at least a whole character.
// So we can look at the pixel in the "shared" cell of RAM, and come up
// with a color between the two.
#if 1
// This is straight blending, R/G/B average, except in B&W mode
uint16_t origColor = dmaBuffer[y+VOFFSET][(x>>1)+HOFFSET];
uint16_t newColor = loresPixelColors[color];
if (g_displayType == m_blackAndWhite) {
cacheDoubleWidePixel(x>>1, y, (origColor && newColor) ? 0xFFFF : 0x0000);
} else {
cacheDoubleWidePixel(x>>1, y, blendColors(origColor, newColor));
}
#endif
#if 0
// The model we use for the SDL display works better, strangely - it keeps
// the lores pixel index color (black, magenda, dark blue, purple, dark
// green, etc.) until render time; so when it does the blend here, it's
// actually blending in a very nonlinear way - e.g. "black + white / 2"
// is actually "black(0) + white(15) / 2 = 15/2 = 7 (light blue)". Weird,
// but definitely legible in a mini laptop SDL window with the same scale.
// Unfortunately, it doesn't translate well to a ILI9341 panel; the pixels
// are kind of muddy and indistinct, so the blue spills over and makes it
// very difficult to read.
uint8_t origColor = previousColor;
uint8_t newColor = (uint16_t)(origColor + color) / 2;
cacheDoubleWidePixel(x>>1, y, (uint16_t)color + (uint16_t)previousColor/2);
#endif
} else {
#if 0
previousColor = color; // used for blending
#endif
cacheDoubleWidePixel(x>>1, y, color);
}
}
uint32_t TeensyDisplay::frameCount()
{
return tft.frameCount();
}