aiie/teensy/teensy.ino

441 lines
11 KiB
C++

#include <Arduino.h>
#include <TimerOne.h>
#include <ff.h> // uSDFS
#include <SPI.h>
#include <EEPROM.h>
#include <TimeLib.h>
#include "bios.h"
#include "cpu.h"
#include "applevm.h"
#include "teensy-display.h"
#include "teensy-keyboard.h"
#include "teensy-speaker.h"
#include "teensy-paddles.h"
#include "teensy-filemanager.h"
#define RESETPIN 39
#define BATTERYPIN A19
#define SPEAKERPIN A21
//#define DEBUGCPU
#include "globals.h"
#include "teensy-crash.h"
volatile float nextInstructionMicros;
volatile float startMicros;
FATFS fatfs; /* File system object */
BIOS bios;
uint8_t videoBuffer[320*240/2];
enum {
D_NONE = 0,
D_SHOWFPS = 1,
D_SHOWMEMFREE = 2,
D_SHOWPADDLES = 3,
D_SHOWPC = 4,
D_SHOWCYCLES = 5,
D_SHOWBATTERY = 6,
D_SHOWTIME = 7
};
uint8_t debugMode = D_NONE;
static time_t getTeensy3Time() { return Teensy3Clock.get(); }
/* Totally messing around with the RadioHead library */
#include <SPI.h>
#include <RH_NRF24.h>
#include <RHSoftwareSPI.h>
RHSoftwareSPI spi;
#define RF_CSN 40
#define RF_MOSI 41
#define RF_IRQ 42
#define RF_CE 53
#define RF_SCK 52
#define RF_MISO 51
RH_NRF24 nrf24(RF_CE, RF_CSN, spi);
void setup()
{
Serial.begin(230400);
/* while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
Serial.println("hi");
*/
delay(100); // let the serial port connect if it's gonna
enableFaultHandler();
// set the Time library to use Teensy 3.0's RTC to keep time
setSyncProvider(getTeensy3Time);
delay(100); // don't know if we need this
if (timeStatus() == timeSet) {
Serial.println("RTC set from Teensy");
} else {
Serial.println("Error while setting RTC");
}
spi.setPins(RF_MISO, RF_MOSI, RF_SCK);
if (!nrf24.init())
Serial.println("init failed");
// Defaults after init are 2.402 GHz (channel 2), 2Mbps, 0dBm
if (!nrf24.setChannel(1))
Serial.println("setChannel failed");
if (!nrf24.setRF(RH_NRF24::DataRate2Mbps, RH_NRF24::TransmitPower0dBm))
Serial.println("setRF failed");
Serial.println("nrf24 initialized");
TCHAR *device = (TCHAR *)_T("0:/");
f_mount (&fatfs, device, 0); /* Mount/Unmount a logical drive */
pinMode(RESETPIN, INPUT);
digitalWrite(RESETPIN, HIGH);
analogReference(EXTERNAL); // 3.3v external, instead of 1.7v internal
analogReadRes(8); // We only need 8 bits of resolution (0-255) for battery & paddles
analogReadAveraging(4); // ?? dunno if we need this or not.
pinMode(SPEAKERPIN, OUTPUT); // analog speaker output, used as digital volume control
pinMode(BATTERYPIN, INPUT);
Serial.println("creating virtual hardware");
g_speaker = new TeensySpeaker(SPEAKERPIN);
Serial.println(" fm");
// First create the filemanager - the interface to the host file system.
g_filemanager = new TeensyFileManager();
// Construct the interface to the host display. This will need the
// VM's video buffer in order to draw the VM, but we don't have that
// yet.
Serial.println(" display");
g_display = new TeensyDisplay();
// Next create the virtual CPU. This needs the VM's MMU in order to
// run, but we don't have that yet.
Serial.println(" cpu");
g_cpu = new Cpu();
// Create the virtual machine. This may read from g_filemanager to
// get ROMs if necessary. (The actual Apple VM we've built has them
// compiled in, though.) It will create its virutal hardware (MMU,
// video driver, floppy, paddles, whatever).
Serial.println(" vm");
g_vm = new AppleVM();
// Now that the VM exists and it has created an MMU, we tell the CPU
// how to access memory through the MMU.
Serial.println(" [setMMU]");
g_cpu->SetMMU(g_vm->getMMU());
// And the physical keyboard needs hooks in to the virtual keyboard...
Serial.println(" keyboard");
g_keyboard = new TeensyKeyboard(g_vm->getKeyboard());
Serial.println(" paddles");
g_paddles = new TeensyPaddles();
// Now that all the virtual hardware is glued together, reset the VM
Serial.println("Resetting VM");
g_vm->Reset();
g_display->redraw();
g_display->blit();
Serial.println("Reading prefs");
readPrefs(); // read from eeprom and set anything we need setting
Serial.println("free-running");
startMicros = 0;
nextInstructionMicros = micros();
Timer1.initialize(3);
Timer1.attachInterrupt(runCPU);
Timer1.start();
}
/* We're running the timer that calls this at 1/3 "normal" speed, and
* then asking runCPU to run 48 steps (individual opcodes executed) of
* the CPU before returning. Then we figure out how many cycles
* elapsed during that run, and keep track of how many cycles we now
* have to "drain off" (how many extra ran during this attempt -- we
* expected at least 3, but might have gotten more). Then the next
* call here from the interrupt subtracts 3 cycles, on the assumption
* that 3 have passed, and we're good to go.
*
* This approach is reasonable: the 6502 instruction set takes an
* average of 4 clock cycles to execute. This compromise keeps us from
* chewing up the entire CPU on interrupt overhead, allowing us to
* focus on refreshing the LCD as fast as possible while sacrificing
* some small timing differences. Experimentally, paddle values seem
* to still read well up to 48 steps. At 2*48, the paddles drift at
* the low end, meaning there's probably an issue with timing.
*/
void runCPU()
{
// static bool outputState = false;
// outputState = !outputState;
// digitalWrite(56, outputState);
if (micros() >= nextInstructionMicros) {
#ifdef DEBUGCPU
g_cpu->Run(1);
#else
g_cpu->Run(24);
#endif
// The CPU of the Apple //e ran at 1.023 MHz. Adjust when we think
// the next instruction should run based on how long the execution
// was ((1000/1023) * numberOfCycles) - which is about 97.8%.
#ifdef DEBUGCPU
// ... have to slow down so the printing all works
nextInstructionMicros = startMicros + (float)g_cpu->cycles * 50;
#else
nextInstructionMicros = startMicros + (float)g_cpu->cycles * 0.978;
#endif
#ifdef DEBUGCPU
{
uint8_t p = g_cpu->flags;
Serial.printf("OP: $%02x A: %02x X: %02x Y: %02x PC: $%04x SP: %02x Flags: %c%cx%c%c%c%c%c\n",
g_vm->getMMU()->read(g_cpu->pc),
g_cpu->a, g_cpu->x, g_cpu->y, g_cpu->pc, g_cpu->sp,
p & (1<<7) ? 'N':' ',
p & (1<<6) ? 'V':' ',
p & (1<<4) ? 'B':' ',
p & (1<<3) ? 'D':' ',
p & (1<<2) ? 'I':' ',
p & (1<<1) ? 'Z':' ',
p & (1<<0) ? 'C':' '
);
}
#endif
}
g_speaker->maintainSpeaker(g_cpu->cycles);
((AppleVM *)g_vm)->cpuMaintenance(g_cpu->cycles);
}
// FIXME: move these memory-related functions elsewhere...
// This only gives you an estimated free mem size. It's not perfect.
uint32_t FreeRamEstimate()
{
uint32_t stackTop;
uint32_t heapTop;
// current position of the stack.
stackTop = (uint32_t) &stackTop;
// current position of heap.
void* hTop = malloc(1);
heapTop = (uint32_t) hTop;
free(hTop);
// The difference is the free, available ram.
return stackTop - heapTop;
}
#include "malloc.h"
int heapSize(){
return mallinfo().uordblks;
}
void biosInterrupt()
{
// Shut down the CPU
Timer1.stop();
// wait for the interrupt button to be released
while (digitalRead(RESETPIN) == LOW)
;
// invoke the BIOS
if (bios.runUntilDone()) {
// if it returned true, we have something to store persistently in EEPROM.
writePrefs();
}
// if we turned off debugMode, make sure to clear the debugMsg
if (debugMode == D_NONE) {
g_display->debugMsg("");
}
// clear the CPU next-step counters
g_cpu->cycles = 0;
nextInstructionMicros = micros();
startMicros = micros();
// Force the display to redraw
((AppleDisplay*)(g_vm->vmdisplay))->modeChange();
// Poll the keyboard before we start, so we can do selftest on startup
g_keyboard->maintainKeyboard();
// Restart the CPU
Timer1.start();
}
void loop()
{
static uint16_t ctr = -1;
/* testing the fault handler? uncomment this and it'll crash. */
// *((int*)0x0) = 1;
static unsigned long nextBattCheck = 0;
static int batteryLevel = 0; // static for debugging code! When done
// debugging, this can become a local
// in the appropriate block below
if (millis() >= nextBattCheck) {
// FIXME: what about rollover?
nextBattCheck = millis() + 1 * 1000; // once a minute? maybe? FIXME: Right now 1/sec
// FIXME: scale appropriately.
batteryLevel = analogRead(BATTERYPIN);
/* 205 is "near dead, do something about it right now" - 3.2v and lower.
* What's the top end? 216-ish?
*
* The reading fluctuates quite a lot - we should probably capture
* more and average it over a longer period before showing
* anything (FIXME)
*/
if (batteryLevel < 205)
batteryLevel = 205;
if (batteryLevel > 216)
batteryLevel = 216;
batteryLevel = map(batteryLevel, 205, 216, 0, 100);
((AppleVM *)g_vm)->batteryLevel( batteryLevel );
}
if ((++ctr & 0xFF) == 0) {
if (digitalRead(RESETPIN) == LOW) {
// This is the BIOS interrupt. We immediately act on it.
biosInterrupt();
}
if (g_vm->vmdisplay->needsRedraw()) {
// make sure to clear the flag before drawing; there's no lock
// on didRedraw, so the other thread might update it
g_vm->vmdisplay->didRedraw();
g_display->blit();
}
g_keyboard->maintainKeyboard();
{
char buf[25];
switch (debugMode) {
case D_SHOWFPS:
// display some FPS data
static uint32_t startAt = millis();
static uint32_t loopCount = 0;
loopCount++;
time_t lenSecs;
lenSecs = (millis() - startAt) / 1000;
if (lenSecs >= 5) {
sprintf(buf, "%lu FPS", loopCount / lenSecs);
g_display->debugMsg(buf);
startAt = millis();
loopCount = 0;
}
break;
case D_SHOWMEMFREE:
sprintf(buf, "%lu %u", FreeRamEstimate(), heapSize());
g_display->debugMsg(buf);
break;
case D_SHOWPADDLES:
sprintf(buf, "%u %u", g_paddles->paddle0(), g_paddles->paddle1());
g_display->debugMsg(buf);
break;
case D_SHOWPC:
sprintf(buf, "%X", g_cpu->pc);
g_display->debugMsg(buf);
break;
case D_SHOWCYCLES:
sprintf(buf, "%lX", g_cpu->cycles);
g_display->debugMsg(buf);
break;
case D_SHOWBATTERY:
sprintf(buf, "BAT %d", analogRead(BATTERYPIN));
g_display->debugMsg(buf);
break;
case D_SHOWTIME:
sprintf(buf, "%.2d:%.2d:%.2d", hour(), minute(), second());
g_display->debugMsg(buf);
break;
}
}
}
}
typedef struct _prefs {
uint32_t magic;
int16_t volume;
} prefs;
// Fun trivia: the Apple //e was in production from January 1983 to
// November 1993. And the 65C02 in them supported weird BCD math modes.
#define MAGIC 0x01831093
void readPrefs()
{
prefs p;
uint8_t *pp = (uint8_t *)&p;
Serial.println("reading prefs");
for (uint8_t i=0; i<sizeof(prefs); i++) {
*pp++ = EEPROM.read(i);
}
if (p.magic == MAGIC) {
// looks valid! Use it.
Serial.println("prefs valid! Restoring volume");
if (p.volume > 4095) {
p.volume = 4095;
}
if (p.volume < 0) {
p.volume = 0;
}
g_volume = p.volume;
return;
}
// use defaults
g_volume = 0;
}
// Writes to EEPROM slow down the Teensy 3.6's CPU to 120MHz automatically. Disable our timer
// while we're doing it and we'll just see a pause.
void writePrefs()
{
Timer1.stop();
Serial.println("writing prefs");
prefs p;
uint8_t *pp = (uint8_t *)&p;
p.magic = MAGIC;
p.volume = g_volume;
for (uint8_t i=0; i<sizeof(prefs); i++) {
EEPROM.write(i, *pp++);
}
Timer1.start();
}