aiie/apple/woz.cpp

1833 lines
50 KiB
C++

#include "woz.h"
#include <string.h>
#include "crc32.h"
#include "nibutil.h"
#include "version.h"
// Block number we start packing data bits after (Woz 2.0 images)
#define STARTBLOCK 3
#if defined(AIIE) || defined(TEENSYDUINO)
#define LAZYFD
#include "fscompat.h"
#endif
#ifdef TEENSYDUINO
// This junk is for my AiiE project. I need to abstract it out better.
#include "iocompat.h"
#define SKIPCHECKSUM
#define malloc extmem_malloc
#define free extmem_free
#define calloc extmem_calloc
#define realloc extmem_realloc
#endif
#define PREP_SECTION(fd, t) { \
uint32_t type = t; \
if (!write32(fd, type)) \
return false; \
if (!write32(fd, 0)) \
return false; \
curpos = lseek(fd, 0, SEEK_CUR); \
}
#define END_SECTION(fd) { \
long endpos = lseek(fd, 0, SEEK_CUR); \
lseek(fd, curpos-4, SEEK_SET); \
uint32_t chunksize = endpos - curpos; \
if (!write32(fd, chunksize)) \
return false; \
lseek(fd, endpos, SEEK_SET); \
}
Woz::Woz(bool verbose, uint8_t dumpflags)
{
fd = -1;
trackPointer = 0;
trackBitIdx = 0x80;
trackBitCounter = 0;
trackByteFromDataTrack = 255;
trackLoopCounter = 0;
imageType = T_AUTO;
metaData = NULL;
this->verbose = verbose;
this->dumpflags = dumpflags;
memset(&quarterTrackMap, 255, sizeof(quarterTrackMap));
memset(&di, 0, sizeof(diskInfo));
memset(&tracks, 0, sizeof(tracks));
randPtr = 0;
}
Woz::~Woz()
{
if (fd != -1) {
close(fd);
fd = -1;
}
for (int i=0; i<160; i++) {
if (tracks[i].trackData) {
free(tracks[i].trackData);
tracks[i].trackData = NULL;
}
}
if (metaData) {
free(metaData);
metaData = NULL;
}
}
// external interface for a disk subsystem to write a bit
bool Woz::writeNextWozBit(uint8_t datatrack, uint8_t bit)
{
if (datatrack == 0xFF) {
printf("ERROR: tried to write bit on half-track; not implemented\n");
return true;
}
if (!tracks[datatrack].trackData) {
fprintf(stderr, "ERROR: tried to writeNextWozBit to a data track that's not loaded, and we can't possibly tell which QT that should be\n");
return false;
}
if (trackByteFromDataTrack != datatrack) {
// FIXME what if trackpointer is out of bounds for this track
trackByte = tracks[datatrack].trackData[trackPointer];
trackByteFromDataTrack = datatrack;
}
if (bit)
trackByte |= trackBitIdx;
else
trackByte &= ~trackBitIdx;
tracks[datatrack].trackData[trackPointer] = trackByte;
advanceBitStream(datatrack);
tracks[datatrack].dirty = true;
return true;
}
// external interface for a disk interface to write a byte
bool Woz::writeNextWozByte(uint8_t datatrack, uint8_t b)
{
if (datatrack == 0xFF) {
// Not on a track, so pretend to write but throw it away. FIXME:
// probably want to create a new Woz track entry here.
fprintf(stderr, "ERROR: tried to write to a half track; not implemented\n");
return true;
}
if (!tracks[datatrack].trackData) {
fprintf(stderr, "ERROR: tried to write to a track that's not loaded, and it's not possible to tell what QT was meant\n");
return false;
}
// We could be byte-aligned, but it's not guaranteed, so this
// handles it bitwise.
for (uint8_t i=0; i<8; i++) {
writeNextWozBit(datatrack, b & (1 << (7-i)) ? 1 : 0);
}
return true;
}
uint8_t Woz::getNextWozBit(uint8_t datatrack)
{
if (datatrack >= 160) {
if (datatrack != 255) {
fprintf(stderr, "datatrack %d out of range\n", datatrack);
exit(1);
}
return 0;
}
if (!tracks[datatrack].trackData) {
fprintf(stderr, "ERROR: getNextWozBit was called without the track being cached, and it can't possibly know which QT to load it from\n");
return 0;
}
if (trackByteFromDataTrack != datatrack) {
// FIXME what if trackPointer is out of bounds for this track
trackByte = tracks[datatrack].trackData[trackPointer];
trackByteFromDataTrack = datatrack;
}
// It's assumed that trackByte is set properly when we get here. It
// should be set when we load image or change tracks, and it's
// changed again when we advanceBitStream.
uint8_t ret = (trackByte & trackBitIdx) ? 1 : 0;
advanceBitStream(datatrack);
return ret;
}
void Woz::advanceBitStream(uint8_t datatrack)
{
trackBitCounter++;
trackBitIdx >>= 1;
if (!trackBitIdx) {
trackBitIdx = 0x80;
trackPointer++;
// FIXME this is kinda redundant since we're checking
// trackBitCounter after, but we want to not load from out of
// bounds here, so unless we always set trackByte after the bit
// range check below I'm not sure we can get rid of this one
if ((di.version == 2 && trackPointer < tracks[datatrack].blockCount*512) ||
(di.version == 1 && trackPointer < NIBTRACKSIZE)
) {
trackByte = tracks[datatrack].trackData[trackPointer];
trackByteFromDataTrack = datatrack;
}
}
// This could have " || trackPointer >=
// tracks[datatrack].bitCount/8" but it should be totally redundant
if (trackBitCounter >= tracks[datatrack].bitCount) {
trackPointer = 0;
trackBitIdx = 0x80;
trackBitCounter = 0;
trackLoopCounter++;
trackByte = tracks[datatrack].trackData[trackPointer];
trackByteFromDataTrack = datatrack;
}
}
uint8_t Woz::fakeBit()
{
// 30% should be 1s, but I'm not biasing the data here, so this is
// more like 50% 1s.
if (randPtr == 0) {
randPtr = 0x80;
randData = (uint8_t) ((float)256 * rand() / (RAND_MAX + 1.0));
}
uint8_t ret = (randData & randPtr) ? 1 : 0;
randPtr >>= 1;
return ret;
}
uint8_t Woz::nextDiskBit(uint8_t datatrack)
{
if (!tracks[datatrack].trackData) {
fprintf(stderr, "ERROR: nextDiskBit was called without the track being cached, and it can't possibly know which QT to load it from\n");
return 0;
}
/*
FIXME: this needs evaluation. We want the fake bit work, but can't do it at the expense of being 1 bit behind -- b/c that would mean switching tracks drops a bit; and seek-and-write would leave an excess bit in place too...
static uint8_t head_window = 0;
head_window <<= 1;
head_window |= getNextWozBit(datatrack);
if ((head_window & 0x0f) != 0x00) {
return (head_window & 0x02) >> 1;
} else {
return fakeBit();
}*/
// Until the above is figured out, we're gonna just return what's on the datastream
return getNextWozBit(datatrack);
}
uint8_t Woz::nextDiskByte(uint8_t datatrack)
{
if (!tracks[datatrack].trackData) {
fprintf(stderr, "ERROR: nextDiskByte was called without the track being cached, and it can't possibly know which QT to load it from\n");
return 0;
}
uint8_t d = 0;
while ((d & 0x80) == 0) {
d <<= 1;
d |= nextDiskBit(datatrack);
}
return d;
}
static bool write8(int fd, uint8_t v)
{
if (write(fd, &v, 1) != 1)
return false;
return true;
}
static bool write16(int fd, uint16_t v)
{
if (!write8(fd, v & 0xFF))
return false;
v >>= 8;
if (!write8(fd, v & 0xFF))
return false;
return true;
}
static bool write32(int fd, uint32_t v)
{
for (int i=0; i<4; i++) {
if (!write8(fd, v&0xFF))
return false;
v >>= 8;
}
return true;
}
static bool read8(int fd, uint8_t *toWhere)
{
uint8_t r;
if (read(fd, &r, 1) != 1)
return false;
*toWhere = r;
return true;
}
static bool read16(int fd, uint16_t *toWhere)
{
uint16_t ret = 0;
for (int i=0; i<2; i++) {
uint8_t r;
if (!read8(fd, &r)) {
return false;
}
ret >>= 8;
ret |= (r<<8);
}
*toWhere = ret;
return true;
}
static bool read32(int fd, uint32_t *toWhere)
{
uint32_t ret = 0;
for (int i=0; i<4; i++) {
uint8_t r;
if (!read8(fd, &r)) {
return false;
}
ret >>= 8;
ret |= (r<<24);
}
*toWhere = ret;
return true;
}
bool Woz::writeFile(const char *filename, uint8_t forceType)
{
if (forceType == T_AUTO) {
// Try to determine type from the file extension
const char *p = strrchr(filename, '.');
if (!p) {
fprintf(stderr, "Unable to determine file type of '%s'\n", filename);
return false;
}
if (strcasecmp(p, ".woz") == 0) {
forceType = T_WOZ;
} else if (strcasecmp(p, ".dsk") == 0 ||
strcasecmp(p, ".do") == 0) {
forceType = T_DSK;
} else if (strcasecmp(p, ".po") == 0) {
forceType = T_PO;
} else if (strcasecmp(p, ".nib") == 0) {
forceType = T_NIB;
} else {
fprintf(stderr, "Unable to determine file type of '%s'\n", filename);
return false;
}
}
switch (forceType) {
case T_WOZ:
return writeWozFile(filename, forceType);
case T_DSK:
case T_PO:
return writeDskFile(filename, forceType);
case T_NIB:
return writeNibFile(filename);
default:
fprintf(stderr, "Unknown disk type; unable to write\n");
return false;
}
}
bool Woz::writeWozFile(const char *filename, uint8_t subtype)
{
int fdout = -1;
fdout = open(filename, O_TRUNC|O_CREAT|O_RDWR, S_IRUSR|S_IWUSR);
if (fdout == -1) {
perror("ERROR: Unable to open output file");
return false;
}
bool retval = writeWozFile(fdout, subtype);
close(fdout);
return retval;
}
bool Woz::writeWozFile(int fdout, uint8_t subtype)
{
int version = 2; // FIXME figure out from subtype
bool retval = false;
uint32_t tmp32; // scratch 32-bit value
off_t crcPos, endPos;
off_t curpos; // used in macros to dynamically tell what size the chunks are
uint32_t crcDataSize;
uint8_t *crcData = NULL;
if (version > 2 || !version) {
fprintf(stderr, "ERROR: version must be 1 or 2\n");
goto done;
}
lseek(fdout, 0, SEEK_SET);
// header
if (version == 1) {
tmp32 = 0x315A4F57;
} else {
tmp32 = 0x325A4F57;
}
if (!write32(fdout, tmp32)) {
fprintf(stderr, "ERROR: failed to write\n");
goto done;
}
tmp32 = 0x0A0D0AFF;
if (!write32(fdout, tmp32)) {
fprintf(stderr, "ERROR: failed to write\n");
goto done;
}
// We'll come back and write the checksum later
crcPos = lseek(fdout, 0, SEEK_CUR);
tmp32 = 0;
if (!write32(fdout, tmp32)) {
fprintf(stderr, "ERROR: failed to write\n");
goto done;
}
PREP_SECTION(fdout, 0x4F464E49); // 'INFO'
if (!writeInfoChunk(version, fdout)) {
fprintf(stderr, "ERROR: failed to write INFO chunk\n");
goto done;
}
END_SECTION(fdout);
PREP_SECTION(fdout, 0x50414D54); // 'TMAP'
if (!writeTMAPChunk(version, fdout)) {
fprintf(stderr, "ERROR: failed to write TMAP chunk\n");
goto done;
}
END_SECTION(fdout);
PREP_SECTION(fdout, 0x534B5254); // 'TRKS'
if (!writeTRKSChunk(version, fdout)) {
fprintf(stderr, "ERROR: failed to write TRKS chunk\n");
goto done;
}
END_SECTION(fdout);
// Write the metadata if we have any
if (metaData) {
PREP_SECTION(fdout, 0x4154454D); // 'META'
if (write(fdout, metaData, strlen(metaData)) != strlen(metaData)) {
fprintf(stderr, "ERROR: failed to write META chunk\n");
goto done;
}
END_SECTION(fdout);
}
// FIXME: missing the WRIT chunk, if it exists
// Fix up the checksum. Optional; the spec says it can be 0 meaning
// "don't verify"
#ifndef SKIPCHECKSUM
endPos = lseek(fdout, 0, SEEK_CUR);
crcDataSize = endPos-crcPos-4;
crcData = (uint8_t *)malloc(crcDataSize);
if (!crcData) {
fprintf(stderr, "ERROR: failed to malloc crc data chunk\n");
goto done;
}
// Read the data in for checksumming
if (lseek(fdout, crcPos+4, SEEK_SET) == -1) {
fprintf(stderr, "ERROR: failed to fseek to crcPos+4 (0x%llX)\n", crcPos+4);
goto done;
}
tmp32 = read(fdout, crcData, crcDataSize);
if (tmp32 != crcDataSize) {
fprintf(stderr, "ERROR: failed to read in data for checksum [read %d, wanted %d]\n", tmp32, crcDataSize);
goto done;
}
tmp32 = compute_crc_32(crcData, crcDataSize);
// Write it back out
lseek(fdout, crcPos, SEEK_SET);
if (!write32(fdout, tmp32)) {
fprintf(stderr, "ERROR: failed to write CRC\n");
goto done;
}
#endif
for (int i=0; i<160; i++) {
tracks[i].dirty = false;
}
retval = true;
done:
if (crcData)
free(crcData);
return retval;
}
bool Woz::writeDskFile(const char *filename, uint8_t subtype)
{
int fdout = open(filename, O_CREAT|O_TRUNC|O_WRONLY, S_IRUSR|S_IWUSR);
if (fdout == -1) {
perror("Failed to open output file");
exit(1);
}
bool retval = writeDskFile(fdout, subtype);
close(fdout);
return retval;
}
bool Woz::writeDskFile(int fdout, uint8_t subtype)
{
if (isSynchronized()) {
fprintf(stderr, "WARNING: disk image has synchronized tracks; it may not work as a DSK or NIB file.\n");
}
lseek(fdout, 0, SEEK_SET);
uint8_t sectorData[256*16];
for (int phystrack=0; phystrack<35; phystrack++) {
if (!decodeWozTrackToDsk(phystrack, subtype, sectorData)) {
fprintf(stderr, "Failed to decode track %d; aborting\n", phystrack);
exit(1);
}
ssize_t numWritten = write(fdout, sectorData, 256*16);
if (numWritten != 256*16) {
perror("Failed[2] to write to track; aborting");
exit(1);
}
}
for (int i=0; i<160; i++) {
tracks[i].dirty = false;
}
return true;
}
bool Woz::writeNibFile(const char *filename)
{
int fdout = open(filename, O_CREAT|O_TRUNC|O_WRONLY, S_IRUSR|S_IWUSR);
if (fdout == -1) {
perror("Failed to open output file");
exit(1);
}
bool retval = writeNibFile(fdout);
close(fdout);
return retval;
}
bool Woz::writeNibFile(int fdout)
{
if (isSynchronized()) {
fprintf(stderr, "WARNING: disk image has synchronized tracks; it may not work as a DSK or NIB file.\n");
}
lseek(fdout, 0, SEEK_SET);
nibSector nibData[16];
for (int phystrack=0; phystrack<35; phystrack++) {
if (!decodeWozTrackToNibFromDataTrack(quarterTrackMap[phystrack*4], nibData)) {
fprintf(stderr, "Failed to decode track %d; aborting\n", phystrack);
exit(1);
}
if (write(fdout, nibData, NIBTRACKSIZE) != NIBTRACKSIZE) {
fprintf(stderr, "Failed[1] to write track %d; aborting\n", phystrack);
exit(1);
}
}
for (int i=0; i<160; i++) {
tracks[i].dirty = false;
}
return true;
}
void Woz::_initInfo()
{
di.version = 2;
di.diskType = 1;
di.writeProtected = 0;
di.synchronized = 0;
di.cleaned = 0;
sprintf(di.creator, "%.32s", VERSION_STRING);
di.diskSides = 1;
di.bootSectorFormat = 0;
di.optimalBitTiming = 32;
di.compatHardware = 0;
di.requiredRam = 0;
di.largestTrack = 13;
// reset all the track data
for (int i=0; i<160; i++) {
memset(&tracks[i], 0, sizeof(trackInfo));
}
// Construct a default quarter-track mapping
for (int i=0; i<140; i++) {
if ((i+1)/4 < 35) {
quarterTrackMap[i] = ((i-2) % 4 == 0) ? 0xFF : ((i+1)/4);
} else {
quarterTrackMap[i] = 0xFF;
}
}
}
// Only used if we didn't preload a data track; the load we perform
// differs based on the image type we originally read from
bool Woz::loadMissingTrackFromImage(uint8_t datatrack)
{
// If we're going to malloc a new one, then find all the other ones
// that might be malloc'd and purge them if we're
// autoFlushTrackData==true (trying to limit memory use)
if (autoFlushTrackData == true) {
for (int i=0; i<160; i++) {
// Don't flush any tracks that are dirty
if (tracks[i].trackData && !tracks[i].dirty) {
free(tracks[i].trackData);
tracks[i].trackData = NULL;
}
}
}
// Based on the source image type, load the data track we're looking for
if (imageType == T_WOZ) {
// If the source was WOZ, just load the datatrack directly
return readWozDataTrack(datatrack);
} else if (imageType == T_PO ||
imageType == T_DSK) {
// If the source was a DSK file, then the datatrack was mapped directly
// from the physical track
if (datatrack >= 35) {
// There are only 35 tracks; the remainder are blank.
tracks[datatrack].trackData = NULL;
return true;
}
uint8_t phystrack = datatrack; // used for clarity of which kind of track we mean, below
static uint8_t sectorData[256*16];
lseek(fd, 256*16*phystrack, SEEK_SET);
if (read(fd, sectorData, 256*16) != 256*16) {
fprintf(stderr, "Failed to read sector\n");
return false;
}
tracks[datatrack].trackData = (uint8_t *)calloc(NIBTRACKSIZE, 1);
if (!tracks[datatrack].trackData) {
fprintf(stderr, "Failed to malloc track data\n");
return false;
}
tracks[datatrack].startingBlock = STARTBLOCK + 13*phystrack;
tracks[datatrack].blockCount = 13;
uint32_t sizeInBits = nibblizeTrack(tracks[datatrack].trackData, sectorData, imageType, phystrack);
tracks[datatrack].bitCount = sizeInBits; // ... reality.
return true;
}
else if (imageType == T_NIB) {
if (datatrack >= 35) {
// There are only 35 tracks; the remainder are blank.
tracks[datatrack].trackData = NULL;
return true;
}
// If the source was a NIB file, then the datatrack is directly
// mapped 1:1 to the physical track
uint8_t phystrack = datatrack; // used for clarity of which kind of track we mean, below
tracks[datatrack].trackData = (uint8_t *)malloc(NIBTRACKSIZE);
if (!tracks[datatrack].trackData) {
printf("Failed to malloc track data\n");
return false;
}
lseek(fd, NIBTRACKSIZE * phystrack, SEEK_SET);
read(fd, tracks[datatrack].trackData, NIBTRACKSIZE);
// FIXME: no error checking
tracks[datatrack].startingBlock = STARTBLOCK + 13*phystrack;
tracks[datatrack].blockCount = 13;
tracks[datatrack].bitCount = NIBTRACKSIZE*8;
return true;
}
printf("ERROR: don't know how we reached this point\n");
return false;
}
bool Woz::readDskFile(const char *filename, bool preloadTracks, uint8_t subtype)
{
bool retval = false;
autoFlushTrackData = !preloadTracks;
imageType = subtype;
if (fd != -1) close(fd);
fd = open(filename, O_RDWR, S_IRUSR|S_IWUSR);
if (fd == -1) {
perror("Unable to open input file");
goto done;
}
_initInfo();
// Now read in the 35 tracks of data from the DSK file and convert them to NIB
if (preloadTracks) {
uint8_t sectorData[256*16];
for (int phystrack=0; phystrack<35; phystrack++) {
uint32_t bytesRead = read(fd, sectorData, 256*16);
if (bytesRead != 256*16) {
fprintf(stderr, "Failed to read DSK data; got %d bytes, wanted %d\n", bytesRead, 256);
goto done;
}
uint8_t datatrack = quarterTrackMap[phystrack*4];
tracks[datatrack].trackData = (uint8_t *)calloc(NIBTRACKSIZE, 1);
if (!tracks[datatrack].trackData) {
fprintf(stderr, "Failed to malloc track data\n");
goto done;
}
tracks[datatrack].startingBlock = STARTBLOCK + 13*datatrack;
tracks[datatrack].blockCount = 13;
uint32_t sizeInBits = nibblizeTrack(tracks[datatrack].trackData, sectorData, subtype, phystrack);
tracks[datatrack].bitCount = sizeInBits; // ... reality.
}
}
retval = true;
done:
#ifndef LAZYFD
if (preloadTracks && fd != -1) {
close(fd);
fd = -1;
}
#endif
return retval;
}
bool Woz::readNibFile(const char *filename, bool preloadTracks)
{
autoFlushTrackData = !preloadTracks;
imageType = T_NIB;
if (fd != -1) close(fd);
fd = open(filename, O_RDWR, S_IRUSR|S_IWUSR);
if (fd == -1) {
perror("Unable to open input file");
return false;
}
_initInfo();
// Now read in the 35 tracks of data from the nib file
if (preloadTracks) {
nibSector nibData[16];
for (int phystrack=0; phystrack<35; phystrack++) {
uint32_t bytesRead = read(fd, nibData, NIBTRACKSIZE);
if (bytesRead != NIBTRACKSIZE) {
printf("Failed to read NIB data; got %d bytes, wanted %d\n", bytesRead, NIBTRACKSIZE);
return false;
}
uint8_t datatrack = quarterTrackMap[phystrack * 4];
tracks[datatrack].trackData = (uint8_t *)calloc(NIBTRACKSIZE, 1);
if (!tracks[datatrack].trackData) {
printf("Failed to malloc track data\n");
return false;
}
memcpy(tracks[datatrack].trackData, nibData, NIBTRACKSIZE);
tracks[datatrack].startingBlock = STARTBLOCK + 13*phystrack;
tracks[datatrack].blockCount = 13;
tracks[datatrack].bitCount = NIBTRACKSIZE*8;
}
}
#ifndef LAZYFD
if (preloadTracks && fd != -1) {
close(fd);
fd = -1;
}
#endif
return true;
}
bool Woz::readWozFile(const char *filename, bool preloadTracks)
{
imageType = T_WOZ;
autoFlushTrackData = !preloadTracks;
if (fd != -1) close(fd);
fd = open(filename, O_RDWR, S_IRUSR|S_IWUSR);
if (fd == -1) {
perror("Unable to open input file");
return false;
}
// Header
uint32_t h;
read32(fd, &h);
if (h == 0x325A4F57 || h == 0x315A4F57) {
if (verbose) {
printf("WOZ%c disk image\n", (h & 0xFF000000)>>24);
}
} else {
printf("Unknown disk image type; can't continue\n");
if (preloadTracks && fd != -1)
close(fd);
return false;
}
uint32_t tmp;
if (!read32(fd, &tmp)) {
printf("Read failure\n");
if (preloadTracks && fd != -1)
close(fd);
return false;
}
if (tmp != 0x0A0D0AFF) {
printf("WOZ header failure; exiting\n");
if (preloadTracks && fd != -1)
close(fd);
return false;
}
uint32_t crc32;
read32(fd, &crc32);
// If CRC is set, then check it
if (crc32) {
// FIXME: check CRC
if (verbose) {
printf("Disk crc32 should be 0x%X\n", crc32);
}
}
uint32_t fpos = 12;
uint8_t haveData = 0;
#define cINFO 1
#define cTMAP 2
#define cTRKS 4
while (1) {
if (lseek(fd, fpos, SEEK_SET) == -1) {
break;
}
uint32_t chunkType;
if (!read32(fd, &chunkType)) {
break;
}
uint32_t chunkDataSize;
read32(fd, &chunkDataSize);
if ((int32_t)chunkDataSize < 0) {
printf("ERROR: data size < 0?\n");
exit(1);
}
bool isOk;
switch (chunkType) {
case 0x4F464E49: // 'INFO'
if (verbose) {
printf("Reading INFO chunk starting at byte 0x%llX\n",
(unsigned long long)lseek(fd, 0, SEEK_CUR));
}
isOk = parseInfoChunk(chunkDataSize);
haveData |= cINFO;
break;
case 0x50414D54: // 'TMAP'
if (verbose) {
printf("Reading TMAP chunk starting at byte 0x%llX\n",
(unsigned long long)lseek(fd, 0, SEEK_CUR));
}
isOk = parseTMAPChunk(chunkDataSize);
haveData |= cTMAP;
break;
case 0x534B5254: // 'TRKS'
if (verbose) {
printf("Reading TRKS chunk starting at byte 0x%llX\n",
(unsigned long long) lseek(fd, 0, SEEK_CUR));
}
isOk = parseTRKSChunk(chunkDataSize);
haveData |= cTRKS;
break;
case 0x4154454D: // 'META'
if (verbose) {
printf("Reading META chunk starting at byte 0x%llX\n",
(unsigned long long) lseek(fd, 0, SEEK_CUR));
}
isOk = parseMetaChunk(chunkDataSize);
break;
default:
printf("Unknown chunk type 0x%X\n", chunkType);
if (preloadTracks && fd != -1)
close(fd);
return false;
break;
}
if (!isOk) {
printf("Chunk parsing [0x%X] failed; exiting\n", chunkType);
if (preloadTracks && fd != -1)
close(fd);
return false;
}
fpos += chunkDataSize + 8; // 8 bytes for the ChunkID and the ChunkSize
}
if (haveData != 0x07) {
printf("ERROR: missing one or more critical sections\n");
return false;
}
// For a Woz file, we need to read *every* quarter-track; and if we've
// already got the target track's data, we don't need to re-read it.
// And if we're not preloading the tracks, then we'll wind up loading
// them on demand later.
if (preloadTracks) {
for (int i=0; i<160; i++) {
if (!readWozDataTrack(i)) {
printf("Failed to read Woz datatrack %d\n", i);
if (fd != -1) {
close(fd);
fd = -1;
}
return false;
}
}
}
#ifndef LAZYFD
if (preloadTracks && fd != -1) {
fd = -1;
close(fd);
}
#endif
return true;
}
bool Woz::readFile(const char *filename, bool preloadTracks, uint8_t forceType)
{
if (forceType == T_AUTO) {
// Try to determine type from the file extension
const char *p = strrchr(filename, '.');
if (!p) {
printf("Unable to determine file type of '%s'\n", filename);
return false;
}
if (strcasecmp(p, ".woz") == 0) {
forceType = T_WOZ;
} else if (strcasecmp(p, ".dsk") == 0 ||
strcasecmp(p, ".do") == 0) {
forceType = T_DSK;
} else if (strcasecmp(p, ".po") == 0) {
forceType = T_PO;
} else if (strcasecmp(p, ".nib") == 0) {
forceType = T_NIB;
} else {
printf("Unable to determine file type of '%s'\n", filename);
return false;
}
}
switch (forceType) {
case T_WOZ:
return readWozFile(filename, preloadTracks);
case T_DSK:
case T_PO:
return readDskFile(filename, preloadTracks, forceType);
case T_NIB:
return readNibFile(filename, preloadTracks);
default:
printf("Unknown disk type; unable to read\n");
return false;
}
}
bool Woz::parseTRKSChunk(uint32_t chunkSize)
{
if (di.version == 2) {
for (int i=0; i<160; i++) {
if (!read16(fd, &tracks[i].startingBlock))
return false;
if (!read16(fd, &tracks[i].blockCount))
return false;
if (!read32(fd, &tracks[i].bitCount))
return false;
tracks[i].startingByte = 0; // v1-specific
}
return true;
}
// V1 parsing
uint32_t ptr = 0;
uint8_t trackNumber = 0;
while (ptr < chunkSize) {
tracks[trackNumber].startingByte = trackNumber * 6656 + 256;
tracks[trackNumber].startingBlock = 0; // v2-specific
tracks[trackNumber].blockCount = 13;
lseek(fd, (trackNumber * 6656 + 256) + 6648, SEEK_SET);
uint16_t numBits;
if (!read16(fd, &numBits)) {
return false;
}
if (verbose) {
printf("Track %d: read %d bits\n", trackNumber, numBits);
}
if (numBits > 6656 * 8) {
fprintf(stderr, "WARNING: track %d looks like it's too long (%d bits > 6656 bytes)?\n", trackNumber, numBits);
}
tracks[trackNumber].bitCount = numBits;
ptr += 6656;
trackNumber++;
}
return true;
}
bool Woz::parseTMAPChunk(uint32_t chunkSize)
{
if (chunkSize != 0xa0) {
printf("TMAP chunk is the wrong size; aborting\n");
return false;
}
for (int i=0; i<40*4; i++) {
if (!read8(fd, (uint8_t *)&quarterTrackMap[i]))
return false;
chunkSize--;
}
if (verbose){
printf("Read quarter-track map:\n");
for (int i=0; i<140; i+=4) {
printf("%2d %3d => %3d %3d => %3d %3d => %3d %3d => %3d\n",
i/4,
i, quarterTrackMap[i],
i+1, quarterTrackMap[i+1],
i+2, quarterTrackMap[i+2],
i+3, quarterTrackMap[i+3]);
}
}
return true;
}
// return true if successful
bool Woz::parseInfoChunk(uint32_t chunkSize)
{
if (chunkSize != 60) {
fprintf(stderr, "INFO chunk size is not 60; aborting\n");
return false;
}
if (!read8(fd, &di.version))
return false;
if (di.version > 2) {
fprintf(stderr, "Incorrect version header; aborting\n");
return false;
}
if (!read8(fd, &di.diskType))
return false;
if (di.diskType != 1) {
fprintf(stderr, "Not a 5.25\" disk image; aborting\n");
return false;
}
if (!read8(fd, &di.writeProtected))
return false;
if (!read8(fd, &di.synchronized))
return false;
if (!read8(fd, &di.cleaned))
return false;
di.creator[32] = 0;
for (int i=0; i<32; i++) {
if (!read8(fd, (uint8_t *)&di.creator[i]))
return false;
}
if (di.version >= 2) {
if (!read8(fd, &di.diskSides))
return false;
if (!read8(fd, &di.bootSectorFormat))
return false;
if (!read8(fd, &di.optimalBitTiming))
return false;
if (!read16(fd, &di.compatHardware))
return false;
if (!read16(fd, &di.requiredRam))
return false;
if (!read16(fd, &di.largestTrack))
return false;
} else {
di.diskSides = 0;
di.bootSectorFormat = 0;
di.compatHardware = 0;
di.requiredRam = 0;
di.largestTrack = 13; // 13 * 512 bytes = 6656. All tracks are
// padded to 6646 (yes, 6646, not 6656)bytes
// in the v1 image.
di.optimalBitTiming = 32; // "standard" disk bit timing for a 5.25" disk (4us per bit)
}
return true;
}
bool Woz::parseMetaChunk(uint32_t chunkSize)
{
metaData = (char *)calloc(chunkSize+1, 1);
if (!metaData)
return false;
if (read(fd, metaData, chunkSize) != chunkSize)
return false;
metaData[chunkSize] = 0;
return true;
}
bool Woz::readWozDataTrack(uint8_t datatrack)
{
// If it's already loaded then there's nothing to do here
if (tracks[datatrack].trackData)
return true;
// If we have no open FD, then assume anything missing is supposed
// to be missing
if (fd == -1) {
return true;
}
uint16_t bitsStartBlock = tracks[datatrack].startingBlock;
// Allocate a new buffer for this track
uint32_t count = tracks[datatrack].blockCount * 512;
if (di.version == 1) count = (tracks[datatrack].bitCount / 8) + ((tracks[datatrack].bitCount % 8) ? 1 : 0);
if (tracks[datatrack].trackData) {
return true; // We've already read this track's data; don't re-read it
}
if (!count) {
// This track has no data; do nothing, and we'll be successful at it
return true;
}
tracks[datatrack].trackData = (uint8_t *)calloc(count, 1);
if (!tracks[datatrack].trackData) {
perror("Failed to alloc buf to read track magnetic data");
return false;
}
if (di.version == 1) {
if (verbose) {
printf("Reading datatrack %d starting at byte 0x%X\n",
datatrack,
tracks[datatrack].startingByte);
}
if (lseek(fd, tracks[datatrack].startingByte, SEEK_SET) == -1) {
perror("Failed to seek to start of block");
return false;
}
} else {
if (verbose) {
printf("Reading datatrack %d starting at byte 0x%X\n",
datatrack,
bitsStartBlock*512);
}
if (lseek(fd, bitsStartBlock*512, SEEK_SET) == -1) {
perror("Failed to seek to start of block");
return false;
}
}
uint32_t didRead = read(fd, tracks[datatrack].trackData, count);
if (didRead != count) {
printf("Failed to read all track data for track [read %d, wanted %d]\n", didRead, count);
return false;
}
return true;
}
#if 0
static void dumpNibSector(nibSector *ns)
{
printf("gap1: ");
for (int i=0; i<48; i++) {
printf("%.2X ", ns->gap1[i]);
}
printf("\nsectorProlog: ");
for (int i=0; i<3; i++) {
printf("%.2X ", ns->sectorProlog[i]);
}
printf("\n volume44: %.2X %.2X == %.2X\n", ns->volume44[0], ns->volume44[1], de44(ns->volume44));
printf(" sector44: %.2X %.2X == %.2X\n", ns->sector44[0], ns->sector44[1], de44(ns->sector44));
printf(" checksum44: %.2X %.2X == %.2X\n", ns->checksum44[0], ns->checksum44[1], de44(ns->checksum44));
printf("sectorEpilog: ");
for (int i=0; i<3; i++) {
printf("%.2X ", ns->sectorEpilog[i]);
}
printf("\n");
printf("gap2: ");
for (int i=0; i<5; i++) {
printf("%.2X ", ns->gap2[i]);
}
printf("\ndataProlog: ");
for (int i=0; i<3; i++) {
printf("%.2X ", ns->dataProlog[i]);
}
printf("\n data62:");
for (int i=0; i<342; i+=16) {
printf("\n ");
for (int j=0; (j<16) && (j+i < 342); j++) {
printf("%.2X ", ns->data62[i+j]);
}
}
printf("\n checksum: %.2X", ns->checksum);
printf("\ndataEpilog: ");
for (int i=0; i<3; i++) {
printf("%.2X ", ns->dataEpilog[i]);
}
printf("\n\n");
}
#endif
// This writes to the given *physical* sector -- the caller is responsible for translating
// to a logical sector number
bool Woz::writeNibSectorDataToDataTrack(uint8_t dataTrack, uint8_t sector, uint8_t nibData[343])
{
// Find the spot on the track that has the right sector
if (!tracks[dataTrack].trackData) {
// Load the cached track for this phys Nib track.
if (!loadMissingTrackFromImage(dataTrack)) {
fprintf(stderr, "Failed to read track %d\n", dataTrack);
return false;
}
}
// find the data header
// write this nibblized data on top of whatever was there before
// ensure the epilog is correct
nibSector sectorData;
memset(sectorData.gap1, 0xFF, sizeof(sectorData.gap1));
memset(sectorData.gap2, 0xFF, sizeof(sectorData.gap2));
// Allow two loops through the track data looking for the sector prolog
uint32_t endCount = tracks[dataTrack].blockCount*512*2;
if (di.version == 1) endCount = 2*6646;
uint32_t ptr = 0;
while (ptr < endCount) {
sectorData.sectorProlog[0] = sectorData.sectorProlog[1];
sectorData.sectorProlog[1] = sectorData.sectorProlog[2];
sectorData.sectorProlog[2] = nextDiskByte(dataTrack);
ptr++;
if (sectorData.sectorProlog[0] == 0xd5 &&
sectorData.sectorProlog[1] == 0xaa &&
sectorData.sectorProlog[2] == 0x96) {
// Found *a* sector header. See if it's ours.
sectorData.volume44[0] = nextDiskByte(dataTrack);
sectorData.volume44[1] = nextDiskByte(dataTrack);
sectorData.track44[0] = nextDiskByte(dataTrack);
sectorData.track44[1] = nextDiskByte(dataTrack);
sectorData.sector44[0] = nextDiskByte(dataTrack);
sectorData.sector44[1] = nextDiskByte(dataTrack);
sectorData.checksum44[0] = nextDiskByte(dataTrack);
sectorData.checksum44[1] = nextDiskByte(dataTrack);
sectorData.sectorEpilog[0] = nextDiskByte(dataTrack);
sectorData.sectorEpilog[1] = nextDiskByte(dataTrack);
sectorData.sectorEpilog[2] = nextDiskByte(dataTrack);
if (sectorData.sectorEpilog[0] == 0xde &&
sectorData.sectorEpilog[1] == 0xaa &&
sectorData.sectorEpilog[2] == 0xeb) {
// Header is integral. See if it's our sector:
uint8_t sectorNum = de44(sectorData.sector44);
if (sectorNum != sector) {
continue;
}
// It's our sector - find the data chunk and write it
while (ptr < tracks[dataTrack].blockCount*512*2) {
sectorData.dataProlog[0] = sectorData.dataProlog[1];
sectorData.dataProlog[1] = sectorData.dataProlog[2];
sectorData.dataProlog[2] = nextDiskByte(dataTrack);
ptr++;
if (sectorData.dataProlog[0] == 0xd5 &&
sectorData.dataProlog[1] == 0xaa &&
sectorData.dataProlog[2] == 0xad) {
// That's the data prolog, so next comes our data payload:
// 342 bytes of payload, 1 byte of checksum.
for (int i=0; i<343; i++) {
writeNextWozByte(dataTrack, nibData[i]);
}
writeNextWozByte(dataTrack, 0xDE);
writeNextWozByte(dataTrack, 0xAA);
writeNextWozByte(dataTrack, 0xEB);
return true;
}
}
}
}
}
// If we get here, we failed to write it
return false;
}
bool Woz::readNibSectorDataFromDataTrack(uint8_t dataTrack, uint8_t sector, nibSector *sectorData)
{
// Find the sector header for this sector and return the nibblized data
uint32_t ptr = 0;
if (!tracks[dataTrack].trackData) {
// Load the cached track for this phys Nib track.
if (!loadMissingTrackFromImage(dataTrack)) {
fprintf(stderr, "Failed to read track %d\n", dataTrack);
return false;
}
}
memset(sectorData->gap1, 0xFF, sizeof(sectorData->gap1));
memset(sectorData->gap2, 0xFF, sizeof(sectorData->gap2));
// Allow two loops through the track data looking for the sector prolog
uint32_t endCount = tracks[dataTrack].blockCount*512*2;
if (di.version == 1) endCount = 2*6646;
while (ptr < endCount) {
sectorData->sectorProlog[0] = sectorData->sectorProlog[1];
sectorData->sectorProlog[1] = sectorData->sectorProlog[2];
sectorData->sectorProlog[2] = nextDiskByte(dataTrack);
ptr++;
if (sectorData->sectorProlog[0] == 0xd5 &&
sectorData->sectorProlog[1] == 0xaa &&
sectorData->sectorProlog[2] == 0x96) {
// Found *a* sector header. See if it's ours.
sectorData->volume44[0] = nextDiskByte(dataTrack);
sectorData->volume44[1] = nextDiskByte(dataTrack);
sectorData->track44[0] = nextDiskByte(dataTrack);
sectorData->track44[1] = nextDiskByte(dataTrack);
sectorData->sector44[0] = nextDiskByte(dataTrack);
sectorData->sector44[1] = nextDiskByte(dataTrack);
sectorData->checksum44[0] = nextDiskByte(dataTrack);
sectorData->checksum44[1] = nextDiskByte(dataTrack);
sectorData->sectorEpilog[0] = nextDiskByte(dataTrack);
sectorData->sectorEpilog[1] = nextDiskByte(dataTrack);
sectorData->sectorEpilog[2] = nextDiskByte(dataTrack);
if (sectorData->sectorEpilog[0] == 0xde &&
sectorData->sectorEpilog[1] == 0xaa &&
sectorData->sectorEpilog[2] == 0xeb) {
// Header is integral. See if it's our sector:
uint8_t sectorNum = de44(sectorData->sector44);
if (sectorNum != sector) {
continue;
}
// It's our sector - find the data chunk and read it
while (ptr < tracks[dataTrack].blockCount*512*2) {
sectorData->dataProlog[0] = sectorData->dataProlog[1];
sectorData->dataProlog[1] = sectorData->dataProlog[2];
sectorData->dataProlog[2] = nextDiskByte(dataTrack);
ptr++;
if (sectorData->dataProlog[0] == 0xd5 &&
sectorData->dataProlog[1] == 0xaa &&
sectorData->dataProlog[2] == 0xad) {
// Found the data; copy it in
for (int i=0; i<342; i++) {
sectorData->data62[i] = nextDiskByte(dataTrack);
}
sectorData->checksum = nextDiskByte(dataTrack);
sectorData->dataEpilog[0] = nextDiskByte(dataTrack);
sectorData->dataEpilog[1] = nextDiskByte(dataTrack);
sectorData->dataEpilog[2] = nextDiskByte(dataTrack);
if (sectorData->dataEpilog[0] != 0xde ||
sectorData->dataEpilog[1] != 0xaa ||
sectorData->dataEpilog[2] != 0xeb) {
continue;
}
// Have an integral hunk of data, with epilog - return it
return true;
}
}
}
}
}
return false;
}
bool Woz::writeInfoChunk(uint8_t version, int fdout)
{
if (!write8(fdout, version) ||
!write8(fdout, di.diskType) ||
!write8(fdout, di.writeProtected) ||
!write8(fdout, di.synchronized) ||
!write8(fdout, di.cleaned))
return false;
for (int i=0; i<32; i++) {
if (!write8(fdout, di.creator[i]))
return false;
}
if (version >= 2) {
// If we read a Wozv1, this will be set to 0. Set it to 1.
if (di.diskSides == 0)
di.diskSides = 1;
if ( !write8(fdout, di.diskSides) ||
!write8(fdout, di.bootSectorFormat) ||
!write8(fdout, di.optimalBitTiming) ||
!write16(fdout, di.compatHardware) ||
!write16(fdout, di.requiredRam) ||
!write16(fdout, di.largestTrack))
return false;
}
// Padding
for (int i=0; i<((version==1)?23:14); i++) {
if (!write8(fdout, 0))
return false;
}
return true;
}
bool Woz::writeTMAPChunk(uint8_t version, int fdout)
{
for (int i=0; i<40*4; i++) {
if (!write8(fdout, quarterTrackMap[i]))
return false;
}
return true;
}
bool Woz::writeTRKSChunk(uint8_t version, int fdout)
{
if (version == 1) {
fprintf(stderr, "V1 write is not implemented\n");
return false;
}
// Reconstruct all of the starting blocks/blockCounts for each
// track. The bitCount should be correct.
uint8_t numTracksPacked = 0;
for (int i=0; i<160; i++) {
// If we didn't preload, and the track isn't loaded, then load it now
if (autoFlushTrackData && !tracks[i].trackData) {
loadMissingTrackFromImage(i);
}
if (tracks[i].trackData && tracks[i].bitCount) {
// For any tracks that have data, put it somewhere in the destination file
tracks[i].startingBlock = STARTBLOCK + 13*(numTracksPacked++);
// assume tracks[track].bitCount is correct, and recalculate the block size of this track
uint32_t bytes = (tracks[i].bitCount / 8) + ((tracks[i].bitCount % 8) ? 1 : 0);
uint32_t blocks = (bytes / 512) + ((bytes % 512) ? 1 : 0);
tracks[i].blockCount = blocks;
} else {
tracks[i].startingBlock = 0;
tracks[i].blockCount = 0;
tracks[i].bitCount = 0;
}
if (!write16(fdout, tracks[i].startingBlock))
return false;
if (!write16(fdout, tracks[i].blockCount))
return false;
if (!write32(fdout, tracks[i].bitCount))
return false;
}
// All the track data
for (int i=0; i<160; i++) {
// If we didn't preload, and the track isn't loaded, then load it now
if (autoFlushTrackData && !tracks[i].trackData) {
loadMissingTrackFromImage(i);
}
if (tracks[i].startingBlock &&
tracks[i].blockCount) {
if (lseek(fdout, tracks[i].startingBlock * 512, SEEK_SET) == -1) {
fprintf(stderr, "Failed to seek before writing track\n");
return false;
}
// Technically, we only have this many bytes to write:
// uint32_t writeSize = (tracks[i].bitCount / 8) + ((tracks[i].bitCount % 8) ? 1 : 0);
// ... but in practice, the tracks are all padded to NIBTRACKSIZE bytes;
// and we alloc'd a buffer of that size, too; so write the whole thing,
// since it would have been calloc'd initially.
ssize_t numWritten = write(fdout, tracks[i].trackData, NIBTRACKSIZE);
if (numWritten != NIBTRACKSIZE) {
fprintf(stderr, "Failed to write track [%ld]\n", numWritten);
perror("error writing");
return false;
}
tracks[i].dirty = false;
}
}
return true;
}
bool Woz::decodeWozTrackToNibFromDataTrack(uint8_t dataTrack, nibSector sectorData[16])
{
for (int sector=0; sector<16; sector++) {
if (!readNibSectorDataFromDataTrack(dataTrack, sector, (nibSector *)(&sectorData[sector]))) {
fprintf(stderr, "failed to readNibSectorDataFromDataTrack for sector %d\n", sector);
return false;
}
}
return true;
}
// The caller is responsible for translating between the physical sector numbers and the logical
// sector numbers. This only takes in to account the physical sector numbers (whatever is
// represented in the sector's header).
bool Woz::decodeWozTrackSector(uint8_t phystrack, uint8_t sector, uint8_t dataOut[256])
{
uint8_t dataTrack = quarterTrackMap[phystrack*4];
nibSector nibData;
if (!readNibSectorDataFromDataTrack(dataTrack, sector, &nibData)) {
fprintf(stderr, "Failed to readNibSectorDataFromDataTrack for track %d sector %d\n", phystrack, sector);
return false;
}
#if 0
printf("Track %d physector %d nib dump:\n", phystrack, sector);
dumpNibSector(&nibData);
#endif
if (denibblizeSector(nibData, dataOut) != errorNone) {
fprintf(stderr, "failed to denib sector\n");
return false;
}
return true;
}
// The caller is responsible for translating between the physical sector numbers and the logical
// sector numbers. This only takes in to account the physical sector numbers (whatever is
// represented in the sector's header).
bool Woz::encodeWozTrackSector(uint8_t phystrack, uint8_t sector, uint8_t dataIn[256])
{
uint8_t dataTrack = quarterTrackMap[phystrack*4];
uint8_t dataOut[343];
if (nibblizeSector(dataIn, dataOut) != errorNone) {
fprintf(stderr, "Failed to nibblizeSector for track %d sector %d\n", phystrack, sector);
return false;
}
if (!writeNibSectorDataToDataTrack(dataTrack, sector, dataOut)) {
fprintf(stderr, "Failed to writeNibSectorDataToDataTrack for track %d sector %d\n", phystrack, sector);
return false;
}
return true;
}
bool Woz::decodeWozTrackToDsk(uint8_t phystrack, uint8_t subtype, uint8_t sectorData[256*16])
{
// Figure out which datatrack we need for the given physical track
uint8_t dataTrack = quarterTrackMap[phystrack*4];
// First read it to a NIB; then convert the NIB to a DSK.
nibSector nibData[16];
if (!decodeWozTrackToNibFromDataTrack(dataTrack, nibData)) {
fprintf(stderr, "failed to decode Woz\n");
return false;
}
#if 0
for (int s=0; s<16; s++) {
printf("Track read dumping nib sector %d:\n", s);
dumpNibSector(&nibData[s]);
}
#endif
if (denibblizeTrack((const uint8_t *)nibData, sectorData, subtype) != errorNone) {
fprintf(stderr, "failed to denib track\n");
return false;
}
return true;
}
bool Woz::checksumWozDataTrack(uint8_t datatrack, uint32_t *retCRC)
{
if (!retCRC)
return false;
if (!tracks[datatrack].trackData) {
*retCRC = 0;
return false;
}
*retCRC = compute_crc_32(tracks[datatrack].trackData, tracks[datatrack].bitCount/8);
return true;
}
void Woz::dumpInfo()
{
printf("WOZ image version %d\n", di.version);
printf("Disk type: %s\n", di.diskType == 1 ? "5.25\"" : "3.5\"");
printf("Write protected: %s\n", di.writeProtected ? "yes" : "no");
printf("Synchronized: %s\n", di.synchronized ? "yes" : "no");
printf("Cleaned: %s\n", di.cleaned ? "yes" : "no");
printf("Creator: %s\n", di.creator);
printf("Disk sides: %d\n", di.diskSides);
printf("Boot sector format: ");
switch (di.bootSectorFormat) {
case 0:
default:
printf("unknown\n");
break;
case 1:
printf("16 sector\n");
break;
case 2:
printf("13 sector\n");
break;
case 3:
printf("Both 16 and 13 sector\n");
break;
}
printf("Optimal bit timing: %d ns\n", di.optimalBitTiming * 125);
printf("Hardware compatability flags: 0x%X\n", di.compatHardware);
printf("Required RAM: %d K\n", di.requiredRam);
printf("Largest track: %d bytes\n", di.largestTrack * 512);
printf("\n");
if (metaData) {
printf("Metadata:\n");
char *token, *string, *tofree;
tofree = string = strdup(metaData);
char *parts[25];
memset(parts, 0, sizeof(parts));
int idx = 0;
while ((token = strsep(&string, "\n")) != NULL) {
if (idx >= sizeof(parts)) {
printf("ERROR: too many metadata keys\n");
return;
}
parts[idx++] = strdup(token);
}
free(tofree);
for (int idx2=0; idx2<idx; idx2++) {
if (parts[idx2] && strlen(parts[idx2])) {
char *p = strchr(parts[idx2], '\t');
if (!p) {
printf("ERROR: no delineator on a line of metadata [%s]\n", parts[idx2]);
return;
}
*(p++) = 0;
if (strlen(p)) {
printf(" %s: %s\n", parts[idx2], p);
}
}
}
while (--idx >= 0) {
free(parts[idx]);
}
printf("\n");
}
if (dumpflags & DUMP_QTMAP) {
printf("Quarter-track map:\n");
for (int i=0; i<140; i+=4) {
printf("%2d %3d => %3d %3d => %3d %3d => %3d %3d => %3d\n",
i/4,
i, quarterTrackMap[i],
i+1, quarterTrackMap[i+1],
i+2, quarterTrackMap[i+2],
i+3, quarterTrackMap[i+3]);
}
}
if (dumpflags & DUMP_QTCRC) {
printf("Woz internal quarter-track CRCs:\n");
// Dump the CRC32 for each Woz quarter-track
for (int i=0 ;i<160; i++) {
uint32_t crc=0;
checksumWozDataTrack(i, &crc);
printf("Woz track %d CRC32: 0x%X\n", i, crc);
}
}
if (dumpflags & DUMP_TRACK) {
for (int i=0; i<40; i++) {
printf("Track %d:\n", i);
if (di.version == 1) {
printf(" Starts at byte %d\n", tracks[i].startingByte);
} else {
printf(" Starts at block %d\n", tracks[i].startingBlock);
}
printf(" Number of blocks: %d\n", tracks[i].blockCount);
printf(" Number of bits: %d\n", tracks[i].bitCount);
if (tracks[i].bitCount && tracks[i].trackData) {
if (dumpflags & DUMP_RAWTRACK) {
// Raw track dump
printf(" Raw track data:\n");
for (int k=0; k<(tracks[i].bitCount/8)+((tracks[i].bitCount%8)?1:0); k+=16) {
printf(" 0x%.4X :", k);
for (int j=0; j<16; j++) {
if (k+j < (tracks[i].bitCount/8)+((tracks[i].bitCount%8)?1:0)) {
printf(" %.2X", tracks[i].trackData[k+j]);
}
}
printf("\n");
}
}
if (dumpflags & DUMP_SECTOR) {
printf(" Sector dump:\n");
// Look at the sectors in numerical order
// FIXME: 13-sector support
nibSector sectorData;
for (int sector=0; sector<16; sector++) {
if (readNibSectorDataFromDataTrack(quarterTrackMap[i*4], sector, &sectorData)) {
printf(" Volume ID: %d\n", de44(sectorData.volume44));
printf(" Track ID: %d\n", de44(sectorData.track44));
uint8_t sector = de44(sectorData.sector44);
printf(" Sector: %d\n", sector);
printf(" Cksum: %d\n", de44(sectorData.checksum44));
printf(" Sector Data:\n");
for (int k=0; k<342; k+=16) {
printf(" 0x%.4X :", k);
for (int j=0; j<16; j++) {
if (k+j < 342) {
printf(" %.2X", sectorData.data62[k+j]);
}
}
printf("\n");
}
}
}
}
}
if (dumpflags & DUMP_TOFILE) {
// Dump each sector to a file for analysis
uint8_t sectorData[256*16];
if (decodeWozTrackToDsk(i,
T_DSK,
sectorData)) {
for (int j=0; j<16; j++) {
char buf[25];
sprintf(buf, "t%ds%d", i, j);
int fdout = open(buf, O_CREAT|O_TRUNC|O_WRONLY, S_IRUSR|S_IWUSR);
write(fdout, &sectorData[256*j], 256);
close(fdout);
}
} else {
fprintf(stderr, "Unable to read track %d\n", i);
}
}
if (dumpflags & DUMP_ORDEREDSECTOR) {
#define denib(a, b) ((((a) & ~0xAA) << 1) | ((b) & ~0xAA))
printf(" Track-ordered sector dump:\n");
// Look at the sectors found in order on the track
trackPointer = 0;
trackBitIdx = 0x80;
trackBitCounter = 0;
trackByteFromDataTrack = 255;
uint16_t sectorsFound = 0;
do {
if (nextDiskByte(i) == 0xD5 &&
nextDiskByte(i) == 0xAA &&
nextDiskByte(i) == 0x96) {
printf(" Volume ID: %d\n", denib(nextDiskByte(i), nextDiskByte(i)));
printf(" Track ID: %d\n", denib(nextDiskByte(i), nextDiskByte(i)));
uint8_t sector = denib(nextDiskByte(i), nextDiskByte(i));
printf(" Sector: %d\n", sector);
sectorsFound |= (1 << sector);
printf(" Cksum: %d\n", denib(nextDiskByte(i), nextDiskByte(i)));
nextDiskByte(i); // skip epilog
nextDiskByte(i);
nextDiskByte(i);
// look for data prolog d5 aa ad
while (nextDiskByte(i) != 0xD5 && trackLoopCounter < 2)
;
if (trackLoopCounter < 2) {
// Hope that's it and skip two bytes
nextDiskByte(i);
nextDiskByte(i);
// Dump the 6-and-2 data
printf(" Sector Data:\n");
for (int k=0; k<342; k+=16) {
printf(" 0x%.4X :", k);
for (int j=0; j<16; j++) {
if (k+j < 342) {
printf(" %.2X", nextDiskByte(i));
}
}
printf("\n");
}
}
}
} while (sectorsFound != 0xFFFF && trackLoopCounter < 2);
}
}
}
}
bool Woz::isSynchronized()
{
return di.synchronized;
}
uint8_t Woz::dataTrackNumberForQuarterTrack(uint16_t qt)
{
return quarterTrackMap[qt];
}
bool Woz::flush()
{
// *** FIXME - should flush() write the image out if it's dirty?
return true;
}