aiie/teensy/RA8875_t4.cpp

338 lines
11 KiB
C++

#include "RA8875_t4.h"
#include "RA8875_registers.h"
RA8875_t4::RA8875_t4(const uint8_t cs_pin, const uint8_t rst_pin, const uint8_t mosi_pin, const uint8_t sck_pin, const uint8_t miso_pin)
{
_mosi = mosi_pin;
_miso = miso_pin;
_cs = cs_pin;
_rst = rst_pin;
_sck = sck_pin;
_interruptStates = 0b00000000;
_pspi = NULL;
}
RA8875_t4::~RA8875_t4()
{
}
void RA8875_t4::begin(uint32_t spi_clock, uint32_t spi_clock_read)
{
_interruptStates = 0b00000000;
_spi_clock = spi_clock;
_spi_clock_read = spi_clock_read;
_clock = 4000000UL; // start at low speed
// figure out which SPI bus we're using
if (SPI.pinIsMOSI(_mosi) && ((_miso == 0xff) || SPI.pinIsMISO(_miso)) && SPI.pinIsSCK(_sck)) {
_pspi = &SPI;
_spi_num = 0;
_pimxrt_spi = &IMXRT_LPSPI4_S;
} else if (SPI1.pinIsMOSI(_mosi) && ((_miso == 0xff) || SPI1.pinIsMISO(_miso)) && SPI1.pinIsSCK(_sck)) {
_pspi = &SPI1;
_spi_num = 1;
_pimxrt_spi = &IMXRT_LPSPI3_S;
} else if (SPI2.pinIsMOSI(_mosi) && ((_miso == 0xff) || SPI2.pinIsMISO(_miso)) && SPI2.pinIsSCK(_sck)) {
_pspi = &SPI2;
_spi_num = 2;
_pimxrt_spi = &IMXRT_LPSPI1_S;
} else {
Serial.println("Pins given are not valid SPI bus pins");
return;
}
_pspi->setMOSI(_mosi);
_pspi->setSCK(_sck);
if (_miso != 0xff) _pspi->setMISO(_miso);
uint32_t *pa = (uint32_t *)_pspi;
_spi_hardware = (SPIClass::SPI_Hardware_t *)pa[1];
_pspi->begin();
_csport = portOutputRegister(_cs);
_cspinmask = digitalPinToBitMask(_cs);
pinMode(_cs, OUTPUT);
// DIRECT_WRITE_HIGH(_csport, _cspinmask);
digitalWriteFast(_cs, HIGH);
/*
pending_rx_count = 0; // Make sure it is zero if we we do a second begin...
_spi_tcr_current = _pimxrt_spi->TCR; // get the current TCR value
// TODO: Need to setup DC to actually work.
if (_pspi->pinIsChipSelect(_dc)) {
uint8_t dc_cs_index = _pspi->setCS(_dc);
_dcport = 0;
_dcpinmask = 0;
// will depend on which PCS but first get this to work...
dc_cs_index--; // convert to 0 based
_tcr_dc_assert = LPSPI_TCR_PCS(dc_cs_index);
_tcr_dc_not_assert = LPSPI_TCR_PCS(3);
} else {
_dcport = portOutputRegister(_dc);
_dcpinmask = digitalPinToBitMask(_dc);
pinMode(_dc, OUTPUT);
DIRECT_WRITE_HIGH(_dcport, _dcpinmask);
_tcr_dc_assert = LPSPI_TCR_PCS(0);
_tcr_dc_not_assert = LPSPI_TCR_PCS(1);
}
maybeUpdateTCR(_tcr_dc_not_assert | LPSPI_TCR_FRAMESZ(7));
*/
_initializeTFT();
}
void RA8875_t4::_initializeTFT()
{
// toggle RST low to reset
if (_rst < 255) {
pinMode(_rst, OUTPUT);
digitalWrite(_rst, HIGH);
delay(10);
digitalWrite(_rst, LOW);
delay(220);
digitalWrite(_rst, HIGH);
delay(300);
} else {
// Try a soft reset
writeCommand(RA8875_PWRR);
_writeData(RA8875_PWRR_SOFTRESET);
delay(20);
_writeData(RA8875_PWRR_NORMAL);
delay(200);
}
// Set the sysclock
_writeRegister(RA8875_PLLC1, 0x07); // same as default value: %0000 0111 == pre /=1; input /=7
delay(1);
_writeRegister(RA8875_PLLC1+1, 0x03); // same as default value: %0000 0011 == output /8
delay(1);
_writeRegister(RA8875_PCSR, 0x81); // pixel clock setting register: %1000 0001 == PDAT at PCLK falling edge; PCLK period is 2* system clock period
delay(1);
// colorspace
_writeRegister(RA8875_SYSR, 0x0C); // 65k
_writeRegister(RA8875_HDWR, 0x63); // LCD horizontal display width == (v+1)*8
_writeRegister(RA8875_HNDFTR, 0x00); // Horizontal non-display period fine tuning
_writeRegister(RA8875_HNDR, 0x03); // LCD Horizontal non-display period register; period (in pixels) = (v+1)*8 + HNDFTR+2 == 32
_writeRegister(RA8875_HSTR, 0x03); // HSYNC start position register; start position (in pixels) = (v+1)*8 == 24
_writeRegister(RA8875_HPWR, 0x0B); // HSYNC pulse width register; %0000 1011 == HSYNC low active, hsync pulse width = ((v&32)+1)*8 = 88
_writeRegister(RA8875_VDHR0, 0xDF); // LCD Vertical display height register 0 (low byte of height, where height = this value + 1)
_writeRegister(RA8875_VDHR0+1, 0x01); // LCD Vertical display height register 1 (high byte of height)
_writeRegister(RA8875_VNDR0, 0x1F); // LCD vertical non-display period register 0 (low byte of non-display period in lines, where period=(VNDR+1) == 32)
_writeRegister(RA8875_VNDR0+1, 0x00); // LCD vertical non-display period register 1 (high byte of non-display period in lines)
_writeRegister(RA8875_VSTR0, 0x16); // VSYNC start position register 0; low byte, where start pos(line) = (VSTR+1) == 23
_writeRegister(RA8875_VSTR0+1, 0x00); // VSYNC start position register 1; high byte
_writeRegister(RA8875_VPWR, 0x01); // VSYNC pulse width register; %0000 0001 == low active, pulse width (in lines) = (v&0x7F)+1 == 2
// Set the entire screen as the active window
_writeRegister(RA8875_HSAW0, 0x00); // horizontal start point of active window
_writeRegister(RA8875_HSAW0+1, 0x00);
_writeRegister(RA8875_HEAW0, (RA8875_WIDTH-1) & 0xFF);
_writeRegister(RA8875_HEAW0+1, (RA8875_WIDTH-1) >> 8); // horizontal end point of active window
_writeRegister(RA8875_VSAW0, 0x00); // vertical start point of active window
_writeRegister(RA8875_VSAW0+1, 0x00);
_writeRegister(RA8875_VEAW0, (RA8875_HEIGHT-1) & 0xFF); // vertical end point of active window
_writeRegister(RA8875_VEAW0+1, (RA8875_HEIGHT-1) >> 8);
delay(10);
// Update the sysclock
_writeRegister(RA8875_PLLC1, 0x0B); // %0000 1011 == pre-drive /1; input /11
delay(1);
_writeRegister(RA8875_PLLC1+1, 0x02); // %0000 0010 == PLL output /4
delay(1);
_writeRegister(RA8875_PCSR, 0x81); // %1000 0001 == PDAT at PCLK falling edge; PCLK period is 2* system clock period
delay(1);
_clock = _spi_clock; // speed up to full speed now
delay(1);
// clear memory
uint8_t temp;
temp = _readRegister(RA8875_MCLR);
temp |= (1<<7);
_writeData(temp);
_waitBusy(0x80);
delay(1);
// turn on the display
_writeRegister(RA8875_PWRR, RA8875_PWRR_NORMAL | RA8875_PWRR_DISPON);
delay(1);
fillWindow(); // defaults to black
// turn on backlight
_writeRegister(RA8875_P1CR, (RA8875_PxCR_ENABLE | (RA8875_PWM_CLK_DIV1024 & 0xF)));
_writeRegister(RA8875_P1DCR, 255); // brightness
// set graphics mode & default memory write order/behavior
_writeRegister(RA8875_MWCR0, 0x00);
// *** rotation?
// Not sure we have to do this a second time, but set active window...
_writeRegister(RA8875_HSAW0, 0x00); // horizontal start point of active window
_writeRegister(RA8875_HSAW0+1, 0x00);
_writeRegister(RA8875_HEAW0, (RA8875_WIDTH-1) & 0xFF);
_writeRegister(RA8875_HEAW0+1, (RA8875_WIDTH-1) >> 8); // horizontal end point of active window
_writeRegister(RA8875_VSAW0, 0x00); // vertical start point of active window
_writeRegister(RA8875_VSAW0+1, 0x00);
_writeRegister(RA8875_VEAW0, (RA8875_HEIGHT-1) & 0xFF); // vertical end point of active window
_writeRegister(RA8875_VEAW0+1, (RA8875_HEIGHT-1) >> 8);
// set foreground color
_writeRegister(RA8875_FGCR0, 0);
_writeRegister(RA8875_FGCR0+1, 0);
_writeRegister(RA8875_FGCR0+2, 0);
// set background color
_writeRegister(RA8875_BGCR0, 0);
_writeRegister(RA8875_BGCR0+1, 0);
_writeRegister(RA8875_BGCR0+2, 0);
// _writeRegister(RA8875_FNCR1, 0); // probably not necessary since we're not using built-in fonts
// setCursor(0,0);
_writeRegister(RA8875_GPIOX, true); // turn on backlight
}
void RA8875_t4::setFrameBuffer(uint16_t *frame_buffer)
{
}
bool RA8875_t4::asyncUpdateActive()
{
return false;
}
bool RA8875_t4::updateScreenAsync(bool update_cont)
{
return false;
}
void RA8875_t4::fillWindow(uint16_t color)
{
int x0=0, y0=0;
int x1=RA8875_WIDTH-1,y1=RA8875_HEIGHT-1;
//X0
_writeRegister(RA8875_DLHSR0, x0 & 0xFF);
_writeRegister(RA8875_DLHSR0 + 1,x0 >> 8);
//Y0
_writeRegister(RA8875_DLVSR0, y0 & 0xFF);
_writeRegister(RA8875_DLVSR0 + 1,y0 >> 8);
//X1
_writeRegister(RA8875_DLHER0, x1 & 0xFF);
_writeRegister(RA8875_DLHER0 + 1,x1 >> 8);
//Y1
_writeRegister(RA8875_DLVER0, y1 & 0xFF);
_writeRegister(RA8875_DLVER0 + 1,y1 >> 8);
// Set the color
_writeRegister(RA8875_FGCR0,((color & 0xF800) >> 11)); // 5 bits red
_writeRegister(RA8875_FGCR0+1,((color & 0x07E0) >> 5)); // 6 bits green
_writeRegister(RA8875_FGCR0+2,((color & 0x001F) )); // 5 bits blue
// Send fill
writeCommand(RA8875_DCR); // draw control register
_writeData(0xB0); // %1011 0000 == start draw; stop circle; fill shape; draw square; draw square (yes two different bits for draw square)
// Wait for completion (when DCR_LINESQUTRI_STATUS bit it set in read result, before TIMEOUT happens)
_waitPoll(RA8875_DCR, RA8875_DCR_LINESQUTRI_STATUS, _RA8875_WAITPOLL_TIMEOUT_DCR_LINESQUTRI_STATUS);
}
void RA8875_t4::drawPixel(int16_t x, int16_t y, uint16_t color)
{
// FIXME: bounds checking
// Set Y
_writeRegister(RA8875_CURV0, y & 0xFF); // cursor vertical location
_writeRegister(RA8875_CURV0+1, y >> 8);
// Set X
_writeRegister(RA8875_CURH0, x & 0xFF); // cursor horiz location
_writeRegister(RA8875_CURH0+1, (x >> 8));
// Send pixel data
writeCommand(RA8875_MRWC); // write to wherever MWCR1 says (which we expect to be default graphics layer)
writeData16(color);
}
uint32_t RA8875_t4::frameCount()
{
return 0;
}
void RA8875_t4::writeCommand(const uint8_t d)
{
_startSend();
_pspi->transfer(RA8875_CMDWRITE);
_pspi->transfer(d);
_endSend();
}
void RA8875_t4::writeData16(uint16_t data)
{
_startSend();
_pspi->transfer(RA8875_DATAWRITE);
_pspi->transfer16(data);
_endSend();
}
void RA8875_t4::_writeData(uint8_t data)
{
_startSend();
_pspi->transfer(RA8875_DATAWRITE);
_pspi->transfer(data);
_endSend();
}
uint8_t RA8875_t4::_readData(bool stat)
{
_startSend();
_pspi->transfer(stat ? RA8875_CMDREAD : RA8875_DATAREAD);
_pspi->transfer(0x00);
_endSend();
}
void RA8875_t4::_writeRegister(const uint8_t reg, uint8_t val)
{
writeCommand(reg);
_writeData(val);
}
uint8_t RA8875_t4::_readRegister(const uint8_t reg)
{
writeCommand(reg);
return _readData(false);
}
boolean RA8875_t4::_waitPoll(uint8_t regname, uint8_t waitflag, uint8_t timeout)
{
uint8_t temp;
unsigned long start_time = millis();
while (1) {
temp = _readRegister(regname);
if (!(temp & waitflag)) {
return true;
}
if ((millis() - start_time) > timeout) {
// timeout
return false;
}
}
/* NOTREACHED */
}
void RA8875_t4::_waitBusy(uint8_t res)
{
uint8_t temp;
unsigned long start = millis();//M.Sandercock
do {
if (res == 0x01) writeCommand(RA8875_DMACR);//dma
temp = _readData(true);
if ((millis() - start) > 10) return;
} while ((temp & res) == res);
}