/* Modified version of RetroConnector IIe-to-USB keyboard adapter, changed to work with regular Teensy 2.0 (32u4, not Teensy++) and a 74HC165N (or equivalent) shift register Original: https://github.com/option8/RetroConnector/blob/master/IIe-USB */ /* requires keypad library by Mark Stanley, Alexander Brevig from: http://www.arduino.cc/playground/Code/Keypad Uses the PJRC Teensy++ 2.0 and Teensyduino libraries, specifically USB HID and Keyboard(): http://www.pjrc.com/teensy/teensyduino.html */ #include /* Declares the matrix rows/cols of the Apple IIe keyboard. More information here: http://apple2.info/wiki/index.php?title=Pinouts#Apple_.2F.2Fe_Motherboard_keyboard_connector */ // Prevent compiler warning about casts from unsigned ints to chars #define C(x) ((char) (x)) const byte ROWS = 10; // rows const byte COLS = 8; // columns char keys[ROWS][COLS] = { { C(KEY_ESC), C(KEY_TAB), C(KEY_A), C(KEY_Z), C(KEYPAD_SLASH), 0, C(KEYPAD_ASTERIX), C(KEY_ESC)}, { C(KEY_1), C(KEY_Q), C(KEY_D), C(KEY_X), 0, 0, 0, 0}, { C(KEY_2), C(KEY_W), C(KEY_S), C(KEY_C), C(KEYPAD_0), C(KEYPAD_4), C(KEYPAD_8), 0}, { C(KEY_3), C(KEY_E), C(KEY_H), C(KEY_V), C(KEYPAD_1), C(KEYPAD_5), C(KEYPAD_9), C(KEYPAD_MINUS)}, { C(KEY_4), C(KEY_R), C(KEY_F), C(KEY_B), C(KEYPAD_2), C(KEYPAD_6), C(KEYPAD_PERIOD), C(KEYPAD_ENTER)}, { C(KEY_6), C(KEY_Y), C(KEY_G), C(KEY_N), C(KEYPAD_3), C(KEYPAD_7), C(KEYPAD_PLUS), 0}, { C(KEY_5), C(KEY_T), C(KEY_J), C(KEY_M), C(KEY_BACKSLASH), C(KEY_TILDE), C(KEY_ENTER), C(KEY_BACKSPACE)}, { C(KEY_7), C(KEY_U), C(KEY_K), C(KEY_COMMA), C(KEY_EQUAL), C(KEY_P), C(KEY_UP), C(KEY_DOWN) }, { C(KEY_8), C(KEY_I), C(KEY_SEMICOLON), C(KEY_PERIOD), C(KEY_0), C(KEY_LEFT_BRACE), C(KEY_SPACE), C(KEY_LEFT) }, { C(KEY_9), C(KEY_O), C(KEY_L), C(KEY_SLASH), C(KEY_MINUS), C(KEY_RIGHT_BRACE), C(KEY_QUOTE), C(KEY_RIGHT) }, }; char Fkeys[2][10] = { {C(KEY_1), C(KEY_2), C(KEY_3), C(KEY_4), C(KEY_5), C(KEY_6), C(KEY_7), C(KEY_8), C(KEY_9), C(KEY_0)}, {C(KEY_F1), C(KEY_F2), C(KEY_F3), C(KEY_F4), C(KEY_F5), C(KEY_F6), C(KEY_F7), C(KEY_F8), C(KEY_F9), C(KEY_F10)} }; /* XO X1 X2 X3 | X4 X5 X6 X7 ------------------------------------+-------------------------------- YO ESC TAB A Z | / ) * ESC | Y1 1! Q D X | DOWN UP LEFT RIGHT | Y2 2@ W S C | 0 4 8 ( | Y3 3# E H V | 1 5 9 - | Y4 4$ R F S | 2 6 . RETURN | Y5 6^ Y G N | 3 7 + , +---------------------------------- Y6 5% T J M \| `~ RETURN DELETE Y7 7& U K ,< += P UP DOWN Y8 8* I ;: .> 0) [{ SPACE LEFT Y9 9( O L /? -_ ]} '" RIGHT The RetroConnector IIe maps the 26 Apple IIe pins to Teensy 2.0 pins. "--" denotes connection to the shift register. IIe Col/Row Arduino Teensy 2.0 1 Y0 0 B0 2 Y1 1 B1 3 +5V +5v +5v 4 Y2 2 B2 5 SW1/CAPL -- -- 6 Y3 3 B3 7 SW0/OAPL -- -- 8 Y4 24 E6 9 CAPLOCK* -- -- 10 Y5 4 B7 11 CNTL* -- -- 12 Y8 5 D0 13 GND GND GND 14 X0 6 D1 15 RESET* -- -- 16 X2 9 C6 17 X7 17 F6 18 X1 10 C7 19 X5 16 F7 20 X3 23 D5 21 X4 15 B6 22 Y9 22 D4 23 Y6 14 B5 24 SHFT* -- -- 25 Y7 13 B4 26 X6 12 D7 Other Pins: 7/D2 USB RX 8/D3 USB TX 11/D6 LED_BUILTIN 18/F5 Shift Register Parallel Load/Latch (IC Pin 1, active low) 19/F4 Shift Register Clock Enable/Inhibit (IC Pin 15, active low) 20/F1 Shift Register Clock Pulse (IC Pin 2, low-to-high edge triggered) 21/F0 Shift Register Data Pin (Q7) (IC Pin 9) Shift Register Pins-to-Keys: 0: open-apple, pull-down, active high 1: closed-apple, pull-down, active high 2: unused 3: unused 4: Caps-Lock, pull-up, active low 5: Shift, pull-up, active low 6: Reset, pull-up, active low (only active with Control) 7: Control, pull-up, active low NOTE: Could unify Parallel Load and Clock Enable pins using a single-transistor NOT Gate/Inverter. Shift Register http://playground.arduino.cc/Code/ShiftRegSN74HC165N http://www.ti.com/lit/ds/symlink/sn74ls165a.pdf */ byte rowPins[ROWS] = { // Y0 - Y9 0, 1, 2, 3, 24, 4, 14, 13, 5, 22}; //connect to the row pinouts of the keypad byte colPins[COLS] = { // X0 - X7 6, 10, 9, 23, 15, 16, 12, 17}; //connect to the column pinouts of the keypad Keypad KPD = Keypad( makeKeymap(keys), rowPins, colPins, ROWS, COLS ); // // these pins are special in that they are dis/connected to ground, instead of to a row/col // const int SHIFTPin = 21; // the pin that the shift key is attached to // const int CTRLPin = 5; // the pin that the control key is attached to // const int APPLEPin1 = 8; // the pin that the open-apple key is attached to // const int APPLEPin2 = 9; // the pin that the closed-apple key is attached to // const int CAPSPin = 7; // Shift register pins for reading modifier keys #define PARALLEL_LOAD_PIN 18 // F5, IC Pin 1, active low #define CLOCK_ENABLE_PIN 19 // F4, IC Pin 15, active low #define CLOCK_PULSE_PIN 20 // F1, IC Pin 2, low-to-high edge triggered #define SHIFT_DATA_PIN 21 // F0, IC Pin 9 /* How many shift register chips are daisy-chained. */ #define NUMBER_OF_SHIFT_CHIPS 1 /* Width of data (how many ext lines). */ #define DATA_WIDTH NUMBER_OF_SHIFT_CHIPS * 8 /* Width of pulse to trigger the shift register to read and latch. */ #define PULSE_WIDTH_USEC 5 #define BYTES_VAL_T unsigned int #define POLL_DELAY_MSEC 10 BYTES_VAL_T pinValues; BYTES_VAL_T oldPinValues; #define LED 11 uint16_t modifierKeys[4]; #define KEY_CAPS_UNLOCK 0 boolean resetCapsLock = false; // Allows one caps unlock signal. unsigned long dTime = 0; boolean CAPSLock = false; // Initialize this to a reasonable value. boolean FKEYS = false; // used to set numbers to F-Key equivalent. currently tied to caps lock void setup() { // pinMode(SHIFTPin, INPUT_PULLUP); // digitalWrite(SHIFTPin, HIGH); // // pinMode(CTRLPin, INPUT_PULLUP); // digitalWrite(CTRLPin, HIGH); // // pinMode(APPLEPin1, INPUT); // digitalWrite(APPLEPin1, LOW); // // pinMode(APPLEPin2, INPUT); // digitalWrite(APPLEPin2, LOW); // // pinMode(CAPSPin, INPUT_PULLUP); // digitalWrite(CAPSPin, HIGH); // Configure Shift Register pins pinMode(PARALLEL_LOAD_PIN, OUTPUT); digitalWrite(PARALLEL_LOAD_PIN, HIGH); pinMode(CLOCK_ENABLE_PIN, OUTPUT); digitalWrite(CLOCK_ENABLE_PIN, HIGH); pinMode(CLOCK_PULSE_PIN, OUTPUT); digitalWrite(CLOCK_PULSE_PIN, LOW); pinMode(SHIFT_DATA_PIN, INPUT); // DEBUG Serial.begin(9600); pinMode(LED, OUTPUT); // This gives time for the keyboard to hook up to the PC. // Otherwise the caps lock state may be incorrect. delay(1000); pinValues = read_shift_regs(); display_pin_values(); oldPinValues = pinValues; } /* This function is essentially a "shift-in" routine reading the * serial Data from the shift register chips and representing * the state of those pins in an unsigned integer (or long). */ BYTES_VAL_T read_shift_regs() { long bitVal; BYTES_VAL_T bytesVal = 0; /* Trigger a parallel Load to latch the state of the data lines, */ digitalWrite(CLOCK_ENABLE_PIN, HIGH); digitalWrite(PARALLEL_LOAD_PIN, LOW); delayMicroseconds(PULSE_WIDTH_USEC); digitalWrite(PARALLEL_LOAD_PIN, HIGH); digitalWrite(CLOCK_ENABLE_PIN, LOW); /* Loop to read each bit value from the serial out line * of the SN74HC165N. */ for(int i = 0; i < DATA_WIDTH; i++) { bitVal = digitalRead(SHIFT_DATA_PIN); /* Set the corresponding bit in bytesVal. */ bytesVal |= (bitVal << ((DATA_WIDTH-1) - i)); /* Pulse the Clock (rising edge shifts the next bit). */ digitalWrite(CLOCK_ENABLE_PIN, HIGH); delayMicroseconds(PULSE_WIDTH_USEC); digitalWrite(CLOCK_ENABLE_PIN, LOW); } return(bytesVal); } void display_pin_values() { Serial.print("Pin States:\r\n"); for(int i = 0; i < DATA_WIDTH; i++) { Serial.print(" Pin-"); Serial.print(i); Serial.print(": "); if((pinValues >> i) & 1) Serial.print("HIGH"); else Serial.print("LOW"); Serial.print("\r\n"); } Serial.print("\r\n"); } void loop() { /* Read the state of all zones. */ pinValues = read_shift_regs(); /* If there was a chage in state, display which ones changed. */ if(pinValues != oldPinValues) { Serial.print("*Pin value change detected*\r\n"); display_pin_values(); oldPinValues = pinValues; } delay(POLL_DELAY_MSEC); //probably should be on an interrupt, to catch high->low transition // Only do something if the pin is different from previous state. // boolean newCaps = digitalRead(CAPSPin) ? false : true; boolean newCaps = !bitRead(pinValues, 4); if ( (CAPSLock != newCaps) && !resetCapsLock) { CAPSLock = newCaps; // Remember new CAPSLock. Keyboard.set_key6((uint8_t) KEY_CAPS_LOCK); // Send KEY_CAPS_LOCK. dTime = millis(); // Reset delay timer. resetCapsLock = true; Serial.print("Caps = "); Serial.println(CAPSLock); // Turn on the LED for caps lock. digitalWrite(LED, CAPSLock ? HIGH : LOW); } if ( resetCapsLock && (millis()-dTime) > 10) { Keyboard.set_key6(KEY_CAPS_UNLOCK); resetCapsLock = false; } // If caps lock is set, then turn number keys into function keys. FKEYS = CAPSLock; /*char CAPSLock = digitalRead(CAPSPin); if (CAPSLock == LOW) { Keyboard.set_key6(KEY_CAPS_LOCK); } else { Keyboard.set_key6(0);89 } */ // char SHIFTState = digitalRead(SHIFTPin); char SHIFTState = bitRead(pinValues, 5); if (SHIFTState == LOW) { modifierKeys[0] = MODIFIERKEY_SHIFT; } else { modifierKeys[0] = 0; } // char CTRLState = digitalRead(CTRLPin); char CTRLState = bitRead(pinValues, 7); if (CTRLState == LOW) { modifierKeys[1] = MODIFIERKEY_CTRL; } else { modifierKeys[1] = 0; } char OAPPLEState = bitRead(pinValues, 0); char CAPPLEState = bitRead(pinValues, 1); /* if (OAPPLEState == HIGH) { modifierKeys[2] = MODIFIERKEY_GUI; } else if (CAPPLEState == HIGH) { modifierKeys[2] = MODIFIERKEY_GUI; } else { modifierKeys[2] = 0; } digitalWrite(APPLEPin1, LOW); digitalWrite(APPLEPin2, LOW); */ // *** NOW USING CLOSED APPLE AS ALT/OPTION if (OAPPLEState == HIGH) { modifierKeys[2] = MODIFIERKEY_GUI; } else { modifierKeys[2] = 0; } if (CAPPLEState == HIGH) { modifierKeys[3] = MODIFIERKEY_ALT; } else { modifierKeys[3] = 0; } // to use the TILDE key as ALT/OPTION /* modifierKeys[3] = 0; if( KPD.isPressed(KEY_TILDE) ) { modifierKeys[3] = MODIFIERKEY_ALT; } */ // *** NOW USING CLOSED APPLE AS ALT/OPTION; Keyboard.set_modifier( modifierKeys[0] | modifierKeys[1] | modifierKeys[2] | modifierKeys[3] ); KPD.getKeys(); // Scan for all pressed keys. 6 Max, + 4 modifiers. Should be plenty, but can be extended to 10+ // Set keyboard keys to default values. Keyboard.set_key1(0); Keyboard.set_key2(0); Keyboard.set_key3(0); Keyboard.set_key4(0); Keyboard.set_key5(0); //Keyboard.set_key6(0); /* based on suggestion from Craig Brooks uses CAPS LOCK to turn number keys into F-Key equivalent. */ // Update keyboard keys to active values. if ( KPD.key[0].kchar && ( KPD.key[0].kstate==PRESSED || KPD.key[0].kstate==HOLD )) { Serial.println(FKEYS); if (FKEYS) { // number keys 1 through 0 for f1 - f10 if ((KPD.key[0].kchar >= 0x1E) && (KPD.key[0].kchar <= 0x27)) { KPD.key[0].kchar += 0x1C; // Serial.println( KPD.key[0].kchar, HEX ); } else if ( KPD.key[0].kchar == 0x2D || KPD.key[0].kchar == 0x2E ) { // - and = for f11 and f12 KPD.key[0].kchar += 0x17; } } Keyboard.set_key1( KPD.key[0].kchar ); } if ( KPD.key[1].kchar && ( KPD.key[1].kstate==PRESSED || KPD.key[1].kstate==HOLD )) Keyboard.set_key2( KPD.key[1].kchar ); if( KPD.key[2].kchar && ( KPD.key[2].kstate==PRESSED || KPD.key[2].kstate==HOLD )) Keyboard.set_key3( KPD.key[2].kchar ); if( KPD.key[3].kchar && ( KPD.key[3].kstate==PRESSED || KPD.key[3].kstate==HOLD )) Keyboard.set_key4( KPD.key[3].kchar ); if( KPD.key[4].kchar && ( KPD.key[4].kstate==PRESSED || KPD.key[4].kstate==HOLD )) Keyboard.set_key5( KPD.key[4].kchar ); //if( KPD.key[5].kchar && ( KPD.key[5].kstate==PRESSED || KPD.key[5].kstate==HOLD )) // Keyboard.set_key6( KPD.key[5].kchar ); Keyboard.send_now(); Keyboard.set_modifier(0); }