
F

_A":1 110N

AHUA

L_

SYS AY

A2

p-SCI
MICRO-SCI

Downloaded from www.Apple2Online.corn

DOS COMMAND SUMMARY

BLOAD
	

X,Aa,Ss,Dd,Vv
BRUN
	

X,Aa,Ss,Dd,Vv
BSAVE
	

X,Aa,LI,Ss,Dd,Vv
CATALOG
	

Ss,Dd,Vv
CHAIN
	

X,Ss,Dd,Vv
DELETE
	

X,Ss,Dd,Vv
INIT
	

X,Ss,Dd,Vv
LOAD
	

X,Ss,Dd,Vv
LOCK
	

X,Ss,Dd,Vv
RENAME
	

X,Y,Ss,Dd,Vv
RUN
	

X,Ss,Dd,Vv
SAVE
	

X,Ss,Dd,Vv
UNLOCK
	

X,Ss,Dd,Vv
VERIFY
	

X,Ss,Dd,Vv

Parameters
	

Definition
	

Range

a

d

Memory Address
Drive Number
Length
Slot Number
Volume Number
File Name
New File Name

0-65535
1-2
1-32767
1-7
1-254
1-30 Characters
1-30 Characters

CONTROL COMMANDS

FP
I N#
INT
MAXFILES
MON
NOMON
PR#

Definition

Commands
Drive Number
Inputs
Number of Files
Outputs
Slot Number

Ss,Dd

n
C,I,O
C,I,O

Range

1-2

1-16

1-7

Parameters

C
d

n
0

EIHSTA:=LATEICH

A2

p SCI
MICRO-SCI

MICRO-SCI Floppy Disk System A2
1 R6 1 H il say a, MIMS CI' 	'II-, ., tr.

-, (, .4

_J 	 e 0 t 	, -,
PH R" ' ' DUI 	C4 U2 	w l' U3 R4 U4 	-U5 	,. 	1) I t tR1 	I I [I I I [I I II 	1 1 1 1 1 1 1 / a-• 	̂, 	 1 C6 31 	1 	4 3 ot 	 1.445 4, ,!., 	13 i 	14 . 	1, .4 	1., 1 	4 	Irr 	Iiiiiiiiiii1 1 1 " 1 	Ii ' 	' 1191 43 	II 	t, 1- 	h 	 w) ,w4

t, j 	I. if. 	/

	

...r. "C2 	+ 	
) 	

iw , 	4) 	1, 	 t . 3.- 	t 	9, 1, 1, ,,4; 	,13 	I§
I, 	1, 	IV 	Iv " 	V 1 	 U115 0 ,, 	C5 	, ,

	

--r—'—• *C3 	44
, 	3 	--t ' R3 	 1, 9 	VI 	13 	R9 tire— 9' e-s—ei 	 ,..—J 	 —) 	11) 	01.115 	

N u18 + is_ 4%17 	' 	 ' R7 — 	 1. C 	 11 	, 	 C 1 5 	Re 	I w 	 ww 	3 ' 	w 1

	

U10 	Ull

	

US 	1)9 	 'Ul2 , 	'U13 	t31,4t) IN) 	11., 	 .
,.1 i w-..,4 	w-•_rt 	 3) 3, i 	 i-1 	 1 	w ' 	til 	s 4 	 -4 ,, 	 1 lwr 3 	II 	I 	il 	

II,
rit 	

71 IM 	 I-1 	 t T- 11 	 I I 	 V) , 1

I) 	 / 	El 	4 	 C ligl
A• C7 	3: CS 	T • 	' 	" C9 	c w C10 	'I- C:11112t, ___......1_, 44 i. C13„,)

	

9 	 9 ff
'''

1

1 il

Photo courtesy of Dr. Kenneth Buchholz
www.ApplezOnline.com

TABLE OF CONTENTS

Page

1. INTRODUCTION 	 1 1
2. UNPACKING 	 21
3. FAMILIARIZATION 	 31
4. INSTALLATION 	 4 1
5. CHECKOUT 	 51
6. OPERATION 	 61

6.1 TABLE OF CONTENTS 	 6 1
6.2 INTRODUCTION 	 6 2
6.3 THE EQUIPMENT INTERFACE 	 6 3
6.4 THE FILE MANAGER 	 6 4
6.5 THE USER INTERFACE 	 6 5

6.5.1 Booting DOS 	 6 6
6.5.2 Getting Started 	 6 6
6.5.3 File Types 	 6 8
6.5.4 General Housekeeping 	 6 9
6.5.5 Program Files 	 6 12
6.5.6 	Binary Files 	 6 14
6.5.7 DOS Error Messages 	 6 15
6.5.8 Program File Commands 	 6 17
6.5.9 Your Program Command Lesson Guide 	6 18
6.5.10 Using DOS Commands from Basic 	 6 21
6.5.11 Introduction to Text Files 	 6 22
6.5.12 Sequential and Random-Access Text Files 	6 24
6.5.13 Getting Started with Text Files 	 6 25
6.5.14 Sequential Files 	 6 27
6.5.15 Random-Access Files 	 6 30
6.5.16 EXEC Files 	 6 32
6.5.17 DOS Access Commands 	 6 34
6.5.18 Text File Lesson Guide 	 6 36
6.5.19 DOS Utilities 	 6 40

7. A2 UTILITY DISKETTE 	 7 1
7.1 SPEED TEST 	 7 1
7.2 UTILITY DISKETTE COPIER 	 7 2

Glossary 	 G.1
Index 	 I1

NOTICE

MICRO-SCI reserves the right to make improvements in their
products at any time, and without prior notice. While every precaution
has been taken in the preparation of this manual, MICRO-SCI assumes
no responsibility for errors or omissions in this document; nor is any
liability assumed for direct, indirect, incidental, or consequential
damages resulting from the use of the information contained herein.

This manual is copyrighted. This document may not, in whole or in
part, be duplicated in print, or translated to any electronic medium or
machine-readable form, without written consent from an officer of
MICRO-SCI.

©1981 by MICRO-SCI

2158 South Hathaway Street
Santa Ana, California 92705

(714) 662-2801
(714) 662-2906

1. INTRODUCTION

This manual describes the operation of the MICRO-SCI A2 disk sub-
system. The A2 subsystem is intended to be used with an Apple II
or Apple II Plus computer system. 	The A2 subsystem is a direct
replacement for the Apple Disk II floppy disk drives and con-
troller.

Before attempting to connect the A2 subsystem to the computer, it
is recommended you read through the chapters on Unpacking, Famil-
iarization, and Installation. This will take only a few minutes
but could eliminate an installation problem which might cost you
several hours. 	In fact, the vast majority of the problems with
any new piece of computer equipment are usually "Operator Prob-
lems." This is to be expected. The disk subsystem and its con-
trol program, the Disk Operating System (DOS), are fairly complex
and, like a programming language (Basic, Fortran, or Pascal),
there are procedures and rules which must be followed.

The first chapters of this manual will guide a first-time disk
user through the process of unpacking and installing the A2
subsystem. 	To verify that the disk subsyStem is operational,
Chapter 5 will take you through a short checkout procedure.
Chapter 6 deals with the operation of the DOS. 	The DOS is the
program which controls the disk drives. To take full advantage of
the computer system, you will need to become very familiar with
DOS.

If this is your first disk subsystem, we recommend you spend some
time reading a few sections of Chapter 6 before attempting to
install and check out your new drives. 	Reading Chapter 6 up
through Section 6.5.4, General Housekeeping, will give you a good
overview of what the disk drives can do for you, and at least a
preliminary idea of how to operate them.

INTRODUCTION 1.1

THE DRIVE UNIT

1.2 INTRODUCTION

2. UNPACKING

After removing your equipment from the shipping container, you
should verify that you have received the following items:

1. A2 Disk Drive with cable attached
2. Controller Board
3. Disk Drive ID Tags
4. A2 Utility Diskette
5. This manual

The A2 shipping box has been specifically designed to protect the
disk drive and controller during shipment. We suggest you keep
this packaging material for use in the event you have to ship the
equipment to a dealer or the factory for service.

Once you have unpacked the equipment, look for any obvious
shipping damage. If something appears to be bent or broken, it is
best if you contact your dealer or MICRO-SCI before connecting the
equipment to the computer.

, Ait. ..„. 	_
,1

	

ca U2 	. ,R4 U4 ,, - U5
; 	1 	1.8-F, 	

t ''' V i ' '' " 113-1-. - ti mm 	,---.---,-,, num i rre6 ,,,
„....,,, 	,,- 	, 	,. 	:,, 	,„,„,..,,,,,,, ,,1,1 	,,,,, , ,, , ,„, ,

o ,

„ 	:; fl
K,) '' , 9

	

f 	 UPS, . 	C5' ' 	__r , ig,

	

, 	 ----'

	iR9 ,u15

	

-"---1-- .C3 	 123 ___ ., _ 27- °
1_L 4

U18 A
,- - U7 '

' '

	

US 	4-.

	

IA 	Ull 	"U12 , s1.13 bt4o •

vl 	[11

. l , 	 ,

.i. 	,

' ,`CIO

THE CONTROLLER UNIT

M4

id, C13

UNPACKING 2.1

3. FAMILIARIZATION

The MICRO-SCI A2 disk subsystem consists of two components, the
drive unit and the controller unit. The controller is the small
electronics board which will be installed in one of the Apple
computer expansion slots. The drive unit is the large rectangular
box with a flat ribbon cable attached to the back.

If you look closely at the controller card, you will see two
connectors, one labeled DRV 1 and the other DRV 2. 	During the
installation procedure, you will be required to connect the cables
from the disk drives to these connectors on the controller board.

Next to the DRV 2 connector is a small 4-pin connector with a
removable gold clip between the center two pins. 	This clip is
called the configuration jumper. 	Using your fingers you can
remove this jumper from the 4-pin connector. There are three
possible connections for the jumper. When the jumper is connected
to the left two pins (there is a small 13 under these two pins),
the controller is configured to Boot DOS 3.2 type diskettes.
(This will be discussed in more detail in Chapter 6.) 	When the
jumper is connected to the center two pins, the controller will
not Boot any diskettes but will display a message on the computer
display screen indicating the proper positions for the jumper with
DOS 3.2 and DOS 3.3 type diskettes. When the jumper is connected
to the right two pins (there is a small 16 under these two pins),
the controller will Boot DOS 3.3 type diskettes. The controller
is normally shipped with the jumper on the middle two pins.

On the extreme left side of the controller, there are two small
rectangular boxes. These are called potentiometers and are used
to calibrate the controller. They are set at the factory, and
under no circumstances should you attempt to adjust them.

A third, and very important component of your disk subsystem, is
the diskette. 	Diskettes are thin, flat, and lightweight, which
makes them easy to store and transport. It also makes them very
susceptible to abuse. One of the major factors in the reliability
of your disk subsystem will be the care you exercise in handling
your diskettes.

Diskettes are similar to audio magnetic tapes. The "tape" in this
case is circular and enclosed in a protective plastic jacket. The
recording surface is visible through the oblong cutout at one end
of the diskette. 	You should be very careful when handling and
storing diskettes that this area is always protected. Dust, dirt,
fingerprints, or spilled liquids on the recording surface can
affect the information stored on the diskette. Furthermore, if
you put a contaminated diskette in a disk drive, in an attempt to
recover the information stored there, the contamination can be
deposited on the disk drive Read/Write head and subsequently be
transferred to other diskettes. 	Scratches on the recording
surface can also affect the data stored on the diskette. Informa-
tion is stored on the diskette in .012 x .0002-inch areas. With
dimensions this small, even invisible scratches can be damaging.
Obviously bending or folding a diskette is not recommended.

As you begin to collect diskettes, you will want to label each
one. 	The suggested method is to first write on the label, then
put the label on the diskette. If you need to change something on
a label you should only use a felt tip pen. Ball point pens can
easily scratch the recording surface, even through the protective
jacket.

3.1 FAMILIARIZATION

As a last word of caution, both heat and magnetic fields can erase
information stored on a diskette. Be careful where you set or
leave your diskettes.

If you hold a diskette with the label facing you and the oblong
slot down, you will probably have a small notch about 1 inch from
the top on the right side. 	This is called the Write-Protect
notch. When this notch is covered, or missing, in the case of
some Program Master diskettes, the disk drive Write circuitry is
disabled. This is the safest way to insure that you do not acci-
dentally "overwrite" a piece of valuable information. When you
purchase a box of new diskettes you will usually receive a supply
of small write-protect stickers. If you wish to "write-protect" a
diskette, wrap one of these stickers around the edge of the disk-
ette until the write-protect notch is covered on both sides. If
you ever want to write on the diskette again, you must remove the
write-protect 'sticker.

If you look closely at the front of the drive unit, you will see
it has a small door which you can swing open with your fingers.
To put a diskette into the drive you should hold it with the label
facing up and between your fingers. Slide the diskette into the
drive -- notice that the oblong slot end goes into the drive
first. It is very important that you push the diskette all the
way into the drive, or improper registration between the diskette
and the drive may cause disk Input/Output (I/O) errors. With the
diskette in the drive you can now close the door.

In the lower left-hand corner of the front of the drive, there is
a small red light. This is called the "IN USE" indicator. Each
time the computer accesses the disk drive, this light will come on
for a few seconds and go back off. It is recommended that you do
not remove a diskette from the drive when this light is on.

OPENING THE DOOR ON THE DRIVE

FAMILIARIZATION 3.2

4. INSTALLATION

During the installation procedure, you will be instructed when to
turn on the computer power and when to turn it off. Keep in mind
that you should never plug or unplug any cables or boards with the
power applied to the computer.

1. Turn off the computer power.

APPLE II I/0 SLOTS

2. Remove the top from your computer. Install the A2 con-
troller into Slot Number 6 of your computer. The Apple
II Reference Manual, Page Number 89, describes these
slots. Slot Number 6 is the second connector from the
right. 	The A2 controller will work if installed in any
of the slots but Slot 0. However, the recommended posi-
tion is Slot 6 for your first two drives, then Slot 5 for
your second disk controller and third and fourth drives,
and Slot 4 for a third controller, etc.

INSTALLING THE CONTROLLER IN
YOUR APPLE COMPUTER

3. Make sure the configuration jumper is installed on the
center two pins. You can now turn on the computer. If

4.1 INSTALLATION

V V
! 	### 1 ! 	! # # #
! 	### ! ! 	! ###
! 	### ! 	! # # #
! 	### ! ! 	! # # #
! 	### 1 ! 	! # ##
XXXXXXX
	

XXXXXXX

INFO
	

DOS 3.3
&PASCAL

V
! !
! !

! !
! !
! !
XXXXXXX

DOS 3.2

you have an Apple II Plus, the Auto-start feature will
have executed the "Boot" program in the A2 controller.
With the configuration jumper on the center two pins,
this program will display a message on the computer
display monitor. 	If you have a standard Apple II, when
you turn on the power the computer executes the Monitor
program. 	To "Boot" the disk drives, enter Basic
(Control-B, Return) and then issue an IN#6 command.

Your computer monitor should have the message displayed
in Figure 1. If you have this message, we now have some
confidence that several parts of the controller are
operational and we can continue on with the installation
procedure.

--KEYBOARD MICRO-SCI

	JUMPER 	

REAR--

Figure 1

4. Turn off the computer power.

SELECTING DOS 3.2 OR 3.3 WITH

THE CONFIGURATION JUMPER

5. Unplug the A2 controller. It is now time to connect the
cable from the disk drive to the controller. There are
two 20-pin connectors on the controller board labeled DRV
1 and DRV 2. If you have only one drive, you must con-
nect that drive to the DRV 1 connector. The connector

INSTALLATION 4.2

	 411111,'111,
vifito. 	 6 	. 	.._ 	 k

Ilti' 	

ok,...,.... , . . «
	t, t•t-r•it00]

1 	J3 	19 	le+ raimini9 4
 	J. .+L.

C6

attached to the drive cable is keyed. Notice that this
connector is flat on one side and has a raised arrow on
the other side. 	Place the flat side of the connector
against the controller circuit board and push the cable
connector down onto the controller connector. Once
attached, the flat cable should exit away from the con-
troller board and should not be between the connector and
the controller board.

: WARNING:

Installing the cable incorrectly will cause damage to the
drive electronics.

If you have a second disk drive, you should connect it to
the DRV 2 connector. This connector should be installed
just like the DRV 1 connector.

6. Move the configuration jumper to the DOS 3.3 format
position. This is with the jumper connected to the right
two pins. Notice there is a small 16 under these pins.

7. Reinstall the controller into Slot Number 6 of the
computer. 	Once you have the controller installed, fold
the flat cables so that they exit to the rear of the
computer.

This completes the installation of your disk drives. The physical
location of the disk drives in relation to the computer and
display monitor is important. The display monitor is an electro-
magnetic device and it emits electrical signals which can inter-
fere with the operation of the disk drives. It is best if you do
not place the disk drive directly under or next to the display
monitor. One possible configuration is with your monitor on top
of the computer and the disk drive on the table next to the
computer.

CONNECTING THE CABLE TO

THE CONTROLLER

4.3 INSTALLATION

5. CHECKOUT

The diskette labeled A2 Utility Diskette that you received with
your A2 system contains a diagnostic checkout program. 	This
program will check the Read, Write, Speed, and Write-Protect
circuitry of the A2 system. To check out your system, put the A2
Utility Diskette into Drive 1. Check the configuration jumper on
the controller and verify that it is in the DOS 3.3 (16 sector)
position. 	Turn on the computer power switch. 	If you have an
Apple II Plus, the disk drive should be active; that is, the
Activity Light should be on, the drive motor spinning, and the
Read/Write head stepping back to Track 0. You cannot see the
drive motor or stepper motor, but you can hear them. If you have
a standard Apple II, you will need to enter Basic (Control-B,
Return) and then execute an IN#6 command to start the Boot
process. If you have problems getting the A2 Utility diskette to
Boot, you should recheck the installation procedure and review
Section 6.5.1, Booting DOS. If you are still having problems, you
will need to contact your dealer or MICRO-SCI for assistance.

The Boot process should take only a few seconds. When it is
completed, the computer monitor will display a message indicating
that the diagnostic program has successfully Booted. 	Once the
diagnostic program is loaded, it will direct you with a series of
messages. 	The following test requires that you leave the A2
Utility Diskette in the drive.

The first test is the Seek and Read test. At the completion of
this test, the diagnostic program will display a pass or fail
message. Assuming the drive passes the test, you should continue
on to the next test. If, however, the drive fails the test, there
are still a few things for you to try. First try recentering the
diskette by opening the door, removing, and reinserting the disk-
ette. Close the door and select the retry option. 	If the test
passes this time, continue on with the rest of the tests.

If the drive still fails the Seek and Read test, it could be the
diskette. 	If you have another DOS 3.3 formatted diskette (not a
copy-protected diskette such as a game) then put a Write-Protect
sticker on that diskette. 	Replace the A2 Utility Diskette with
the other DOS diskette, and then select the retry option. If the
drive passes this time, assume the A2 Utility Diskette has a bad
sector and that the drive is operational. 	Before continuing on
with the tests, we suggest you remove your DOS diskette and re-
insert the A2 Utility Diskette. The Speed and Write tests could
destroy some files on the DOS diskette.

If you are still unsuccessful in getting the Seek and Read test to
run, you should contact your dealer or MICRO-SCI for assistance.

The second test is the Speed Check. The rotational speed of the
drive is adjustable. 	However, this check is strictly a Go/No-Go
test. The speed adjustment potentiometer is inside the drive
unit. The A2 system has four adjustable potentiometers: two for
the Read circuitry, one for the Write current, and one for Speed.
Speed calibration is the only user adjustment. If you turn one of
the other three potentiometers by mistake, you will have to return
the system to a dealer or the factory for calibration. We strong-
ly recommend that you do not experiment with the potentiometer
settings.

At the completion of the Speed Check, the diagnostic program will
display a pass or fail message. 	Assuming the drive passes the
Speed Check, continue on to the next test. If the drive fails the

CHECKOUT 5.1

Speed Check, you should select the retry option several times to
see if the failure is hard or intermittent. The A2 Utility Disk-
ette has a Speed Calibration program which can be used to adjust
the speed of your drive. Section 7 of this manual describes the
operation of the program. 	If your drive fails the Speed Check,
refer to Section 7 of this manual for more information.

The third test is the Write-Protect Check. When you start this
test, the program will display the state of the Write-Protect
status. The A2 Utility Diskette is not write-protected, and the
diagnostic program should display a NOT PROTECTED status. If you
open the door and partially remove the diskette the write-protect
status should change from NOT PROTECTED to PROTECTED. Push the
diskette back into the drive and the status should change back to
NOT PROTECTED.

If the drive fails this test, indicated by the failure of the
status response to change, the drive unit will require service.
Please contact your dealer or MICRO-SCI for assistance.

The last test is the Write Test. This test reads one sector from
the diskette, changes a byte, writes the sector back to the disk-
ette, reads the sector again, and then verifies the data. 	The
diskette must not be write-protected. 	At the completion of the
Write Test, the program will display a pass or fail message.
Assuming the drive passes the test, you should continue on to the
next phase. 	If the drive fails the Write Test, you should check
to see that the A2 Utility Diskette is not write-protected. 	If
this is not the problem, you will need to contact your dealer or
MICRO-SCI for assistance.

After four tests, the program will display a menu which will allow
you to select the other drive for test or re-Boot the system. If
you have only a single drive, or have already tested both drives,
then you are finished with the diagnostic program. This completes
the checkout of the A2 subsystem.

5.2 CHECKOUT

6. OPERATION

6.1 TABLE OF CONTENTS

6.2 	Introduction

6.3 	The Equipment Interface

6.4 	The File Manager

6.5 	The User Interface

6.5.1 	Booting DOS

6.5.2 	Getting Started

6.5.3 	File Types

6.5.4 	General Housekeeping

6.5.5 	Program Files

6.5.6 	Binary Files

6.5.7 	DOS Error Messages

6.5.8 	Program File Commands

6.5.9 	Program Command Lesson Guide

6.5.10 	DOS Commands from Basic

6.5.11 	Introduction to Text Files

6.5.12 	Sequential and Random-Access Files

6.5.13 	Getting Started with Text Files

6.5.14 	Sequential Files

6.5.15 	Random-Access Files

6.5.16 	EXEC Files

6.5.17 	DOS Access Commands

6.5.18 	Text File Lesson Guide

6.5.19 	DOS Utilities

OPERATION 6.1

6.2 INTRODUCTION

Your new disk drive subsystem greatly expands the capabilities of
your Apple II. By increasing the amount of information that your
computer can immediately access, you have opened your system to a
whole new world of applications. These new applications require
software to control the storage and retrieval of information be-
tween the Apple and the disk subsystem. The program that controls
the disk subsystem is called the Disk Operating System (DOS). The
purpose of the DOS is to provide an easy-to-use set of commands to
allow a programmer to access the information stored on the disk
drives. 	Before we get too involved with the description of the
DOS command set, let's take a closer look at how a DOS works.

There are actually several DOS's available for your Apple II
computer and disk drive subsystem. 	For discussion purposes, we
will divide these DOS's into two categories: general purpose and
special purpose DOS's. A general purpose DOS is one which sup-
ports multiple application programs and usually several languages.
Some examples of these DOS's are: Apple DOS 3.2, Apple DOS 3.3,
Pascal, and CP/M.

In addition to the general purpose DOS's, there are many more
special purpose DOS's. 	These DOS's are usually a part of an
application program and are used only with that program. 	Some
examples of special purpose DOS's for the Apple II are: VISICALC
by Personal Software, DB MASTER by Stoneware, the DATA FACTORY by
Micro-Lab, and virtually all of the game programs which are dis-
tributed on individual diskettes.

At this point you might wonder why there are so many different
DOS's for the same computer. Keep in mind you have purchased a
general purpose computer system. 	This means your Apple II is
capable of being used in many different applications. 	With a
given application, a specific data organization on the diskette
may be very efficient, while in another application that same data
organization may be almost unusable. Therefore, we have ended up
with quite a few different DOS's. Now, if you are totally con-
fused and are wondering which is the best DOS for you, the answer
is quite simple. 	As we previously explained, a special purpose
DOS is part of an application program. Therefore, these DOS's are
evaluated on the merit of the individual application program.

On the other hand, the general purpose DOS's (DOS 3.3, CP/M, and
Pascal) must be evaluated on their ease of use, the languages
supported, the speed of the disk accesses, their versatility, the
cost effectiveness, and the number of application programs avail-
able. 	In other words, depending on your application and your
budget, any one or all three of these DOS's could be useful to
you.

Apple DOS 3.3 is the most common DOS used on the Apple II com-
puter. For the rest of this chapter we will attempt to describe
DOS 3.3. Since 3.3 is a general purpose DOS, most of the concepts
discussed here can also be applied to CP/M and Pascal.

Most DOS's can be divided into three general areas: the Equipment
Interface, the File Manager, and the User Interface. To take full
advantage of a DOS, you will only need to understand the User
Interface section. However, a general understanding of the other
two sections is helpful.

The following descriptions of the Equipment Interface and the File
Manager are included as an overview of how a DOS works. 	The

6.2 OPERATION

information included here is not intended to provide a detailed
understanding of either of these sections of the DOS. For a more
detailed description of Apple DOS, the publication "Beneath Apple
DOS" is highly recommended and is obtainable from:

Quality Software
6660 Reseda Boulevard, Suite 105
Reseda, California 91335

(213) 344-6599

6.3 THE EQUIPMENT INTERFACE

This section of Apple DOS is usually called the RWTS (Read/Write
Subroutine). This is the only section of the DOS which communi-
cates with the hardware. The functions performed by the RWTS are:
Drive Selection, Motor Control, Head Seeking, plus all of the Read
and Write functions. This is also the section of the DOS which
determines the physical format of the diskette.

All floppy disk subsystems (Apple, Tandy, Atari, IBM, etc.) divide
the total diskette storage capacity into smaller "chunks" called
tracks and sectors. A track is similar to a groove on a record;
however, on a floppy disk the tracks do not "spiral" in toward the
center. With both the Apple Disk II and the MICRO-SCI A2, the
tracks are .020 inch from center line to center line. 	Of this
.020 inch, only .012 inch contains the recorded information. The
rest (.008 inch) is erased to provide a "guard band" between
tracks. The Apple Disk II and MICRO-SCI A2 can read or write 35
tracks per diskette. 	All floppy disk systems number the tracks
starting at the outside of the diskette and working in. That is,
Track 00 is the track farthest from the center of the diskette.

To summarize, a diskette is first divided into tracks which are
concentric bands of recorded information separated by small guard
bands. The drive mechanism is capable of positioning the Read/
Write head to any one of these tracks.

It should be apparent that the higher numbered tracks (those
closer to the center of the diskette) have a smaller circumference
than the outside tracks. 	With most floppy systems (including
Apple), the number of bits recorded per track is approximately
50,000. This means that the length of a bit on the inside track
is smaller than a bit recorded on the outside track. 	In fact,
bits on the inside track are as small as .000180 inch, while the
same bit on an outside track is .000280 inch. 	50,000 bits is
6,250 bytes per track. 	Although your computer can hold up to
48,000 bytes in RAM (Random Access Memory), handling 6,250 bytes
per disk access would be rather inefficient. 	Therefore, each
track is further divided into smaller, more convenient "chunks"
called sectors. With Apple DOS 3.3, there are 16 sectors of 256
bytes each per track. The number of sectors per track (16) times
the number of tracks (35) equals the number of sectors per disk-
ette (560).

The RWTS must be able to individually access any of these sectors.
To accomplish this, each sector has an associated address field
which uniquely identifies that sector. The address field contains
the track number, the sector number, and the diskette volume num-
ber. The RWTS uses these address fields to locate the desired
256-byte data sector.

To review, we have now defined the physical layout of the diskette
in terms of tracks and sectors. 	There are 35 tracks with 16

OPERATION 6.3

sectors on each track, for a total of 560 sectors. Each sector
has 256 bytes, for a total of 143,360 bytes per diskette. 	The
RWTS is the section of the DOS which handles the transfer of data
to and from any of the sectors on the diskette.

To use the RWTS, a programmer, or the DOS, must build a table
called an IOB (Input/Output Block) and "call" the RWTS. This
table defines the controller slot number, the drive number, the
track number, the sector number, the volume number, the memory
buffer address, and the command (READ or WRITE). The RWTS uses
this information and selects the proper drive, makes sure the
motor is up to speed, moves the Read/Write head to the appropriate
track, locates the sector, and then for a READ command moves the
entire 256-byte sector to the addressed memory buffer; or for a
WRITE command moves the 256 bytes from the memory buffer to the
proper sector on the diskette.

To summarize, the RWTS performs the function of locating a spe-
cific data sector on a diskette and either reading or writing that
sector. Additionally, the RWTS does all of the error-checking for
each READ or WRITE command.

6.4 THE FILE MANAGER

The RWTS performs the function of moving a specific sector from
the diskette to memory (READ) or from memory to the diskette
(WRITE). As previously explained, the RWTS must be told which
sector to address and where to put that sector in memory. The
File Manager is the part of the DOS which keeps track of what
information is stored on each sector of the diskette. The File
Manager does this by keeping a list of all of the "Files" stored
on the diskette.

Before we continue, we should define a "File" and some other
terms. By now you should be familiar with Basic and should know
how to write a program. As you know, a program is a collection of
commands (usually several bytes each) which the computer stores in
its memory. The advantage of your disk drive subsystem is that it
can permanently store the program on a diskette for future use.
Since an average program is only a few thousand bytes long and a
diskette holds over 100,000 bytes, it would not be very efficient
to store only one program per diskette. To overcome this limita-
tion we have to introduce the concept of a "File." Most simply
stated, a file is a collection of related information. 	For in-
stance, if we use the example of a file cabinet, each drawer can
be considered as one of the drives connected to your computer.
Within each drawer there can be many file folders (files) with
each file folder containing a collection of related information
(records).

In other words, when it comes time to save your program, you will
have to create a "File" on a diskette to hold that program. This
means the DOS must reserve a few sectors on the diskette to store
your program.

As we originally stated, the File Manager is responsible for
keeping track of the available and allocated sectors on the disk-
ette. The File Manager keeps track of the available sectors on
the diskette with one sector called the VTOC (Volume Table of
Contents). The contents of this sector contain a Bit-per-Sector
Map of the diskette. That is, each sector on the diskette has a
corresponding bit in the VTOC Bit Map. Free (available) sectors
have a 1 in their position in the bit map, and when they are

6.4 OPERATION

assigned to a file their corresponding bit in the map is set to a
0, signifying the sector is allocated.

To keep track of which sectors have been allocated to each file,
the File Manager uses several sectors of the diskette as a
Directory. The Directory is a list of all of the files which have
been stored on the diskette. Each diskette has its own VTOC and
Directory which pertain only to the information stored on that
particular diskette. The Directory entries must contain a name, a
file type, and a pointer to a sector which contains a list of the
other sectors assigned to that file. It is these "other" sectors
which actually contain the information which we want to store in
the file.

To demonstrate how the File Manager works, the following examples
will show the sequence of events for a program SAVE operation and
then a program LOAD operation. Let's assume we have a program in
memory ready to "SAVE" to a diskette. The operator must issue a
SAVE command with a file name to the DOS (explained in Section
6.5.5). 	The File Manager will build an IOB and issue a READ
command to the RWTS specifying the Directory sector. Once the
Directory is in the computer memory, the File Manager will add the
new file name to the Directory and, using the VTOC Bit Map, find
the next available sector on the diskette. This first sector will
be used to store a list of the rest of the sectors allocated to
the file. Once a file name has been added to the Directory and a
Track and Sector List sector has been allocated, the File Manager
will begin to move the program from memory to the diskette. The
program is stored on the diskette in 256-byte segments per sector.
As each new sector is added to the file, it is removed from the
VTOC Bit Map and added to the Track and Sector List. When the
entire program has been stored on the diskette, the File Manager
returns control of the computer back to the operator.

To load this program back into the computer memory, the operator
must issue a LOAD command (explained in Section 6.5.5) with the
file name that was used to store the program. The File Manager
first reads the Directory and then searches for the file name.
When it finds the file name, it extracts the Track and Sector List
pointer and reads in the Track and Sector List. The File Manager
then proceeds to load the program into memory using the Track and
Sector List as a guide.

In summary, the File Manager uses several sectors on the diskette
to keep track of "what" and "where" things are stored on the
diskette. One sector called the VTOC keeps track of which sectors
have been used and which ones are still available. Another 15
sectors are reserved for the diskette directory. 	The Directory
contains the names of all of the files that have been stored on
the diskette. Finally, each individual file consists of at least
one sector called a Track and Sector List which contains a list of
the rest of the sectors in the file. The actual information for
each file is then stored in the sectors pointed at by the Track
and Sector List.

6.5 THE USER INTERFACE

This section of the DOS, as its name implies, communicates with
both the computer operator and any programs which access the disk
drives. 	This section deals more with specifics and less with
general concepts. We hope that the general overview of the RWTS
and the File Manager will help you better understand the operation
of the DOS. However, the rest of the information in this section

OPERATION 6.5

should be read thoroughly and should not be considered an over-
view. To get the most out of your new disk subsystem, you must
become completely familiar with the DOS commands.

6.5.1 Sooting DOS

Your Apple II computer comes with a built-in Basic language,
either Integer or Applesoft. These languages are stored in ROM's
(Read-Only Memories) that retain their instructions even when the
power is removed from the computer. 	Integer uses about 8,000
bytes and Applesoft about 12,000 bytes of ROM memory. In addition
to this ROM, your computer has 16, 32, or 48 thousand bytes of
Read/Write RAM (Random Access Memory). If you intend to use DOS,
you must have at least 32,000 bytes of RAM. By now you should be
pretty familiar with what Basic can do. The process of "Booting"
DOS will add more commands to Basic. These extra commands require
about another 10,000 bytes of instructions for the computer. They
are called DOS and are loaded into the highest addresses of the
available RAM.

To Boot you must have a diskette with a DOS. 	The DOS always
resides on Tracks 0, 1, and 2. 	The disk controller contains a
small 256-byte program capable of reading a few sectors from Track
O. These few sectors on Track 0 are called the First Stage Boot
and they in turn are capable of reading-in the entire DOS. To
start the Boot process, you must execute the 256-byte program in
the "Boot Prom" on the controller. If you plug a disk controller
into an Apple II Plus and turn on the power, the computer will
automatically execute the Boot program. On an Apple II Integer
machine (or an Apple II Plus), you can execute the Boot program
from the monitor or from Basic. In the monitor, you can issue a
CSOOG (where S is the slot number of the disk controller). From
Basic you can issue an IN4S (where S is again the slot number of
the controller).

Once the Boot process has started, the DOS will be loaded into RAM
and connected to Basic. The available space for Basic programs is
reduced by the size of the DOS (about 10,000 bytes) and a whole
new set of instructions is added to the Basic.

You can Boot from any slot which contains a disk controller, but
you can only Boot from Drive 1 connected to that controller. The
Auto-start feature on an Apple II Plus will start looking for a
disk controller in Slot 7 -- and then Slot 6, 5, 4, 3, 2, and 1.
It will Boot from the first controller it encounters.

6.5.2 Getting Started

Let us assume you have just Booted DOS. Your computer is in Basic
command mode and you can issue any of the standard Basic commands;
or, if you want, you can write a program. 	In other words, you
shouldn't notice anything different about your computer; however,
there is a difference -- your Basic now contains a whole new set
of commands. These new commands are the DOS commands which will
permit you to use your disk drives. In many respects a DOS com-
mand is just like any other computer command. It consists of a
command word followed by several parameters. 	One of the major
differences between DOS commands and Basic commands is that you
cannot put multiple DOS commands on the same line separated by
colons.

6.6 OPERATION

Many of the DOS commands have the same parameters. Rather than
describe these parameters over and over again with each command,
we will present them here at the beginning of the DOS command
descriptions.

File Name: In the description of the File Manager we explained
the concept of a "File." 	Each file on a diskette must have its
own unique name. A file name consists of 1 to 30 characters. The
name must begin with a letter and cannot contain a comma (,). If
you put control characters into the file name, they will not be
displayed; however, they are part of the file name.

Each time you wish to access a file, you must specify the file
name. 	By adding, deleting, or changing one character in a file
name, you are referencing a different file. While you are getting
accustomed to the DOS, it is best if you keep your file names
short.

Slot and Drive Number: DOS 3.3 can address up to fourteen drives.
That is, two drives per controller and seven controllers installed
in Slots 1 through 7. To address any of these drives, there are
two optional parameters: S for slot and D for drive. Unless a
slot or drive parameter is issued, the DOS will default to the
previously addressed drive. For example, after Booting DOS from
Slot 6 Drive 1, the DOS will assume all of the commands are to
Slot 6 Drive 1 until a command with a new S or D parameter is
issued.

The S parameter must be followed by a number from 1 to 7, corre-
sponding to the slot number for the new controller. 	If a slot
without a controller is specified, an I/O ERROR will result. This
I/O ERROR is not a serious problem, but the next DOS command must
wait for the "drive" connected to this nonexistent controller to
stop spinning. This creates a real problem. Usually the system
hangs forever. 	If the system hangs, hit Reset. 	If you have
issued a command with a bad S parameter, you must give the DOS a
new command with a valid S parameter (such as CATALOG, S6). With
Auto-start, you should be back in Basic. With an Integer machine,
type 3DOG and you will be back in Basic. Once you are back in
Basic, you can try the command again with the proper slot number.

The D parameter must be followed by the Number 1 or 2. Selecting
a nonexistent drive with the D parameter is not as serious as the
wrong S parameter. It will also result in an I/O ERROR, but this
usually doesn't hang the computer. 	The S and D parameters are
independent of each other and do not need to be issued together.
If you wish to change drives on the same controller, you need only
issue the D parameter. 	Likewise, if you wish to change con-
trollers and not the drive number, then you need only issue the S
parameter. When using both the S and D parameters, the order is
not important. The S may precede the D or vice-versa.

Before we finish our discussion of the S and D parameters, we must
introduce the term "currently logged drive." 	If a DOS command
doesn't specify an S or D parameter, the command will access the
currently logged drive. 	An S or D parameter will update the
currently logged drive to the specified slot and drive.

Volume Number: 	Up to now we haven't introduced the concept of
volume numbers, but we have mentioned them. If you remember in
the description of the RWTS, we stated that the address field for
each sector on the diskette contains its track number, sector
number, and "volume number." A program (programmer) uses a Volume
Number to identify a specific diskette. The only time a Volume

OPERATION 6.7

Number can be assigned to a diskette is when it is first "initia-
lized." 	(See the description of the INIT command for details.)
It cannot be changed without re-initializing the diskette.

The best way to visualize the value of Volume Numbers is to com-
pare them to S and D parameters for selecting between physical
drives, File Names for selecting various logical groups, and
Volume Numbers for selecting between physical diskettes. When you
are initializing a diskette, you may optionally specify a V param-
eter (Volume Number). The V parameter must be in the range of V1
to V254. If you do not specify a V parameter, the DOS will assign
a default Volume Number of 254.

When you are using the rest of the DOS commands, if you include a
V parameter, the DOS will not execute the specified command unless
the Volume Number on the diskette matches the V parameter exactly.
If you do not specify a V parameter, the DOS will use VO which is
a "wild card" response and matches any Volume Number assigned to
the diskette. Likewise, specifying VO in a command will match any
Volume Number.

When the DOS encounters a volume mismatch error, it will terminate
the current command before it executes and prints the error mes-
sage VOLUME MISMATCH.

6.5.3 File Types

Sections 6.3 and 6.4 have described the physical and logical
organization of the diskette. We know that all of the information
on the diskette is stored in logical groups called "Files," and
that each file is made up of several physical 256-byte "Sectors."
The real value of the DOS is the ease with which we can create and
manipulate these "Files." With DOS 3.3 there are actually three
different types of files: Program Files, Binary Files, and Text
Files.

If you are just learning to use your computer, you probably will
feel most comfortable with the Program Files. This type of file
stores a Basic program (Applesoft or Integer). To create a Pro-
gram File you need to write a program, and then type: SAVE X
where X is the file name. The DOS will then move your program to
the diskette and add the name you just specified to the directory.
Now a little review is in order. The SAVE X command could have
taken the form:

SAVE X,Ss,Dd,Vv

where X is the file name parameter described in the last section,
and S, D, and V are optional Slot, Drive, and Volume parameters.
But you knew all of that because we have already discussed those
parameters.

Now that we have created a Program File, let's do something with
it. Let's say we want to RUN the program we just created. The
command RUN, without a file name parameter, will execute the
program that is currently in memory. However, if we type:

RUN X

the DOS will check the "currently logged drive" for the file name
X and, if it finds it, the DOS will load it into memory and imme-
diately execute it. 	If the DOS doesn't find the file, it will
respond with the error message FILE NOT FOUND.

6.8 OPERATION

We can now create any number of different program files by using
different file names for each program we want to store on the
diskette. 	To bring these programs back into memory and execute
them, we need only type:

RUN X

where X specifies the proper file name. There is one more thing
we might want to do to a program file and that is to load it into
memory so that we can edit (change) the program. The DOS command
LOAD X will do just that. 	It should be obvious that X is again
the file name.

The three DOS commands we have just introduced are used to manipu-
late Basic program files. There is a second type of program file
which we refer to as a Binary File. A Binary File is usually an
assembly language file (6502 machine code) that is used by more
advanced programmers. We will discuss Binary Files in more detail
later in this section, but for now let's just introduce the DOS
commands that are used with Binary Files. They are BSAVE, BRUN,
and BLOAD. As you can see, they have the same form as the LOAD,
SAVE, and RUN commands but are preceded by a "B" signifying a
Binary File.

Finally, the third type of file is called a Text File. Up to this
point the only things we could store on the diskette were pro-
grams. What if we want to store some data for a program? The
data could be numbers, like payroll or your checkbook balance, or
maybe the results of some involved calculation. On the other
hand, the data could be mostly words like a letter, some messages,
or items in an inventory system. Anyway, for the DOS to be really
useful, it must allow us to store this type of information as well
as programs. DOS 3.3 does allow us to store this kind of informa-
tion and it does so in a file called a Text File. We will discuss
these Text Files in more detail later; for now we just want to
introduce the Text File commands:

OPEN
CLOSE
READ
WRITE
APPEND
POSITION
EXEC

You have now been introduced to the three file types: 	Program,
Binary, and Text Files. You have been introduced to the concept
of SAVEing, LOADing or RUNning a Basic program. 	You have seen
that there are also Binary Files which you would BSAVE, BLOAD, or
BRUN (if you knew all of the specifics). And finally, there are
the Text Files which store data for programs and require a whole
bunch of DOS commands which don't seem quite as friendly as pro-
gram file commands.

6.5.4 General Housekeeping

We know that if we "Boot" a DOS diskette, we can get DOS hooked up
to Basic. This means we have a bunch of new commands that make
the disk drives work. We know that we can store different kinds
of information on the diskette in different file types. In this
section we are going to describe seven new DOS commands that can
be used with all three file types. They are:

OPERATION 6.9

CATALOG
DELETE
LOCK
UNLOCK
RENAME
VERIFY
INIT

These seven commands have two things in common. First, none of
these commands will alter the program memory. 	If you have a
program in memory and you issue one of these commands, the program
will not be changed. Second, all seven of these commands can use
the optional Slot, Drive, and Volume Number parameters.

CATALOG 	This command allows the operator to see what is stored
on a diskette. CATALOG is one of the few DOS commands which does
not require a file name. When the operator types CATALOG, the DOS
will list all of the files on the diskette in the currently logged
drive. 	In addition, it will display: the LOCK/UNLOCK indicator
(* means a file is locked); the File Type (I means Integer, A
means Applesoft, B means Binary, and T means Text); the file
length in sectors (from 1 to 255; files longer than 255 sectors
start over from 000); and, finally, it will display the file name
(control characters are not displayed by the CATALOG command).
The CATALOG command also displays the diskette Volume Number. If
more files are stored on the diskette than will fit on the monitor
screen, the DOS will display the first 20 files and then wait for
the operator to hit a key. 	It then displays 20 more files and
waits for a key again, and so forth until all of the files have
been displayed.

DELETE 	This command is used to remove a file from a diskette and
make the sectors that the file occupied available to other files.
In other words, let's say you have a few old programs stored on a
diskette and you don't need them anymore. You can type:

DELETE X

where X is one of the old file names and the DOS will remove that
file from the directory and put the sectors used by that file back
into the VTOC Bit Map so that they can be used by other files.
You can then continue to use the DELETE command until you have
removed all of the old files. 	You now have some more space on
that diskette to use with your new programs.

LOCK/UNLOCK 	After spending several hours or days getting a pro-
gram ready to use, the last thing you would want would be to
accidentally erase or change that program. The LOCK command can
be used to write-protect a particular file. When you issue the
DOS command

LOCK X

the DOS will set a flag in the directory entry for the File X so
that the file cannot be erased or written to. The LOCK command
has no effect on loading, running, or reading the file.

Once a file is locked, the only way to erase or change the file is
to first unlock it. The DOS command

UNLOCK X

6.10 OPERATION

will reset the flag in the directory entry. 	Locked files are
displayed by the CATALOG command with an asterisk (*) preceding
the file type.

RENAME 	Let's say we have a program that seems to be working
pretty well and we decide to add some new features to it. When we
are done, we will want to call the new version of the program by
the same name as the previous version. 	However, being a smart
programmer, we know the old version worked pretty well and we
don't want to throw it away, so we issue the DOS command

RENAME X,Y

and the DOS will change our old file X to a new name Y. We now
have the old version of our program stored under the new name Y,
and we can use the old name X for our new version.

VERIFY 	This command is used to check if the RWTS can success-
fully read all of the sectors in a file. Let's say we are having
some trouble with one of our disk drives and we are occasionally
getting I/O ERRORS. 	The VERIFY command will find bad sectors
which the RWTS cannot read. 	This command does not check the
actual information in a file and, therefore, if you mess up a
program and then store it in a file, it will verify as a good
file. The DOS command

VERIFY X

will check the File X for bad sectors. If VERIFY encounters a bad
sector, DOS will display the I/O ERROR message.

INIT 	Up until now we have told you how to do all kinds of neat
things with your new disk drives by using the DOS commands.
However, we haven't told you how to make new diskettes so that you
can do all of these things. If you go down to your local computer
store and buy a brand new box of diskettes and put one of them in
a disk drive and type CATALOG, you would probably expect the DOS
to tell you there are no files on that diskette. Well, actually,
the DOS will say I/O ERROR. 	This is because the RWTS won't be
able to find any address fields (Track, Sector, Volume Numbers,
etc.) and so it can't tell the difference between a totally blank
diskette (the one you just tried to CATALOG) and a diskette that
was accidentally clobbered. This is where the INIT command comes
in. New diskettes must be INITialized before they can be used.
Old diskettes that start picking up a lot of I/O ERRORS can some-
times be reINITialized and used again.

To use the INIT command, you must first put a Basic program in
memory. You can LOAD a program from another diskette or write one
from scratch. 	This program will be the greeting program. That
means whenever you Boot this new diskette, created by the INIT
command, this program will be automatically invoked.

The DOS command

INIT X,Vv

will format all of the tracks with the proper address fields
containing the Track, Sector, and Volume Numbers. 	It will then
create the VTOC sector with the proper bit map configuration;
create the empty directory sectors; move the DOS to Tracks 0, 1,
and 2; and, finally, it will save the program you put in memory

OPERATION 6.11

under the file name X. The file X will then become the greeting
program. That is, whenever you Boot this new diskette, program X
will automatically be RUN at the completion of the Boot operation.

It is not a bad idea to go back and look at the description of the
volume parameter in Section 6.5.2. The INIT command is the only
way to create or change a volume number.

CAUTION: Keep in mind that the INIT command totally
erases a diskette. It doesn't have a conscience.

If you put a valuable diskette, with a lot of programs, in a drive
and type INIT, the DOS will go right ahead and erase the whole
damn thing and there goes one valuable diskette! This is poten-
tially your most dangerous command and you should be aware of it.

In summary, we have now described how you can "straighten up" your
diskette files. These seven commands are best described as house-
keeping operations. All seven of these commands have the general
form of

COMMAND X,Ss,Dd,Vv

where X is a file name and S, D, and V are the optional Slot,
Drive, and Volume Numbers. These commands are the most frequently
used commands and it is important that you become very familiar
with them.

6.5.5 Program Files

We have generally described how to LOAD, SAVE, and RUN the Basic
program files. In this section we will describe the rest of the
details pertaining to these commands.

SAVE X 	This DOS command is used to move a Basic program from the
computer memory to a diskette file called X. 	The file type
(Integer or Applesoft) is defined by the program. If the file X
does not exist on the diskette, the DOS will create a file called
X and store the program in that file. If the file X exists, the
DOS will automatically replace the contents of file X with this
new memory image and will not inform the operator that file X
already existed. (This can be dangerous because you can inadver-
tently overwrite a program file that you did not want to destroy.
Use of the LOCK command could prevent this problem.)

If you attempt to SAVE a program that is larger than the available
disk space, the DOS will respond with the error message DISK FULL
ERROR. To recover from this, you need to change diskettes to one
with enough space, or delete a file to make more space available
on the current diskette. Either of these options will work.

You don't need to worry about the program you have in memory. The
SAVE command does not alter the contents of the program memory in
any way. As a matter of fact it is a good idea to SAVE your pro-
grams periodically. To do this just type SAVE X and then go back
to work on your program.

The SAVE command can have the optional Slot, Drive, and Volume
Number parameters.

LOAD X 	This DOS command is used to move the contents of the
program file X from the diskette to the computer memory. The file
type must be an Integer or Applesoft file. 	If you attempt to

6.12 OPERATION

LOAD a Binary or Text File, the DOS will respond with the error
message FILE TYPE MISMATCH. 	If you attempt to LOAD an Integer
file with only Applesoft in your computer (or an Applesoft file
with only Integer present), the DOS will respond with a LANGUAGE
NOT AVAILABLE error. If you have a 16K RAM card and an Apple DOS
3.3 System Master, you can have both Applesoft and Integer in your
computer at the same time. (One of the languages is in the ROM's
and the other language is in the RAM card.) If you Boot a System
Master (or a copy of a System Master), the greeting program will
put the appropriate language into the 16K RAM card. With both
languages present, the DOS will automatically select the language
specified by the file type.

The LOAD command can have the optional Slot, Drive, and Volume
Number parameters.

RUN 	This command is the same as a LOAD command, but after the
program file has been LOADed into the computer memory, it will
automatically be RUN. All of the restrictions for the LOAD
command also apply to the RUN command. A RUN command will clear
all of the program memory and then LOAD the new program.

The RUN command may have the optional Slot, Drive, and Volume
Number parameters.

CHAIN 	This is a new DOS command that we have not previously
mentioned. 	This command is virtually identical to the RUN com-
mand. 	It is used only with Integer Basic programs. The major
difference between RUN and CHAIN is that this command does not
clear the variables before loading the new program. 	This means
that you can write a very large Integer Basic program in sections
and then link these sections with CHAIN commands. By linking with
CHAIN commands instead of RUN commands, the programs can use the
same variables. 	(Remember, RUN clears all of the variables and
CHAIN does not.) The format of this command is the same as the
LOAD or RUN commands. That is,

CHAIN X

where X is the file name. The same restrictions that apply to the
LOAD and RUN commands also apply to the CHAIN command.

The CHAIN command can use the optional Slot, Drive, and Volume
Number parameters.

To CHAIN programs in Applesoft that do not pass variables is
actually quite easy. 	You can LOAD a new Applesoft program by
issuing a DOS RUN X command as the last statement in a program.
This is described in Section 6.5.10.

To pass parameters between Applesoft programs, you will need a
Binary program called CHAIN. This program comes on the Apple DOS
3.3 System Master. To use CHAIN, you must insert the following
commands into your Basic program:

5000 PRINT CHR$(4);"BLOAD CHAIN, A520"
5005 CALL 520"X"

These commands should be at the end of each program that is pass-
ing parameters to the next program. The two line numbers can be
any valid line numbers, but the two command lines must be sequen-
tial. The first line will "BLOAD" the Binary program CHAIN into
the computer. The file CHAIN must be on the same diskette as the
new Applesoft program. The second command line actually chains

OPERATION 6.13

the two programs. The new Applesoft file name X must be in quotes
and must start immediately after the 520 without a space.

To move the CHAIN program to various diskettes, you should use the
FID program. (FID is described in Section 6.5.19.)

In summary, we have now described what you need to know about
Program Files. 	You can LOAD, SAVE, RUN, or CHAIN these files.
All of these commands have the form:

COMMAND X,Ss,Dd,Vv

where X is a file name and S, D, and V are the Slot, Drive, and
Volume Number parameters.

6.5.6 Binary Files

These types of files usually involve machine language programs.
If you are strictly a Basic programmer, then this area should be
only of general interest to you. If, however, you are an assembly
language programmer, or you wish to become one, then this section
is very important to you. Just like Basic, the DOS does not help
you write (create) a machine language program. 	There are several
programs available that can help you create a machine language
program. One of these is EDASM on the DOS Tool Kit from Apple.
This is actually two programs in one; it is both a text editor and
an assembler. 	The creation of assembly language programs is
beyond the scope of this manual. If you intend to write more than
just small binary programs, then you will need thorough under-
standing of the Apple II memory organization. 	The publication
"Beneath Apple DOS" is the best available document for this pur-
pose. It is far superior to the Apple DOS Manual in this area and
we strongly recommend that you obtain a copy.

There are three commands that deal with Binary Files. 	They are
BLOAD, BSAVE, and BRUN. These three commands are very similar to
their Basic Program File counterparts LOAD, SAVE, and RUN. All of
the DOS errors (FILE TYPE MISMATCH, FILE LOCKED, FILE NOT FOUND,
and VOLUME MISMATCH) pertain to Binary files as well as Basic
files.

BSAVE X, A$1000,L200 	This DOS command is used to move a specific
area of memory to the file X. The memory area must be explicitly
stated in the command. The A parameter must specify the starting
memory address. The address must be in the range of 0 to 65,535
and can be stated in decimal or hex, where $ designates a hex
address. The L parameter is used to designate the length of the
memory area to be saved. It must be in the range of 1 to 32,767.
Again, the length can be stated in decimal or hex, where $
designates a hex value.

Both the A and L parameters must be stated or a DOS SYNTAX ERROR
will result. 	If either the A or L parameter is not within its
previously stated range, a DOS RANGE ERROR will result.

The BSAVE command can also contain the optional Slot, Drive, and
Volume Number parameters.

BLOAD X, A$1000 	This command is used to move the Binary File X
from the diskette to the computer memory. 	The A parameter is
optional. 	If it is stated, the file will be loaded into memory
starting at the specified address. 	If the A parameter is not
stated, then the file will be loaded at the address stated in the

6.14 OPERATION

BSAVE command when the file was created. The number of bytes
loaded by this command is always the same as the length parameter
stated during the BSAVE command that created the file. This
command can have the optional Slot, Drive, and Volume Number
parameters. It cannot have an L parameter.

CAUTION: This command can destroy DOS.

If you BLOAD a file that overlays the DOS, many strange and un-
explained things can happen. Therefore, if you just start playing
around with various Binary Files that you don't understand -- Good
Luck!

BRUN X, A81000 	Just like the RUN command, the BRUN command first
BLOAD's a Binary File and then executes it. All of the things we
explained about BLOAD also pertain to BRUN. The optional A param-
eter becomes both the load address and the execute address. If
the A parameter is omitted, the BRUN command will default to the
address used with the BSAVE command that created the file. The
BRUN command can use the optional Slot, Drive, and Volume Number
parameters.

CAUTION: Since this command does both a BLOAD and
then executes the machine code stored in the file,
it is twice as dangerous as the BLOAD command.

Again, if you don't know what you are doing and you play around
with the BRUN command -- Extra Good Luck!

In summary, these commands require an understanding of machine or
assembly language programming. If you understand these programs,
the operation of these three commands should be very obvious to
you. If you don't understand these types of programs, then you
probably won't need these DOS commands unless you are specifically
instructed to BRUN a certain file. In that case you merely need
to type

BRUN X

which will load the Binary File X and then execute it.

6.5.7 DOS Error Messages

Up until now we have assumed that when you issue a command to the
DOS, it will execute that command without any errors. That would
be nice, but not too realistic. When DOS errors are encountered,
they will usually terminate the current command (and any program
that is running) and display a message. 	These messages are
slightly different than an Applesoft or Integer message. Apple-
soft errors are preceded by ??? and Integer errors are preceded by
***. DOS errors are not preceded by any special characters. All
of the DOS error messages and their code numbers are listed below.
(These numbers may be useful to more advanced programmers.)

Code 	 Message 	 Code Message

1 	LANGUAGE NOT AVAILABLE
2,3 	RANGE ERROR
4 	WRITE PROTECTED
5 	END OF DATA
6 	FILE NOT FOUND
7 	VOLUME MISMATCH
8 	I/O ERROR

	

9 	DISK FULL

	

10 	FILE LOCKED

	

11 	SYNTAX ERROR

	

12 	NO BUFFERS AVAILABLE

	

13 	FILE TYPE MISMATCH

	

14 	PROGRAM TOO LARGE

	

15 	NOT DIRECT COMMAND

OPERATION 6.15

LANGUAGE NOT AVAILABLE 	There are two types of Basic files. If
you attempt to access a file without the proper Basic in your
computer, this error will result. The DOS commands FP and INT can
be used to change the language available in your computer.
Section 6.5.17 describes these commands.

RANGE ERROR This error occurs when a command parameter is either
too large or too small. 	The

Parameter

proper ranges

Letter

for

Min

1
1
0

each parameter are:

Max

7
2

254

Slot
Drive
Volume

S
D
V

Byte B 0 32K
Relative Field R 0 32K
Absolute Field R 0 32K

Record Length L 1 32K
Record Number R 0 32K

Starting Address A 0 64K
Number of Bytes L 1 32K

Command Min Max

PR# 	 0 	7
IN# 	 0 	7
MAXFILES 	 1 	16

32K is defined as 32,767
64K is defined as 65,535

All DOS parameters must fall into the range of 0 to 65,535. If a
nuumber is outside this range, a DOS SYNTAX ERROR will result.

WRITE PROTECTED 	This error occurs when the DOS attempts to write
to a drive that has the diskette write protect notch covered. See
Section 3, Familiarization, for more information.

END OF DATA 	This error can only occur when a program is reading
a Text File. 	For sequential text files, this error means the
program has read (using GET or INPUT) past the last character in
the file, the B (byte) parameter has specified a byte beyond the
last character stored in the file, or the R parameter for a
POSITION command has positioned past the last field in the file.

With Random-Access Files, this error can mean one of two condi-
tions. First, the DOS is attempting to read (with GET or INPUT) a
portion of a record which has never been written. This can happen
by issuing too many GET or INPUT commands for a specific record or
by using the B parameter with a value greater than the number of
characters that have been stored in the record.

Second, the DOS is attempting to read a record beyond the end of
the file. 	This can occur by specifying an R parameter with a
value that moves the record pointer past the last record in the
file.

Finally, this error will occur if the R parameter with the EXEC
command specifies the second field past the end of the file.

6.16 OPERATION

FILE NOT FOUND 	This error is caused by attempting to access a
specific file and that file is not on the addressed diskette. The
commands SAVE, BSAVE, INIT, and OPEN can create files and, there-
fore, will never respond with a FILE NOT FOUND error.

VOLUME MISMATCH 	If a DOS command specifies a non-zero V param-
eter and the Volume Number of the addressed diskette is not the
same as the V parameter, a VOLUME MISMATCH occurs.

I/O ERROR 	This is a message from the RWTS that indicates the
last attempted data transfer between the computer and the disk
drive was in error. 	This can occur because the RWTS was un-
successful in locating the proper address field or because the
internal check characters for a data sector were incorrect for
that data sector.

DISK FULL 	Any DOS command that adds information to the diskette
can encounter this error. 	This error occurs when the DOS File
Manager needs another sector for a file and there are no more sec-
tors left on the diskettes. When this error occurs, the file
which needed the next sector is incomplete and the operator must
make room on this (or another) diskette to save all of the
information.

FILE LOCKED 	Attempting to Delete or Write to a file which is
locked will result in a FILE LOCKED message.

SYNTAX ERROR 	This error occurs when the DOS encounters a DOS
command with a bad file name, a bad parameter symbol, a missing
mandatory parameter, or a missing or incorrect separator.

NO BUFFERS AVAILABLE 	This error occurs when a program is using
Text Files and the program attempts to OPEN more files than the
MAXFILES command has allocated. Upon booting, the DOS defaults to
three open file buffers. The MAXFILES command is used to change
the number of available OPEN files. 	Section 6.5.17 describes
MAXFILES.

FILE TYPE MISMATCH 	This error occurs when a DOS command attempts
to use a file whose file type does not agree with the command.
Section 6.5.3, entitled "File Types," describes which file types
can be used with each command.

PROGRAM TOO LARGE 	As the name implies, this error occurs when
the DOS is attempting to load a program into memory and finds
insufficient memory available. Usually this is caused by trying
to load a 48K program on a 32K computer. It can also be caused by
the operator or a program leaving HIMEM set too low. FP or INT
(see Section 6.5.17) will reset HIMEM.

NOT DIRECT COMMAND 	This error occurs when the operator attempts
to use a Text File command (OPEN, READ, WRITE, APPEND, or POSI-
TION) in the immediate execution mode.

6.5.8 Program File Commands

So far we have discussed the following DOS commands:

CATALOG Ss,Dd,Vv
DELETE X,Ss,Dd,Vv
LOCK 	X,Ss,Dd,Vv
UNLOCK X,Ss,Dd,Vv
RENAME X,Y,Ss,Dd,Vv

VERIFY
INIT
SAVE
LOAD
RUN

X,Ss,Dd,Vv
X,Ss,Dd,Vv
X,Ss,Dd,Vv
X,Ss,Dd,Vv
X,Ss,Dd,Vv

CHAIN
BSAVE
BLOAD
BRUN

X,Ss,Dd,Vv
X,Aa,L1,Ss,Dd,Vv
X,Aa,Ss,Dd,Vv
X,Aa,Ss,Dd,Vv

OPERATION 6.17

where X is always the file name; S, D, and V are the optional
Slot, Drive, and Volume Numbers; and Y is the new file name for a
RENAME DOS command. A is the starting address parameter associ-
ated with Binary File commands, and L is the length parameter
associated with the BSAVE command.

At this point you should understand the purpose for each of these
commands. As you can see, these commands always take the form of:
command word, file name, and the optional Slot, Drive, and Volume
Number parameters. 	All of these commands will start a disk
access, even if that just involves reading the Directory. 	This
means that you could encounter almost any of the DOS errors de-
scribed in the previous section. With the exception of I/O ERROR,
these DOS errors should not alarm you. They are merely messages
from the DOS that it cannot complete your command. This may be
because you entered something incorrectly or because one of the
built-in checks in the DOS is trying to prevent you from making a
mistake. In either case, you should stop for a minute and evalu-
ate the DOS error message in respect to the command you have just
issued. 	In almost all cases it should be obvious how you can
correct the error.

To become familiar with these DOS commands, you must start using
them. We have presented all of the information you need to know
about these commands; now it's up to you to sit down at your
computer and try each of the commands, one at a time. Don't be
alarmed if you encounter several DOS errors; these should be
viewed as warnings, not catastrophies.

The next section is intended to lead you through a few examples of
how to use Apple DOS. 	We call it a lesson "guide" because we
expect you to do most of the work.

6.5.9 Your Program Command Lesson Guide

This section will take you through some "hands-on" experience with
your new disks and DOS 3.3. There are some very important pre-
requisites for this course. 	You must have already read through
the Apple II Reference Manual and the Basic Programming Reference
Manual. If you have not read these manuals you are trying to go
too fast. Your disk drives are considered peripheral devices and
are an extension of your computer. 	Trying to learn to use a
peripheral device before you know how to operate the computer is
putting "the cart before the horse."

If you can turn on your computer, get into Basic, write a simple
program, list that program, and run it, you are ready to start
learning how to use DOS. If you don't feel you can handle these
steps, you should go back to the Apple II Reference Manual and the
Basic Programming Reference Manual.

The first thing we must do to get started is to get the DOS loaded
into the computer. Section 6.5.1 explained how to Boot DOS. If
you have a problem, a reveiw of Section 4 on installation may
solve it.

In the following steps you will be asked to WRITE A PROGRAM.
Since we are concerned with the operation of the DOS, rather than
the Basic, these programs will be very simple. For instance, if
Step 3 requests that you WRITE PRG7 we expect you to enter:

6.18 OPERATION

NEW
10 PRINT "PROGRAM 7"
20 END
LIST
RUN

This will clear memory (NEW) and create a program that prints the
word PROGRAM 7. LIST will list the program for you to check it,
and RUN will execute the program to make sure it is operational.

If another step requests you WRITE PRG2, the only difference is
the PRINT statement. You should change it to:

10 PRINT "PROGRAM 2"

This section is a lesson "guide." By that we mean we expect you
to take your time and think about each step. We expect you may
encounter a few DOS errors. This is a normal part of using your
computer; don't be alarmed. Section 6.5.7 describes each of the
DOS errors and the probable cause for that error.

With each of the following steps, we have included an action or a
DOS command. The DOS commands are enclosed in quotation marks.
These commands should be typed just as they are shown, but without
the quotation marks.

The actions are self-explanatory. As we have already stated, the
action WRITE PRG1 tells you to write a simple program, list it,
and run it.

STEP 1: 	Boot the DOS

This is explained in Section 6.5.1. After DOS is
Booted, you should have the standard Basic prompt
character.

STEP 2: 	"CATALOG"

This DOS command will list the names of the files on
the diskette. If you get the message SYNTAX ERROR
preceded by *** or ???, you do not have DOS con-
nected to Basic. You must re-Boot and try again.

STEP 3: 	WRITE PRG1

We now want you to write your first program. Remem-
ber the proper sequence is:

NEW
10 PRINT "PROGRAM 1"
20 END
LIST
RUN

STEP 4: 	"INIT PRGI,V1"

CAUTION: Make sure you removed your DOS diskette
and inserted a blank diskette. You should go back
and review the description of the INIT command.

STEP 5: 	"CATALOG"

This diskette should be Volume 1, with PRG1 as the
only file.

OPERATION 6.19

STEP 6: 	WRITE PRG2

Again: 	NEW
10 PRINT "PROGRAM 2"
20 END
LIST
RUN

STEP 7: 	"SAVE PRG2"

This command will move your second program to the
file named PRG2.

STEP 8: 	"CATALOG"

The diskette should now have 2 files: 	PRG1 and
PRG2.

STEP 9: 	"LOAD PRG1"

Use LIST to verify PRG1 loaded.

STEP 10: 	"RUN PRG2"

The message PROGRAM 2 will verify that DOS has
loaded a new program and executed it.

STEP 11: 	WRITE PRG3

STEP 12: 	"SAVE PRG3"

STEP 13: 	"CATALOG"

You now have three files on the diskette: 	PRG1,
PRG2, and PRG3.

STEP 14: 	"DELETE PRG2"

STEP 15: 	"CATALOG"

Now you should have only two files left: PRG1 and
PRG3.

STEP 16: 	"LOCK PRG3"

STEP 17: 	"DELETE PRG3"

You will get the DOS Error message FILE LOCKED.

STEP 18: 	"RUN PRG3"

This command will execute, indicating you can LOAD
or RUN a locked file.

STEP 19: 	"SAVE PRG3"

You will get the DOS Error FILE LOCKED.

STEP 20: 	"CATALOG"

Notice PRG3 has the locked indicator set.

STEP 21: 	"UNLOCK PRG3"

6.20 OPERATION

STEP 22: 	"CATALOG"

Notice PRG3 is now unlocked.

STEP 23: 	"RENAME PRG3,PRG4"

STEP 24: 	"CATALOG"

You still have only two files, but they are now PRG1
and PRG4.

STEP 25: 	"VERIFY PRG4"

STEP 26: 	"LOAD NO PROGRAM"

You will get the DOS Error message FILE NOT FOUND.
We never had a file NO PROGRAM.

STEP 27: 	"DELETE PRG1"

STEP 28: 	"IN#6"

This will re-Boot DOS. 	But because you deleted
PRG1, after DOS Boots, it will display FILE NOT
FOUND. You should not delete the greeting program.

STEP 29: 	"RENAME PRG4,PRG1"

We now have a greeting program called PRG1.

STEP 30: 	"CATALOG"

Notice we still have only 1 file: PRG1.

STEP 31: 	"LOAD PRG1,V200"

You will get the DOS Error message VOLUME MISMATCH.
Remember INIT made this Volume 1.

6.5.10 Using DOS Commands from Basic

So far we have introduced you to eleven DOS commands and have
showed you how to use these commands as direct commands. A direct
command is one which you issue from outside a program. There are
times when you want to issue a DOS command from inside a program.
To do this you use a PRINT statement with the following format:

50 PRINT D$;"CATALOG"

The number 50 is the program line number; and, as you know, this
can be any legal program line number. PRINT is a standard Basic
command. The character string D$; is the important operator in
this function, and we will have more to say about it shortly. The
actual DOS command is enclosed in quotes. This part of the com-
mand is the same as using DOS commands as direct commands. For
instance, a RUN command from Basic has the same format as a direct
RUN command:

60 PRINT D$;"RUN X,Ss,Dd,Vv"

where X, S, D, and V are the normal command parameters.

OPERATION 6.21

The character string D$ is a single-character string of Control-D.
To create this string in Applesoft, you should use the following:

20 D$=CHR$(4):REM CHR$(4)IS A CTRL-D

The ASCII code for a CONTROL-D is a 4.

To create this string from Integer, you should type:

50 D$="":REM YOU CAN'T SEE THE CTRL-D

With this format you must put a Control-D between the quotes.
Control-D is input by holding down the Control key and pressing
the character D. 	Control characters do not display on your
monitor screen and, therefore, you won't see anything between the
quotes.

Special Note: Using the right arrow to copy
a Basic program line will erase the Control-D
character. 	The right arrow does not copy
control characters.

Now that we have made such a big deal out of this Control-D char-
acter, we hope you realize that it is a very important parameter.
The Control-D informs the DOS that this PRINT command is not to go
to the monitor screen but is to be executed as a DOS command. If
the Control-D is omitted, the DOS will not execute the command.
Instead, the command is treated as a message and PRINTed on the
monitor screen.

Let's assume you want your greeting program to do a CATALOG right
after you Boot. 	The following program will work with either
Integer or Applesoft.

10 D$="":REM DON'T FORGET THE CTRL-D
20 PRINT "THIS DISKETTE WAS CREATED ON 1/1/81"
30 PRINT D$;"CATALOG"
40 END

Some final cautions about DOS commands from within a program. You
can only put one DOS command on each program line. The previous
PRINT command must have ended with a RETURN. 	This means you
cannot use the semicolon (;) option to terminate a PRINT statement
just before a PRINT statement with a DOS command.

6.5.11 Introduction to Text Files

One of the more attractive features of DOS is its ability to store
and retrieve information other than programs. We have already
defined the "File Types" that hold programs (A = Applesoft; I =
Integer; and B = Binary Files). 	The file type that holds non-
program information is called a Text File. A Text File can have
any ASCII character, including all upper and lower case letters,
numbers, special characters, and control characters. 	This means
if the keyboard or a Basic program can generate the character,
then it can be stored in a Text File. 	However, DOS will only
allow you to access a Text File from inside a Basic program. This
means there are no DOS commands that will allow you to put char-
acters directly from the keyboard into a Text File or take charac-
ters directly from a Text File and put them on the monitor. You
must write a Basic program to move characters into or out of a
Text File.

6.22 OPERATION

The DOS commands that control Text Files are:

OPEN 	 WRITE
CLOSE 	 POSITION
READ 	 APPEND

Suppose you wanted to store a list of names, addresses, and
telephone numbers in a file called NAMES. 	We know we have to
write a program to do this. 	Your Basic Programming Manual
(Integer or Applesofty explains how to get characters from the
keyboard and store them in string variables. In this manner we
could collect one name, address, and telephone number in three
string variables and have them ready to store in our Text File.
The normal sequence to store these strings in a Text File is to
OPEN a file called NAMES; then issue the WRITE command specifying
the file NAMES; next, move the three strings containing the name,
address, and telephone number to the file using a standard PRINT
statement; and finally when you are done, CLOSE the file.

Now let's review each of these steps in more detail. 	The first
step, OPEN, does exactly that. As we explained in the DOS File
Manager overview, all information stored on the diskette must be
stored in a file. The OPEN command informs the File Manager that
we are about to use a Text File; in this case called NAMES. 	If
the file does not exist, the File Manager will create the new file
and allocate a Track and Sector List. If the file does exist, the
File Manager will get the pointers to the existing Track and
Sector List. 	In either case, the File Manager is now ready to
start transferring data into, or in some cases out of, the OPENed
file.

The second step, WRITE, informs the DOS that we intend to transfer
data to the Text File. This command does not transfer any data to
the Text File but merely informs the DOS that the data from the
next PRINT statement should be placed in the Text File and not on
the monitor screen. 	We will have more to say about the PRINT
statement shortly. The DOS supports more than one OPEN Text File
at a time. In fact, DOS supports up to 16 OPEN Text Files.

Since the File Manager must simultaneously support all of these
OPEN files, it must be informed which file is currently active.
Therefore, the WRITE command is used to specify both the data
direction and the current file.

The PRINT statement is a standard Basic command. As you remember
from the Basic Reference Manuals, this command allows you to
display character strings, numeric constants, or variables on the
computer monitor. When you are using Text Files, this command has
a new function. By issuing a DOS WRITE command just before the
PRINT statement, the output data from the PRINT statement is
placed into a Text File instead of being displayed on the monitor.
This means anything you could output to the monitor can instead be
placed into a Text File and saved for future reference.

Finally, in our brief example we ended up with a DOS CLOSE com-
mand. This command informs the File Manager that the program is
finished using this Text File. After receiving the CLOSE command,
the File Manager will update the file's Track and Sector List
sector. 	If you fail to CLOSE a file, the Track and Sector List
will not be updated and some of the information you have just
stored in the file will be lost.

This brief example has introduced you to the concept of writing
data into a Text File. 	Now let's look at reading the data back

OPERATION 6.23

out of the Text File. You must first OPEN the Text File and then
issue the DOS command READ, followed by a Basic GET or INPUT
statement; and, finally, when you are through, CLOSE the Text
File.

In Step 1, the OPEN command performs the same function when read-
ing a file as when you are writing. It informs the File Manager
to get the pointers for this Text File. As we explained with the
WRITE operation, DOS supports up to 16 OPEN Text Files. In Step
2, the DOS READ command informs the DOS that the next GET or INPUT
statement is directed at a Text File -- not the keyboard. (More
on the GET or INPUT statement in the next paragraph.) Like the
DOS WRITE command, the READ command performs two functions.
First, it temporarily redirects the Basic GET and INPUT statements
to access a Text File for its data instead of the keyboard.
Second, it informs the DOS which of the 16 possible Text Files is
the currently active file.

The Basic Program Reference Manuals explained the operation of the
GET and INPUT statements as they pertain to the keyboard. When
you are using a Text File and precede a GET or INPUT statement
with a DOS READ command, the Text File replaces the keyboard as
the source for the data.

Whenever you are using a Text File, you must CLOSE the file when
you are finished.

Since these commands must be issued from within a Basic program,
the program line will always have the format:

100 PRINT D$;"OPEN X,S6,D1,V254"

The line number (100) may be any valid Basic program line number.
The PRINT statement immediately followed by a Control-D informs
the DOS that this is a DOS command, not a message. The actual DOS
command is then enclosed in quotes. The parameters for Text File
commands are slightly different than the DOS Housekeeping commands
we previously explained. 	In the following sections, we will
explicitly define which parameters may be used with each command.
Finally, since these are DOS commands, you cannot put more than
one command per line.

6.5.12 Sequential and Random-Access Text Files

In the previous section we explained how to store a small amount
of information in a Text File. The real value of a Text File is
its ability to store a large amount of data. When you are hand-
ling large amounts of data, the organization of the data becomes
very important. Data are organized into fields and records. We
call a field a group of characters ending with a carriage return.
We call a record a group of fields. In the last section we gave
an example of a Text File containing a name, address, and tele-
phone number. If we were to further define that example, we could
say we had one record with three fields: a name field, an address
field, and a telephone number field.

We could then add more records to the file, where each record has
its own name, address, and telephone number fields. As we add
more records we need to understand how these records are stored in
a Text File. 	There are two different ways the records can be
stored: one is called Sequential and the other is Random-Access.
A Sequential File is the simplest and most efficient type in terms
of storage. With this storage method, each character is placed in

6.24 OPERATION

the next available location in the file. This means there is no
unused space in the file. When you want to find something in this
file you usually start at the beginning and search "sequentially"
until you find it. This type of file is very similar to a tape
file.

The second type, Random-Access File, is capable of maintaining
more individuality between records. 	With this file type, the
program must define the exact length of a record. 	Usually the
defined record length is longer than the actual space needed to
store all of the fields. This leaves some unused space between
records. Going back to our example of name, address, and tele-
phone number, we can set up a Random-Access File to illustrate
this point. Let's assume we allocate 30 characters for the name,
50 characters for the address, and 10 characters for the telephone
number. 	This means all of the records in our file are a fixed
length of 90 characters each (30+50+10=90). Within each of these
records we can have three variable length fields called name,
address, and telephone number. 	For instance, we could have a
record with a 15-character name field, a 34-character address
field, and a 10-character telephone number field, for a total of
59 characters. The remaining 31 characters for this record would
not be used; however, DOS would leave room for these 31 characters
in the record.

At this point it is probably not obvious why there are two types
of Text Files. 	We do know that if we had 100 records with an
average of 53 characters each, we could put them in a Sequential
Text File. This file would have 5300 bytes (100x53=5300). If we
took the same 100 records and put them in a Random-Access File and
used a file length longer than the longest record, say 65 charac-
ters, we would have a 6500-byte file (100x65=6500). We also know
that the Random-Access File would have some unused space between
most of the 100 records in the file.

From this example we see that Sequential Files can store the same
amount of information in less space. However, if we want to add
one character to a Sequential File, we could have a pretty big
task on our hands. 	With a Sequential File, we don't have any
unused space; so to make room for our new character, we have to
move all of the characters over one space. On the other hand,
with a Random-Access File, we left some unused space between
records. 	If we add a character to a Random-Access File, the
change will affect only one record and the effects of the change
won't ripple down through all of the rest of the records.

Now, we know that there are two types of Text Files -- Sequential
and Random-Access. Even if we could decide which of these two
types is best suited for a given application, we would still be at
a loss as to how to create and manipulate these files. When we
discussed Program Files, we did not teach you how to write a Basic
program. DOS merely provides you with a way to store or retrieve
the program once you have created it. The same thing is true of
Text Files. You, as a programmer, must decide what you want to
store in a Text File and how you want to organize the data. Once
you have made these decisions, the DOS provides you with a few
simple commands that permit you to store and retrieve information
from Text Files.

6.5.13 Getting Started with Text Files

Before we get down to the details of Sequential and Random-Access
Files, let's discuss a general approach toward using a Text File.

OPERATION 6.25

When you were learning the language Basic, there were two things
you had to learn to deal with: first was Approach and second was
Implementation. The Approach requires analyzing the given data,
the variables, and the objectives and devising a method to solve a
problem. 	Implementation is then taking this "approach" and se-
lecting the proper sequence of Basic statements to achieve the
desired results.

We must follow the same steps when using a Text File. 	In the
Approach phase, we must take the time to decide what information
we want to put in the file. 	It is best if this is done with
pencil and paper and not just in your head. Going back to our
name, address, and telephone number example, we might develop the
following list:

NAME
	

FIRST
MIDDLE
LAST

ADDRESS

TELEPHONE NUMBER

STREET NUMBER
STREET NAME
APARTMENT, SUITE, UNIT
CITY
STATE
COUNTY
ZIP CODE

AREA CODE
NUMBER

This is a very general example, and anyone can relate to a file
with names, addresses, and telephone numbers. But, from your own
experience, is this enough information? What else would you want
in each record?

Each person approaching this problem may have some other unique
information which only pertains to their circumstances. 	This
points out the importance of the Approach phase. It is impossible
to begin to write a Basic program to create and manipulate a Text
File if you don't know what you are going to put in that file.

Once you know "what" is in the file, the second step is to organ-
ize that data. This could mean that you would take the informa-
tion and split it up into several files. Then the file (or files)
must be organized into fields and records. You must decide the
order of the fields. You should give some thought to the length
of the fields and records. How many records are going to be in
the file? How big is the total file? Do you need to access and
update individual records? There are as many questions and
details in the Approach phase as there are applications. Only you
as a programmer, with a specific problem in mind, can organize the
Text Files.

The second step is Implementation. This step requires the ability
to write a Basic program (or programs) that will create and use
the Text Files. This is a key question: Do you know how to write
a Basic program? If the answer is no, then you won't be able to
use the DOS Text File commands.

Don't be discouraged. Basic is not that hard to learn. But until
you can collect information from the keyboard, process it, and
display it on the monitor, you are not ready to jump into the DOS
Text File commands.

6.26 OPERATION

If you feel that, with the aid of your Basic Reference Manuals,
you can get information from the keyboard and display it on the
monitor, then you are ready to use the DOS Text File commands.

Using the Text Files is as simple as the GET, INPUT, and PRINT
statements in Basic. In fact, using these statements is the only
way you can access a Text File. There is, however, another factor
which makes things a bit more complicated. The factor is called
"Position." 	As you know, a Text File is a big collection of
characters, grouped into fields which are in turn grouped into
records. We have talked about two ways to organize these char-
acters, fields, and records; the first is called Sequential and
the second is called Random-Access. Positioning is the method
whereby we can direct a GET, INPUT, or PRINT statement to a
specific point in the Text File. Think about this for a second.
This is a very important idea.

Let's go back to our example of name, address, and telephone
number and assume we have already created a file with 100 records.
Let's further assume we want to examine the 73rd record of that
file. One way to get to the 73rd record is to start at the begin-
ning and let the Basic program count its way through the records.
This will work just fine; but it requires a little "smarter" Basic
program, and it probably won't be very fast, especially if you
start at the beginning each time you want the next record.

The DOS Text File commands have a positioning capability, and it
is this positioning capability which is one of the fundamental
differences between Sequential and Random-Access files. To
discuss positioning, we have to introduce the term "position-in-
the-file pointer."

All GET, INPUT, or PRINT statements initiate data transfers start-
ing at the position-in-the-file pointer. For instance, let's say
we have a 10,000-byte file and the position-in-the-file pointer is
located at the 3456th byte. A GET statement would fetch this byte
from the file and increment the position-in-the-file pointer. An
INPUT statement would fetch the next n consecutive bytes until it
encountered a Return character. 	For each character transferred
from the file, the position-in-the-file pointer would be incre-
mented by one. A PRINT statement will place its output data into
the file starting at the position-in-the-file pointer. For each
character placed in the file, the position-in-the-file pointer is
incremented by one.

The DOS POSITION command and positioning parameters allow a pro-
gram to automatically move the position-in-the-file pointer past
any number of characters without reading or writing to these
locations. 	The details for moving the position-in-the-file
pointer differ for Sequential and Random-Access Files. 	These
details will be discussed in the next two sections.

6.5.14 Sequential Files

By now you should know the organization of a Sequential File.
This section will take you through the details of using the six
commands associated with these files. 	Section 6.5.15 will take
you through Random-Access Files. Although both file types have
commands with the same names, the operation and parameters for
these commands are dependent on the type of file being accessed.
It is important that you know the differences between the com-
mands, especially if you intend to use both file types.

OPERATION 6.27

In this section we will introduce a new term called "Memory Buffer
Work Area." For each OPEN file, the DOS must have a 595-byte work
area. 256 bytes are used to buffer the Track and Sector List for
the file. Another 256 bytes are used to buffer one data sector
for the file. The remaining 83 bytes are used as pointers and
scratch work areas by the File Manager. The DOS command MAXFILES
(this command will be discussed in Section 6.5.17) is used to
change the number of 595-byte buffers available to the File Mana-
ger. DOS normally allocates three 595-byte buffers, which means
only three files may be opened simultaneously.

The six commands discussed in this section are:

OPEN 	 X,Ss,Dd,Vv
CLOSE 	 X
READ 	 X,Bb
WRITE 	 X,Bb
POSITION 	X,Rf
APPEND 	X,Ss,Dd,Vv

OPEN X,Ss,Dd,Vv 	This command informs the File Manager to prepare
the Text File X for processing. The subsequent processing may be
either reading or writing. The File Manager searches the diskette
directory for the file X, and if it doesn't find X, it creates a
file called X. The File Manager then allocates a 595-byte memory
buffer work area for the file. If the file already exists, this
command will set up the memory buffer work area. If the file was
already OPEN, this command CLOSES the file and then reOPENs the
file. The OPEN command will always move the position-in-the-file
pointer to the first byte of the file.

CLOSE X This DOS command is used to inform the File Manager that
the Basic program has completed transferring data to or from the
file X. The File Manager then moves certain information from the
595-byte memory buffer work area to the diskette. 	If this in-
formation is not moved from the memory buffer work area to the
diskette, it will be lost.

The CLOSE command has several unique features. First, it does not
need to have a file name. If the DOS encounters a CLOSE comma
without a file name, it CLOSEs all of the OPEN files. Second, the
CLOSE command does not require a Slot, Drive, or Volume Number
parameter. Using the S, D, or V parameters with the CLOSE command
will cause a SYNTAX ERROR. Third, this command can be issued as a
direct command; in other words, outside a Basic program. 	If a
Basic program terminates with an error, the Text Files for that
program may still be OPEN. By issuing the DOS command CLOSE, the
File Manager will move the information in the memory buffer work
areas to the diskette.

READ X,Bb 	This DOS command is used by a Basic program to re-
trieve information from the text file X. 	The text file X must
already be OPENed. This command must have a file name and can
have an optional B parameter. (The B parameter will be discussed
in a later paragraph.) This command does not use the S, D, or V
parameters, and assigning one of these parameters will cause a
SYNTAX ERROR. This command causes the Basic GET and INPUT state-
ments to retrieve information from the "current" Text File instead
of the keyboard. 	Since DOS supports up to 16 simultaneously
OPENed Text Files, the "current" Text File is defined as the file
specified by the READ command immediately preceding the GET or
INPUT statement.

6.28 OPERATION

Once a READ command has been issued, it will remain active until
another DOS command is issued. 	This means that after a READ
command, all GET or INPUT statements are directed to the Text File
until the READ command is terminated by another DOS command. (Any
DOS command except READ will terminate the READ operation.) 	A
PRINT statement with just a Control-D is considered a null DOS
command and will terminate a READ or WRITE operation.

The B parameter is used to move the position-in-the-file pointer
forward from its current position. 	The B value is a relative
displacement from 0 to 32,767 bytes. 	The position-in-the-file
pointer can only be moved forward in the file. The only way to
move the pointer backward in the file is to reOPEN the file. This
will reposition the position-in-the-file pointer to the beginning
of the file. Use of the B parameter is an advanced programming
technique. 	Unless you have had considerable experience with
programming disk files, you should not be concerned with this
parameter. For more information on the use of the B parameter,
see the POSITION command description.

WRITE X,Bb 	This command is used to redirect the data from a
PRINT statement into a Text File. The file X must OPEN before the
DOS encounters a WRITE command. The DOS parameters S, D, and V
cannot be used with this command, or a DOS SYNTAX ERROR will
result. Once the WRITE command is issued, it will remain active
until a new DOS command is encountered. This means that the data
from all of the PRINT statements, following a DOS WRITE command,
will be placed into the active Text File until any other DOS
command is issued.

The WRITE command can have an optional B parameter just like the
READ command. 	The description of the B parameter with the READ
and POSITION commands also pertains to the WRITE command.

POSITION X,Rr 	This command is used to move the position-in-the-
file pointer forward r fields. 	The definition of a field is a
group of characters terminated by a Return character. When using
sequential files, the B parameter for READ or WRITE and the R
parameter for the POSITION command always position forward and are
relative to the current position-in-the-file.

When the DOS encounters a POSITION command for a Sequential File,
the File Manager will scan forward in the file, starting at the
current position-in-the-filehile counting Return characters.
When the File Manager has counted the number of Return characters
specified by the R parameter, the position-in-the-file pointer
will be one byte past the last Return character.

The R parameter must be in the range of 0 to 32,767. 	If the R
value is 0, the subsequent READ or WRITE command begins in the
current field.

The POSITION command, like any other DOS command, will terminate
the current READ or WRITE command. Therefore, POSITION commands
must be issued before a READ or WRITE command.

We have now introduced two positioning techniques for Sequential
Files. They are the B parameter with the READ or WRITE commands
and the R parameter with the POSITION command. (These two parame-
ters, R and B, are also used with Random-Access Files, but in a
different way.)

The trick to using the positioning capabilities is knowing what
byte or record contains the information you want. This gets back

OPERATION 6.29

to the organization of data in the file. 	If you remember, we
stressed this point quite heavily in the last section.

With Sequential Files, the R and B parameters are best used in
conjunction with each other. 	The R parameter can move the
position-in-the-file pointer to the start of a specific field.
Then the B parameter can move the pointer to a specific byte in
that field.

APPEND X,Ss,Dd,Vv 	This command is almost identical to the OPEN
command. 	The major difference is that the position-in-the-file
pointer is placed at the end of the file instead of the beginning.
The purpose of this command is to provide an easy way to add
characters to the end of a Sequential Text File. 	Normally, an
APPEND command is immediately followed by a WRITE command and then
some PRINT statements to add characters to the file. A READ or
POSITION command after an APPEND command will always cause an END
OF DATA DOS error. You should never issue an OPEN command immedi-
ately after an APPEND command. This defeats the purpose of the
APPEND command because the OPEN command resets the position-in-
the-file pointer back to the beginning of the file.

6.5.15 Random-Access Files

In the previous section we discussed Sequential Text Files and the
six commands used to process those files. 	This section will
present the four DOS commands that control Random-Access Files.
These four commands are:

OPEN 	X,L1,Ss,Dd,Vv
CLOSE 	X
READ 	X,Rr,Bb
WRITE 	X,Rr,Bb

As you can see, these commands have the same names as the Sequen-
tial File commands. However, these commands have different param-
eters and you should not confuse the two.

The major difference between Sequential and Random-Access- Files is
that Random-Access Files have fixed-length records. 	The advan-
tages of fixed-length records are two-fold. First, it permits a
greater degree of individuality between records; and second, it
provides a fast and easy way to retrieve information from the
file.

To understand why Random-Access Files have these advantages, we
must take a closer look at a Random-Access record. We know that
each record in the file has the same length. Usually the pro-
grammer selects a record length longer than the number of char-
acters he would expect to put in the record. 	This means each
record will have a built-in pad between the last character stored
in the record and the actual end of the record. This "pad" comes
in very handy when we go back to update the contents of a specific
record. When we add or delete characters from this record, we
will affect only the contents of the one record. Think of this in
contrast to a Sequential File where adding or deleting a character
will alter the position of all the rest of the characters in the
file. This is what we mean by the individuality of the records.

Since each record in the file is the same length, it is easy to
compute the starting byte for any record in the file. This means
positioning to a specific record is much easier and faster than
with a Sequential File.

6.30 OPERATION

Now that we have pointed out these advantages, we know that there
must be some disadvantages, or there wouldn't be two types of
files. The first disadvantage is space. Since all of the char-
acters in each record are not used, Random-Access Files require
more storage than Sequential Files. A second disadvantage is that
not all types of information can be divided in individual groups.
For instance, a document cannot be broken up into convenient
fixed-length records. This type of information is best suited for
Sequential Files.

We have mentioned the unused space at the end of each record
several times, but we have never explained what happens if a
program tries to read these unused characters. When a record is
created, the DOS fills the unused characters with Nulls. 	(Null
characters are ASCII 00.) 	Nulls have a special meaning to the
DOS; they signify the END OF DATA within a record. For example,
if we have a 100-byte fixed-length record with three fields that
use a total of 75 characters, we will have 25 Nulls stored at the
end of the record. When a Basic program reads this record, it can
INPUT the three fields with no problems. If for some reason the
program attempts to INPUT a fourth field, the DOS File Manager
will encounter a Null character as the first character of this
field. This Null character signals the DOS that this area of the
record has never been written. The DOS will respond with the DOS
Error END OF DATA instead of transferring the Null characters in
response to the INPUT statement.

We will now present the four Random-Access DOS commands.

OPEN X,L1,Ss,Dd,Vv 	This command performs the same functions as
the Sequential File OPEN command. 	There is a very important
difference, however; the L parameter is mandatory for a Random-
Access File. The L parameter defines the record length. It must
be in the range of 1 to 32,767. Once you have defined the length
of a Random-Access record, you cannot change it. 	Each time you
OPEN the file you must specify the same record length. There is
no way to determine the record length from Basic and, therefore,
it is up to the programmer to keep track of this number.

Both OPEN commands have the following similarities. 	First, the
File Manager will check the directory to see if this file exists
and if not, it will create the file. Second, the File Manager
will allocate a 595-byte memory buffer work area. Third, the File
Manager will pull the files Track and Sector List. Fourth, if the
file is already OPEN, DOS will CLOSE the file and then reOPEN it.
Finally, OPEN always sets the position of the file pointer to the
first byte of the file.

CLOSE X 	This command is identical to the Sequential File CLOSE
command. In review, the CLOSE command is used to inform the DOS
that a program is finished accessing a particular file (or files).
The DOS will then move the required information from the memory
buffer work area to the diskette. Once this information is stored
on the diskette, the DOS will de-allocate the 595-byte memory
buffer work area.

The CLOSE command can also be used as a direct command. This is
important, especially if a program is interrupted by a Control-C
or an Error and the Text Files are left OPEN. The CLOSE command
without a file name will close all of the OPEN files.

READ X,Rr,Bb 	This command is very similar to the Sequential File
READ command, with the major difference being the addition of the
R parameter. 	The R parameter is used to identify the specific

OPERATION 6.31

record to be used with the next GET or INPUT statement. With
Random-Access Files, the R parameter is an absolute pointer. For
example, if R specifies 5, this always means the 5th record in the
file. In contrast, with Sequential Files, R specifies a relative
forward position from the current position-in-the-file pointer.

The R parameter will move the position-in-the-file pointer to the
first character of the specified record. R must be in the range
of 0 to 32,767. If R is omitted, the DOS will default to RO which
moves the position-in-the-file pointer to the first character in
the file.

The function of the B parameter here is the same as the Sequential
File B parameter. In precedence, the DOS will first position to
the specified record (the r value) and then move the position-in-
the-file pointer forward b bytes. Subsequent GET or INPUT state-
ments will fetch their characters from this point in the file.

In review, the READ command must specify the file name (X), will
usually specify a record number (R), and can optionally specify a
byte displacement (B) forward from the first character of the
specified record. With the exception of these positioning capa-
bilities, the rest of the functions of the READ are identical to
the Sequential File READ command.

WRITE X,Rr,Bb 	This command is also very similar to its Sequen-
tial File counterpart. The major difference is again the addition
of the R parameter. 	The R and B parameters perform the same
functions with the WRITE command as we explained with the READ
command. The R parameter is used to specify a specific record.
The B parameter can then optionally move the position-in-the-file
pointer forward into the selected record. The WRITE command must
always specify a file name (X), will usually specify a record
number (R), and can optionally specify a byte displacement (B).
With the exception of the position parameters R and B, the rest of
the functions of the WRITE command are the same as the description
with the Sequential File WRITE command.

Some final notes on Random-Access files. You must always specify
an L parameter with the OPEN command for a Random-Access file.
This L parameter (record length) must always be the same each time
you reOPEN the file. The READ and WRITE commands should always
specify a record number (R). If the R parameter is omitted, the
DOS will default to the first record in the file. With Random-
Access Files, the R parameter is a specific record number, not a
relative displacement from the current position-in-the-file. 	If
the R parameter specifies a record number larger than the last
record in the file, the DOS will respond with an END OF DATA error
to the next GET or INPUT statement. Likewise, if a B parameter
positions past the last character in a record, the DOS will also
respond with an END OF DATA error to the next GET or INPUT state-
ments.

With these few "positioning" exceptions, the use of the OPEN,
CLOSE, READ, or WRITE commands is the same as we have described in
the previous sections.

6.5.16 EXEC Files

When we discussed Sequential Files we stated that you could put
anything that you can generate at the keyboard into a file.
Suppose we create a Text File that contains DOS commands, Basic
statements, or Monitor commands. Then what if we could direct the
computer to use this file as the source for its input, instead of

6.32 OPERATION

using the keyboard. 	This means that we would have a Text File
that could control the computer. Well, DOS 3.3 does have this
feature and it's called an EXEC File. 	The file itself is a
Sequential Text File, but the information in the file is the DOS,
Monitor, and Basic commands that you would normally type at the
keyboard. This file is created from a Basic program just like any
other Sequential File. Once you have created an EXEC File, you
use the DOS command EXEC to run the computer.

This new command EXEC is a cross between a RUN command and the DOS
Text File commands, OPEN and READ. The format for the EXEC com-
mand is:

EXEC X,Ss,Dd,Vv

When DOS encounters an EXEC command, it OPENS the specified
Sequential File and READs the first sector of that file into the
595-byte memory buffer work area. DOS then redirects all of the
keyboard requests to this EXEC File. At this point, as far as the
computer is concerned, an operator is inputting information at the
keyboard.

For instance, an EXEC File could be used to modify a Basic pro-
gram. To do this you would normally LOAD the program, change the
appropriate Basic lines, and then SAVE the program. The following
example will change a program called CALC:

LOAD CALC
10 A=1024
25 C=A*B
RENAME CALC,OLDCALC
SAVE CALC

This EXEC File would LOAD the program CALC, then change lines 10
and 25 of that program. It would then RENAME the original CALC
program to OLDCALC and, finally, SAVE the modified version of the
program under the original name.

Notice that the commands in the Text File are in the same format
as you would "type" them at the keyboard. These commands are not
preceded by any special characters (such as Control-D) or enclosed
in quotes. In addition, the Text File commands do not occupy any
of the program memory space. The DOS uses the 595-byte memory
buffer work area to hold the EXEC File data. If the EXEC file is
larger than one sector, the DOS will automatically fetch the next
sector as it is needed. For this reason you should never remove
the diskette containing the EXEC File. Once the DOS has OPENed a
Text File, it uses the Track and Sector List it has stored in the
memory buffer work area to fetch the next sector. If you remove
the diskette containing the EXEC File and replace it with a new
diskette, DOS will blindly fetch the next sector from the new
diskette. This will usually be a disaster.

In summary, an EXEC File is merely a Sequential File. The data in
this Sequential File can be any valid computer commands that you
would normally enter at the keyboard. Once you have created the
file, you use the DOS command EXEC to begin executing the commands
you have stored in the file.

You can RUN programs from an EXEC file. While the program is
executing, the EXEC File remains OPEN and patiently waits for the
program to END. When the program has ended, the next command is
fetched from the EXEC File. A word of caution about running pro-
grams from an EXEC File -- once an EXEC File is OPEN, all keyboard

OPERATION 6.33

inputs will come from the EXEC File. This can be an advantage or
a disaster. If you have taken this into account, no problem; but
if you haven't, you could get some very strange results.

Suppose we have a program listing, line numbers and all, in a
Sequential File. 	(We will tell you how to do this in a minute.)
If we EXEC this file, the numbered program lines will be put into
the program memory. This can be very useful for adding commonly
used Basic subroutines to a new program. It can also be used to
convert from Integer to Applesoft, or vice-versa. You know that
not all of the Basic statements will directly convert, but it's
still better than rekeying the whole program.

To move a program, or a portion of a program, to a Text File, you
should add the following lines to the end of that program:

5000 D$="":REM DON'T FORGET CTRL-D
5010 PRINT D$;"OPEN LISTFILE"
5020 PRINT D$;"WRITE LISTFILE"
5030 POKE 33,30
5040 LIST 10,4999
5050 PRINT D$;"CLOSE"
5060 END

These few statements will OPEN a Sequential File (there is no L
parameter with OPEN, so it's Sequential) and redirect the computer
output data into the Text File. The LIST command would normally
put the program listing on the monitor, but in this case it will
go into the OPEN file, line numbers and all. Once the listing is
in a Sequential File, you can then EXEC this file to put the
information back into memory. The command

EXEC LISTFILE

will do just that. Since all of the lines in the EXEC File are
numbered, they will not be executed but merely put back into
memory.

To Basic, this appears as if an operator is entering a program at
the keyboard. This is a very useful example of an EXEC File and
as you begin to write larger Basic programs, this can save you
some time.

Some final notes on EXEC files. You cannot stop an EXEC file with
a Control-C. Only one EXEC File can be OPEN at a time. As soon
as you OPEN the second EXEC File, the remainder of the first EXEC
File will not be executed. If an EXEC File contains illegal DOS,
Monitor, or Basic commands, the error message SYNTAX ERROR is
generated and DOS will continue to execute the EXEC file. The
EXEC command can have an R positioning parameter. The R parameter
is interpreted in the same manner as would be with any Sequential
File. When EXEC OPENS the Text File, the position-in-the-file
pointer is placed at the first character in the file. The value
with the R parameter will then specify the number of the field in
the file where execution will begin.

6.5.17 DOS Access Commands

There are seven more DOS commands which we have not discussed.
They are:

MAXFILES 	NOMON 	 PR#
	

INT
MON 	 IN# 	 FP

6.34 OPERATION

These commands have their own unique functions and will be dis-
cussed separately.

MAXFILES 	When we discussed the Text File commands, we mentioned
that each open file needed a 595-byte memory buffer work area. We
mentioned that DOS supports up to 16 open files. If DOS provided
enough work area for all 16 files, it would have a total of 9520
bytes of buffer. 	Since most programs never have more than a
couple of open files, most of this space would be wasted. The
command MAXFILES is used to inform the DOS as to how many of these
buffers are needed. When you Boot DOS, there are three buffers
allocated. If you wish to change the number of buffers available,
you use the MAXFILES commands with the format:

MAXFILES N

where the N parameter must be from 1 to 16. You cannot change
MAXFILES with a program loaded into memory. This must be done
before you LOAD or RUN a program.

MON/NOMON 	These commands are primarily used when debugging a
program. They inform the DOS to display all of the commands and
all of the data going to or coming from a Text File. The format
for enabling this debug function is:

MON C,I,O

The parameters mean: C is for command, I for input from the disk,
and 0 for output to the disk. These parameters may be used in
conjunction with each other, or one at a time. To disable this
function, you use the command:

NOMON C,I,O

Again, the three parameters have the same meaning. After Booting
or Reset, the DOS defaults to NOMON C,I,O.

IN#/PR# 	From the Basic Programming Reference Manuals, you know
that these commands redirect the input and output for the com-
puter. 	Since DOS also redirects the input and output for the
computer (when you're using Text Files), these commands can cause
problems if they are not intercepted by DOS. When you are using
DOS, you can use these commands in immediate execution mode. This
means that typing IN#S or PR#S (where S is the slot number) while
in the command state causes no problems. However, from a Basic
program, these commands should be treated as DOS commands and
issued with:

10 PRINT D$;"IN#6"

where the D$ is a Control-D and, therefore, this becomes a DOS
command. The same format should be followed for the PR# command.

FP Ss,Dd 	This command can be used to switch from Integer Basic
to Applesoft without disturbing DOS. 	However, you must have
Applesoft available in one of three places: 	(1) in a ROM card,
(2) on the diskette in the selected slot and drive (or on the
default drive if you haven't specified the S or D parameters), or
(3) already loaded into your Language Card. If Applesoft is not
available, the DOS error message LANGUAGE NOT AVAILABLE will be
displayed.

The HELLO program on the DOS 3.3 System Master will check your
system to see if a Language Card is installed. If you have one,

OPERATION 6.35

this program will check to see which Basic language you have in
ROM and then load the other language into the Language Card. This
means your computer will then have both Basics available.

The DOS command FP will also clear memory and reset HIMEM.

INT 	This DOS command can be used to move from Applesoft to
Integer Basic. Unlike FP, this command will not access the disk
drive for the Integer Basic language. 	If you use the S and D
parameters with this command you will get a SYNTAX ERROR. This
command should only be used on Integer computers or computers with
Integer in the Language Card. The INT command will also clear
memory and reset HIMEM.

6.5.18 Text File Lesson Guide

When we completed the description of the DOS Housekeeping com-
mands, we presented a lesson guide to help you become familiar
with those commands. 	In this section we will present several
examples of programs which use Text Files. We hope that by
studying these examples, you will begin to feel comfortable with
Text Files.

Our first sample program will build a Sequential Text File. This
is a general purpose program and you can use it to build any
Sequential File, including an EXEC file.

To get started you should first Boot DOS. Next, type CATALOG to
be sure DOS is properly Booted. 	Before you begin to enter our
sample program be sure to type NEW to clear memory. To be sure
you have cleared memory, it is a good practice to type LIST. If
no Basic statements are displayed, you can be sure memory is
clear. Our sample program is 21 lines long and you can now enter
this program into memory.

MAKE FILE

5 DIM B$(100),C$(100)
10 D$="":REM DON'T FORGET CTRL-D
20 A$="":REM THIS IS A CTRL-A
30 CALL - 936
40 PRINT "THIS PROGRAM BUILDS A SEQUENTIAL"
50 PRINT "TEXT FILE. WHAT DO YOU WANT?"
60 PRINT "TO CALL THIS FILE?"
70 VTAB 10 : INPUT B$
80 PRINT D$;"OPEN";B$
90 CALL - 936
100 PRINT "PLEASE ENTER A FIELD FOR YOUR FILE."
110 PRINT "TO QUIT AND CLOSE THE FILE"
120 PRINT "PLEASE TYPE CONTROL-A."
130 VTAB 10 : INPUT C$
140 IF C$=A$ THEN 190
150 PRINT D$;"WRITE";B$
160 PRINT C$
170 PRINT D$
180 GOTO 90
190 PRINT D$;"CLOSE";B$
200 END

Once you have entered this program, you should SAVE it on the
disk. To do this you should type:

6.36 OPERATION

SAVE MAKEFILE

where we have used MAKEFILE as the name of our program.

Before we RUN MAKEFILE, you should review the program to make sure
you know what it will do.

Line 5 is for Integer programs only. With Integer Basic you must
tell the Apple the maximum length of any string you use.

Lines 10 and 20 define two character strings called D$ and A$.
These two strings are single-control character strings which will
be used by other parts of the program. Lines 30 through 60 clear
the screen and print a message. This message tells you what the
program will do and asks you for a file name. Line 70 positions
the monitor cursor and waits for you to enter the file name.

The input statement gets a file name from the keyboard and saves
that name in a string called B$. If you are a good typist you
might have named this string FILENAMES. For most of us B$ is much
more convenient.

Now that we know the name of the file, line 80 can OPEN the file.
This line is the standard format for a DOS command from inside a
program. The D$ informs the DOS that this is a command. We place
the OPEN inside quotes and then send the B$, which is the file
name. We have now opened a file with the operator-specified name.
Lines 90 through 120 output a second message requesting the opera-
tor to enter a field to be placed in the file. Line 130 inputs
this field into C$. 	Line 140 compares C$ to A$, which line 20
defined as a Control-A character. 	If C$ is a Control-A, this
means to terminate the program and execution goes to line 190,
which will CLOSE the file and END the program.

If C$ does not equal a Control-A, then C$ becomes part of the
file. Line 150 is a DOS WRITE command and line 160 moves CS into
the file. Line 170 is a null DOS command (a Control-D by itself)
which cancels the DOS WRITE command.

Finally, Line 180 will cause the program to loop back for another
field. The only way out of this loop is to input a Control-A.

It is now time to RUN the program. If the program is still in
memory you can type RUN; or if you want to reload the program from
the disk, you can type RUN MAKEFILE. The program will clear the
screen and ask you for a file name. Let's call this first file
TEST1. Type TEST1 and hit Return. Next, the program will clear
the screen and ask for a field to place into the file. You should
now type your name and hit Return. The program will clear the
screen and ask for another field. This time you can type your
address or telephone number and hit Return. Each time you enter a
line and hit Return, that field will be placed in the file. When
you have entered as many fields as you want, you can stop the
program by typing a Control-A immediately followed by a Return.
This will CLOSE the file and END the program.

We have now built a Sequential File and stored it on the diskette.
If you type CATALOG you should see your new file in the diskette
directory. Our next sample program will allow you to display a
Sequential File. We will call this program READFILE. With DOS
still Booted, you should clear memory (NEW and the LIST to be
sure) and enter this program.

OPERATION 6.37

READ FILE

5 DIM B$(100),C$(100)
10 D$="":REM DON'T FORGET THE CTRL-D
20 A$="":REM THIS IS A CONTROL-A
30 CALL - 936
40 PRINT "THIS PROGRAM WILL READ AND"
50 PRINT "DISPLAY A SEQUENTIAL FILE."
60 PRINT "WHAT IS THE FILE NAME?"
70 VTAB 10 : INPUT B$
80 PRINT D$;"OPEN";B$
90 CALL - 936
100 PRINT D$;"READ";B$
110 INPUT C$
120 PRINT D$
130 PRINT C$
140 VTAB 20
150 PRINT "TO READ THE NEXT FIELD"
160 PRINT "HIT RETURN. TO STOP THE"
170 PRINT "PROGRAM TYPE CONTROL-A."
180 INPUT E$
190 IF E$=A$ THEN 210
200 GOTO 90
210 PRINT D$;"CLOSE"
220 END

Once you have entered the program, it is a good idea to SAVE it on
the diskette. Before you RUN the file READFILE, let's review what
it does.

Line 5 is strictly for Integer Basic programs. Lines 10 and 20
define two character strings (D$ and A$) which are used later in
the program. Lines 30 through 60 clear the screen and output a
message which tells what the program does and asks for a file
name. Line 70 positions the cursor and waits for you to enter the
file name. 	The INPUT statement will store the file name in B$.
Line 80 can then OPEN the file. Line 90 will clear the monitor,
line 100 will issue the DOS READ command, and then line 110 can
READ a field from our file. The INPUT statement in line 110 is
preceded by a DOS READ command, so this input statement is direc-
ted to the Text File and not the keyboard.

We now have a field from our file in C$. Line 120 is a Null DOS
command and is used to cancel the DOS READ command. Line 130 is
used to display C$ on the monitor. This line accomplishes the
purpose of this program; that is, it displays the contents of a
Sequential File, one field at a time. Lines 140 through 170 print
a second message. This message requests that you hit Return to
display the next field of the file or type Control-A followed by a
Return to terminate the program. 	Line 180 gets the operator
response, and Line 190 checks the response for a Control-A. 	If
the response is not a Control-A, the program continues to Line 200
which loops back and READs the next field from the file. If the
response is a Control-A, the program executes Line 210, which
CLOSES the file. Line 220 ENDS the program.

To start the program type:

RUN READFILE

The program will clear the screen and request a file name. You
should enter TEST1 and hit Return. (TEST1 is the file we created
with MAKEFILE.) 	The program will clear the screen and READ the
first field from our file. If you entered your name as the first

6.38 OPERATION

field, you should see your name displayed on the screen. 	To
display the next field of the file, hit Return. In this manner
you can display each of the fields in the file. To terminate the
program, you can type a Control-A followed by a Return. If you do
not terminate the program, it will continue to display each field
until the end of the file is encountered. At this point, the DOS
error END OF DATA will be displayed and the program will termin-
ate.

You can now use the programs MAKEFILE and READFILE to create and
display Sequential Files. One useful application for these pro-
grams is to create an EXEC file. As you know, an EXEC file is
merely a Sequential File that contains DOS, Basic, or Monitor
commands. To create an EXEC file, let's RUN MAKEFILE. When the
program requests the file name, use TESTEXEC. We have an example
of an EXEC File for you. As MAKEFILE asks for each new field of
the file, you should enter the next line of our EXEC File example.
Please enter each line just as you see it. After you have entered
the last line (DELETE MADE BY EXEC), you should terminate MAKEFILE
with a Control-A.

CATALOG
NEW
10 REM: THIS IS A TEST
15 REM: THIS IS ONLY A TEST
20 PRINT "ONLY A TEST"
25 END
LIST
SAVE MADE BY EXEC
LOCK MADE BY EXEC
CALL - 151
FF69L
3DOG
RUN MADE BY EXEC
UNLOCK MADE BY EXEC
DELETE MADE BY EXEC

Once you have entered the information into TESTEXEC, you can use
READFILE to check its contents. To check the file, RUN READFILE
and use the file name TESTEXEC. When you are sure the contents of
TESTEXEC are correct, it is time to execute.our EXEC File. Type:

EXEC TESTEXEC

DOS will now OPEN our sample EXEC File and READ the first field.
This is a CATALOG command, which DOS will immediately execute.
You should see the directory of the diskette displayed on the
monitor. Next, DOS will READ the second field of our EXEC file.
This is the Basic command NEW. 	DOS will pass this command to
Basic for execution. Once Basic has executed the NEW command, it
will return to DOS for another command. Again, DOS will fetch the
next field from the EXEC File. This time the field is a numbered
Basic line. This will be passed to Basic where it will be stored
in memory as part of a program. The next three lines are treated
the same way. 	(Using our EXEC File, we have now placed a small
program in memory.) 	The next field of our EXEC File (LIST) is
another Basic command which will list this new program.

The next line of our EXEC File will SAVE MADE BY EXEC on the
diskette. This is the DOS SAVE command and we have called the
program in memory MADE BY EXEC. After we SAVE the program, the
next line of our EXEC example will LOCK the file. We have now
demonstrated several DOS and Basic commands from an EXEC File.
The next three lines will use Monitor commands. CALL - 151 moves

OPERATION 6.39

us from Basic to the Monitor. FF69L will list the disassembled
machine code for the Monitor entry point. Your computer Monitor
will display several lines of disassembled 6502 code. Finally,
3DOG will cause the 6502 to exit the Monitor and return to Basic.
Back in Basic, the EXEC File will RUN the progr am MADE BY EXEC.
After the program ends, the EXEC File will UNLOCK MADE BY EXEC and
then DELETE MADE BY EXEC.

We have now demonstrated the use of an EXEC File.
you how to use DOS, Basic, and Monitor commands
EXEC File.

We have showed
from inside the

6.5.19 DOS Utilities

So far we have described the DOS and how to use the DOS commands.
This section will describe two programs that run under DOS. These
two programs are FID and COPY.

The primary purpose for FID is to allow you to copy individual
files from diskette to diskette and to determine the unused space
on a diskette. The FID program is available on the DOS 3.3 System
Master Diskette. FID is a Binary program. To execute the pro-
gram, you should type:

BRUN FID

You should not enter a starting address. The DOS will determine
the proper starting address; and after DOS has loaded FID, you
should see a sign-on message followed by a menu. FID is a menu-
driven program with operator prompting. 	You should find this
program very easy to use. To execute one of the FID commands, you
merely type the number next to the command. The commands are:

1. COPY FILES
2. CATALOG
3. SPACE ON DISK
4. UNLOCK
5. LOCK
6. DELETE
7. RESET SLOT AND DRIVE
8. VERIFY
9. QUIT

Five of these commands are standard DOS commands (CATALOG, UNLOCK,
LOCK, DELETE, and VERIFY). The functions for these commands are
the same with DOS. To execute one of the commands, type only the
number next to the command. 	DOS will then prompt you for the
required parameters.

SPACE ON DISK will tell you the number of sectors already used and
the number still available. This command is very useful when you
have a large number of files on a diskette.

RESET SLOT AND DRIVE is used to force FID to reprompt you for a
new slot and drive number. With most of the commands, FID will
only ask you for the slot and drive number once. Thereafter, it
will use this slot and drive as the default.

The QUIT command is used to exit the program and return to Basic.

This leaves the COPY command which is the primary purpose for FID.
This is the easiest and fastest way to move individual files from
one diskette to another. With FID, this can be done using one or

6.40 OPERATION

two drives. The first time you request the COPY command, FID will
prompt you for the source slot and drive and the destination slot
and drive. You can use one drive as both source and destination,
or you can use two separate drives.

Once you have entered the source and destination drives, FID will
prompt you for a FILENAME. After you enter the FILENAME, FID will
move the file from the source to the destination drive. FID will
transfer any file type (I, A, B, or T).

FID has another feature which makes handling files much easier.
This feature allows you to specify a partial file name. The FID
"wildcard" character = can be used to replace part or all of a
file name. 	For instance, if you specify = in place of the
FILENAME, FID will copy all of the files on the diskette. If you
specify part of a name followed by =, for instance,

CUSTOMER =

FID will copy all of the files that start with CUSTOMER regardless
of the remaining characters in the name. If you specify =, fol-
lowed by part of the name, FID will copy all of the files whose
names end with the specified character. 	Using the "wildcard"
character makes copying multiple files much easier.

If you specify the wildcard character, FID will ask you if you
want prompting. If you answewr Y, FID will display each file name
that meets the wildcard parameters and wait for the operator to
verify that file name before copying the file. If you answer N to
prompting, FID will automatically copy all of the files that meet
the wildcard parameters.

A second very useful DOS utility is the COPY program. This pro-
gram is also available on the DOS 3.3 System Master. The purpose
of this program is to make a complete copy of diskette. There are
actually two COPY programs: COPY is an Integer Basic program and
COPYA is an Applesoft program. To use one of these programs type:

RUN COPY

with Integer machines, or

RUN COPYA

with Applesoft. The COPY or COPYA programs will copy the entire
diskette with all of the files, regardless of the file types.

DOS will load the program and begin execution. The COPY program
will ask for a source slot and drive number and a destination slot
and drive number. If you specify the same slot and drive for both
the source and destination drives, the program will prompt you to
change the diskette from the original to the new copy as required.
This will usually involve swapping diskettes four times. If you
specify two separate drives, the program will make a copy without
swapping diskettes.

OPERATION 6.41

7. A2 UTILITY DISKETTE

The diskette you received with your A2 does not contain a DOS 3.3
system. This diskette is in DOS 3.3 format and has a diagnostics
program to check out your disk drives on the Boot tracks. Section
5 explains this diagnostic program. This diskette also contains a
standard DOS directory.

If you Boot DOS 3.3 and CATALOG this diskette, you will see the
diskette also contains a Binary program called Speed. This pro-
gram is described in Section 7.1.

7.1 SPEED TEST

The MICRO-SCI A2 Utility Diskette contains a binary program called
Speed. 	To use this program, you must Boot DOS 3.3, put the A2
Utility diskette into the drive, and type:

BRUN SPEED

Once it is loaded, the Speed program will display operating in-
structions. 	Following these instructions, you should select the
desired drive and start the speed test. 	The proper speed is
200.00 + 2.50 milliseconds. It is normal for the displayed speed
to vary— by as much as .50 milliseconds from one rotation to the
next. If the displayed speed stays within 197.50 to 202.50 milli-
seconds, we say the drive is within an acceptable speed tolerance.
If the speed varies outside this range, we suggest that the speed
should be adjusted to stay within the proper range.

Using this program, a user can adjust the drive speed. 	This
adjustment is quite simple and requires no special tools, only a
Phillips screwdriver and a small common screwdriver. If, however,
you feel uncomfortable "tinkering" with electronic equipment, we
suggest you take the drive to your dealer for adjustment or con-
tact MICRO-SCI.

To adjust the drive speed, you will need to remove the cover on
the drive unit. First, turn off the computer power. There are
four Phillips screws in the sides of the drive. 	Remove these
screws and slide the cover off the drive. There is a small elec-
tronics board vertically mounted to the back of the drive chassis.
This board is the speed control board. Mounted on this board,
about 1/2-inch above the bottom of the drive, is a rectangular
potentiometer. It is the only component in the location described
above that has a visible adjustment screw. 	This is the speed
control adjustment. 	(There is another potentiometer inside the
drive unit, but it is on the large electronics board on top of the
drive. 	This potentiometer is the write current adjustment and
cannot be adjusted without the proper equipment.)

After you have removed the drive cover and located the speed
control adjustment, you can re-Boot the DOS. Then put in the A2
Utility Diskette and BRUN SPEED. 	Select the proper drive and
start the speed check. While the program is displaying the rota-
tional speed of the drive, turn the speed control potentiometer
until the display indicates 200.00 + 1.0 milliseconds. Once you
have adjusted the speed, terminate the Speed program, turn off the
Apple power switch, and put the cover back on the A2 drive.

7.1 A2 UTILITY DISKETTE

7.2 UTILITY DISKETTE COPIER

You can make back-up copies of the A2 Utility Diskette; however,
the standard COPY programs COPY and COPYA will encounter an I/O
ERROR when they attempt to copy the track formatted for the speed
check. 	This track is not in the standard DOS 3.3 format. 	To
overcome this problem, we have included on the A2 Utility Diskette
the EXEC file, Utility Copier. This file is used to modify the
COPY and COPYA programs so that they do not try to copy the speed
track and, therefore, will not encounter an I/O ERROR when copying
the Utility Diskette.

To copy the Utility Diskette, you must Boot DOS, put the Utility
Diskette into Drive 1, and type:

EXEC UTILITY COPIER

The DOS will load the EXEC file and prompt you to put a diskette
containing COPY or COPYA into Drive 1. Remove the Utility Disk-
ette and insert a diskette containing the appropriate copy pro-
gram. The EXEC file will load COPY, modify it, and then execute
it. 	The modified COPY program will operate just like the un-
modified COPY program; however, it will not attempt to copy the
speed track. 	Once the COPY program finishes, you will have a
back-up copy of the A2 Utility Diskette. This new Utility Disk-
ette must have the speed track formatted by running the Speed
Program. Section 7.1 explains how to run the Speed Program.

A2 UTILITY DISKETTE 7.2

GLOSSARY

DOS 	Disk Operating System
EP 	Floating Point (Applesoft)
INT 	Integer
I/O 	Input/Output
lOB 	Input/Output Block
PCB 	Printed Circuit Board
RAM 	Random Access Memory
ROM 	Read Only Memory
RWTS 	Read/Write Subsystem
VTOC 	Volume Table of Contents

G.1

INDEX

A Parameter (Address) 	
Absolute Field Parameter 	
Access Commands 	
Address (A Parameter) 	

Page
6 14, 6.16
6 16, 6.31

6 34
6 14, 6.16

APPEND 	 6 30
Applesoft 	 6 35

B Parameter (Byte) 	 6.16, 6.28, 6.31
Binary Files 	 6 9, 6.14
BLOAD 	 6 14
Boot Prom 	 6 6
Booting 	 6 6
BRUN 	 615
BSAVE 	 614
Byte (B Parameter) 	 6.16, 6.28, 6.31

C Parameter (Command) 	 6 35
Cable 	 3 1, 4.2
CATALOG 	 6 10
CHAIN 	 6 13
Chaining in Applesoft 	 6 13
CLOSE 	 6 28, 6.31
Control Characters 	 6 7
Control-D 	 6 21, 6.22
Controller Card 	 3 1, 4.1, 4.2
COPY 	 6 41
COPY A 	 6 41
Copying Diskettes 	 6 41
CP/M 	 6 2

D Parameter (Drive) 	 6 7, 6.16
D$ 	 6 21, 6.22
Data Field 	 6 24
Data Files 	 6 9, 6.22
Debugging 	 6 35
Default Values 	 6 7, 6.8
DELETE 	 610
Diskette 	 31
Disk Drive 	 31
DISK FULL 	 6 17
Display Option 	 6 35
DOS 	 62
DOS 3.2 	 6 2
DOS 3.3 	 6 3
Drive Options (D Parameter) 	 6 7, 6.16

END OF DATA 	 616, 6.31
Erasing Files 	 6 10
Error Codes 	 6 15
Error Messages 	 6 15
EXEC 	 6 32
EXEC Files 	 6 32
EXEC UTILITY COPIER 	 7.2

Lt,

INDEX (continued)
FID 	
Field 	
File 	
File Buffer 	

6 40
6 24

6 4
6 28, 6.35

FILE LOCKED 	 6 10
File Manager 	 6 4
File Name 	 6 4, 6.7
FILE NOT FOUND 	 6 17
FILE TYPE MISMATCH 	 6 17
FP 	 6 35

GET 	 6 24
Greeting Program 	 6 12

HELLO 	 6 35
HIMEM 	 6 17, 6.35

I Parameter (Input) 	 6 35
IN # 	 6 6, 6.35
IN USE Light 	 3 2
INIT (Initialize) 	 6 11
INPUT 	 6 35
Installing the Drives 	 4 2
INT 	 6 36
Integer Basic 	 6 6, 6.36
I/O Errors 	 6 17
10B (Input/Output Block) 	 6 4

L Parameter (Length) 	 6 14, 6.16
LANGUAGE NOT AVAILABLE 	 6 16
LOAD 	 6 12
LOCK 	 6 10
Machine Language Files 	 6 14
MAKEFILE 	 6 36
MAXFILES 	 6 35
MON 	 6 35

NO BUFFERS AVAILABLE 	 6 17
NOMON 	 6 35
NOT DIRECT COMMAND 	 6 17

O Parameter (Output) 	 6 35
ONERR GOTO Codes 	 6 15
OPEN 	 6.23, 6.28, 6.31

Pascal 	 6 2
PCB 	 31
POSITION 	 6 29
PR # 	 635
PRINT 	 6 24
Program Files 	 6 12
PROGRAM TOO LARGE 	 6 17
Proms 	 6 6

1.2

INDEX (continued)
R Parameter 	
RAM 	
Random Access 	
RANGE ERROR 	
READ 	

6 29,

6 28,

6.31
66

6 30
6 16
6.31

Record 	 6 4, 6.24, 6.31
Record Number 	 6 31
RENAME 	 611
Reset 	 6 7
ROM 	 66
RUN 	 6 13

S (Slot) Parameter 	 6.7
SAVE 	 6 12
Sector 	 6 3
Sequential Files 	 6 27
SYNTAX ERROR 	 6 17

Text Files 	 6 22
Track 	 6 3
Track and Sector List 	 6 5
Track Bit Map 	 6 4

UNLOCK 	 6 10
Unpacking 	 21

V Parameter (Volume) 	 6 11, 6.16
VERIFY 	 6 11
VOLUME MISMATCH 	 6 17
Volume Number 	 6 7, 6.16
VTOC 	 64

Wildcard 	 6 41
WRITE 	 6 29, 6.32
WRITE PROTECTED 	 31, 6.17

1.3

NOTES

NOTES

NOTES

TEXT FILE COMMAND SUMMARY

SEQUENTIAL FILES

APPEND
CLOSE
OPEN
POSITION
READ
WRITE

Parameter Definition

X,Ss,Dd,Vv
X
X,Ss,Dd,Vv
X,Rr
X,Bb
X,Bb

Range

b 	Relative Byte Number
d 	Drive Number
r 	Relative Field Pointer
s 	Slot Number
v 	Volume Number
X 	File Name

0-32767
1-2
0-32767
1-7
1-254
1-30 Characters

RANDOM ACCESS FILES

CLOSE
OPEN
READ
WRITE

X
X,LI,Ss,Dd,Vv
X,Rr,Bb
X,Rr,Bb

Parameter
	

Definition 	Range

b
d

r

X

Relative Byte Number
Drive Number
Record Length
Absolute Record Number
Slot Number
Volume Number
File Name

0-32767
1-2
1-32767
0-32767
1-7
1-254
1-30 Characters

MICRO-SCI
Division of Standun Controls Inc.

	MicroSci Floppy Disk Systems A2 Installation Manual
	DOS Command Summary
	Control Commands
	Title Page
	Table of Contents
	1. Introduction
	2. Unpacking
	3. Familiarization
	4. Installation
	5. Checkout
	6. Operation
	6.1 Table of Contents
	6.2 Introduction
	6.3 The Equipment Interface
	6.4 The File Manager
	6.5 The User Interface
	6.5.1 Booting DOS
	6.5.2 Getting Started
	6.5.3 File Types
	6.5.4 General Housekeeping
	6.5.5 Program Files
	6.5.6 Binary Files
	6.5.7 DOS Error Messages
	6.5.8 Program File Commands
	6.5.9 Your Program Command Lesson Guide
	6.5.10 Using DOS Commands from BASIC
	6.5.11 Introduction to Text Files
	6.5.12 Sequential & Random-Access Text Files
	6.5.13 Getting Started with Text Files
	6.5.14 Sequential Files
	6.5.15 Random-Access Files
	6.5.16 EXEC Files
	6.5.17 DOS Access Commands
	6.5.18 Text File Lesson Guide
	6.5.19 DOS Utilities

	7. A2 Utility Diskette
	7.1 Speed Test
	7.2 Utility Diskette Copier

	Glossary
	Index
	Notes
	Text File Command Summary
	Back Cover

