Remove asdf_arch.[ch], which are copied from Arch directory

This commit is contained in:
Dave 2020-05-14 01:36:20 -05:00
parent dff329ea42
commit 64437908f7
2 changed files with 0 additions and 1320 deletions

View File

@ -1,834 +0,0 @@
// -*- mode: C; tab-width: 2 ; indent-tabs-mode: nil -*-
//
// Unfified Keyboard Project
// ASDF keyboard firmware
//
// asdf_arch.c
//
// This file contains all the architecture dependent code, including register
// setup, I/O, timers, etc.
//
// Copyright 2019 David Fenyes
//
// This program is free software: you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free Software
// Foundation, either version 3 of the License, or (at your option) any later
// version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public License along with
// this program. If not, see <https://www.gnu.org/licenses/>.
// Wiring Information:
// Chip: {Microcontroller type and version}
//
// Example:
// PIN NAME FUNCTION
// 14-19,9,10 PORTB COLUMN inputs (1 bit per column)
// 23-25 PORTC0-2 ROW outputs (row number)
// 27 PORTC4
#include "asdf_arch.h"
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stdint.h>
#include "asdf_config.h"
#include "asdf_keymap_defs.h"
// Tick is true every 1 ms.
static volatile uint8_t tick = 0;
// data polarity may be changed with a DIP switch, so we use a static instead of a constant
static uint8_t data_polarity = ASDF_DEFAULT_DATA_POLARITY;
// strobe polarity may be changed with a DIP switch, so we use a static instead of a constant
static uint8_t strobe_polarity = ASDF_DEFAULT_STROBE_POLARITY;
// PROCEDURE: ISR for Timer 0 overflow
// INPUTS: none
// OUTPUTS:none
//
// DESCRIPTION: Occurs every 1 ms. Set tick flag, kick watchdog.
//
// SIDE EFFECTS:
//
// NOTES:
//
// SCOPE:
//
// COMPLEXITY:
//
ISR(TIMER0_COMPA_vect)
{
tick = 1;
}
// PROCEDURE: set_bit
// INPUTS: port: pointer to a (uint8) port
// bit: bit position to be set
// OUTPUTS: none
//
// DESCRIPTION: Give a port address and bit position, set the bit position.
//
// SIDE EFFECTS: See DESCRIPTION
//
// NOTES: Declared inline. Will only be inlined for functions in this module, so
// also declared static.
//
// SCOPE: private
//
// COMPLEXITY: 1
//
static inline void set_bit(volatile uint8_t *port, uint8_t bit)
{
*port |= (1 << bit);
}
// PROCEDURE: clear_bit
// INPUTS: port: pointer to a (uint8) port
// bit: bit position to be cleared
// OUTPUTS: none
//
// DESCRIPTION: Give a port address and bit position, clear the bit position.
//
// SIDE EFFECTS: See DESCRIPTION
//
// NOTES: Declared inline. Will only be inlined for functions in this module, so
// also declared static.
//
// SCOPE: private
//
// COMPLEXITY: 1
//
static inline void clear_bit(volatile uint8_t *port, uint8_t bit)
{
*port &= ~(1 << bit);
}
// PROCEDURE: arch_timer0_config
//
// INPUTS: bits: a 4 byte field containing the configuration values for the
// 8-bit timer0 A and B control registers, and the interrupt mask register.
//
// OUTPUTS: none
//
// DESCRIPTION: Takes a 4 byte value with settings for all the control
// registers for the 8-bit counter/timer (timer 0), and writes them all
// to the respective registers.
//
// SIDE EFFECTS: see above
//
// NOTES: Setting all the bits together, and writing all the registers from a
// single word permits more clear initialization of control fields that are
// spread across more than one word.
//
// COMPLEXITY: 1
//
// SCOPE: private
//
static void arch_timer0_config(uint32_t bits)
{
TCCR0B = 0; // first turn off timer.
TCCR0A = (bits >> TMR0A_POS) & 0xff;
TIMSK0 = (bits >> TMR0IMSK_POS) & 0xff;
TCCR0B = (bits >> TMR0B_POS) & 0xff; // Set the mode (and turn on timer) last
}
// PROCEDURE: arch_tick_timer_init
// INPUTS: none
// OUTPUTS: none
//
// DESCRIPTION: Sets up 1ms tick timer.
//
// SIDE EFFECTS:
//
// NOTES: Set up Timer 0 in CTC mode for 1 ms overflow.
//
// SCOPE: private
//
// COMPLEXITY: 1
//
static void asdf_arch_tick_timer_init(void)
{
tick = 0;
// set compare register first, so timer can operate correctly as soon as it is
// enabled.
OCR0A = TICK_COUNT;
// operate in CTC mode to overflow at exactly 1 ms
// prescaler = 64 and output compare value is 250
arch_timer0_config(TIMER0_WFM_CTC | TIMER0_DIV64 | TIMER0_INT_ON_COMA);
}
// PROCEDURE: asdf_arch_tick
// INPUTS: none
// OUTPUTS: returns a 1 if the 1ms timer timed out, 0 otherwise
//
// DESCRIPTION: See Outputs.
//
// SIDE EFFECTS: Zeroes out the 1 ms timer flag.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 1
//
uint8_t asdf_arch_tick(void)
{
uint8_t retval = tick;
tick = 0;
return retval;
}
// PROCEDURE: asdf_arch_init_timers
// INPUTS: none
// OUTPUTS: none
//
// DESCRIPTION: Sets up timer for 1 ms intervals
//
// SIDE EFFECTS: See DESCRIPTION
//
// SCOPE: private
//
// COMPLEXITY: 1
//
static void asdf_arch_init_clock(void)
{
CLKPR = (CLKPCE | SYSCLK_DIV1);
}
// PROCEDURE: asdf_arch_init_outputs
// INPUTS: none
// OUTPUTS: none
//
// DESCRIPTION: Initialize all LED ports as outputs. Values are not set here.
// They are set by the keymap code
//
// SIDE EFFECTS: See DESCRIPTION
//
// SCOPE: private
//
// COMPLEXITY: 1
//
static void asdf_arch_init_leds(void)
{
set_bit(&ASDF_LED1_DDR, ASDF_LED1_BIT);
set_bit(&ASDF_LED2_DDR, ASDF_LED2_BIT);
set_bit(&ASDF_LED3_DDR, ASDF_LED3_BIT);
}
// PROCEDURE: asdf_arch_led1_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: If value is true, turn on LED1. If value is false, turn off LED1
//
// SIDE EFFECTS: See above.
//
// NOTES: The LED1 port drives the LED directly by pulling the cathode low, so
// clearing the bit turns the LED on.
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_led1_set(uint8_t value)
{
if (value) {
clear_bit(&ASDF_LED1_PORT, ASDF_LED1_BIT);
}
else {
set_bit(&ASDF_LED1_PORT, ASDF_LED1_BIT);
}
}
// PROCEDURE: asdf_arch_led2_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: If value is true, turn on LED2. If value is false, turn off LED2
//
// SIDE EFFECTS: See above.
//
// NOTES: The LED2 output drives the LED via an inverter buffer, so a high
// output pulls the LED cathode low, lighting the LED.
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_led2_set(uint8_t value)
{
if (value) {
clear_bit(&ASDF_LED2_PORT, ASDF_LED2_BIT);
}
else {
set_bit(&ASDF_LED2_PORT, ASDF_LED2_BIT);
}
}
// PROCEDURE: asdf_arch_led3_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: If value is true, turn on LED3. If value is false, turn off LED3
//
// SIDE EFFECTS: See above.
//
// NOTES: The LED3 output drives the LED via an inverter buffer, so a high
// output pulls the LED cathode low, lighting the LED.
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_led3_set(uint8_t value)
{
if (value) {
clear_bit(&ASDF_LED3_PORT, ASDF_LED3_BIT);
}
else {
set_bit(&ASDF_LED3_PORT, ASDF_LED3_BIT);
}
}
// PROCEDURE: asdf_arch_null_output
// INPUTS: (uint8_t) value - ignored
// OUTPUTS: none
//
// DESCRIPTION: Does nothing.
//
// SIDE EFFECTS: See above.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_null_output(uint8_t value)
{
(void) value;
}
// PROCEDURE: asdf_arch_out1_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: Sets the OUT1 bit if value is true, and clear OUT1 if value is false.
//
// SIDE EFFECTS: See above.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_out1_set(uint8_t value)
{
if (value) {
set_bit(&ASDF_OUT1_PORT, ASDF_OUT1_BIT);
}
else {
clear_bit(&ASDF_OUT1_PORT, ASDF_OUT1_BIT);
}
set_bit(&ASDF_OUT1_DDR, ASDF_OUT1_BIT);
}
// PROCEDURE: asdf_arch_out1_open_hi_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: Sets the OUT1 bit to hi-z if value is true, and low if value is false.
//
// SIDE EFFECTS: See above.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_out1_open_hi_set(uint8_t value)
{
if (value) {
clear_bit(&ASDF_OUT1_DDR, ASDF_OUT1_BIT);
set_bit(&ASDF_OUT1_PORT, ASDF_OUT1_BIT);
}
else {
clear_bit(&ASDF_OUT1_PORT, ASDF_OUT1_BIT);
set_bit(&ASDF_OUT1_DDR, ASDF_OUT1_BIT);
}
}
// PROCEDURE: asdf_arch_out1_open_lo_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: Sets the OUT1 bit to high if value is true, and hi-z if value is false.
//
// SIDE EFFECTS: See above.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_out1_open_lo_set(uint8_t value)
{
if (value) {
set_bit(&ASDF_OUT1_PORT, ASDF_OUT1_BIT);
set_bit(&ASDF_OUT1_DDR, ASDF_OUT1_BIT);
}
else {
clear_bit(&ASDF_OUT1_DDR, ASDF_OUT1_BIT);
clear_bit(&ASDF_OUT1_PORT, ASDF_OUT1_BIT);
}
}
// PROCEDURE: asdf_arch_out2_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: Sets the OUT2 bit if value is true, and clear OUT2 if value is false.
//
// SIDE EFFECTS: See above.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_out2_set(uint8_t value)
{
if (value) {
set_bit(&ASDF_OUT2_PORT, ASDF_OUT2_BIT);
}
else {
clear_bit(&ASDF_OUT2_PORT, ASDF_OUT2_BIT);
}
set_bit(&ASDF_OUT2_DDR, ASDF_OUT2_BIT);
}
// PROCEDURE: asdf_arch_out2_open_hi_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: Sets the OUT2 bit to hi-z if value is true, and low if value is false.
//
// SIDE EFFECTS: See above.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_out2_open_hi_set(uint8_t value)
{
if (value) {
clear_bit(&ASDF_OUT2_DDR, ASDF_OUT2_BIT);
set_bit(&ASDF_OUT2_PORT, ASDF_OUT2_BIT);
}
else {
clear_bit(&ASDF_OUT2_PORT, ASDF_OUT2_BIT);
set_bit(&ASDF_OUT2_DDR, ASDF_OUT2_BIT);
}
}
// PROCEDURE: asdf_arch_out2_open_lo_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: Sets the OUT2 bit to high if value is true, and hi-z if value is false.
//
// SIDE EFFECTS: See above.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_out2_open_lo_set(uint8_t value)
{
if (value) {
set_bit(&ASDF_OUT2_PORT, ASDF_OUT2_BIT);
set_bit(&ASDF_OUT2_DDR, ASDF_OUT2_BIT);
}
else {
clear_bit(&ASDF_OUT2_DDR, ASDF_OUT2_BIT);
clear_bit(&ASDF_OUT2_PORT, ASDF_OUT2_BIT);
}
}
// PROCEDURE: asdf_arch_out3_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: Sets the OUT3 bit if value is true, and clear OUT3 if value is false.
//
// SIDE EFFECTS: See above.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_out3_set(uint8_t value)
{
if (value) {
set_bit(&ASDF_OUT3_PORT, ASDF_OUT3_BIT);
}
else {
clear_bit(&ASDF_OUT3_PORT, ASDF_OUT3_BIT);
}
set_bit(&ASDF_OUT3_DDR, ASDF_OUT3_BIT);
}
// PROCEDURE: asdf_arch_out3_open_hi_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: Sets the OUT3 bit to hi-z if value is true, and low if value is false.
//
// SIDE EFFECTS: See above.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_out3_open_hi_set(uint8_t value)
{
if (value) {
clear_bit(&ASDF_OUT3_DDR, ASDF_OUT3_BIT);
set_bit(&ASDF_OUT3_PORT, ASDF_OUT3_BIT);
}
else {
clear_bit(&ASDF_OUT3_PORT, ASDF_OUT3_BIT);
set_bit(&ASDF_OUT3_DDR, ASDF_OUT3_BIT);
}
}
// PROCEDURE: asdf_arch_out3_open_lo_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: Sets the OUT3 bit to high if value is true, and hi-z if value is false.
//
// SIDE EFFECTS: See above.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_out3_open_lo_set(uint8_t value)
{
if (value) {
set_bit(&ASDF_OUT3_PORT, ASDF_OUT3_BIT);
set_bit(&ASDF_OUT3_DDR, ASDF_OUT3_BIT);
}
else {
clear_bit(&ASDF_OUT3_DDR, ASDF_OUT3_BIT);
clear_bit(&ASDF_OUT3_PORT, ASDF_OUT3_BIT);
}
}
// PROCEDURE: asdf_arch_init_strobe
// INPUTS: none
// OUTPUTS: none
//
// DESCRIPTION: Initialize strobe output
//
// SIDE EFFECTS: See DESCRIPTION
//
// SCOPE: private
//
// COMPLEXITY: 1
//
static void asdf_arch_init_strobe(void)
{
if (strobe_polarity == ASDF_POSITIVE_POLARITY) {
clear_bit(&ASDF_STROBE_PORT, ASDF_STROBE_BIT);
}
else {
set_bit(&ASDF_STROBE_PORT, ASDF_STROBE_BIT);
}
set_bit(&ASDF_STROBE_DDR, ASDF_STROBE_BIT);
}
// PROCEDURE: asdf_arch_init_ascii_output
// INPUTS: none
// OUTPUTS: none
//
// DESCRIPTION: Sets up output port for ASCII output
//
// SIDE EFFECTS: See DESCRIPTION
//
// SCOPE: private
//
// COMPLEXITY: 1
//
static void asdf_arch_init_ascii_output(void)
{
// set all outputs
ASDF_ASCII_PORT = data_polarity;
ASDF_ASCII_DDR = ALL_OUTPUTS;
}
// PROCEDURE: asdf_arch_init_columns
// INPUTS: none
// OUTPUTS: none
//
// DESCRIPTION: Sets up columns port as input and enable weak pullups.
//
// SIDE EFFECTS: See DESCRIPTION
//
// SCOPE: private
//
// COMPLEXITY: 1
//
static void asdf_arch_init_columns(void)
{
ASDF_COLUMNS_DDR = ALL_INPUTS;
ASDF_COLUMNS_PORT = ALL_PULLUPS;
}
// PROCEDURE: asdf_arch_init_row_outputs
// INPUTS: none
// OUTPUTS: none
//
// DESCRIPTION: Sets up output port to latch keyboard matrix row for scanning.
//
// SIDE EFFECTS: See DESCRIPTION
//
// SCOPE: private
//
// COMPLEXITY: 1
//
static void asdf_arch_init_row_outputs(void)
{
ASDF_HIROW_DDR = ALL_OUTPUTS;
ASDF_LOROW_DDR = ALL_OUTPUTS;
}
// PROCEDURE: asdf_arch_pulse_delay_short
// INPUTS: none
// OUTPUTS: none
//
// DESCRIPTION: Delays a fixed amount of time for keyboard output pulses specified by ASDF_PULSE_DELAY_SHORT_US
//
// SIDE EFFECTS: see above.
//
// NOTES: Set ASDF_PULSE_DELAY_US in asdf_config.h
//
// SCOPE: public
//
// COMPLEXITY: 1
//
void asdf_arch_pulse_delay_short(void)
{
_delay_us(ASDF_PULSE_DELAY_SHORT_US);
}
// PROCEDURE: asdf_arch_pulse_delay_long
// INPUTS: none
// OUTPUTS: none
//
// DESCRIPTION: Delays a fixed amount of time for keyboard output pulses specified by ASDF_PULSE_DELAY_LONG_MS
//
// SIDE EFFECTS: see above.
//
// NOTES: Set ASDF_PULSE_DELAY_US in asdf_config.h
//
// SCOPE: public
//
// COMPLEXITY: 1
//
void asdf_arch_pulse_delay_long(void)
{
_delay_us(ASDF_PULSE_DELAY_LONG_MS);
}
// PROCEDURE: asdf_arch_init
// INPUTS: none
// OUTPUTS: none
//
// DESCRIPTION: sets up all the hardware for the keyboard
//
// SIDE EFFECTS: see DESCRIPTION
//
// SCOPE: public
//
// COMPLEXITY: 1
//
void asdf_arch_init(void)
{
// disable interrupts:
cli();
// clear the 1ms timer flag;
tick = 0;
// set up timers for 1 msec intervals
asdf_arch_init_clock();
asdf_arch_tick_timer_init();
// set up ASCII output port
asdf_arch_init_ascii_output();
// initialize keyboard data and strobe to positive polairy
data_polarity = ASDF_DEFAULT_DATA_POLARITY;
strobe_polarity = ASDF_DEFAULT_STROBE_POLARITY;
asdf_arch_init_strobe();
asdf_arch_init_leds();
// set up row and column ports
asdf_arch_init_row_outputs();
asdf_arch_init_columns();
// enable interrupts:
sei();
}
// PROCEDURE: asdf_arch_read_row
// INPUTS: (uint8_t) row: the row number to be scanned
// OUTPUTS: returns a word containing the active (pressed) columns
//
// DESCRIPTION: Outputs the argument to the ROW ports, then reads the column
// port and returns the value. The value is a binary representation of the keys
// pressed within the row, with 1=pressed, 0=released.
//
// SIDE EFFECTS: Sets ROW output port.
//
// NOTES:
//
// 1) The keymap represents an unpressed key as a "0" and a pressed key as a
// "1". So, if a keypress pulls the column line low, then the reading of the
// physical bits must be inverted.
//
// 2) A small delay (2usec) is required between setting the keyboard row outputs
// and reading the columns, which I think is due to capacitance across the
// reverse-biased diodes.
//
// SCOPE: public
//
// COMPLEXITY: 1
//
asdf_cols_t asdf_arch_read_row(uint8_t row)
{
uint32_t rows = ~(1L << row);
ASDF_LOROW_PORT = (uint8_t)(rows & 0xff);
ASDF_HIROW_PORT = (uint8_t)((rows >> 8) & 0xff);
_delay_us(ASDF_KEYBOARD_ROW_SETTLING_TIME_US);
return ~(asdf_cols_t) ASDF_COLUMNS_PIN;
}
// PROCEDURE: asdf_arch_osi_read_row
// INPUTS: (uint8_t) row: the row number to be scanned
// OUTPUTS: returns a word containing the active (pressed) columns
//
// DESCRIPTION: Outputs the argument to the ROW ports, then reads the column
// port and returns the value. The value is a binary representation of the keys
// pressed within the row, with 1=pressed, 0=released.
//
// SIDE EFFECTS: Sets ROW output port.
//
// NOTES:
//
// 1) The keymap represents an unpressed key as a "0" and a pressed key as a
// "1". So, if a keypress pulls the column line low, then the reading of the
// physical bits must be inverted.
//
// SCOPE: public
//
// COMPLEXITY: 1
//
asdf_cols_t asdf_arch_osi_read_row(uint8_t row)
{
asdf_cols_t cols;
if (row > 7) {
cols = asdf_arch_read_row(row);
} else {
// enable the OSI keyboard
clear_bit(&ASDF_OSI_KBE_PORT, ASDF_OSI_KBE_BIT);
// register the row to be read
ASDF_COLUMNS_DDR = ALL_OUTPUTS;
ASDF_COLUMNS_PORT = (1 << row);
clear_bit(&ASDF_OSI_RW_PORT, ASDF_OSI_RW_BIT);
set_bit(&ASDF_OSI_RW_PORT, ASDF_OSI_RW_BIT);
// Read in the columns
ASDF_COLUMNS_DDR = ALL_INPUTS;
return ASDF_COLUMNS_PIN;
ASDF_LOROW_PORT = row & 0xff;
cols = (asdf_cols_t) ASDF_COLUMNS_PORT;
}
return cols;
}
// PROCEDURE: asdf_arch_send_code
// INPUTS: (keycode_t) code - the 7-bit ASCII code to be output by the keyboard
// OUTPUTS: none
//
// DESCRIPTION: Takes a character code and outputs the code on a parallel ASCII
// port, with a strobe. This routine could be replaced with UART, I2C, USB, or
// other output mechanism, of course.
//
// SIDE EFFECTS: See above.
//
// NOTES: The strobe is set by the ASDF_STROBE_LENGTH definition. The data
// output and strobe polarity are set by the static data_polarity and static
// strobe_polarity variables.
//
// SCOPE:
//
// COMPLEXITY:
//
void asdf_arch_send_code(asdf_keycode_t code)
{
ASDF_ASCII_PORT = (code ^ data_polarity);
// toggle strobe. Must test before setting to avoid spurious strobe
set_bit(&ASDF_STROBE_PIN, ASDF_STROBE_BIT);
_delay_us(ASDF_STROBE_LENGTH_US);
set_bit(&ASDF_STROBE_PIN, ASDF_STROBE_BIT);
}
//-------|---------|---------+---------+---------+---------+---------+---------+
// Above line is 80 columns, and should display completely in the editor.
//

View File

@ -1,486 +0,0 @@
// -*- mode: C; tab-width: 4 ; indent-tabs-mode: nil -*-
//
// Unfified Keyboard Project
// ASDF keyboard firmware
//
// asdf_arch_atmega2560.h
//
// Contains architecture-specific definitions for the atmega 2560
//
//
// Copyright 2019 David Fenyes
//
// This program is free software: you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free Software
// Foundation, either version 3 of the License, or (at your option) any later
// version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public License along with
// this program. If not, see <https://www.gnu.org/licenses/>.
#if !defined(ASDF_ARCH_H)
#define ASDF_ARCH_H
#include <avr/io.h>
#include <avr/pgmspace.h>
#include "asdf.h"
// ASDF keyboard definitions:
#define F_CPU 16000000L
#define ASDF_STROBE_LENGTH_US 10 // strobe length in microseconds
#define ASDF_KEYBOARD_ROW_SETTLING_TIME_US 2 // time for keyboard capacitance to
// settle before sampling
// Clock definitions:
#define SYSCLK_DIV1 0
#define SYSCLK_DIV2 (CLKPS0)
#define SYCCLK_DIV4 (CLKPS1)
#define SYSCLK_DIV8 (CLKPS1 | CLKPS0)
#define SYSCLK_DIV16 (CLKPS2)
#define SYSCLK_DIV32 (CLKPS2 | CLKPS0)
#define SYSCLK_DIV64 (CLKPS2 | CLKPS1)
#define SYSCLK_DIV128 (CLKPS2 | CLKPS1 | CLKPS0)
#define SYSCLK_DIV256 (CLKPS3)
// Timer 0 definitions
// Define fields for register A, B, interrupt mask as 8-bit masks, and
// as masks offset into a combined config word
#define TMR0A_POS 0
#define TMR0B_POS 8
#define TMR0IMSK_POS 16
#define TMR0A (1L << TMR0A_POS)
#define TMR0B (1L << TMR0B_POS)
#define TMR0IMSK (1L << TMR0IMSK_POS)
#define TIMER0_COM_A_DISCONNECTED 0
#define TIMER0_COM_B_DISCONNECTED 0
#define TIMER0_WFM_CTC (TMR0A << WGM01)
#define TIMER0_DIV64 ((TMR0B << CS01) | (TMR0B << CS00))
#define TIMER0_INT_ON_COMA (TMR0IMSK << OCIE0A)
#define TIMER0_INT_ON_COMB (TMR0IMSK << OCIE0B)
#define TIMER0_INT_OV_ENABLE (TMR0IMSK << TOIE0)
// Macros for 16-bit timers 1, 3, 4, 5. Datasheet section 17, p. 133
//
// Define fields for Registers A, B, C, INT Mask registers as 8-bit
// masks, and as masks offset into a 32-bit combined config word.
//
// Macro definitions for individual registers are named TMRXA_*,
// TMRXB_*, and TMRXC_*.
//
// Macros for the one-step combined timer config functions are named
// TMRX_*.
//
//
// Examples:
// // Use TMRXB_* definition to set TCCR4B register
// TCCR4B |= TMRXB_DIV1;
//
// // Use TMRX_* definitions to configure timer with config function
// processor_timer4_config(TMRX_WFM_CTC | TMRX_INT_ON_CMPA);
//
#define TMRXA_POS 0
#define TMRXB_POS 8
#define TMRXC_POS 16
#define TMRXIMSK_POS 24
#define TMRXA (1L << TMRXA_POS)
#define TMRXB (1L << TMRXB_POS)
#define TMRXC (1L << TMRXC_POS)
#define TMRXIMSK (1L << TMRXIMSK_POS)
// 16-bit timer reg A - Datasheet 17.11.1, p. 154
#define TMRXA_CMPA_CLR_MATCH_SET_BOTTOM (1 << COM1A1)
#define TMRXA_CMPB_CLR_MATCH_SET_BOTTOM (1 << COM1B1)
#define TMRXA_CMPC_CLR_MATCH_SET_BOTTOM (1 << COM1C1)
#define TMRX_CMPA_CLR_MATCH_SET_BOTTOM (TMRXA << COM1A1)
#define TMRX_CMPB_CLR_MATCH_SET_BOTTOM (TMRXA << COM1B1)
#define TMRX_CMPC_CLR_MATCH_SET_BOTTOM (TMRXA << COM1C1)
// 16-bit timer reg B - Datasheet 17.11.6, p. 156
#define TMRXB_IN_CAP_POS 0x40L
#define TMRXB_IN_CAP_NEG 0L
#define TMRXB_IN_CAP_NOISE_CANCEL 0x80L
// 16-bit timer reg C -- see datasheet, 17.11.9, p. 157
#define TMRXC_FOCA 0x80L
#define TMRXC_FOCB 0x40L
#define TMRXC_FOCC 0x20L
// 16-bit timer int mask -- see datasheet 17.11.33, p. 161.
#define TMRXIM_INT_CMP_MATCH_A (1L << OCIE1A)
#define TMRXIM_INT_CMP_MATCH_B (1L << OCIE1B)
#define TMRXIM_INT_CMP_MATCH_C (1L << OCIE1C)
// 16-bit timer all registers:
#define TMRX_CMPA_DISCONNECTED 0L
#define TMRX_CMPB_DISCONNECTED 0L
#define TMRX_CMPC_DISCONNECTED 0L
#define TMRX_INT_ON_CMPA (TMRXIM_INT_CMP_MATCH_A << TMRXIMSK_POS)
// 16-bit timer clock modes - see Datasheet table 17-6, p. 157
#define TMRXB_OFF 0
#define TMRX_OFF 0
#define TMRXB_DIV1 (0x01L << CS10)
#define TMRXB_DIV8 (0x02L << CS10)
#define TMRXB_DIV64 (0x03L << CS10)
#define TMRXB_DIV256 (0x04L << CS10)
#define TMRXB_DIV1024 (0x05L << CS10)
#define TMRXB_EXT_FALLING_EDGE (0x06L << CS10)
#define TMRXB_EXT_RISING_EDGE (0x07L << CS10)
#define TMRXB_CLK_MASK 0x07L
#define TMRX_DIV1 (TMRXB_DIV1 << TMRXB_POS)
#define TMRX_DIV8 (TMRXB_DIV8 << TMRXB_POS)
#define TMRX_DIV64 (TMRXB_DIV64 << TMRXB_POS)
#define TMRX_DIV256 (TMRXB_DIV256 << TMRXB_POS)
#define TMRX_DIV1024 (TMRXB_DIV1024 << TMRXB_POS)
#define TMRX_EXT_FALLING_EDGE (TMRXB_EXT_FALLING_EDGE << TMRXB_POS)
#define TMRX_EXT_RISING_EDGE (TMRXB_EXT_RISING_EDGE << TMRXB_POS)
#define TMRXB_EDGE_SEL_POSITIVE (1 << ICES1)
#define TMRXB_EDGE_SEL_NEGATIVE 0L
#define TMRX_EDGE_SEL_POSITIVE (TMRXB << ICES1)
#define TMRX_EDGE_SEL_NEGATIVE 0L
// 16-bit waveform modes (across reg A and B) Datasheet Table 17.2, p 145
#define TMRX_WFM_NORMAL 0L
#define TMRX_WFM_PWM_PC8 (TMRXA << WGM10) // PWM Phase Correct 8-bit
#define TMRX_WFM_PWM_PC9 (TMRXA << WGM11) // PWM Phase COrrect 9-bit
#define TMRX_WFM_PWM_PC10 ((TMRXA << WGM11) | (TMRXA << WGM10)) // PWM Phase Correct 10-bit
#define TMRX_WFM_CTC (TMRXB << WGM12) // CTC
#define TMRX_WFM_PWM_FAST8 ((TMRXB << WGM12) | (TMRXA << WGM10)) // PWM Fast 8-bit
#define TMRX_WFM_PWM_FAST9 ((TMRXB << WGM12) | (TMRXA << WGM11)) // PWM Fast 9-bit
#define TMRX_WFM_PWM_FAST10 \
((TMRXB << WGM12) | (TMRXA << WGM11) | (TMRXA << WGM10)) // PWM Fast 10-bit
#define TMRX_WFM_PWM_PFC_ICR (TMRXB << WGM13) // PWM Phase and Freq Correct, TpOP=ICR
#define TMRX_WFM_PWM_PFC_OCRA \
((TMRXB << WGM13) | (TMRXA << WGM10)) // PWM Phase and Freq Correct, TOP = OCRA
#define TMRX_WFM_PWM_PC_ICR ((TMRXB << WGM13) | (TMRXA << WGM11)) // PWM PhaseCorrect, TOP = ICR
#define TMRX_WFM_PWM_PC_OCRA \
((TMRXB << WGM13) | (TMRXA << WGM11) | (TMRXA << WGM12)) // PWM PhaseCorrect, TOP=OCRA
#define TMRX_WFM_CTC_ICR ((TMRXB << WGM13) | (TMRXB << WGM12)) // CTC, TOP = ICR
#define TMRX_WFM_PWM_FAST_ICR \
((TMRXB << WGM13) | (TMRXB << WGM12) | (TMRXA << WGM11)) // PWM Fast, TOP = ICR
#define TMRX_WFM_PWM_FAST_OCRA \
((TMRXB << WGM13) | (TMRXB << WGM12) | (TMRXA << WGM11) \
| (TMRXA << WGM10)) // PWM Fast, TOP = OCRA
// USART configuration (Datasheet section 22, p. 200)
//
// Macro definitions for individual registers are named USARTA_*,
// USARTB_*, and USARTC_*.
//
// Macros for the one-step combined timer config functions are named
// USART_*.
//
//
// Examples:
// // Use USARTB_* definition to set UCSR1B register
// UCSR1B |= USARTB_DATA_REG_EMPTY_INT_EN; // enable interrupt on tx reg empty
//
// // Use USART_* definitions to configure usart with config function
// processor_usart3_config(USART_SIZE_8 | USART_PARITY_NONE | USART_STOP_1 | USART_DATA_TXEN |
// USART_DATA_RXEN | USART_RX_COMPLETE_INT_EN);
//
#define USARTA_POS 0
#define USARTB_POS 8
#define USARTC_POS 16
#define USARTA (1L << USARTA_POS)
#define USARTB (1L << USARTB_POS)
#define USARTC (1L << USARTC_POS)
// USART Register A, Datasheet 22.10.2, p. 219
#define USARTA_DATA_REG_EMPTY (1 << UDR0)
#define USARTA_FRAME_ERROR (1 << FE0)
#define USARTA_DATA_OVERRUN (1 << DOR0)
#define USARTA_PARITY_ERROR (1 << UPE0)
#define USARTA_DOUBLE_SPEED (1 << U2X0)
#define USARTA_MULTI_PROCESSOR (1 << MPCM0)
#define USART_DATA_REG_EMPTY (USARTA << UDR0)
#define USART_FRAME_ERROR (USARTA << FE0)
#define USART_DATA_OVERRUN (USARTA << DOR0)
#define USART_PARITY_ERROR (USARTA << UPE0)
#define USART_DOUBLE_SPEED (USARTA << U2X0)
#define USART_MULTI_PROCESSOR (USARTA << MPCM0)
// USART Register B, Datasheet 22.10.3, p. 220
#define USARTB_RX_COMPLETE_INT_EN (1 << RXCIE0)
#define USARTB_TX_COMPLETE_INT_EN (1 << TXCIE0)
#define USARTB_DATA_REG_EMPTY_INT_EN (1 << UDRIE0)
#define USARTB_DATA_RXEN (1 << RXEN0)
#define USARTB_DATA_TXEN (1 << TXEN0)
#define USARTB_SIZE_9 (1 << UCSZ02)
#define USARTB_RX_BIT_8 (1 << RXB80)
#define USARTB_TX_BIT_8 (1 << TXB80)
#define USART_RX_COMPLETE_INT_EN (USARTB << RXCIE0)
#define USART_TX_COMPLETE_INT_EN (USARTB << TXCIE0)
#define USART_DATA_REG_EMPTY_INT_EN (USARTB << UDRIE0)
#define USART_DATA_RXEN (USARTB << RXEN0)
#define USART_DATA_TXEN (USARTB << TXEN0)
#define USART_RX_BIT_8 (USARTB << RXB80)
#define USART_TX_BIT_8 (USARTB << TXB80)
// USART Register C, Datasheet 22.10.4, p.221
#define USARTC_MODE_ASYNC_USART (0x00L << UMSEL00)
#define USARTC_MODE_SYNC_USART (0x01L << UMSEL00)
#define USARTC_MODE_MSPIM (0x03L << UMSEL00)
#define USART_MODE_ASYNC_USART (USARTC_MODE_ASYNC_USART << USARTC_POS)
#define USART_MODE_SYNC_USART (USARTC_MODE_SYNC_USART << USARTC_POS)
#define USART_MODE_MSPIM (USARTC_MODE_MSPIM << USARTC_POS)
#define USARTC_PARITY_NONE 0
#define USARTC_PARITY_EVEN (0x01L << UPM00)
#define USARTC_PARITY_ODD (0x03 << UPM00)
#define USART_PARITY_NONE 0
#define USART_PARITY_EVEN (USARTC_PARITY_EVEN << USARTC_POS)
#define USART_PARITY_ODD (USARTC_PARITY_ODD << USARTC_POS)
#define USARTC_STOP_1 0
#define USARTC_STOP_2 (1 << USBS0)
#define USART_STOP_1 0
#define USART_STOP_2 (USARTC << USBS0)
#define USARTC_SIZE_5 0
#define USARTC_SIZE_6 (0x01L << UCSZ00)
#define USARTC_SIZE_7 (0x02L << UCSZ00)
#define USARTC_SIZE_8 (0x03L << UCSZ00)
#define USARTC_SIZE_9 USARTC_SIZE_8
#define USART_SIZE_5 0
#define USART_SIZE_6 (USARTC_SIZE_6 << USARTC_POS)
#define USART_SIZE_7 (USARTC_SIZE_7 << USARTC_POS)
#define USART_SIZE_8 (USARTC_SIZE_8 << USARTC_POS)
#define USART_SIZE_9 ((USARTB_SIZE_9 << USARTB_POS) | (USARTC_SIZE_9 << USARTC_POS))
#define USARTC_CLK_TX_RISING 0
#define USART_CLK_TX_RISING 0
#define USARTC_CLK_TX_FALLING (1 << UCPOL0)
#define USART_CLK_TX_FALLING (USARTC << UCPOL0)
// I/O port definitions:
#define PIN_INPUT 0
#define PIN_OUTPUT 1
#define ALL_INPUTS 0
#define ALL_OUTPUTS 0xff
#define ALL_PULLUPS 0xff
#define ASDF_HIROW_PORT PORTA
#define ASDF_HIROW_DDR DDRA
#define ASDF_HIROW_PIN PINA
#define ASDF_LOROW_PORT PORTJ
#define ASDF_LOROW_DDR DDRJ
#define ASDF_LOROW_PIN PINJ
#define ASDF_COLUMNS_PORT PORTC
#define ASDF_COLUMNS_PIN PINC
#define ASDF_COLUMNS_DDR DDRC
#define ASDF_ASCII_PORT PORTH
#define ASDF_ASCII_DDR DDRH
#define ASDF_LED1_PORT PORTD
#define ASDF_LED1_DDR DDRD
#define ASDF_LED1_BIT 5
#define ASDF_LED2_PORT PORTD
#define ASDF_LED2_DDR DDRD
#define ASDF_LED2_BIT 6
#define ASDF_LED3_PORT PORTD
#define ASDF_LED3_DDR DDRD
#define ASDF_LED3_BIT 7
#define ASDF_OUT1_PORT PORTB
#define ASDF_OUT1_PIN PINB
#define ASDF_OUT1_DDR DDRB
#define ASDF_OUT1_BIT 5
#define ASDF_OUT2_PORT PORTB
#define ASDF_OUT2_PIN PINB
#define ASDF_OUT2_DDR DDRB
#define ASDF_OUT2_BIT 6
#define ASDF_OUT3_PORT PORTB
#define ASDF_OUT3_PIN PINB
#define ASDF_OUT3_DDR DDRB
#define ASDF_OUT3_BIT 7
#define ASDF_STROBE_PORT PORTB
#define ASDF_STROBE_PIN PINB
#define ASDF_STROBE_DDR DDRB
#define ASDF_STROBE_BIT 4
#define ASDF_OSI_KBE_PORT ASDF_HIROW_PORT
#define ASDF_OSI_KBE_DDR ASDF_HIROW_DDR
#define ASDF_OSI_KBE_BIT 1
#define ASDF_OSI_RW_PORT ASDF_HIROW_PORT
#define ASDF_OSI_RW_DDR ASDF_HIROW_DDR
#define ASDF_OSI_RW_BIT 2
#define ASDF_ARCH_DIP_SWITCH_ROW 8
#define FUSE_INTERNAL_8MHZ_OSC_4MS (FUSE_CKSEL1 | FUSE_SUT0)
#define FUSE_INTERNAL_8MHZ_OSC_65MS (FUSE_CKSEL1 | FUSE_SUT1)
#define FUSE_XTAL_16MHZ_4MS (FUSE_CKSEL2 | FUSE_CKSEL1 | CKSEL0 | FUSE_SUT1)
#define FUSE_XTAL_16MHZ_65MS (FUSE_CKSEL2 | FUSE_CKSEL1 | CKSEL0 | FUSE_SUT1 | FUSE_SUT0)
#define FLASH PROGMEM
// not implemented with do-while(0) because this is a function call that returns
// a value, and parameters are expanded inside the parameter list, so this will
// be valid when substituting for function-like syntax.
#define FLASH_READ (a) pgm_read_byte((a))
#define FLASH_READ_MATRIX_ELEMENT(matrix, row, col) pgm_read_byte(&((matrix)[(row)][(col)]))
// For 1 ms tick, (16000000 / 64(prescale)) / 1000(usec) - 1 = 249
#define TICK_COUNT 249
// Default key matrix row scanner
#define ASDF_ARCH_DEFAULT_SCANNER asdf_arch_read_row
// Default keyboard output
#define ASDF_ARCH_DEFAULT_OUTPUT asdf_arch_send_code
// DIP switch is on row 8
#define ASDF_ARCH_DIPSWITCH_ROW 8
// PROCEDURE: asdf_arch_null_output
// INPUTS: (uint8_t) value - ignored
// OUTPUTS: none
// DESCRIPTION: null/dummy output function
// NOTES: Not supported for the ATMega-328 ASCII interface.
void asdf_arch_null_output(uint8_t value);
// PROCEDURE: asdf_arch_led1_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
// DESCRIPTION: If value is true, turn on LED1. If value is false, turn off LED1
void asdf_arch_led1_set(uint8_t value);
// PROCEDURE: asdf_arch_led2_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
// DESCRIPTION: If value is true, turn on LED2. If value is false, turn off LED2
void asdf_arch_led2_set(uint8_t value);
// PROCEDURE: asdf_arch_led3_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
// DESCRIPTION: If value is true, turn on LED3. If value is false, turn off LED3
void asdf_arch_led3_set(uint8_t value);
// PROCEDURE: asdf_arch_out1_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
// DESCRIPTION: Sets the OUT1 bit if value is true, and clear OUT1 if value is false.
void asdf_arch_out1_set(uint8_t value);
// PROCEDURE: asdf_arch_out1_open_hi_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
// DESCRIPTION: Sets the OUT1 bit to hi-z if value is true, and low if value is false.
void asdf_arch_out1_open_hi_set(uint8_t value);
// PROCEDURE: asdf_arch_out1_open_lo_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
// DESCRIPTION: Sets the OUT1 bit to hi-z if value is true, and low if value is false.
void asdf_arch_out1_open_lo_set(uint8_t value);
// PROCEDURE: asdf_arch_out2_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
// DESCRIPTION: Sets the OUT2 bit if value is true, and clear OUT2 if value is false.
void asdf_arch_out2_set(uint8_t value);
// PROCEDURE: asdf_arch_out2_open_hi_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
// DESCRIPTION: Sets the OUT2 bit to hi-z if value is true, and low if value is false.
// NOTES: Not supported for the ATMega-328 ASCII interface.
void asdf_arch_out2_open_hi_set(uint8_t value);
// PROCEDURE: asdf_arch_out2_open_lo_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
// DESCRIPTION: Sets the OUT2 bit to high if value is true, and hi-z if value is false.
void asdf_arch_out2_open_lo_set(uint8_t value);
// PROCEDURE: asdf_arch_out3_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
// DESCRIPTION: Sets the OUT3 bit if value is true, and clear OUT3 if value is false.
void asdf_arch_out3_set(uint8_t value);
// PROCEDURE: asdf_arch_out3_open_hi_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
// DESCRIPTION: Sets the OUT3 bit to hi-z if value is true, and low if value is false.
void asdf_arch_out3_open_hi_set(uint8_t value);
// PROCEDURE: asdf_arch_out3_open_lo_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
// DESCRIPTION: Sets the OUT3 bit to hi-z if value is true, and low if value is false.
void asdf_arch_out3_open_lo_set(uint8_t value);
// PROCEDURE: asdf_arch_read_row
// INPUTS: (uint8_t) row: the row number to be scanned
// OUTPUTS: returns a word containing the active (pressed) columns
// DESCRIPTION: Outputs the argument to the ROW port, then reads the column port
// and returns the value. The value is a binary representation of the keys
// pressed within the row, with 1=pressed, 0=released.
asdf_cols_t asdf_arch_read_row(uint8_t row);
// PROCEDURE: asdf_arch_pulse_delay_short
// INPUTS: none
// OUTPUTS: none
// DESCRIPTION: Delays a fixed amount of time for keyboard output pulses specified by
// ASDF_PULSE_DELAY_SHORT_US
void asdf_arch_pulse_delay_short(void);
// PROCEDURE: asdf_arch_pulse_delay_long
// INPUTS: none
// OUTPUTS: none
// DESCRIPTION: Delays a fixed amount of time for keyboard output pulses specified by
// ASDF_PULSE_DELAY_LONG_MS
void asdf_arch_pulse_delay_long(void);
// PROCEDURE: asdf_arch_tick
// INPUTS: none
// OUTPUTS: returns a 1 if the 1ms timer timed out, 0 otherwise
uint8_t asdf_arch_tick(void);
// PROCEDURE: asdf_arch_send_code
// INPUTS: (keycode_t) code - the code to be output by the keyboard
// OUTPUTS: none
// DESCRIPTION: Takes a character code and outputs the code on a parallel ASCII
// port, with a strobe. This routine could be replaced with UART, I2C, USB, or
// other output mechanism, of course.
void asdf_arch_send_code(asdf_keycode_t code);
// PROCEDURE: asdf_arch_init
// INPUTS: none
// OUTPUTS: none
// DESCRIPTION: sets up all the hardware for the keyboard
void asdf_arch_init(void);
#endif /* !defined (ASDF_ARCH_H) */
//-------|---------|---------+---------+---------+---------+---------+---------+
// Above line is 80 columns, and should display completely in the editor.