
AppleIIAsmLib Reference Manual 1

v0.5.0

AppleIIAsm Library

Technical Reference Manual

Version 0.5.0

Nathan Riggs

AppleIIAsmLib Reference Manual 2

v0.5.0

AppleIIAsmLib Reference Manual 3

v0.5.0

TABLE OF CONTENTS

Preface

Introduction

PART I

Package Overview

Standard Practices / Procedures

 Naming Conventions

 Commenting Conventions

 Parameter Passing

 Main Source Sequencing

Quick Reference: Macros

Quick Reference: Subroutines

PART II

Detailed Descriptions and Listings

Library Disks

 Disk 1: REQCOM (Required & Common Libraries)

 Required Library

 HEAD.REQUIRED

 MAC.REQUIRED

 LIB.REQUIRED

 Common Library

 HOOKS.COMMON

 MAC.COMMON

 DEMO.COMMON

Utilities

Integrated Libraries

Demo Disks

Appendix A: Companion Books

 The New Merlin 8 Pro User Guide

 Learning 6502 Assembly with AppleIIAsmLib and AppleChop

AppleIIAsmLib Reference Manual 4

v0.5.0

 Forever Machine: The Past and Future on the Apple II Platform

AppleIIAsmLib Reference Manual 5

v0.5.0

Preface

This is the first complete reference manual for the AppleIIAsm

macro and subroutine library. Currently, this library is in the

alpha stages of development: not all disks are complete, there

may be some bugs here and there, and major workflow decisions

may still be in flux. However, this version, 0.5.0, represents a

major step forward in functionality, optimization and

standardization, and at least for what is complete—the first

eleven disks as well as some demo disks—the library can be

reasonably considered to be stable. That does not, of course,

mean that there are any guarantees.

I started this project as research into how the Apple II works

as a platform for another book I am writing, and eventually

became interested in the cohesive technical documentation (or

sometimes lack thereof) that was available to beginning coders

in the heyday of the Apple II as well as those looking to learn

Apple II (6502) Assembly today. Having no prior experience with

Assembly language, I began coding the library itself as part of

my own learning process while trying to write subroutines that

provided much of the functionality afforded by Applesoft BASIC.

Eventually, this became a beast of its own, and what you’re

reading here is (part) of the result.

As the library grows and morphs, so will this document. If

nothing else, I hope that the library and its accompanying

documentation helps hobbyists, researchers, and otherwise self-

hating hopeless nerds learn and accomplish what they want or

need—at least as much as it has helped, and harmed, me.

Nathan Riggs

AppleIIAsmLib Reference Manual 6

v0.5.0

Introduction

The AppleIIAsm Library is a collection of subroutines and macros

for the Apple II line of computers, aimed at providing a stable

set of assembly routines for most common tasks. Additionally,

this library is meant to ease the transition between programming

in Applesoft BASIC and 6502 Assembly by not only providing the

basic data structures and functions found in higher-level

languages but also by providing a set a macros—currently dubbed

AppleChop—that simulates the design and workflow of BASIC. A

companion booklet to this library, From Applesoft to AppleChop

and Assembly, provides a framework for making that transition.

These subroutines and macros are written for the Merlin Pro 8

assembler, which should run on any Apple II with 64k of memory

(programs assembled with Merlin Pro 8 will run on machines with

less than 64k, however). Since we are using 6502 Assembly here,

however, it should not be too difficult to port the subroutines

to other assemblers and even other systems like the Commodore

64, Nintendo Entertainment System, BBC Micro, and more. For a

guide on using the Merlin Pro 8 Assembler, see the other

companion booklet, The New Merlin Pro 8 User Guide.

Who is this manual for?

The primary audience for this manual is someone who is already

familiar with 6502 Assembly, or who is working their way through

From Applesoft to AppleChop and Assembly. Like all manuals, this

is primarily a reference: beyond this introduction and early

sections of Part I, this manual is not meant to be read straight

through. Feel free to flip back and forth as you wish!

Who is this manual NOT for?

This manual is definitely not for beginners, but nor is it

really aimed at 6502 experts. The library itself can be used by

beginner and expert alike, but whereas this manual would likely

confuse the absolute beginner, an expert interested in

optimizing their work (and these subroutines) will not find much

help here.

As someone who spends a lot of time thinking about, writing

about, and teaching different facets of technical writing (in

its broadest sense), I can confirm the following: there are

thousands of books written about the 6502 architecture and

Assembly programming. I can also confirm that these books--as

AppleIIAsmLib Reference Manual 7

v0.5.0

well as most websites--tend to approach the subject from a

"writerly" position rather than a reader-centered one; that is,

it's written for engineers and computer scientists who have

already spent a lot of time and money understanding the theory,

learning the jargon, and training themselves to be able to do

things by muscle memory. That's great for established engineers,

mathematicians, computer scientists and the like, as well as

those who can afford to dedicate years of their lives (and

again, gobs of $$$) to obtain a degree that qualifies them as

entry level in the field. It is not so great, however, for

beginners, hobbyists, or those trying to study it from a non-

engineering theoretical perspective. That is, at least, part of

the gap I am hoping to fill.

That said, I myself would have failed quite readily without at

least a few key texts and websites, and it would be remiss to

not list them here. And if you're committed to learning this,

know that there is no good replacement to sitting down, typing

out a listing from a book, assembling it and then trying to

figure out what the hell you just did—or what you did wrong!

There is no doing without learning, and there is no learning

without doing.

Why Merlin Pro 8? Why not something...modern?

Understanding how coding for a specific platform and a specific

era works is not merely a matter of knowledge, but a matter of

practice. Much of the way development happens, in computer

software or not, is predicated on the apparatus in place that

allows for it. Changing that apparatus, whether it be adding

modern components like multiple open files, faster assembly,

easier access and legibility and so on changes your

understanding of how everything worked (and works). Especially

with an ancient (and largely obsolete) language like 6502

assembly, few people are learning it to accomplish a practical

task. Instead, we are approaching the topic more like an

archaeologist or historical reenactor: going through the same

motions to understand the topic cohesively.

That said, there is nothing inherently wrong with using modern

tools—it just does not fit the goals for writing this library.

Brutal Deluxe software has rewritten a more modern version of

Merlin 16, and the CC65 compiler/assembler makes contemporary

6502 development far more efficient and less frustrating

overall. If Merlin 8 Pro feels too dated—and to many, it will

feel hopelessly so—by all means use these modern software

AppleIIAsmLib Reference Manual 8

v0.5.0

packages. Just be aware that some substantial effort may be

involved in rewriting the code here for different assemblers.

Further Resources

While beginners are welcome to use this library, and it is

partially aimed at those who are trying to learn 6502 Assembly

on the Apple II, a cohesive and thorough guide to 6502

programming is beyond the scope of this manual. For a better

understanding of the hardware, programming, and culture

surrounding the Apple II, I would suggest consulting the

following sources.

6502 Programming Books

• Roger Wagner, Chris Torrence. Assembly Lines: The Complete

Book. May 10, 2017.

• Lance A. Leventhal, Winthrop Saville. 6502 Assembly

Language Subroutines. 1982.

• Don Lancaster. Assembly Cookbook for the Apple II, IIe.

1984, 2011.

• Mark Andrews. _Apple Roots: Assembly Language Programming

for the Apple IIe and IIc. 1986.

• CW Finley, Jr., Roy E. Meyers. Assembly Language for the

Applesoft Programmer. 1984.

• Randy Hyde. Using 6502 Assembly Language. 1981.

• Glen Bredon. Merlin Pro Instruction Manual. 1984.

• JS Anderson. Microprocessor Technology. 1994. (also covers

z80 architecture)

6502 Programming Websites

• CodeBase64

• 6502.org

• Easy6502

Apple II Books

• Bill Martens, Brian Wiser, William F. Luebbert, Phil

Daley. What's Where in the Apple, Enhanced Edition: A

Complete Guide to the Apple][Computer. October 11, 2016.

• David Flannigan. The New Apple II Users' Guide. June 6,

2012.

• David L. Craddock. Break Out: How the Apple II Launched the

PC Gaming Revolution. September 28, 2017.

https://www.amazon.com/Assembly-Lines-Complete-Roger-Wagner/dp/1312089407/
https://www.amazon.com/Assembly-Lines-Complete-Roger-Wagner/dp/1312089407/
https://www.amazon.com/Assembly-Lines-Complete-Roger-Wagner/dp/1312089407/
https://www.amazon.com/Assembly-Lines-Complete-Roger-Wagner/dp/1312089407/
http://codebase64.org/doku.php
http://codebase64.org/doku.php
http://www.6502.org/
http://www.6502.org/
http://skilldrick.github.io/easy6502/
http://skilldrick.github.io/easy6502/
https://www.amazon.com/gp/product/136517364X/
https://www.amazon.com/gp/product/136517364X/
https://www.amazon.com/gp/product/136517364X/
https://www.amazon.com/gp/product/136517364X/
https://www.amazon.com/gp/product/0615639879/
https://www.amazon.com/gp/product/0615639879/
https://www.amazon.com/gp/product/0764353225/
https://www.amazon.com/gp/product/0764353225/
https://www.amazon.com/gp/product/0764353225/
https://www.amazon.com/gp/product/0764353225/

AppleIIAsmLib Reference Manual 9

v0.5.0

• Steven Weyhrich. Sophistication & Simplicity: The Life and

Times of the Apple II Computer. December 1, 2013.

• Ken Williams, Bob Kernagham, Lisa Kernagham. Apple II

Computer Graphics. November 3, 1983.

• Lon Poole. Apple II Users' Guide.. 1981.

• Jeffrey Stanton. Apple Graphics and Arcade Game Design.

1982.

• Apple. Apple Monitors Peeled. 1981.

• Apple. _Apple II/IIe/IIc/IIgs Technical Reference Manual.

Apple II Websites

• Apple II Text Files

• Apple II Programming

• The Asimov Software Archive

• Apple II Online

• Juiced.GS: A Quarterly Apple II Journal

Related GitHub Projects

A number of folk are doing work on 6502 or the Apple II on

GitHub. While I cannot possibly list each and every one (that's

what the search function is for!), these are projects I have

found particularly useful, informative, entertaining, or

inspiring.

• Prince of Persia Apple II Source Code, by Jordan Mechner

• WeeGUI, a small gui for the Apple II

• Two-lines or less Applesoft programs -- a lot can be

accomplished!

• Doss33FSProgs, programs for manipulating the DOS 3.3

filesystem

• ADTPro, a requirement for anyone working with real Apple II

hardware today.

• CC65, a modern cross-compiling C compiler and assembler for

6502 systems.

• PLASMA: The Proto-Language Assembler for All -- this was

originally written for the Apple II alone, but has recently

expanded to other systems.

https://www.amazon.com/gp/product/0986832278/
https://www.amazon.com/gp/product/0986832278/
https://www.amazon.com/gp/product/0986832278/
https://www.amazon.com/gp/product/B01FIXG7ZK/
https://www.amazon.com/gp/product/B01FIXG7ZK/
https://www.amazon.com/gp/product/B01FIXG7ZK/
https://www.amazon.com/gp/product/0931988462/
https://www.amazon.com/gp/product/0931988462/
http://textfiles.com/apple/.windex.html
http://textfiles.com/apple/.windex.html
http://apple2.org.za/gswv/a2zine/faqs/csa2pfaq.html
http://apple2.org.za/gswv/a2zine/faqs/csa2pfaq.html
https://ftp.apple.asimov.net/
https://ftp.apple.asimov.net/
https://apple2online.com/index.php
https://apple2online.com/index.php
https://juiced.gs/
https://juiced.gs/
https://github.com/fabiensanglard/Prince-of-Persia-Apple-II
https://github.com/fabiensanglard/Prince-of-Persia-Apple-II
https://github.com/blondie7575/WeeGUI
https://github.com/blondie7575/WeeGUI
https://github.com/thelbane/Apple-II-Programs
https://github.com/thelbane/Apple-II-Programs
https://github.com/deater/dos33fsprogs
https://github.com/deater/dos33fsprogs
https://github.com/ADTPro/adtpro
https://github.com/ADTPro/adtpro
https://github.com/cc65
https://github.com/cc65
https://github.com/dschmenk/PLASMA
https://github.com/dschmenk/PLASMA

AppleIIAsmLib Reference Manual 10

v0.5.0

Part I
The AppleIIAsm Library

AppleIIAsmLib Reference Manual 11

v0.5.0

Library Overview

The AppleIIAsm library consists of 25 disks that contain

thematically related subroutines, demos and utilities, as well

as two extra disks that hold minified versions of every

subroutine for convenience. The contents of each disk and

library are covered in Part II: Detailed Descriptions and

Listings. The disks are ordered as follows:

• Disk 1 – REQCOM (Required and Common Libraries)

• Disk 2 – STDIO (Standard Input and Output Library)

• Disk 3 – ARRAYS (Array Library)

• Disk 4 – MATH (Math Library)

• Disk 5 – STRINGS (String Library)

• Disk 6 – FILEIO (File Input and Output Library)

• Disk 7 – CONVERT (Data Type Conversion Library)

• Disk 8 – LORES (Low Resolution Graphics Library)

• Disk 9 – SPEAKER (Mono Speaker Library)

• Disk 10 – HIRES (High Resolution Graphics Library)

• Disk 11 – APPLECHOP (AppleChop High-Level Library)

• Disk 12 – SERIALPRN (Serial and Printer Libraries)

• Disk 13 – 80COL (80-Column Text Library)

• Disk 14 – MOCKINGBOARD (Mockingboard Sound Card Library)

• Disk 15 – DBLLORES (Double Low Resolution Graphics Library)

• Disk 16 – DBLHIRES (Double High Resolution Graphics Lib)

• Disk 17 – DETECT (Hardware Detection Library)

• Disk 18 – SORTSEARCH (Sort & Search Libraries)

• Disk 19 – TMENWIN (Text Menu and Text Window Libraries)

• Disk 20 – MISC (Miscellaneous Libraries)

• Disk 21 – MINIDISKA (Minified Libraries Disk A)

• Disk 22 – MINIDISKB (Minified Libraries Disk B)

• Disk 23 – UTILS (Utilities Disk)

• Disk 24 – DEMOSA (Demo Disk A)

• Disk 25 – DEMOSB (Demo Disk B)

AppleIIAsmLib Reference Manual 12

v0.5.0

Standard Practices / Procedures

AppleIIAsmLib follows certain conventions due to hardware

limitations, operating system requirements, ease of reading,

program flow and just plain old personal preference. While there

might be times when these conventions are eschewed or changed

entirely, you can reasonably expect, and be expected to follow,

adherence to the following standards.

Naming Conventions

Filenames

Given the lack of directory structures in DOS 3.3, we are using

a filename prefixes to indicate file types rather than suffixes.

The extensions should be applied to a filename in this order:

• MIN: signifies that the code has been stripped of comments

• HEAD: indicates that this should be the first file included in

the main source listing.

• HOOKS: indicates hooks related to the specific library’s macros

and subroutines.

• SUB: signifies that the file holds a subroutine

• MAC: signifies a collection of macros

• LIB: signifies a collection of subroutines

• DEMO: signifies that the program is a sub-library demo

• <FILENAME>: the actual name of the subroutine, macro, our other

file.

Additionally, Merlin Appends a ".S" to the end of a filename if

it is saved as a source, and prepends the file with "T." to

signify it being a text file. This prepended T. overrides our

own naming conventions.

Sample Filenames

• T.MIN.MAC.STDIO

• T.SUB.TFILLA

• T.MIN.LIB.REQUIRED

• T.DEMO.STDIO

Variables

In Merlin Pro 8, assembler variables are preceded by a] sign.

These variables are temporarily assigned, and can be overwritten

further down in the code. Unless highly impractical, constant

AppleIIAsmLib Reference Manual 13

v0.5.0

hooks should use native assembly's system of assigning labels

(just the label), as should hook entry points. The exception to

this is within macro files, as these could easily lead to label

conflicts.

Local Hooks

Local labels are preceded by a : sign (colon) in Merlin Pro 8.

When at all possible, local subroutines should have local

labels. This does not apply to Merlin variables.

Macros

Macros should be named with regard to mneumonic function, when

possible, and should not exceed five characters unless

absolutely necessary. Additionally, macros may use the following

prefixes to signify their classification:

• @: signifies a higher-level control structure, such as

@IF,@ELSE,@IFX.

• _: signifies a macro mostly meant to be used internally, though

it may have limited use outside of that context.

Commenting Conventions

Inline Comments

For the sake of beginners, at least every other directive should

have an inline comment that describes what that line, or two

lines, is accomplishing. Inline comments are added at the end of

a line with a semicolon to denote the comment. Note that the

audience for these comments are readers who may not have a good

grasp of 6502 Assembly, so they should be as descriptive as

possible.

File Headers

If the file does not hold a single subroutine, every file should

include a header with the following information:

• A brief description of the file

• Any subroutines or macros that are included in the file,

along with brief descriptions of each.

• Operating System, Main Author, Contact Information, Date of

Last Revision, and intended Assembler.

AppleIIAsmLib Reference Manual 14

v0.5.0

• If the file contains a collection of macros, the

subroutines used by the macros should be listed as well.

Subroutine Headers

All subroutines require headers that document its input, output,

register, flag and memory destructions, minimum number of cycles

used, and the size of the subroutine in bytes. Headers should

all follow the same basic format, and a single space should be

used to denote section inclusion.

Macro Headers

Macro headers should include a brief description of the macro, a

listing of the parameters with short descriptions thereof, and a

sample usage section.

Other Comments

If a section of code needs more explanation than can be

explained at the end of a line (a common issue, since there is

limited space on the Apple II screen), these should be placed

just above the code in question using asterisks to denote the

line is a comment. Have a blank comment line before and after

the comment with only one asterisk, while using two asterisks

for the lines with actual comments.

Parameter Passing

Macro Parameters

In general, macro parameters follow a specific hierarchy of

order, with the exception of rare cases where another order

makes more sense. The hierarchy is as follows:

Source > Destination > Index > Value > Other

Additionally, parameters passed to macros, when addresses are

concerned, follow a strict distinction between literal addresses

and indirect addresses. If the address passed is a literal value

(preceded by # in Merlin Pro 8), then that is the actual address

of the data in question. If, however, the address passed is non-

literal, then the two-byte value at that address is used as the

intended address to be used.

AppleIIAsmLib Reference Manual 15

v0.5.0

Subroutine Parameters

Subroutines are passed parameters by way of the registers, zero-

page location values, or via the stack. Which one of these are

used depends on the number of bytes being passed; different

methods are used in order to maximize speed based on the needs

of a subroutine.

If there are less than four bytes of data being passed, the

registers are used; when a 16-bit address is being passed, it is

convention to pass the low byte in .A and the high byte in .X.

If there are between four and ten total bytes in need of

passing, the zero page is used. The locations used are defined

in HEAD.REQUIRED, and specify three areas for 16-bit (two-byte

word) values and four areas for 8-bit (single-byte) values.

These are labeled as WPAR1, WPAR2, WPAR3, BPAR1, BPAR2, BPAR3,

and BPAR4, respectively.

As a last resort, parameters are passed via that stack. This

should, however, be a rare occurrence, as it is the slowest

method available of passing parameters. Thankfully, since most

of the subroutines in the library are meant to provide basic

higher-level functionality, there is little need for recourse to

this option.

By and large, all parameters should be one or two-byte values;

if a string, array or other data type is being passed, its

address is passed rather than the data itself.

Since the method of passing parameters can change from

subroutine to subroutine, it is highly suggested to use the

macros that call the subroutines when possible.

Main Source Sequencing

After necessary assembler directives, files should be loaded in

the following order:

• HEAD.REQUIRED is always loaded first (PUT).

• MAC.REQUIRED always follows second (USE).

• Any HOOKS files should be loaded afterwards (PUT).

• Any MAC files being utilized should be loaded next.

• Now comes the source of the main listing that the

programmer will write.

AppleIIAsmLib Reference Manual 16

v0.5.0

• After the main source, LIB.REQUIRED should be included

(PUT).

• Then, any needed subroutine (SUB) files should be included

(PUT).

• Any user-created PUT or USE files should be placed at the

very end.

Miscellaneous Standards

Subroutine Independence

Beyond needing the core required library files as well as the

hook files for the library category in question, a subroutine

should be able to operate independently of other subroutines in

the library. This will generally mean some wasted bytes here and

there, but this can be remedied by the end programmer if code

size is a major concern.

Control Structures

While a number of helpful, higher-level control structures are

included as part of the core required library, subroutines in

the library itself should refrain from using this shorthand.

Control Structure Macros are preceded with a '@' sign to signify

their classification as such. Exceptions can be given to control

structures that merely extend existing directives for better

use, such as BEQW being used to branch beyond the normal byte

limit; such macros forego the preceding @-sign.

AppleIIAsmLib Reference Manual 17

v0.5.0

Quick Reference: Macros

AppleIIAsmLib Reference Manual 18

v0.5.0

Disk 1: MAC.REQUIRED

MACRO DEPEND PARAMETERS RETURNS

_AXLIT none]1 = memory address
.A = address low byte

.X = address high byte

Loads the .A and .X registers with appropriate values based on the status of

the parameter as a literal.

_AXSTR _AXLIT]1 = memory address
.A = address low byte

.X = address high byte

Loads the .A and .X registers with appropriate address based on whether the

parameter is a string or an address.

CLRHI __CLRHI
]1 = byte to clear the high

nibble of
.A = cleared byte

Clears the high nibble of a byte and then returns new byte.

DUMP
_AXLIT;

__DUMP

]1 = memory address

]2 = number of bytes to dump

.Y = number of bytes

displayed

Dumps the hex values at a given address for a given range.

ERRH
_AXLIT;

__ERRH
]1 = memory address none

Sets the Applesoft error handling routine address.

GRET
_AXLIT;

__GETRET
]1 = destination address .Y = return value length

Copies the data held into return to the given address.

_ISLIT None]1 = memory address See description

Pushes the appropriate values (two bytes) to the stack based on the status

of the parameter as a literal.

_ISSTR _ISLIT]1 = memory address See description

Pushes the appropriate address to the stack based on whether the parameter

is a string or an address.

_MLIT None

]1 = memory address

]2 = destination zero-page

address

See description

Loads the zero-page address with appropriate values based on the status of

the parameter as a literal.

AppleIIAsmLib Reference Manual 19

v0.5.0

_PRN __P]1 = string None

Sends the given ASCII string to COUT1 (the screen).

_WAIT __W None .A = keypress value

Waits until a key is pressed.

AppleIIAsmLib Reference Manual 20

v0.5.0

Disk 1: MAC.COMMON

MACRO DEPEND PARAMETERS RETURNS

BEEP none]1 = number of rings None

Ring the system bell.

DELAY DELAYMS]1 = number of milliseconds None

Delay execution for a specified number of milliseconds.

MFILL
_MLIT;

MEMFILL

]1 = starting address

]2 = length in bytes

]3 = fill value

None

Fill a specified range of memory with a single value.

MMOVE
_MLIT;

MEMMOVE

]1 = starting address

]2 = destination address

]3 = length in bytes

None

Copy a specified range of memory to another memory address.

MSWAP
_MLIT;

MEMSWAP

]1 = first address

]2 = second address

]3 = length in bytes

None

Swap the values stored at two different ranges of memory.

ZLOAD
_AXLIT;

ZMLOAD
]1 = address to load from None

Reload the previously stored values into the zero page.

ZSAVE
_AXLIT;

ZMSAVE
]1 = address to save to None

Copy the values stored on the zero page that the library uses to a backup

location.

AppleIIAsmLib Reference Manual 21

v0.5.0

Disk 2: MAC.STDIO

MACRO DEPEND PARAMETERS RETURNS

COL40 None None None

Turn on 40-column text mode.

COL80 None None None

Turn on 80-column text mode.

CURB None
]1 = number of spaces to

move
None

Move cursor backward by a number of spaces.

CURD None
]1 = number of spaces to

move
None

Move cursor down by a number of spaces.

CURF None
]1 = number of spaces to

move
None

Move cursor forward by a number of spaces.

CURU None
]1 = number of spaces to

move
None

Move cursor up by a number of spaces.

DIE80 None none None

Kill 80-column mode.

GKEY None none .A = key code

Wait for a keypress from end user.

INP SINPUT none
RETURN = string with

preceding length byte

Prompt end user to enter a string, followed by return.

MTXT0 None none None

AppleIIAsmLib Reference Manual 22

v0.5.0

Turn of mousetext.

MTXT1 None none None

Turn on mousetext.

PBX None
]1 = Paddle Button Number;

PB0, PB1, PB2 or PB3
.X = 1 if button pushed

Read the state of a paddle button.

PDL None
]1 = paddle number, usually

0
.Y = paddle state

Read the state of the specified paddle.

PRN

_MLIT;

DPRINT;

XPRINT;

]1 = literal string or

address of string to print
None

Print a literal string or a null-terminated string at a given address.

RCPOS None
]1 = X position

]2 = Y position
.A = character code

Read the character on the screen at position X,Y.

SCPOS None
]1 = X position

]2 = Y position
None

Set the cursor position to X,Y.

SETCX None]1 = X position None

Set the X position of the cursor.

SETCY None]1 = Y position None

Set the Y position of the cursor.

SPRN
_AXLIT;

PRNSTR
]1 = address of string None

Print a string with a preceding length byte.

TCIRC TCIRCLE

]1 = center X position

]2 = center Y position

]3 = radius

]4 = fill character

None

AppleIIAsmLib Reference Manual 23

v0.5.0

Draw a text circle with the given radius at X,Y.

THLIN THLINE

]1 = starting X position

]2 = ending X position

]3 = Y position

]4 = fill character

None

Draw a horizontal text line.

TLINE TBLINE

]1 = X origin

]2 = Y origin

]3 = X destination

]4 = Y destination

None

Draw a text line from X,Y to X2,Y2.

TPUT TXTPUT

]1 = X coordinate

]2 = Y coordinate

]3 = fill character

None

Plot a single text character.

TRECF TRECTF

]1 = X origin

]2 = Y origin

]3 = X destination

]4 = Y destination

]5 = fill character

None

Plot a filled text rectangle from X,Y to X1,Y1.

TVLIN TVLINE

]1 = Y origin

]2 = Y destination

]3 = X coordinate

]4 = fill character

None

Draw a vertical text line.

WAIT None None .A = key code

Wait for a keypress without using COUT; no echo of key character.

AppleIIAsmLib Reference Manual 24

v0.5.0

Disk 3: MAC.ARRAYS

MACRO DEPEND PARAMETERS RETURNS

DIM81
_MLIT;

ADIM81

]1 = array address

]2 = number of indices

]3 = element length

]4 = fill value

RETURN = total bytes used

Initialize an 8-bit, one-dimensional array.

GET81
_AXLIT;

AGET81

]1 = array address

]2 = element index

.A = length of data

RETURN = element data

RETLEN = length of data

Get the data stored in an element of an 8-bit, one-dimensional array.

PUT81
_MLIT;

APUT81

]1 = source address

]2 = array address

]3 = element index

.A = element size

.X = element address low

byte

.Y = element address high

byte

Put data into an element in an 8-bit, one-dimensional array.

DIM82
_MLIT;

ADIM82

]1 = array address

]2 = 1st dimension indices

]3 = 2nd dimension indices

]4 = element length

]5 = fill value

RETURN = total bytes used

Initialize an 8-bit, two-dimensional array.

GET82
_MLIT;

AGET82

]1 = array address

]2 = 1st dimension index

]3 = 2nd dimension index

.A = length of data

RETURN = element data

RETLEN = length of data

Get the data stored in an element of an 8-bit, two-dimensional array.

PUT82
_MLIT;

APUT82

]1 = source address

]2 = array address

]3 = 1st dimension index

]4 = 2nd dimension index

.A = element size

.X = element address low

byte

.Y = element address high

byte

Put data into an element in an 8-bit, two-dimensional array.

DIM161
_MLIT;

ADIM161

]1 = array address

]2 = number of indices

]3 = element length

]4 = fill value

RETURN = total bytes used

Initialize an 16-bit, one-dimensional array.

GET161
_MLIT;

AGET161

]1 = array address

]2 = element index

.A = length of data

RETURN = element data

RETLEN = length of data

AppleIIAsmLib Reference Manual 25

v0.5.0

Get the data stored in an element of a 16-bit, one-dimensional array.

PUT161
_MLIT;

APUT161

]1 = source address

]2 = array address

]3 = element index

.A = element size

.X = element address low

byte

.Y = element address high

byte

Put data into an element in a 16-bit, one-dimensional array.

DIM162
_MLIT;

ADIM162

]1 = array address

]2 = 1st dimension indices

]3 = 2nd dimension indices

]4 = element length

]5 = fill value

RETURN = total bytes used

Initialize an 16-bit, two-dimensional array.

GET162
_MLIT;

AGET162

]1 = array address

]2 = 1st dimension index

]3 = 2nd dimension index

.A = length of data

RETURN = element data

RETLEN = length of data

Get the data stored in an element of a 16-bit, two-dimensional array.

PUT162
_MLIT;

APUT162

]1 = source address

]2 = array address

]3 = 1st dimension index

]4 = 2nd dimension index

.A = element size

.X = element address low

byte

.Y = element address high

byte

Put data into an element in a 16-bit, two-dimensional array.

AppleIIAsmLib Reference Manual 26

v0.5.0

Disk 4: MAC.MATH

MACRO DEPEND PARAMETERS RETURNS

ADD8 none
]1 = first addend

]2 = second addend

.A = sum

RETURN = sum

RETLEN = 1

Add two 8-bit values and return an 8-bit sum.

SUB8 none
]1 = minuend

]2 = subtrahend

.A = difference

RETURN = difference

RETLEN = 1

Subtract one 8-bit value from another and return an 8bit difference.

ADD16
_MLIT;

ADDIT16

]1 = first addend

]2 = second addend

.A = sum low byte

.X = sub high byte

RETURN = sum (2b)

RETLEN = 2

Add two 16-bit values and return a 16-bit sum.

SUB16
_MLIT;

SUBT16

]1 = Minuend

]2 = Subtrahend

.A = difference low byte

.X = difference high byte

RETURN = difference (2b)

RETLEN = 2

Subtract a 16-bit subtrahend from a 16-bit minuend and return a 16-bit

difference.

MUL16
_MLIT;

MULT16

]1 = multiplicand

]2 = multiplier

.A = product low byte

.X = product high byte (16

bit)

RETURN = 32-bit product,

unsigned

RETLEN = 4

Multiply two 16-bit values and return a 16-bit product in .A and .X (low,

high), and a 32-bit product in RETURN if both values are unsigned.

DIV16
_MLIT;

DIVD16

]1 = dividend

]2 = divisor

.A = result low byte

.X = result high byte

RETURN = result (2b)

RETLEN = 2

Divide a 16-bit dividend by a 16-bit divisor and return a 16-bit result.

RAND RANDB
]1 = low boundary

]2 = high boundary

.A = pseudorandom value

RETURN = value (1b)

RETLEN = 1

Return an 8-bit pseudo-random value between a low bound and a high bound.

CMP16
_MLIT;

COMP16

]1 = first comparison

]2 = second comparison
See detailed description

Compare two 16-bit values and change the status register appropriately.

AppleIIAsmLib Reference Manual 27

v0.5.0

MUL8 MULT8
]1 = multiplicand

]2 = multiplier

.A = product low byte

.X = product high byte

RETURN = product (2b)

RETLEN = 2

Multiply two 8-bit values and return a 16-bit product.

DIV8 DIVD8
]1 = dividend

]2 = divisor

.A = quotient

.X = remainder

RETURN = quotient (1b)

RETLEN = 1

Divide one 8-bit value by another and return the quotient and remainder.

RND16 RAND16 none

.A = pseudorandom value low

byte

.X = pseudorandom value

high byte

RETURN = pseudorandom value

RETLEN = 2

Generate a 16-bit pseudorandom value between 1 and 65536.

RND8 RAND8 none

.A = pseudorandom value

RETURN = pseudorandom value

RETLEN = 1

Generate an 8-bit pseudorandom value between 1 and 255.

AppleIIAsmLib Reference Manual 28

v0.5.0

Disk 5: MAC.STRINGS

MACRO DEPEND PARAMETERS RETURNS

SCMP STRCMP
]1 = first string to compare

]2 = 2nd string to compare

.Z = 1 if strings equal

.Z = 0 if string !=

.C = 1 if 1st string < 2nd

.C = 0 if 2nd string >= 2nd

SCMP compares two strings and alters the status register accordingly.

SCAT STRCAT
]1 = first string

]2 second string

.A = new string length

RETURN = new string chars

RETLEN = length byte

Concatenates two strings.

SPRN PRNSTR]1 = string to print .A = string length

Prints a string with a preceding length byte.

SPOS SUBPOS
]1 = source string

]2 = substring

.A = substring index

RETURN = substring index

RETLEN = 1

Finds the index of a substring within a string.

SCOP SUBCOPY

]1 = source string

]2 = substring index

]3 = substring length

.A = new string length

RETURN = new string chars

RETLEN = length byte

Copy a substring from a string.

SDEL SUBDEL

]1 = source string

]2 = substring index

]3 = substring length

.A = new string length

RETURN = new string chars

RETLEN = length byte

Delete a substring from a string.

SINS SUBINS

]1 = string address

]2 = substring address

]3 = substring index

.A = length byte

RETURN = new string chars

RETLEN = length byte

Insert a substring into a string at a given index.

AppleIIAsmLib Reference Manual 29

v0.5.0

Disk 6: MAC.FILEIO

MACRO DEPEND PARAMETERS RETURNS

BSAVE BINSAVE]1 = string none

Save memory to a binary file.

BLOAD BINLOAD]1 = string none

Load memory from a binary file.

AMODE NONE none none

Feign Applesoft mode.

CMD DOSCMD]1 = string none

Execute a DOS command.

FPRN FPRINT]1 = string none

Output a null-terminated string to a file.

FINP FINPUT none

RETURN = string chars

RETLEN = length byte

.A = length

Read a string from a text file.

SLOT NONE]1 = slot number none

Change the RWTS slot.

DRIVE NONE]1 = drive number none

Change the RWTS drive.

TRACK NONE]1 = track number none

Change the RWTS track.

AppleIIAsmLib Reference Manual 30

v0.5.0

SECT NONE]1 = sector number none

Change the RWTS sector.

DSKR NONE none none

Set RWTS to read mode.

DSKW NONE none none

Set RWTS to write mode.

DBUFF NONE]1 = buffer address none

Set the disk buffer address.

DWRTS DISKRW None

.A = error code

RETURN = byte returned or

written

RETLEN = 1

Read or write to the disk.

AppleIIAsmLib Reference Manual 31

v0.5.0

Disk 7: CONVERT

MACRO DEPEND PARAMETERS RETURNS

I2STR
_MLIT;

HEX2INTASC
]1 = value to convert

.A = string length
RETURN = string characters

RETLEN = length byte

Convert a 16-bit value to its string equivalent in decimal format.

STR2I
_MSTR;

INTASC2HEX
]1 = string or address

.A = value low byte

.X = value high byte

RETURN = converted value

RETLEN = 2

Convert a string containing a decimal value representation to its equivalent

numerical value.

H2STR HEX2HEXASC]1 = value to convert
RETURN = string characters

RETLEN = 2

Convert an 8-bit numeric value to its string equivalent in hexadecimal

format.

STR2H
_MSTR;

HEXASC2HEX
]1 = string or address

.A = converted value

RETURN = converted value

RETLEN = 1

Convert a string containing a representation of a hexadecimal number value

into its 8-bit value equivalent.

B2STR HEX2BINASC]1 = value to convert
RETURN = string characters

RETLEN = 8

Convert an 8-bit numeric value into its string equivalent in binary format.

STR2B
_MSTR;

BINASC2HEX
]1 = string or address

.A = converted value

RETURN = converted value

RETLEN = 1

Convert a string containing the binary representation of a number and

convert it to its actual value.

AppleIIAsmLib Reference Manual 32

v0.5.0

Quick Reference: Subroutines

Disk 1: LIB.REQUIRED

Disk 1: Other Subroutines

SUBROUTINE FILE DESTROYS CYCLES SIZE

__CLRHI LIB.REQUIRED ANZC 16 6

__DUMP LIB.REQUIRED AXYMZCN 184+ 114

__ERRH LIB.REQUIRED AXYMZCN 51 31

__GETRET LIB.REQUIRED AXYMZCN 32+ 18

__P LIB.REQUIRED AYNZCMS 63+ 33

__W LIB.REQUIRED ANZC 18+ 11

SUBROUTINE FILE DESTROYS CYCLES SIZE

DELAYMS SUB.DELAYMS AXYNZCM 39+ 29

MEMFILL SUB.MEMFILL AXYNZM 117+ 60

MEMMOVE SUB.MEMMOVE AXYNZCM 267+ 150

MEMSWAP SUB.MEMSWAP AXYNZCM 100+ 43

ZMLOAD SUB.ZMLOAD AXYNZCM 123+ 71

ZMSAVE SUB.ZMSAVE AXYNZCM 138+ 84

AppleIIAsmLib Reference Manual 33

v0.5.0

Disk 2: STDIO

SUBROUTINE FILE DESTROYS CYCLES SIZE

DPRINT SUB.DPRINT AXYNZM 61+ 27

PRNSTR SUB.PRNSTR AXYNVZCM 28+ 22

SINPUT SUB.SINPUT AXYNVZC 60+ 45

TBLINE SUB.TBLINE AXYNVZCM 283+ 188

TCIRCLE SUB.TCIRCLE AXYNVZCM 494+ 420

THLINE SUB.THLINE AXYNVBZCM 90+ 47

TRECTF SUB.TRECTF AXYNVZCM 69+ 74

TVLINE SUB.TBLINE AXYNVZCM 33+ 34

TXTPUT SUB.TXTPUT AXYNVZCM 29+ 30

XPRINT SUB.XPRINT AXYNVZCM 63+ 33

AppleIIAsmLib Reference Manual 34

v0.5.0

Disk 3: ARRAYS

SUBROUTINE FILE DESTROYS CYCLES SIZE

ADIM81 SUB.ADIM81 AXYNVZCM 176+ 160

AGET81 SUB.AGET81 AXYNVZC 134+ 134

APUT81 SUB.APUT81 AXYNVZCM 170+ 145

ADIM82 SUB.ADIM82 AXYNVZCM 282+ 244

AGET82 SUB.AGET82 AXYNVZCM 288+ 243

APUT82 SUB.APUT82 AXYNVZCM 274+ 239

ADIM161 SUB.ADIM161 AXYNVZCM 172+ 162

AGET161 SUB.AGET161 AXYNVZCM 126+ 135

APUT161 SUB.APUT161 AXYNVZCM 181+ 135

ADIM162 SUB.ADIM162 AXYNVZCM 426+ 312

AGET162 SUB.AGET162 AXYNVZCM 410+ 277

APUT162 SUB.APUT162 AXYNVZCM 404+ 273

AppleIIAsmLib Reference Manual 35

v0.5.0

Disk 4: MATH

SUBROUTINE FILE DESTROYS CYCLES SIZE

ADDIT16 SUB.ADDIT16 AXYNVBDIZCM 43+ 24

COMP16 SUB.COMP16 AXYNVBDIZCM 51+ 27

DIVD16 SUB.DIVD16 AXYNVBDIZCM 92+ 53

DIVD8 SUB.DIVD8 AXYNVBDIZCM 58+ 34

MULT16 SUB.MULT16 AXYNVBDIZCM 101+ 61

MULT8 SUB.MULT8 AXYNVBDIZCM 81+ 47

RAND16 SUB.RAND16 AXYNVBDIZCM 90+ 60

RAND8 SUB.RAND8 AXYNVBDIZCM 44+ 27

RANDB SUB.RANDB AXYNVBDIZCM 248+ 476

SUBT16 SUB.SUBT16 AXYNVBDIZCM 29+ 13

AppleIIAsmLib Reference Manual 36

v0.5.0

Disk 5: STRINGS

SUBROUTINE FILE DESTROYS CYCLES SIZE

PRNSTR SUB.PRNSTR AXYNVBDIZCM 46+ 26

STRCAT SUB.STRCAT AXYNVBDIZCM 115+ 75

STRCMP SUB.STRCOMP AXYNVBDIZCM 61+ 32

SUBCOPY SUB.SUBCOPY AXYNVBDIZCM 46+ 27

SUBDEL SUB.SUBDEL AXYNVBDIZCM 79+ 47

SUBINS SUB.SUBINS AXYNVBDIZCM 106+ 67

SUBPOS SUB.SUBPOS AXYNVBDIZCM 150+ 103

AppleIIAsmLib Reference Manual 37

v0.5.0

Disk 6: FILEIO

SUBROUTINE FILE DESTROYS CYCLES SIZE

BINLOAD SUB.BINLOAD AXYNVBDIZCM 124+ 82

BINSAVE SUB.BINSAVE AXYNVBDIZCM 124+ 82

DISKRW SUB.DISKRW AXYNVBDIZCM 41+ 34

DOSCMD SUB.DOSCMD AXYNVBDIZCM 76+ 52

FPRINT SUB.FPRINT AXYNVBDIZCM 63+ 37

FINPUT SUB.FINPUT AXYNVBDIZCM 54+ 41

FPSTR SUB.FPSTR AXYNVBDIZCM 38+ 25

AppleIIAsmLib Reference Manual 38

v0.5.0

Disk 7: Convert

SUBROUTINE FILE DESTROYS CYCLES SIZE

BINASC2HEX SUB.BINASC2HEX AXYNVBDIZCM 400+ 320

HEX2BINASC SUB.HEX2BINASC AXYNVBDIZCM 134+ 159

HEX2HEXASC SUB.HEX2HEXASC AXYNVBDIZCM 80+ 77

HEX2INTASC SUB.HEX2INTASC AXYNVBDIZCM 226+ 352

HEXASC2HEX SUB.HEXASC2HEX AXYNVBDIZCM 82+ 61

INTASC2HEX SUB.INTASC2HEX AXYNVBDIZCM 266+ 196

AppleIIAsmLib Reference Manual 39

v0.5.0

Part II
Detailed Descriptions and Listings

AppleIIAsmLib Reference Manual 40

v0.5.0

Disk 1: REQCOM

The first disk in the collection holds all of the required

files, subroutines and macros as well as the library of common

macros and subroutines.

REQUIRED LIBRARY FILES

All AppleIIAsm macro and subroutine libraries require these core

macros and routines to function properly. For the most part, the

average programmer can ignore the macros and subroutines here,

as they will be used rarely outside of the inner workings of the

library itself. However, a working understanding of how the

library works might be necessary in cases where optimizations

are required that need to deconstruct the library to its barest

bones (or maybe you just want to know for the sake of knowing!).

Thus, these macros and subroutines are documented here.

The required library consists of:

• HEAD.REQUIRED

• MAC.REQUIRED

• LIB.REQUIRED

HEAD.REQUIRED is a header that must be included in a source file

prior to any other file. It includes basic variable declarations

and hooks needed by the rest of the library.

MAC.REQUIRED is a collection of macros that the rest of the

library uses. It is also important to note that the macro

library itself uses its own macros, primarily for parsing

literal values and indirect addresses, but also for passing the

appropriate values to each subroutine.

LIB.REQUIRED is the collection of actual subroutines used by the

rest of the library. None of these subroutines call any other,

but they are all included in the same file for ease of inclusion

(this is impractical for other libraries, as Merlin 8 Pro breaks

down when files get too large).

The individual subroutines and macros contained within each file

are explained prior to the listing of each.

AppleIIAsmLib Reference Manual 41

v0.5.0

HEAD.REQUIRED

The required library header, which should be included prior to

any other file, does the following:

• Establishes a 34 byte data area for a jump table starting

at the second byte of the source program; this is why it

must be included before any other file. The first two bytes

hold the address of the start of the main program, while

the following 32 bytes are available to create custom jump

tables.

• Creates a 20 byte area of memory for variable declarations.

These are defined at the beginning of each subroutine.

• Declares a single length byte for return values from the

library subroutines, as well as another 256 bytes to hold

any return values.

• Declare four two-byte addresses of the zero page for use in

indirect addressing. Note that the library only uses parts

of the zero pages that are not used by DOS, ProDOS,

Applesoft or the Monitor.

• Declares zero-page bytes that are used as scratchpads.

These values are meant to be stored temporarily, and should

not be relied on outside of a given subroutine.

• Declares an additional two bytes of the zero page to hold

return addresses.

• Establishes zero-page memory addresses to hold one- or two-

byte values that are passed to the various subroutines in

the library.

• Declares any hooks necessary for the operation of the

library as a whole.

AppleIIAsmLib Reference Manual 42

v0.5.0

*

``````````````````````````````

* HEAD.REQUIRED *

* *

* THIS HEADER MUST BE THE *

* INCLUDED BEFORE ANY OTHER *

* CODE IN ORDER FOR THE PROPER *

* FUNCTIONING OF THE LIBRARY. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 30-JUN-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

* VARIABLE DECLARATIONS ********

*

** JUMP TABLE SETUP. THIS IS FOR LOADING

** SUBROUTINES INTO MEMORY FOR ACCESS BY

** EXTERNAL EXECUTIONS. NOTE THAT THIS

** SHOULD ALWAYS START AT SECOND BYTE OF

** CODE IN THE PROGRAM SO THAT ITS

** LOCATION IN MEMORY IS EASILY KNOWN.

*

JUMPTBL JMP MAIN_START ; ** ALWAYS ** START WITH

 ; JUMP TO MAIN_START

 DS 32 ; 16 MORE ENTRIES

*

** 20 BYTES FOR VARIABLES

*

VARTAB DS 20

*

** 256 BYTES DEDICATED TO RETURN

** VALUES OF VARIABLE LENGTH; CAN BE

** MODIFIED TO SUIT SMALLER OR LARGER

** NEEDS.

*

RETLEN DS 1 ; RETURN VALUE BYTE LENGTH

RETURN DS 256

*

** ADDRESS STORAGE LOCATIONS FOR

** INDIRECT ADDRESSING.

*

AppleIIAsmLib Reference Manual 43

v0.5.0

ADDR1 EQU $06 ; AND $07

ADDR2 EQU $08 ; AND $09

ADDR3 EQU $EB ; AND $EC

ADDR4 EQU $ED ; AND $EE

*

** SCRATCHPAD ZERO PAGE LOCATIONS AND

** DEDICATED ZERO PAGE ADDRESS TO HOLD

** A RETURN ADDRESS PASSED VIA THE STACK

*

SCRATCH EQU $19

SCRATCH2 EQU $1E

RETADR EQU $FE ; AND $FF

*

** ZERO PAGE ADDRESSES DEDICATED TO PASSING

** BACK RESULTS WHEN THERE ARE MORE THAN

** THREE BYTES BEING PASSED (AXY) AND THE

** USE OF THE STACK IS IMPRACTICAL OR TOO SLOW

*

RESULT EQU $FA

RESULT2 EQU $FC

*

** WORD AND BYTE PARAMETER SPACE USED

** BY APPLEIIASM MACROS

*

WPAR1 EQU $FA

WPAR2 EQU $FC

WPAR3 EQU $FE

BPAR1 EQU $EF

BPAR2 EQU $E3

BPAR3 EQU $1E

BPAR4 EQU $19

*

** VARIOUS HOOKS USED BY ALL ROUTINES

*

REENTRY EQU $3D0

*

MAIN_START

*

AppleIIAsmLib Reference Manual 44

v0.5.0

MAC.REQUIRED

The MAC.REQUIRED file holds all of the macros used by the rest

of the AppleIIAsm library. Currently, this includes:

• _AXLIT

• _AXSTR

• DUMP

• ERRH

• GRET

• _ISLIT

• _ISSTR

• _MLIT

• _PRN

• _WAIT

AppleIIAsmLib Reference Manual 45

v0.5.0

*

``````````````````````````````

* MAC.REQUIRED *

* *

* MACROS USED FOR CORE UTILS *

* AND LIBRARY ROUTINES. NOTE *

* THAT THE LIBRARIES DO NOT *

* USE THESE MACROS, BUT MAY *

* USE THE ROUTINES. THESE ARE *

* MERELY PROVIDED FOR THE SAKE *

* OF CONVENIENCE. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 30-JUN-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

* *

* SUBROUTINE FILES NEEDED *

* *

* LIB.REQUIRED *

* *

* MACROS INCLUDED: *

* *

* _MLIT : IS LITERAL? (ZERO) *

* _ISLIT : IS LITERAL? (STACK) *

* _AXLIT : IS LITERAL? (REGS) *

* _ISSTR : IS STRING? (STACK) *

* _AXSTR : IS STRING? (REGS) *

* GRET : GET RETURN *

* DUMP : DUMP MEMORY *

* _PRN : PRINT STRING *

* _WAIT : GET KEYPRESS *

* ERRH : SET ERROR ROUTINE *

* CLRHI : CLEAR HIGH NIBBLE *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

AppleIIAsmLib Reference Manual 46

v0.5.0

MAC.REQUIRED >> _MLIT

The _MLIT macro is used to

determine if an address passed

to the macro is a literal. If it

is, that value is passed to the

specified zero-page location for

use in another macro or

subroutine; if not, then the two

bytes located at the specified

address are copied to the zero-

page address.

For the most part, _MLIT is not

used beyond the core library

macros. However, it can be

freely utilized by your own code

for passing parameters as well.

*

``````````````````````````````

* _MLIT *

* *

* CHECKS IF PARAMETER IS A *

* LITERAL OR NOT, AND SETS THE *

* LO AND HI IN THE SPECIFIED *

* MEMORY ADDRESS. *

* *

* PARAMETERS *

* *

*]1 = MEMORY ADDRESS BYTE *

*]2 = ZERO PAGE ADDRESS *

* *

* SAMPLE USAGE *

* *

* _MLIT #$6000 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

_MLIT MAC

 IF #=]1 ; IF]1 IS A LITERAL

 LDA]1/$100 ; GET HI

 STA]2+1

 LDA]1 ; GET LO

 STA]2

 ELSE ;]1 IS ADDRESS

 _MLIT (macro)

 Input:

]1 = Memory Address

]2 = Destination Address

 Output:

 Correct address to

 destination address

 Destroys: ANZM

 Cycles: 20

 Size: 24 bytes

AppleIIAsmLib Reference Manual 47

v0.5.0

 LDA]1+1 ; SO GET HIGH VAL FROM ADDR

 STA]2+1

 LDA]1 ; THEN LO VAL

 STA]2

 FIN

 <<<

AppleIIAsmLib Reference Manual 48

v0.5.0

MAC.REQUIRED >> _ISLIT

The _ISLIT macro is used to

determine if an address passed

to the macro is a literal. If it

is, that value is pushed to the

stack for use in another macro

or subroutine; if not, then the

two bytes located at the

specified address are pushed.

For the most part, _ISLIT is not

used beyond the core library

macros. However, it can be

freely utilized by your own code

for passing parameters as well.

*

``````````````````````````````

* _ISLIT *

* *

* CHECKS IF THE PARAMETER IS *

* A LITERAL OR NOT, THEN *

* PUSHES THE LO AND HI AS *

* NEEDED. *

* *

* PARAMETERS *

* *

*]1 = MEMORY ADDRESS BYTE *

* *

* SAMPLE USAGE *

* *

* _ISLIT #$6000 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

_ISLIT MAC

 IF #=]1 ; IF]1 IS A LITERAL

 LDA]1/$100 ; GET HI

 PHA

 LDA]1 ; GET LO

 PHA

 ELSE ;]1 IS ADDRESS

 LDA]1+1 ; SO GET HIGH VAL FROM ADDR

 PHA

 _ISLIT (macro)

 Input:

]1 = Memory Address

 Output:

 Correct address to

 6502 stack

 Destroys: ANZM

 Cycles: 20

 Size: 16 bytes

AppleIIAsmLib Reference Manual 49

v0.5.0

 LDA]1 ; THEN LO VAL

 PHA

 FIN

 <<<

AppleIIAsmLib Reference Manual 50

v0.5.0

MAC.REQUIRED >> _AXLIT

The _AXLIT macro is used to

determine if an address passed

to the macro is a literal. If it

is, that address is loaded into

the .A register (low byte) and

the .X register (high byte) for

use in another macro or

subroutine; if not, then the two

bytes located at the specified

address are loaded into .A and

.X instead.

For the most part, _AXLIT is not

used beyond the core library

macros. However, it can be

freely utilized by your own code

for passing parameters as well.

*

``````````````````````````````

* _AXLIT *

* *

* CHECKS IF PARAMETER IS A *

* LITERAL OR NOT, AND SETS THE *

* LO AND HI IN .A AND .X. *

* *

* PARAMETERS *

* *

*]1 = MEMORY ADDRESS BYTE *

* *

* SAMPLE USAGE *

* *

* _AXLIT #$6000 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

_AXLIT MAC

 IF #=]1 ; IF]1 IS A LITERAL

 LDX]1/$100 ; GET HI

 LDA]1 ; GET LO

 ELSE ;]1 IS ADDRESS

 LDX]1+1 ; SO GET HIGH VAL FROM ADDR

 LDA]1 ; THEN LO VAL

 FIN

 <<<

 _AXLIT (macro)

 Input:

]1 = Memory Address

 Output:

 Correct address to

 .A (low) and .X (high)

 Destroys: AXNZ

 Cycles: 6

 Size: 4 bytes

AppleIIAsmLib Reference Manual 51

v0.5.0

MAC.REQUIRED >> _ISSTR

The _ISSTR macro checks to see

whether the parameter passed is

a string. If it is, the string

is then officially coded into

machine code at the current

address, which is then passed to

the calling macro or subroutine

via the stack. If the parameter

isn’t a string, then it is

assumed to be a two-byte

address, which is passed to

_ISLIT for further parsing.

*

``````````````````````````````

* _ISSTR *

* *

* CHECKS IF PARAMETER IS A *

* STRING, AND IF SO PROVIDE IT *

* WITH AN ADDRESS. IF NOT, *

* CHECK IF IT'S A LITERAL AND *

* PASS ACCORDINGLY. *

* *

* PARAMETERS *

* *

*]1 = MEMORY ADDRESS BYTE *

* OR STRING *

* *

* SAMPLE USAGE *

* *

* _ISSTR "TESTING" *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

_ISSTR MAC

 IF "=]1 ; IF]1 IS A STRING

 JMP __STRCONT

]STRTMP STR]1

__STRCONT

*

 LDA #>]STRTMP ; GET HI

 _ISSTR (macro)

 Input:

]1 = Memory Address

 Output:

 Correct address of

 String to the stack

 Destroys: ANZM

 Cycles: 13+

 Size: 9+ bytes

AppleIIAsmLib Reference Manual 52

v0.5.0

 PHA

 LDA #<]STRTMP ; GET LO

 PHA

 ELSE ;]1 IS ADDRESS

 _ISLIT]1

 FIN

 <<<

AppleIIAsmLib Reference Manual 53

v0.5.0

MAC.REQUIRED >> _AXSTR

The _AXSTR macro checks to see

whether the parameter passed is

a string. If it is, the string

is then officially coded into

machine code at the current

address, which is then passed to

the calling macro or subroutine

via .A register (low byte) and

the .X register (high byte). If

the parameter isn’t a string,

then it is assumed to be a two-

byte address, which is passed to

_AXLIT for further parsing.

*

``````````````````````````````

* _AXSTR *

* *

* CHECKS IF PARAMETER IS A *

* STRING, AND IF SO PROVIDES *

* AN ADDRESS FOR IT. IF NOT, *

* CHECK IF IT'S A LITERAL, AND *

* STORE THE HI A LO BYTES IN *

* .A AND .X. *

* *

* PARAMETERS *

* *

*]1 = MEMORY ADDRESS BYTE *

* OR STRING *

* *

* SAMPLE USAGE *

* *

* _AXSTR "TESTING" *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

_AXSTR MAC

 IF "=]1 ; IF]1 IS A STRING

 JMP __STRCNT2

]STRTMP STR]1

__STRCNT2

*

 LDX #>]STRTMP ; GET HI

 _AXSTR (macro)

 Input:

]1 = Memory Address

 Output:

 Correct address of string

 To .A (low) and .X (high)

 Destroys: ANZM

 Cycles: 7

 Size: 7+ bytes

AppleIIAsmLib Reference Manual 54

v0.5.0

 LDA #<]STRTMP ; GET LO

 ELSE ;]1 IS ADDRESS

 _AXLIT]1

 FIN

 <<<

AppleIIAsmLib Reference Manual 55

v0.5.0

MAC.REQUIRED >> GRET

The GRET macro first sends its

only parameter to _AXLIT for

parsing, then calls the __GETRET

subroutine, which copies the

data in RETURN to the passed

address.

*

``````````````````````````````

* GRET *

* *

* COPY THE VALUE IN RETURN AND *

* PLACE IT IN GIVEN ADDRESS. *

* *

* PARAMETERS *

* *

*]1 = MEMORY ADDRESS BYTE *

* *

* SAMPLE USAGE *

* *

* GRET #$6000 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

GRET MAC

 _AXLIT]1

 JSR __GETRET

 <<<

 GRET (macro)

 Input:

]1 = Memory Address

 Output:

 RETURN data copied to

 new address.

 Destroys: AXYNZCM

 Cycles: 44+

 Size: 25 bytes

AppleIIAsmLib Reference Manual 56

v0.5.0

MAC.REQUIRED >> DUMP

The DUMP macro dumps the values

at the specified memory address

to the screen (COUT1). The

Hexadecimal values are converted

to their textual equivalents.

The first parameter, the

starting address, is first sent

to _AXLIT for parsing as a

literal or indirect address.

*

``````````````````````````````

* DUMP *

* *

* DUMP THE HEX AT A GIVEN *

* ADDRESS. *

* *

* PARAMETERS *

* *

*]1 = MEMORY ADDRESS BYTE *

*]2 = LENGTH IN BYTES *

* *

* SAMPLE USAGE *

* *

* DUMP #$6000;#10 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

DUMP MAC

 _AXLIT]1

 LDY]2

 JSR __DUMP

 <<<

 DUMP (macro)

 Input:

]1 = Memory Address

]2 = Byte Length

 Output:

 Memory contents to

 The screen

 Destroys: AXYNCZM

 Cycles: 198

 Size: 14 bytes

AppleIIAsmLib Reference Manual 57

v0.5.0

MAC.REQUIRED >> _PRN

The _PRN macro is simply a quick

literal string printing function

for mostly debugging purposes.

Unlike more versatile macros in

STDIO, this macro only accepts a

string as its sole parameter.

*

``````````````````````````````

* _PRN *

* *

* PRINT A STRING OR ADDRESS. *

* *

* PARAMETERS *

* *

*]1 = MEMORY ADDRESS BYTE *

* OR STRING *

* *

* SAMPLE USAGE *

* *

* _PRN "TESTING" *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

_PRN MAC

 JSR __P

 ASC]1

 HEX 00

 <<<

 _PRN (macro)

 Input:

]1 = Literal String

 Output:

 String to the screen

 Destroys: AYNZCMS

 Cycles: 69+

 Size: 9 bytes

AppleIIAsmLib Reference Manual 58

v0.5.0

MAC.REQUIRED >> _WAIT

The _WAIT macro simply waits for

a keypress, and returns the

associated value in .A after a

key is pressed. This is nearly a

carbon-copy of the equivalent

macro in STDIO, but is also

included in the required library

for debugging purposes. If

memory use is an extreme

concern, a negligible 11 bytes

can be saved by removing the __W

from LIB.REQUIRED.

*

``````````````````````````````

* _WAIT *

* *

* WAIT FOR A KEYPRESS. *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

_WAIT MAC

 JSR __W

 <<<

 _WAIT (macro)

 Input:

 none

 Output:

 .A = key value

 Destroys: ANCZ

 Cycles: 24+

 Size: 3 bytes

AppleIIAsmLib Reference Manual 59

v0.5.0

MAC.REQUIRED >> ERRH

The ERRH macro parses the

address parameter into .A and

.X, then calls the __ERRH

subroutine. This simply sets the

error-handling address for

Applesoft. This is particularly

important when file operations

are concerned.

*

``````````````````````````````

* ERRH *

* *

* SET THE ERROR HANDLING HOOK *

* *

* PARAMETERS *

* *

*]1 = MEMORY ADDRESS BYTE *

* *

* SAMPLE USAGE *

* *

* ERRH #$6000 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

ERRH MAC

 _AXLIT

 JSR __ERRH

 <<<

 ERRH (macro)

 Input:

]1 = memory address

 Output:

 none

 Destroys: AXYCZNM

 Cycles: 63

 Size: 9 bytes

AppleIIAsmLib Reference Manual 60

v0.5.0

MAC.REQUIRED >> CLRHI

The CLRHI macro clears the high

nibble of the byte held in the

.A register. This is often used

for data type conversions.

*

``````````````````````````````

* CLRHI *

* *

* CLEAR HI NIBBLE OF A BYTE *

* *

* PARAMETERS *

* *

*]1 = BYTE TO CLEAR *

* *

* SAMPLE USAGE *

* *

* CLRHI #$FF *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

CLRHI MAC

 LDA]1

 JSR __CLRHI

 <<<

 CLRHI (macro)

 Input:

 .A = byte

 Output:

 .A = byte

 Destroys: ANZC

 Cycles: 22

 Size: 5 bytes

AppleIIAsmLib Reference Manual 61

v0.5.0

LIB.REQUIRED

LIB.REQUIRED contains all of the subroutines that all other

libraries in the collection need to operate. This includes:

• __CLRHI

• __DUMP

• __GETRET

• __ERRH

• __P

• __W

AppleIIAsmLib Reference Manual 62

v0.5.0

*

``````````````````````````````

* LIB.REQUIRED *

* *

* LIBRARY OF REQUIRED ROUTINES *

* AS PART OF THE APPLEIIASM *

* MACRO AND SUBROUTINE LIBRARY *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 30-JUN-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* LICENSE: APACHE 2.0 *

* OS: DOS 3.3 *

* *

* SUBROUTINES: *

* *

* __GETRET : GET RETURN VAL *

* __CLRHI : CLEAR HI NIBBLE *

* __DUMP : DUMP MEMORY *

* __P : PRINT *

* __W : WAIT *

* __ERRH : HANDLE ERRORS *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

** LIBRARY-SPECIFIC VARIABLES

*

]RIGHT DS 1

]LEFT DS 1

]LENGTH DS 1

]A DS 1 ; REGISTER .A BACKUP

]X DS 1 ; REGISTER .X BACKUP

]Y DS 1 ; REGISTER .Y BACKUP

]C DS 1 ; CARRY FLAG BACKUP

]Z DS 1 ; ZERO FLAG BACKUP

]N DS 1 ; NEGATIVE FLAG BACKUP

]O DS 1 ; OVERFLOW FLAG BACKUP

]HEXTAB ASC "0123456789ABCDEF"

*

** LIBRARY-SPECIFIC HOOKS

*

]COUT EQU $FDF0 ; SCREEN OUTPUT ROUTINE

]KYBD EQU $C000 ; KEYBOARD INPUT

]STROBE EQU $C010 ; KEYBOARD STROBE

AppleIIAsmLib Reference Manual 63

v0.5.0

LIB.REQUIRED >> __GETRET

The __GETRET subroutine copies

the data in RETURN, which often

holds the results of another

subroutine’s actions, to another

memory address for more

permanent storage. The length of

the data is returned in the .Y

register. Note that RETLEN is

not explicitly copied as part of

the data; this must be done

manually.

*

``````````````````````````````

* __GETRET (NATHAN RIGGS) *

* *

* INPUT: *

* *

* .A = ADDRESS LOBYTE *

* .X = ADDRESS HIBYTE *

* RETURN = DATA STRING *

* RETLEN = DATA STRING LENGTH *

* *

* OUTPUT: *

* *

* COPIES CONTENT OF RETURN *

* TO SPECIFIED ADDRESS. *

* *

* .Y = RETURN LENGTH *

* *

* DESTROYS: AXYNVBDIZCMS *

* ^^^^ ^^^ *

* *

* CYCLES: 32+ *

* SIZE: 18 BYTES *

 __GETRET (sub)

 Input:

 .A = address low byte

 .X = address high byte

 RETURN = data string

 RETLEN = string length

 Output:

 .Y = data length

 RETURN is copied to

 Given address.

 Destroys: AXYNZCM

 Cycles: 32+

 Size: 18 bytes

AppleIIAsmLib Reference Manual 64

v0.5.0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

__GETRET

 STA ADDR1 ; LOBYTE PASSED IN .A

 STX ADDR1+1 ; HIBYTE PASSED IN .X

 LDY #255 ; RESET COUNTER

:LP

 INY ; INCREASE COUNTER

 LDA RETURN,Y ; LOAD BYTE IN RETURN AT

 STA (ADDR1),Y ; COUNTER OFFSET; STORE AT

 CPY RETLEN ; NEW LOCATION

 BNE :LP ; IF COUNTER < RETLEN, LOOP

 RTS

AppleIIAsmLib Reference Manual 65

v0.5.0

LIB.REQUIRED >> __CLRHI

The __CLRHI subroutine takes a

single byte passed in the

accumulator and clears the high

nibble to zero. The new value is

then returned in the accumulator

as well.

*

``````````````````````````````

* __CLRHI (NATHAN RIGGS) *

* *

* INPUT: *

* *

* .A = BYTE TO CLEAR HIBITS *

* *

* OUTPUT: *

* *

* CLEARS 4 HIBITS FROM BYTE *

* *

* .A = CLEARED BYTE *

* *

* DESTROYS: AXYNVBDIZCMS *

* ^ ^ ^^ *

* *

* CYCLES: 16 *

* SIZE: 6 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

__CLRHI

*

 AND #$F0 ; CLEAR 4 RIGHT BITS

 LSR ; MOVE BITS RIGHT

 LSR ; MOVE BITS RIGHT

 LSR ; MOVE BITS RIGHT

 LSR ; MOVE BITS RIGHT

 RTS

 __CLRHI (sub)

 Input:

 .A = byte to clear high

 nibble

 Output:

 .A = cleared byte

 Destroys: ANZC

 Cycles: 16

 Size: 6 bytes

AppleIIAsmLib Reference Manual 66

v0.5.0

LIB.REQUIRED >> __DUMP

The __DUMP subroutine outputs

the values stored at a given

address range. The values are

first converted from hexadecimal

to a string equivalent, then

sent to COUT. This is primarily

used for debugging purposes, as

there are not too many cases

where the end user would need to

see the actual values stored at

a given address.

*

``````````````````````````````

* __DUMP: (NATHAN RIGGS) *

* *

* INPUT: *

* *

* .A = ADDRESS LOBYTE *

* .X = ADDRESS HIBYTE *

* .Y = NUMBER OF BYTES *

* *

* OUTPUT: *

* *

* OUTPUTS DATA LOCATED AT THE *

* SPECIFIED ADDRESS IN HEX *

* FORMAT FOR SPECIFIED NUMBER *

* OF BYTES. *

* *

* DESTROYS: AXYNVBDIZCMS *

* ^^^^ ^^^ *

* *

* CYCLES: 184+ *

* SIZE: 114 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

 __DUMP (sub)

 Input:

 .A = address low byte

 .X = address high byte

 .Y = range length

 Output:

 Outputs values stored at

 Address range to screen

 Destroys: AXYNZCM

 Cycles: 184+

 Size: 114 bytes

AppleIIAsmLib Reference Manual 67

v0.5.0

__DUMP

 STY]LENGTH ; LENGTH PASSED IN .Y

 STA ADDR1 ; ADDRESS LOBYTE IN .A

 STX ADDR1+1 ; ADDRESS HIBYTE IN .X

 LDA #$8D ; LOAD CARRIAGE RETURN

 JSR]COUT ; SEND TO COUT

 LDA ADDR1+1 ; GET ADDRESS HIBYTE

 JSR __CLRHI ; CLEAR HIBITS

 TAX ; TRANSFER T .X

 LDA]HEXTAB,X ; LOAD HEX CHAR FROM TABLE AT .X

 JSR]COUT ; SEND TO COUT

 LDA ADDR1+1 ; LOAD ADDRESS HIBYTE AGAIN

 AND #$0F ; CLEAR LOBITS

 TAX ; TRANSER TO .X

 LDA]HEXTAB,X ; LOAD HEX CHAR FROM TABLE AT .X

 JSR]COUT ; SENT TO COUT

 LDA ADDR1 ; LOAD LOBYTE

 JSR __CLRHI ; CLEAR HIBITS

 TAX ; TRANSFER TO .X

 LDA]HEXTAB,X ; LOAD HEXCHAR AT .X

 JSR]COUT ; SEND TO COUT

 LDA ADDR1 ; LOAD LOBYTE AGAIN

 AND #$0F ; CLEAR LOBITS

 TAX ; TRANSFER T .X

 LDA]HEXTAB,X ; LOAD HEXCHAR AT .X

 JSR]COUT ; SEND TO COUT

 LDA #":" ;

 JSR]COUT ; SEND COLON TO COUT

 LDA #" "

 JSR]COUT ; SEND SPACE TO COUT

 LDY #0 ; RESET COUNTER

:LP

 LDA (ADDR1),Y ; LOAD BYTE FROM ADDRESS

 JSR __CLRHI ; AT COUNTER OFFSET; CLEAR HIBITS

 STA]LEFT ; SAVE LEFT INDEX

 LDA (ADDR1),Y ; RELOAD

 AND #$0F ; CLEAR LOBITS

 STA]RIGHT ; SAVE RIGHT INDEX

 LDX]LEFT ; LOAD LEFT INDEX

 LDA]HEXTAB,X ; GET NIBBLE CHAR

 JSR]COUT ; SEND TO COUT

 LDX]RIGHT ; LOAD RIGHT INDEX

 LDA]HEXTAB,X ; GET NIBBLE CHAR

 JSR]COUT ; SEND TO COUT

 LDA #160 ; LOAD SPACE

 JSR]COUT ; SEND TO COUT

AppleIIAsmLib Reference Manual 68

v0.5.0

 INY ; INCREASE COUNTER

 CPY]LENGTH ; IF COUNTER < LENGTH

 BNE :LP ; CONTINUE LOOP

 RTS ; ELSE, EXIT

AppleIIAsmLib Reference Manual 69

v0.5.0

LIB.REQUIRED >> __P

The __P subroutine simply

outputs a given literal string

to the screen. This is primarily

for debugging purposes; you

should use the subroutines in

the STDIO package for more

robust and flexible screen

output. The subroutine prints

each character in the string

consecutively until a null

character is encountered, at

which point control is returned

to the calling routine.

Note that a JSR to this

subroutine should be followed by

the string of characters you wish to print. In Merlin, this

would be accomplished by using the ASC instruction, followed by

a HEX 00.

*

``````````````````````````````

* __P: (NATHAN RIGGS) *

* *

* INPUT: *

* *

* ASC STRING FOLLOWING CALL *

* TERMINATED WITH A 00 BYTE *

* *

* OUTPUT: *

* *

* CONTENTS OF STRING. *

* *

* DESTROYS: AXYNVBDIZCMS *

* ^ ^^ ^^^^ *

* *

* CYCLES: 63+ *

* SIZE: 33 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

__P

 PLA ; PULL RETURN LOBYTE

 STA ADDR1 ; STORE TO ZERO PAGE

 PLA ; PULL RETURN HIBYTE

 __P (sub)

 Input:

 ASCII input is placed

 After call to subroutine

 Output:

 ASCII string to screen

 Destroys: AYNZCMS

 Cycles: 63+

 Size: 33 bytes

AppleIIAsmLib Reference Manual 70

v0.5.0

 STA ADDR1+1 ; STORE TO ZERO PAGE

 LDY #1 ; SET OFFSET TO PLUS ONE

:LP LDA (ADDR1),Y ; LOAD BYTE AT OFFSET .Y

 BEQ :DONE ; IF BYTE = 0, QUIT

 JSR]COUT ; OTHERWISE, PRINT BYTE

 INY ; INCREASE OFFSET

 BNE :LP ; IF .Y <> 0, CONTINUE LOOP

:DONE CLC ; CLEAR CARRY FLAG

 TYA ; TRANSFER OFFSET TO .A

 ADC ADDR1 ; ADD OFFSET TO RETURN ADDRESS

 STA ADDR1 ; STORE TO RETURN ADDRESS LOBYTE

 LDA ADDR1+1 ; DO THE SAME WITH THE HIBYTE

 ADC #0 ; CARRY NOT RESET, SO INC HIBYTE

 PHA ; IF NEEDED; THEN, PUSH HIBYTE

 LDA ADDR1 ; LOAD LOBYTE

 PHA ; PUSH LOBYTE

 RTS ; EXIT

AppleIIAsmLib Reference Manual 71

v0.5.0

LIB.REQUIRED >> __W

The __W subroutine simply loops

until a keypress is detected,

then returns control back to the

calling routine. The code for

the key pressed is stored in the

accumulator, if needed.

*

``````````````````````````````

* __W: (NATHAN RIGGS) *

* *

* INPUT: NONE *

* OUTPUT: .A HOLDS KEY VALUE *

* *

* DESTROYS: AXYNVBDIZCMS *

* ^ ^ ^^ *

* *

* CYCLES: 18+ *

* SIZE: 11 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

__W

:LP LDA]KYBD ; CHECK IF KEY PRESSED

 BPL :LP ; IF NOT, KEEP CHECKING

 AND #$7F ; SET HI BIT

 STA]STROBE ; RESET KEYBOARD STROBE

 RTS ; EXIT

 __W (sub)

 Input:

 none

 Output:

 .A = key code

 Destroys: ANZC

 Cycles: 18+

 Size: 11 bytes

AppleIIAsmLib Reference Manual 72

v0.5.0

LIB.REQUIRED >> __ERRH

The __ERRH subroutine is used to

define the address that is

jumped to in the case of an

Applesoft error. Note that there

is some trickery here in order

to get the machine to think it

is in Applesoft mode prior to

actually assigning the address.

For the most part, this is used

in conjunction with file

handling subroutines, but it is

common enough to be included in

the required library.

*

``````````````````````````````

* __ERRH (NATHAN RIGGS) *

* *

* INPUT: *

* *

* .A = ADDRESS LOBYTE *

* .X = ADDRESS HIBYTE *

* *

* OUTPUT: *

* *

* SETS NEW ADDRESS FOR THE *

* APPLSOFT ERROR HANDLING *

* ROUTINE. *

* *

* DESTROYS: AXYNVBDIZCMS *

* ^^^^ ^^^ *

* *

* CYCLES: 51 *

* SIZE: 31 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

__ERRH

 LDA #1 ; TRICK DOS INTO THINKING

 STA $AAB6 ; IT'S IN APPLESOFT MODE

 STA $75+1 ; APPLESOFT LINE NUMBER POINTER

 STA $33 ; APLESOFT PROMPT CHARACTER

 __ERRH (sub)

 Input:

 .A = address low byte

 .X = address high byte

 Output:

 New error-handling

 address is set.

 Destroys: AYNZCM

 Cycles: 51

 Size: 31 bytes

AppleIIAsmLib Reference Manual 73

v0.5.0

 STA ADDR1 ; ADDRESS LOBYTE IN .A

 STX ADDR1+1 ; ADDRESS HIBYTE IN .X

 LDA #$FF ; TURN ON ERROR HANDLING

 STA $D8 ; BYTE HERE

 LDY #0 ; CLEAR OFFSET

 LDA (ADDR1),Y ; LOAD ADDRESS LOBYTE

 STA $9D5A ; SET AS ERROR HANDLING LO

 INY ; INCREASE OFFSET

 LDA (ADDR1),Y ; LOAD ADDRESS HIBYTE

 STA $9D5B ; SET AS ERROR HANDLING HI

 RTS ; EXIT SUBROUTINE

AppleIIAsmLib Reference Manual 74

v0.5.0

COMMON LIBRARY

The common library includes macros and subroutines that might be

commonly used in assembly programs that are not specific to a

cohesive classification (with, possibly, the exception of memory

management). Additionally, like most disks for AppleIIAsm, this

also includes a demo of all the macros (and thus subroutines, in

a roundabout way) in the library. Unlike other demos, however,

the common library also illustrates uses of the common library

as well as those in the required library.

The common library includes the following:

• HOOKS.COMMON

• MAC.COMMON

• SUB.DELAYMS

• SUB.MEMFILL

• SUB.MEMMOVE

• SUB.MEMSWAP

• SUB.ZMLOAD

• SUB.ZMSAVE

HOOKS.COMMON includes various system hooks that are related to

the use of common subroutines and macros. Note that this file,

like other hooks files, may also include hooks that are

commented out because they currently go unused by the library,

but may be helpful for specific applications.

MAC.COMMON contains the macros used as part of the common

library.

SUB.DELAYMS holds the DELAYMS subroutine, which delays the

microprocessor for a given number of milliseconds. This is

achieved by a precise counting of CPU cycles.

SUB.MEMFILL contains the MEMFILL subroutine, which fills a given

range of memory with a given value.

SUB.MEMMOVE contains the MEMMOVE subroutine, which copies a

given memory range to another address range.

SUB.MEMSWAP contains the MEMSWAP subroutine, which swaps the

values in a given address range with those values in another

address range.

AppleIIAsmLib Reference Manual 75

v0.5.0

SUB.ZMLOAD contains the ZMLOAD subroutine, which loads a

previously saved set of values (from ZMSAVE) that populate the

portions of the zero page that the main AppleIIAsm library uses.

SUB.ZMSAVE holds the ZMSAVE subroutine, which saves the values

stored on the zero page that are immediately relevant to the

main AppleIIAsm library.

The individual subroutines and macros will be explained prior to

the listing of the file in which they are included.

AppleIIAsmLib Reference Manual 76

v0.5.0

HOOKS.COMMON

Since the Common library holds a lot of unrelated but useful

subroutines and macros, the hooks file does not necessarily

contain thematically related entries. Those here, however, are

either highly common themselves, but aren’t part of any other

library, or are used by the subroutines included in the library.

``````````````````````````````

* HOOKS.COMMON *

* *

* HOOKS TO MONITOR AND TO THE *

* APPLESOFT ROUTINES THAT ARE *

* RELATED TO COMMON TASKS. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 30-JUN-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* LICENSE: APACHE 2.0 *

* OS: DOS 3.3 *

* *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

PROMPT EQU $33 ; DOS PROMPT CHARACTER

COLDENT EQU $03D3 ; COLD ENTRY TO DOS

SRESET EQU $03F2 ; SOFT RESET

PRNTAX EQU $F941 ; PRINT HEX VALS OF A,X REGISTERS

BELL EQU $FBE4 ; RING MY BELL

IOSAVE EQU $FF4A ; SAVE CURRENT STATE OF REGISTERS

IOREST EQU $FF3F ; RESTORE OLD STATE OF REGISTERS

*

AppleIIAsmLib Reference Manual 77

v0.5.0

MAC.COMMON

MAC.COMMON contains a variety of different macros that may not

be thematically cohesive, but are common enough to merit

inclusion into the library. Currently, this includes the

following macros:

• MFILL

• MMOVE

• BEEP

• DELAY

• ZSAVE

• ZLOAD

• MSWAP

AppleIIAsmLib Reference Manual 78

v0.5.0

``````````````````````````````

* MAC.COMMON *

* *

* THIS IS A MACRO LIBRARY FOR *

* COMMON.LIB, AND CAN BE USED *

* REGARDLESS OF WHETHER A *

* SPECIFIC FUNCTION IS *

* INCLUDED AS A PUT IN THE *

* MAIN SOURCE. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 30-JUN-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

* *

* SUBROUTINE FILES NEEDED *

* *

* SUB.MEMFILL *

* SUB.MEMMOVE *

* SUB.DELAYMS *

* SUB.ZMSAVE *

* SUB.ZMLOAD *

* SUB.MEMSWAP *

* *

* LIST OF MACROS *

* *

* MFILL FILL MEMORY BLOCK *

* MMOVE MOVE MEMORY BLOCK *

* BEEP RING MY BELL *

* DELAY DELAY IN MILLISECS *

* ZSAVE SAVE FREE ZERO PAGE *

* ZLOAD LOAD SAVE ZERO PAGE *

* MSWAP SWAP MEM RANGES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

AppleIIAsmLib Reference Manual 79

v0.5.0

MAC.COMMON >> MFILL

The MFILL macro is used to fill

a specified range of memory with

a given value. The parameters

are first parsed into the

appropriate zero-page locations,

with the fill value passed via

the accumulator. Afterwards, the

MEMFILL subroutine is called.

*

``````````````````````````````

* MFILL *

* *

* FILL BLOCK OF MEMORY WITH *

* SPECIFIED VALUE. *

* *

* PARAMETERS *

* *

*]1 = STARTING ADDRESS *

*]2 = LENGTH IN BYTES *

*]3 = FILL VALUE *

* *

* SAMPLE USAGE *

* *

* MFILL $300;#256;#0 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

MFILL MAC

 _MLIT]1;WPAR1

 _MLIT]2;WPAR2

 LDA]3 ; FILL VALUE

 STA BPAR1

 JSR MEMFILL

 <<<

 MFILL (macro)

 Input:

]1 = memory address

]2 = number of bytes

]3 = fill value

 Output:

 Memory range filled with

 Specified fill value

 Destroys: AXYNZCM

 Cycles: 39+

 Size: 29 bytes

AppleIIAsmLib Reference Manual 80

v0.5.0

MAC.COMMON >> BEEP

The BEEP macro simply loops the

standard BELL routine for the

specified number of times.

*

``````````````````````````````

* BEEP *

* *

* RING THE STANDARD BELL. *

* *

* PARAMETERS *

* *

*]1 = NUMBER OF RINGS *

* *

* SAMPLE USAGE *

* *

* BEEP #10 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

BEEP MAC

 LDX]1

]LP1

 JSR BELL

 DEX

 CPX #0

 BNE]LP1

 <<<

 BEEP (macro)

 Input:

 none

 Output:

 Beep from system speaker

 Destroys: AXYNC

 Cycles: 86+

 Size: 10 bytes

AppleIIAsmLib Reference Manual 81

v0.5.0

MAC.COMMON >> MMOVE

The MMOVE macro copies a source

address range to a destination

address range. The parameters

are first parsed to be passed

via the zero page, then the

MEMMOVE subroutine is called.

*

``````````````````````````````

* MMOVE *

* *

* MOVE A BLOCK OF MEMORY FROM *

* A SOURCE TO DESTINATION. *

* *

* PARAMETERS *

* *

*]1 = SOURCE ADDRESS *

*]2 = DESTINATION ADDRESS *

*]3 = NUMBER OF BYTES *

* *

* SAMPLE USAGE *

* *

* MMOVE $6A00;$7B00;#1024 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

MMOVE MAC

 _MLIT]1;WPAR1

 _MLIT]2;WPAR2

 _MLIT]3;WPAR3

 JSR MEMMOVE

 <<<

 MMOVE (macro)

 Input:

]1 = source address

]2 = destination address

]3 = byte length

 Output:

 none

 Destroys: AXYNZCM

 Cycles: 327+

 Size: 6 bytes

AppleIIAsmLib Reference Manual 82

v0.5.0

MAC.COMMON >> DELAY

The DELAY macro uses a precise

number of cycles to delay the

calling routine’s execution for

a specified number of

milliseconds. The maximum number

of milliseconds, given that the

parameter is a byte, is 255.

Therefore, for delays greater

than that, it is easiest to call

the macro a consecutive number

of times with a value of 250

(1/4 of a second).

*

``````````````````````````````

* DELAY *

* *

* DELAY FOR PASSED MILLISECS *

* *

* PARAMETERS *

* *

*]1 = NUM OF MILLISECONDS *

* *

* SAMPLE USAGE *

* *

* DELAY #250 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

DELAY MAC

 LDY]1

 JSR DELAYMS

 <<<

 DELAY (macro)

 Input:

]1 = number of

 milliseconds

 Output:

 None; delayed execution

 Destroys: AXYNZCM

 Cycles: 158+

 Size: 5 bytes

AppleIIAsmLib Reference Manual 83

v0.5.0

MAC.COMMON >> ZSAVE

The ZSAVE macro backs up the

zero-page locations used by the

library as a whole to another

non-zero-page location specified

in the parameter. The parameter

is parsed into the .A and .X

registers (low byte, high byte),

then the ZMSAVE subroutine is

called.

*

``````````````````````````````

* ZSAVE *

* *

* SAVE ZERO PAGE FREE AREAS *

* FOR LATER RESTORE. *

* *

* PARAMETERS *

* *

*]1 = ADDRESS TO STORE AT *

* *

* SAMPLE USAGE *

* *

* ZSAVE $300 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

ZSAVE MAC

 _AXLIT]1

 JSR ZMSAVE

 <<<

 ZSAVE (macro)

 Input:

]1 = destination address

 Output:

 None

 Destroys: AXYNZCM

 Cycles: 138+

 Size: 3 bytes

AppleIIAsmLib Reference Manual 84

v0.5.0

MAC.COMMON >> ZLOAD

The ZLOAD macro restores the

zero-page addresses used by the

library that were previously

backed up using ZSAVE.

Parameters are parsed in .A and

.X before calling ZMLOAD.

*

``````````````````````````````

* ZLOAD *

* *

* RESTORE PREVIOUSLY SAVED *

* FREE ZERO PAGE VALUES. *

* *

* PARAMETERS *

* *

*]1 = ADDR TO LOAD FROM *

* *

* SAMPLE USAGE *

* *

* ZLOAD $300 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

ZLOAD MAC

 _AXLIT]1

 JSR ZMLOAD

 <<<

 ZLOAD (macro)

 Input:

]1 = source address

 Output:

 None

 Destroys: AXYNZCM

 Cycles: 123+

 Size: 3 bytes

AppleIIAsmLib Reference Manual 85

v0.5.0

MAC.COMMON >> MSWAP

The MSWAP macro swaps the values

held in a given address range

with those in another.

Parameters are parsed into the

zero-page locations first, then

the MEMSWAP subroutine is

called.

*

``````````````````````````````

* MSWAP *

* *

* SWAPS THE VALUES STORED IN *

* ONE LOCATION WITH ANOTHER *

* *

* PARAMETERS *

* *

*]1 = FIRST ADDRESS *

*]2 = SECOND ADDRESS *

*]3 = LENGTH IN BYTES (BYTE) *

* *

* SAMPLE USAGE *

* *

* MSWAP $300;$400;#$90 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

MSWAP MAC

 _MLIT]2;WPAR2

 _MLIT]1;WPAR1

 LDA]3

 STA BPAR1

 JSR MEMSWAP

 <<<

 MSWAP (macro)

 Input:

]1 = first address

]2 = second address

]3 = length in bytes

 Output:

 none

 Destroys: AXYNZCM

 Cycles: 100+

 Size: 50 bytes

AppleIIAsmLib Reference Manual 86

v0.5.0

SUB.DELAYMS >> DELAYMS

The DELAYMS subroutine halts

execution of the calling routine

for a specified number of

milliseconds by looping through

a precise number of cycles. Of

all subroutines, this is

probably the least transferable

to systems other than the Apple

II, as processor speed, etc.

determines timing.

*

``````````````````````````````

* DELAYMS (LEVENTHAL/SEVILLE) *

* *

* ADAPTED FROM LEVANTHAL AND *

* SEVILLE'S /6502 ASSEMBLY *

* LANGUAGE ROUTINES/. *

* *

* INPUT: *

* *

* .Y = NUMBER OF MILLISECS *

* *

* OUTPUT: *

* *

* DELAYS FOR X NUMBER OF *

* MILLISECONDS BY LOOPING *

* THROUGH A PRECISE NUMBER *

* OF CYCLES. *

* *

* DESTROYS: AXYNVBDIZCMS *

* ^^^^ ^^^ *

* *

* CYCLES: 39+ *

* SIZE: 29 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

DELAYMS

 DELAYMS (sub)

 Input:

 .Y = number of

 milliseconds

 Output:

 none

 Destroys: AXYNZCM

 Cycles: 39+

 Size: 29 bytes

AppleIIAsmLib Reference Manual 87

v0.5.0

*

]MSCNT EQU $0CA ; LOOP 202 TIMES THROUGH DELAY1

 ; SPECIFIC TO 1.23 MHZ

 ; SPEED OF APPLE II

:DELAY

 CPY #0 ; IF Y = 0, THEN EXIT

 BEQ :EXIT

 NOP ; 2 CYCLES (MAKE OVERHEAD=25C)

*

** IF DELAY IS 1MS THEN GOTO LAST1

** THIS LOGIC IS DESIGNED TO BE

** 5 CYCLES THROUGH EITHER ATH

*

 CPY #1 ; 2 CYCLES

 BNE :DELAYA ; 3C IF TAKEN, ELSE 2C

 JMP :LAST1 ; 3C

*

** DELAY 1 MILLISENCOND TIMES (Y-1)

*

:DELAYA

 DEY ; 2C (PREDEC Y)

:DELAY0

 LDX #]MSCNT ; 2C

:DELAY1

 DEX ; 2C

 BNE :DELAY1 ; 3C

 NOP ; 2C

 NOP ; 2C

 DEY ; 2C

 BNE :DELAY0 ; 3C

:LAST1

*

** DELAY THE LAST TIME 25 CYCLES

** LESS TO TAKE THE CALL, RETURN,

** AND ROUTINE OVERHEAD INTO

** ACCOUNT.

*

 LDX #]MSCNT-3 ; 2C

:DELAY2

 DEX ; 2C

 BNE :DELAY2 ; 3C

:EXIT

 RTS ; 6C

AppleIIAsmLib Reference Manual 88

v0.5.0

SUB.MEMFILL >> MEMFILL

The MEMFILL subroutine fills a

given range of memory addresses

with a given value. Whole pages

are filled first, with the

remaining partial page filled

afterward.

*

``````````````````````````````

* MEMFILL (LEVENTHAL/SAVILLE) *

* *

* ADAPTED FROM LEVANTHAL AND *

* SAVILLE'S /6502 ASSEMBLY *

* LANGUAGE ROUTINES/. *

* *

* INPUT: *

* *

*]FILL IN BPAR1 *

*]SIZE IN WPAR2 *

*]ADDR IN WPAR3 *

* *

* OUTPUT: *

* *

* FILLS THE GIVEN MEM RANGE *

* *

* DESTROYS: AXYNVBDIZCMS *

* ^^^^ ^ ^ *

* *

* CYCLES: 117+ *

* SIZE: 60 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]FILL EQU BPAR1 ; FILL VALUE

 MEMFILL (sub)

 Input:

 BPAR1 = fill value

 WPAR2 = length (2 bytes)

 WPAR3 = address (2 bytes)

 Output:

 none

 Destroys: AXYNZM

 Cycles: 117+

 Size: 60 bytes

AppleIIAsmLib Reference Manual 89

v0.5.0

]SIZE EQU WPAR2 ; RANGE LENGTH IN BYTES

]ADDR EQU WPAR1 ; RANGE STARTING ADDRESS

*

MEMFILL

*

** FILL WHOLE PAGES FIRST

*

 LDA]FILL ; GET VAL FOR FILL

 LDX]SIZE+1 ; X=# OF PAGES TO DO

 BEQ :PARTPG ; BRANCH IF HIGHBYTE OF SZ = 0

 LDY #0 ; RESET INDEX

:FULLPG

 STA (]ADDR),Y ; FILL CURRENT BYTE

 INY ; INCREMENT INDEX

 BNE :FULLPG ; BRANCH IF NOT DONE W/ PAGE

 INC]ADDR+1 ; ADVANCE TO NEXT PAGE

 DEX ; DECREMENT COUNTER

 BNE :FULLPG ; BRANCH IF NOT DONE W/ PAGES

*

** DO THE REMAINING PARTIAL PAGE

** REGISTER A STILL CONTAINS VALUE

*

:PARTPG

 LDX]SIZE ; GET # OF BYTES IN FINAL PAGE

 BEQ :EXIT ; BRANCH IF LOW BYTE = 0

 LDY #0 ; RESET INDEX

:PARTLP

 STA (]ADDR),Y ; STORE VAL

 INY ; INCREMENT INDEX

 DEX ; DECREMENT COUNTER

 BNE :PARTLP ; BRANCH IF NOT DONE

:EXIT

 RTS

AppleIIAsmLib Reference Manual 90

v0.5.0

SUB.MEMMOVE >> MEMMOVE

The MEMMOVE subroutine copies

the values held at a source

address range to a destination

address range. If there is an

overlap, the subroutine adjusts

accordingly so that the copied

data overwrites the source data,

thus keeping its integrity. This

is, in short, why the subroutine

is called MEMMOVE instead of

MEMCOPY.

*

``````````````````````````````

* MEMMOVE (LEVENTHAL/SEVILLE) *

* *

* ADAPTED FROM LEVANTHAL AND *

* SEVILLE'S /6502 ASSEMBLY *

* LANGUAGE ROUTINES/. *

* *

* INPUT: *

* *

*]SIZE AT WPAR3 *

*]ADDR1 AT WPAR1 *

*]ADDR2 AT WPAR2 *

* *

* OUTPUT: *

* *

* BYTES FROM SOURCE ARE *

* COPIED IN ORDER TO THE *

* DESTINATION ADDRESS FOR *

* AS LONG AS LENGTH. *

* *

* DESTROY: .AXY,MEMORY *

* CYCLES: 267+ *

* SIZE: 150 BYTES *

 MEMMOVE (sub)

 Input:

 WPAR3 = length (2 bytes)

 WPAR1 = source address

 (2 bytes)

 WPAR2 = destination

 address (2 bytes)

 Output:

 none

 Destroys: AXYM

 Cycles: 267+

 Size: 150 bytes

AppleIIAsmLib Reference Manual 91

v0.5.0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]SIZE EQU WPAR3 ; LENGTH TO COPY (BYTES)

]ADDR1 EQU WPAR1 ; SOURCE ADDRESS

]ADDR2 EQU WPAR2 ; DESTINATION ADDRESS

*

MEMMOVE

*

** DETERMINE IF DEST AREA IS

** ABOVE SRC AREA BUT OVERLAPS

** IT. REMEMBER, OVERLAP CAN BE

** MOD 64K. OVERLAP OCCURS IF

** STARTING DEST ADDRESS MINUS

** STARTING SRC ADDRESS (MOD

** 64K) IS LESS THAN NUMBER

** OF BYTES TO MOVE.

*

 LDA]ADDR2 ; CALC DEST-SRC

 SEC ; SET CARRY

 SBC]ADDR1 ; SUBTRACT SOURCE ADDRESS

 TAX ; HOLD VAL IN .X

 LDA]ADDR2+1

 SBC]ADDR1+1 ; MOD 64K AUTOMATIC

 ; -- DISCARD CARRY

 TAY ; HOLD HIBYTE IN .Y

 TXA ; CMP LOBYTE WITH # TO MOVE

 CMP]SIZE

 TYA

 SBC]SIZE+1 ; SUBTRACT SIZE+1 FROM HIBYTE

 BCS :DOLEFT ; BRANCH IF NO OVERLAP

*

** DEST AREA IS ABOVE SRC AREA

** BUT OVERLAPS IT.

** MOVE FROM HIGHEST ADDR TO

** AVOID DESTROYING DATA

*

 JSR :MVERHT

 JMP :MREXIT

*

** NO PROB DOING ORDINARY MOVE

** STARTING AT LOWEST ADDR

*

:DOLEFT

 JSR :MVELEFT

:EXIT

 JMP :MREXIT

AppleIIAsmLib Reference Manual 92

v0.5.0

:MVELEFT

 LDY #0 ; ZERO INDEX

 LDX]SIZE+1 ; X=# OF FULL PP TO MOVE

 BEQ :MLPART ; IF X=0, DO PARTIAL PAGE

:MLPAGE

 LDA (]ADDR1),Y ; LOAD BYTE FROM SOURCE

 STA (]ADDR2),Y ; MOVE BYTE TO DESTINATION

 INY ; NEXT BYTE

 BNE :MLPAGE ; CONT UNTIL 256B MOVED

 INC]ADDR1+1 ; ADV TO NEXT SRC PAGE

 INC]ADDR2+1 ; ADV NEXT DEST PAGE

 DEX ; DEC PAGE COUNT

 BNE :MLPAGE ; CONT UNTIL ALL FULL

 ; PAGES ARE MOVED

:MLPART

 LDX]SIZE ; GET LENGTH OF LAST PAGE

 BEQ :MLEXIT ; BR IF LENGTH OF LAST

 ; PAGE = 0

 ; REG Y IS 0

:MLLAST

 LDA (]ADDR1),Y ; LOAD BYTE FROM SOURCE

 STA (]ADDR2),Y ; MOVE BYTE TO DESTINATION

 INY ; NEXT BYTE

 DEX ; DEC COUNTER

 BNE :MLLAST ; CONT UNTIL LAST P DONE

:MLEXIT

 JMP :MREXIT

*

*

:MVERHT

*

** MOVE THE PARTIAL PAGE FIRST

*

 LDA]SIZE+1 ; GET SIZE HIBYTE

 CLC ; CLEAR CARRY

 ADC]ADDR1+1 ; ADD SOURCE ADDRESS HIBYTE

 STA]ADDR1+1 ; POINT TO LAST PAGE OF SRC

 LDA]SIZE+1 ; GET SIZE HIBYTE

 CLC ; CLEAR CARRY

 ADC]ADDR2+1 ; ADD DESTINATION HIBYTE

 STA]ADDR2+1 ; POINT TO LAST P OF DEST

*

** MOVE THE LAST PARTIAL PAGE FIRST

*

 LDY]SIZE ; GET LENGTH OF LAST PAGE

AppleIIAsmLib Reference Manual 93

v0.5.0

 BEQ :MRPAGE ; IF Y=0 DO THE FULL PAGES

:MR0

 DEY ; BACK UP Y TO NEXT BYTE

 LDA (]ADDR1),Y ; LOAD CURRENT SOURCE BYTE

 STA (]ADDR2),Y ; STORE IN CURRENT DESTINATION

 CPY #0 ; BRANCH IF NOT DONE

 BNE :MR0 ; WITH THE LAST PAGE

:MRPAGE

 LDX]SIZE+1 ; GET SIZE HIBYTE

 BEQ :MREXIT ; BR IF HYBYTE = 0 (NO FULL P)

:MR1

 DEC]ADDR1+1 ; BACK UP TO PREV SRC PAGE

 DEC]ADDR2+1 ; AND DEST

:MR2

 DEY ; BACK UP Y TO NEXT BYTE

 LDA (]ADDR1),Y ; LOAD SOURCE CURRENT BYTE

 STA (]ADDR2),Y ; STORE BYTE IN DESTINATION

 CPY #0 ; IF NOT DONE WITH PAGE

 BNE :MR2 ; THEN BRANCH OUT

 DEX ; DECREASE BYTE COUNTER

 BNE :MR1 ; BR IF NOT ALL PAGES MOVED

:MREXIT

 RTS

AppleIIAsmLib Reference Manual 94

v0.5.0

SUB.MEMSWAP >> MEMSWAP

The MEMSWAP routine swaps the

values stored in one address

range with another. Note that

this currently has no

protections against an overlap

in range.

*

``````````````````````````````

* MEMSWAP (NATHAN RIGGS) *

* *

* INPUT: *

* *

*]SIZE = BPAR1 *

*]ADDR1 = WPAR1 *

*]ADDR2 = WPAR2 *

* *

* OUTPUT: *

* *

* SWAPS THE VALUES IN THE *

* MEMORY LOCATIONS GIVEN *

* FOR THE SPECIFIED LENGTH. *

* *

* DESTROYS: AXYNVBDIZCMS *

* ^^^^ ^^^ *

* *

* CYCLES: 100+ *

* SIZE: 43 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]SIZE EQU BPAR1 ; SIZE OF RANGE TO SWAP

 MEMSWAP (sub)

 Input:

 BPAR1 = length

 WPAR1 = first address

 (2 bytes)

 WPAR2 = second address

 (2 bytes)

 Output:

 none

 Destroys: AXYNZCM

 Cycles: 100+

 Size: 43 bytes

AppleIIAsmLib Reference Manual 95

v0.5.0

]ADDR1 EQU WPAR1 ; SOURCE ADDRESS 1

]ADDR2 EQU WPAR2 ; SOURCE ADDRESS 2

*

MEMSWAP

 LDY #255 ; RESET BYTE INDEX

:LP

 INY ; INCREASE BYTE INDEX

 LDA (]ADDR1),Y ; LOAD BYTE FROM FIRST ADDRESS

 TAX ; TRANSFER TO .X

 LDA (]ADDR2),Y ; LOAD BYTE FROM SECOND ADDRESS

 STA (]ADDR1),Y ; STORE IN FIRST ADDRESS

 TXA ; TRANSFER FIRST BYTE VAL TO .A

 STA (]ADDR2),Y ; NOW STORE THAT IN SECOND ADDRESS

 CPY]SIZE ; IF BYTE INDEX < LENGTH,

 BNE :LP ; CONTINUE LOOPING

 RTS ; OTHERWISE, EXIT

AppleIIAsmLib Reference Manual 96

v0.5.0

SUB.ZMLOAD >> ZMLOAD

The ZMLOAD subroutine loads the

values stored by ZMSAVE back

into the zero page at the

locations used by the library.

Note that these locations go

unused by the monitor, DOS or

Applesoft; those locations are

unaffected.

The memory addresses affected

are:

19 1E E3 EB EC ED EE

EF FA FB FC FD FE FF

*

``````````````````````````````

* ZMLOAD (NATHAN RIGGS) *

* *

* INPUT: *

* *

* .A = LOBYTE OF SRC ADDR *

* .X = HIBYTE OF SRC ADDR *

* *

* OUTPUT: *

* *

* RESTORES PREVIOUSLY SAVED *

* ZERO PAGE VALUES FROM *

* HIGHER MEMORY LOCATION. *

* *

* DESTROYS: AXYNVBDIZCMS *

* ^^^^ ^^^ *

* *

* CYCLES: 123+ *

* SIZE: 71 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]ADR1 EQU VARTAB ; 2 BYTES

]ADR2 EQU VARTAB+2 ; 2 BYTES

]Z HEX 191EE3EBECED

 HEX EEEFFAFBFCFDFEFF

 HEX 00

 ZMLOAD (sub)

 Input:

 .A = low byte of address

 .X = high byte of address

 Output:

 none

 Destroys: AXYNZCM

 Cycles: 123+

 Size: 71 bytes

AppleIIAsmLib Reference Manual 97

v0.5.0

*

ZMLOAD

*

 STA ADDR1 ; BACKUP SOURCE ADDR LOBYTE

 STX ADDR1+1 ; BACKUP HIBYTE

 LDY #255 ; RESET INDEX

 LDA (ADDR1),Y

 STA]ADR1 ; BACKUP $06

 INY

 LDA (ADDR1),Y ; BACKUP $07

 STA]ADR1+1

 INY ; INCREASE INDEX

 LDA (ADDR1),Y ; BACKUP $07

 STA]ADR2

 INY

 LDA (ADDR1),Y ; BACKUP $08

 STA]ADR2+1

:LP

 INY

 LDA]Z,Y

 BEQ :EXIT ; IF NULL, EXIT

 STA ADDR2

 LDA #0

 STA ADDR2+1

 LDA (ADDR1),Y

 STA (ADDR2),Y

 JMP :LP

:EXIT

 LDY #0

 LDA (ADDR1),Y+3 ; NOW RESTORE FIRST

 STA $09 ; FOUR BYTES

 LDA (ADDR1),Y+2

 STA $08

 LDA (ADDR1),Y+1

 TAX

 LDA (ADDR1),Y

 TAY

 TXA

 STA ADDR1+1

 TYA

 STA ADDR1

 RTS

AppleIIAsmLib Reference Manual 98

v0.5.0

SUB.ZMSAVE >> ZMSAVE

The ZMSAVE subroutine backs up

select addresses on the zero

page to be later restored via

the ZMLOAD subroutine. The

addresses used by the library

are unused by the monitor,

Applesoft or DOS. They are as

follows:

19 1E E3 EB EC ED EE

EF FA FB FC FD FE FF

*

``````````````````````````````

* ZMSAVE :: SAVE 0-PAGE FREE *

* *

* INPUT: *

* *

* .A = DESTINATION LOBYTE *

* .Y = DESTINATION HIBYTE *

* *

* OUTPUT: *

* *

* THE FREE AREAS OF THE *

* ZERO PAGE ARE COPIED TO *

* THE DESTINATION ADDRESS. *

* *

* DESTROYS: AXYNVBDIZCMS *

* ^^^^ ^^^ *

* *

* CYCLES: 138+ *

* SIZE: 84 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]ADR1 EQU VARTAB ; 2 BYTES--DEST ADDRESS

]ADR2 EQU VARTAB+2 ; 2 BYTES--SOURCE ADDRESS

]Z HEX 191EE3BECEDEEF ; ZERO PAGE LOCATIONS

 HEX FAFBFCFDFEFF ; TO BE BACKED UP

 HEX 00

 ZMSAVE (sub)

 Input:

 .A = address low byte

 .X = address high byte

 Output:

 none

 Destroys: AXYNZCM

 Cycles: 138+

 Size: 84 bytes

AppleIIAsmLib Reference Manual 99

v0.5.0

ZMSAVE

*

 STA]ADR1 ; BACKUP DESTINATION ADDRESS LO

 STX]ADR1+1 ; BACKUP HIBYTE

 LDA ADDR2 ; BACKUP CONTENTS OF ADDR2 LOBYTE

 STA]ADR2

 LDA ADDR2+1 ; BACKUP HIBYTE

 STA]ADR2+1

 LDA]ADR1 ; PUT DESTINATION ADDRESS

 STA ADDR2 ; INTO ZERO-PAGE ADDR2

 LDA]ADR1 ; FOR INDIRECT ACCESS

 STA ADDR2+1

 LDY #0 ; CLEAR INDEX

 LDA ADDR1 ; LOAD ADDR1 LOBYTE

 STA (ADDR2),Y ; STORE IT IN DESTINATION

 INY ; INCREASE INDEX

 LDA ADDR1+1 ; GET ADDR1 HIBYTE

 STA (ADDR2),Y ; STORE IN DESTINATION

 INY ; INCREMENT INDEX

 LDA]ADR2 ; LOAD OLD ADDR2 LOBYTE

 STA (ADDR2),Y ; COPY TO DESTINATION

 INY ; INCREMENT INDEX

 LDA]ADR2+1 ; LOAD OLD ADDR2 HIBYTE

 STA (ADDR2),Y ; STORE IN DESTINATION

 LDX #255 ; RESET INDEX2 COUNTER

 STY]SIZE ; STORE INDEX1 IN]SIZE

 LDY #0 ; RESET Y-INDEX

:LP

 INC]SIZE ; INCREMENT SOURCE INDEX

 INX ; INCREMENT TABLE INDEX

 LDA]Z,X ; GET NEXT BYTE FROM TABLE

 BEQ :EXIT ; IF ZERO, QUIT

 STA ADDR1 ; STORE BYTE FROM TABLE AS LOBYTE

 LDA #0 ; CLEAR THE HIBYTE

 STA ADDR1+1

 LDA (ADDR1),Y ; INDIRECTLY LOAD ZERO-PAGE CONTENT

 LDY]SIZE ; PULL INDEX BACK INTO Y

 STA (ADDR2),Y ; STORE BYTE TO DESTINATION

 LDY #0 ; RESET Y

 JMP :LP ; REPEAT UNTIL FINISHED

:EXIT

 RTS

AppleIIAsmLib Reference Manual 100

v0.5.0

DEMO.COMMON

The DEMO.COMMON file contains quick demonstrations of the macros

found in MAC.REQUIRED and MAC.COMMON. These are not meant to be

exhaustive demos, but rather serve to quickly show how (and

sometimes why) the macros work. For more complicated usage, the

integrated demos should be consulted.

Note that this DEMO routine, along with all of the DEMO routines

on each library disk, is impractical: using the _PRN macro

dedicates a byte of memory to each and every character in a

string, creating unnecessarily large executables. This method of

text display is discouraged in other programs; reading strings

from a file and using a small piece of memory is a much more

memory-efficient solution. _PRN is used here only for

convenience and ease of reading.

*

``````````````````````````````

* DEMO.COMMON *

* *

* A DEMO OF THE MACROS AND *

* SUBROUTINES IN THE COMMON *

* APPLEIIASM LIBRARY. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 30-JUN-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

** ASSEMBLER DIRECTIVES

*

 CYC AVE

 EXP ONLY

 TR ON

 DSK DEMO.COMMON

 OBJ $BFE0

 ORG $6000

*

``````````````````````````````

* TOP INCLUDES (HOOKS,MACROS) *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

AppleIIAsmLib Reference Manual 101

v0.5.0

*

 PUT MIN.HEAD.REQUIRED

 USE MIN.MAC.REQUIRED

 USE MIN.HOOKS.COMMON

 USE MIN.MAC.COMMON

]HOME EQU $FC58

*

``````````````````````````````

* PROGRAM MAIN BODY *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

 JSR]HOME

 _PRN "COMMON SUBROUTINE LIBRARY",8D

 _PRN "=========================",8D8D

 _PRN "THIS LIBRARY CONTAINES MACROS AND",8D

 _PRN "SUBROUTINES THAT MIGHT BE COMMONLY",8D

 _PRN "USED BY A BROAD RANGE OF PROGRAMS.",8D8D

 _PRN "THIS DEMO WILL ALSO ILLUSTRATE THE",8D

 _PRN "USE OF SOME MACROS IN THE REQUIRED",8D

 _PRN "LIBRARY FOR THE FIRST TIME. WE WILL",8D

 _PRN "MAKE IT CLEAR WHEN WE SWITCH LIBRARIES,",8D

 _PRN "BUT FOR QUICK REFERENCE THE MACROS",8D

 _PRN "IN EACH LIBRARY ARE:",8D8D

 _WAIT

 _PRN "REQUIRED MACROS: _ISLIT,_AXLIT,",8D

 _PRN "_ISSTR,_AXSTR,GRET,SPAR,DUMP,_PRN,",8D

 _PRN "_WAIT,ERRH,CLRHI",8D8D

 _WAIT

 _PRN "COMMON: MFILL,MMOVE,MSWAP,BEEP,DELAY,",8D

 _PRN "ZSAVE,ZLOAD",8D8D

 _WAIT

 _PRN "LET'S START WITH THE MOST USED REQUIRED MACROS."

 _WAIT

 JSR]HOME

 _PRN "REQUIRED LIBRARY: MOST USED",8D

 _PRN "===========================",8D8D

 _PRN "BY 'MOST USED' HERE, WE MEAN MOST",8D

 _PRN "USED BY THESE SHORT DEMOS. IN",8D

 _PRN "REALITY, OTHER MACROS ARE PROBABLY",8D

 _PRN "UTILIZED MUCH MORE OFTEN, BUT IT",8D

 _PRN "HAPPENS BEHIND THE SCENES.",8D8D

 _WAIT

 _PRN "THE TWO MOST APPARENT MACROS ",8D

 _PRN "SHOULD BE FAMILIAR IF YOU HAVE",8D

 _PRN "ALREADY EXPLORED THE STDIO LIBRARY:",8D

 _PRN "_PRN AND _WAIT. THESE ARE NEAR",8D

AppleIIAsmLib Reference Manual 102

v0.5.0

 _PRN "CARBON COPIES OF THEIR EQUIVALENT",8D

 _PRN "ROUTINES IN STDIO, AND ARE HERE FOR",8D

 _PRN "THE MOSTLY RARE CASES WHEN SOME",8D

 _PRN "MINOR INPUT AND OUTPUT ARE NECESSARY",8D

 _PRN "BUT WITHOUT THE NEED FOR USING THE",8D

 _PRN "STDIO LIBRARY. SINCE THESE EXIST",8D

 _PRN "AS PART OF THE ERQUIRED LIBRARY, YOU",8D

 _PRN "CAN USE THESE IN PLACE OF STDIO IF",8D

 _PRN "YOUR PROGRAM REQUIRES NO MORE THAN THIS",8D

 _PRN "BASIC FUNCTIONALITY."

 _WAIT

 JSR]HOME

 _PRN "THE _PRN MACRO PRINTS A STRING THAT",8D

 _PRN "IS EITHER GIVEN AS A PARAMETER OR",8D

 _PRN "RESIDES AT A GIVEN ADDRESS AND IS",8D

 _PRN "TERMINATED BY A NULL BYTE ($00). THUS:",8D8D

 _WAIT

 _PRN " _PRN 'HELLO, WORLD!'",8D

 _PRN " _PRN #STRING1",8D

 _PRN " _PRN INDIRECT",8D8D

 _WAIT

 _PRN "ARE ALL VALID USES OF _PRN. THE FIRST",8D

 _PRN "PRINTS THE GIVEN STRING, THE SECOND",8D

 _PRN "PRINTS NULL-TERMINATED STRING AT THE",8D

 _PRN "STRING1 ADDRESS, AND THE THIRD PRINTS",8D

 _PRN "A NULL-TERMINATED STRING AT THE",8D

 _PRN "ADDRESS POINTED TO IN THE ADDRESS HELD",8D

 _PRN "IN INDIRECT.",8D8D

 _WAIT

 _PRN "THE WAIT MACRO DOES EXACTLY WHAT ",8D

 _PRN "IT SAYS: IT WAITS FOR A KEYPRESS. THE",8D

 _PRN "KEY PRESSED IS PASSED BACK IN .A"

 _WAIT

 JSR]HOME

 _PRN "MEMORY DUMPS",8D

 _PRN "============",8D8D

 _PRN "THE OTHER MACRO MOST USED IN",8D

 _PRN "THESE DEMOS IS THE DUMP MACRO, WHICH",8D

 _PRN "OUTPUTS THE HEX VALUES AT A GIVEN",8D

 _PRN "ADDRESS RANGE. THEREFORE:",8D8D

 _WAIT

 _PRN " LDA #$33",8D

 _PRN " STA $300",8D

 _PRN " STA $301",8D

 _PRN " STA $302",8D

 _PRN " DUMP #$300;#10",8D8D

AppleIIAsmLib Reference Manual 103

v0.5.0

 _PRN "WILL OUTPUT",8D8D

 _WAIT

 LDA #$33

 STA $300

 STA $301

 STA $302

 DUMP #$300;#10

 _WAIT

 JSR]HOME

 _PRN "PARAMETERS AND RETURNS",8D

 _PRN "======================",8D8D

 _PRN "NEARLY EVERY SUBROUTINE IN THIS",8D

 _PRN "SET OF LIBRARIES UTILIZES THE",8D

 _PRN "SAME MEMORY LOCATION FOR RETURNING",8D

 _PRN "RESULTS, SAVE FOR THOSE THAT RETURN",8D

 _PRN "NOTHING. THIS LOCATION IS REFERENCED",8D

 _PRN "IN THE CODE AS THE 'RETURN' HOOK.",8D8D

 _WAIT

 _PRN "THE GRET MACRO CAN BE USED TO COPY",8D

 _PRN "THE RETURNED DATA TO A MORE PERMANENT",8D

 _PRN "LOCATION FOR RETRIEVAL LATER ON. SO:",8D8D

 _PRN " GRET #$300",8D8D

 _WAIT

 _PRN "COPIES THE DATA FROM RETURN INTO THE",8D

 _PRN "SPECIFIED LOCATION ($300). NOTE THAT",8D

 _PRN "THE LENGTH OF THE RETURN VALUE IS",8D

 _PRN "KNOWN VIA THE 'RETLEN' HOOK, WHICH",8D

 _PRN "POINTS TO A LENGTH BYTE PRECEDING RETURN"

 _WAIT

 JSR]HOME

 _PRN "INTERNAL MACROS",8D

 _PRN "===============",8D8D

 _PRN "THE MACROS _ISLIT, _AXLIT,",8D

 _PRN "_ISSTR AND _AXSTR ARE ALL MACROS USED",8D

 _PRN "BY OTHER MACROS TO DETERMINE WHAT",8D

 _PRN "KIND OF DATA IS BEING MASSED, THEN",8D

 _PRN "TRANSLATING THAT TO A MACHINE-FRIENDLY",8D

 _PRN "FORM. THESE MACROS ARE RESPONSIBLE",8D

 _PRN "FOR A MACRO'S ABILITY TO ACCEPT",8D

 _PRN "DIRECT OR INDIRECT ADDRESSING, AS",8D

 _PRN "WELL AS LITERAL STRINGS.",8D8D

 _WAIT

 _PRN "THIS CAN BE EASILY SEEN IN",8D

 _PRN "MANY MACROS THAT ACCEPT EITHER ",8D

 _PRN "STRINGS OR ADDRESSES. FIRST, THE",8D

 _PRN "PARAMETER IS PASSED TO EITHER THE",8D

AppleIIAsmLib Reference Manual 104

v0.5.0

 _PRN "_ISSTR MACRO OR THE _AXSTR MACRO;",8D

 _PRN "THESE ARE FUNCTIONALLY EQUIVALENT AND",8D

 _PRN "TEST WHETHER OR NOT THE PARAMETER",8D

 _PRN "IS A STRING OR ADDRESS, BUT DIFFER IN",8D

 _PRN "HOW THAT DATA IS THEN PASSED TO THE",8D

 _PRN "APPROPRIATE SUBROUTINE.",8D

 _WAIT

 JSR]HOME

 _PRN "_ISSTR PASSES DATA VIA THE STACK,",8D

 _PRN "WHEREAS_AXSTR PASSES VIA .A AND .X,"8D

 _PRN "WHICH HOLD THE LO AND HI BYTES OF THE",8D

 _PRN "ADDRESS OF THE STRING, RESPECTIVELY.",8D

 _PRN "WHICH MACRO TO USE IS PRIMARILY",8D

 _PRN "DETERMINED BY THE SUBROUTINE BEING",8D

 _PRN "CALLED, AS THEY EITHER USE ONE OR",8D

 _PRN "THE OTHER METHODS OF PASSING",8D

 _PRN "PARAMETERS. A RULE OF THUMB IS THAT",8D

 _PRN "IF THERE ARE FEWER THAN 4 BYTES",8D

 _PRN "TO BE PASSED, THEN PASSING IS DONE",8D

 _PRN "VIA REGISTERS TO SPARE A FEW CYCLES;",8D

 _PRN "OTHERWISE, THE STACK IS USED.",8D8D

 _WAIT

 _PRN "_ISLIT AND _AXLIT USE THE SAME LOGIC",8D

 _PRN "FOR THE PASSING OF PARAMETERS, BUT ARE",8D

 _PRN "USED TO DETERMINE WHETHER THE PARAMETER",8D

 _PRN "BEING PASSED IS A LITERAL VALUE OR A",8D

 _PRN "MEMORY LOCATION. IF THE PARAMETER IS",8D

 _PRN "A LITERAL, THEN THE MACRO SENDS IT",8D

 _PRN "AS A 2-BYTE ADDRESS THAT INDICATES",8D

 _PRN "THE DATA IS LOCATED AT THAT ADDRESS.",8D

 _PRN "IF, HOWEVER, A NON-LITERAL ADDRESS IS",8D

 _PRN "PASSED, THE LIBRARY INTERPRETS THIS AS",8D

 _PRN "AN INDIRECT REFERENCE, WHERE THE ",8D

 _PRN "ADDRESS PASSED IS A POINTER TO THE",8D

 _PRN "ACTUAL ADDRESS OF THE DATA."

 _WAIT

 JSR]HOME

 _PRN "THE REQUIRED LEFTOVERS",8D

 _PRN "======================",8D8D

 _PRN "OTHER MACROS IN THE REQUIRED LIBRARY",8D

 _PRN "ARE RARELY USED OUTSIDE OF THE",8D

 _PRN "LIBRARY ITSELF IN THE DEMOS, IF AT ALL.",8D

 _PRN "THIS INCLUDES THE ERRH AND CLRHI MACROS.",8D8D

 _WAIT

 _PRN "CLRHI TAKES ONE BYTE AND CLEARS ITS",8D

 _PRN "HIGH NIBBLE, AND IS USEFUL FOR THE",8D

AppleIIAsmLib Reference Manual 105

v0.5.0

 _PRN "IMPLEMENTATION OF LOOKUP TABLES, AMONG ",8D

 _PRN "OTHER USES. THE ERRH MACRO PASSES THE",8D

 _PRN "PROVIDED ADDRESS TO APPLESOFT AS A HOOK",8D

 _PRN "FOR ERROR-HANDLING, AND CAN BE THOUGHT",8D

 _PRN "OF AS A 'ONERR GOTO ###' COMMAND FOR",8D

 _PRN "ASSEMBLY. NOTE THAT THIS DOESN'T CATCH",8D

 _PRN "JUST ANY ERRORS IN YOUR CODE--YOU ",8D

 _PRN "STILL HAVE TO FIGURE THAT OUT YOURSELF.",8D

 _PRN "THE ERROR-HANDLING IS SPECIFIC TO ",8D

 _PRN "INTERFACING WITH APPLESOFT."

 _WAIT

*

 JSR]HOME

 _PRN "COMMON MACROS, FINALLY!",8D

 _PRN "=======================",8D8D

 _PRN "WE CAN NOW MOVE ON TO THE",8D

 _PRN "MACROS IN THE COMMON LIBRARY. MOST",8D

 _PRN "OF THESE CURRENTLY FOCUS ON MEMORY",8D

 _PRN "MANAGEMENT, AND WE WILL ADDRESS THOSE",8D

 _PRN "FIRST: MFILL, MMOVE, MSWAP, ZLOAD AND",8D

 _PRN "ZSAVE."

 _WAIT

 JSR]HOME

 _PRN "MEMORY MANAGEMENT",8D

 _PRN "=================",8D8D

 _PRN "MFILL FILLS A RANGE OF MEMORY STARTING",8D

 _PRN "AT THE GIVEN ADDRESS WITH THE GIVEN",8D

 _PRN "FILL VALUE. THUS:",8D8D

 _PRN " MFILL #$300;#10;#0",8D8D

 _PRN "FILLS $300-$309 WITH ZEROS. WE CAN",8D

 _PRN "VERIFY THIS WITH A DUMP:",8D

 _WAIT

 MFILL #$300;#10;#0

 DUMP #$300;#10

 _WAIT

 JSR]HOME

 _PRN "MMOVE SUITABLY MOVES (OR COPIES) A",8D

 _PRN "BLOCK OF MEMORY FROM ONE ADDRESS",8D

 _PRN "RANGE TO ANOTHER. SO:",8D8D

 _WAIT

 _PRN " MMOVE #$300;#$320;#10",8D

 _PRN " DUMP #$320;#10",8D8D

 _PRN "WILL COPY THE TEN ZEROS AT $300",8D

 _PRN "TO $320-$329, THEN DUMP THE RESULTS:",8D

 MMOVE #$300;#$320;#10

 DUMP #$320;#10

AppleIIAsmLib Reference Manual 106

v0.5.0

 _WAIT

 JSR]HOME

 _PRN "SIMILARLY, MSWAP SWAPS THE DATA IN ",8D

 _PRN "THE GIVEN MEMORY RANGES. SO, TO SWAP",8D

 _PRN "$300-309 WITH $310-$319, WE'D WRITE:",8D8D

 _PRN " MSWAP #$300;#$310;#10",8D8D

 _PRN "NOW WHEN WE DUMP $300 AGAIN, IT HAS:",8D

 _WAIT

 MSWAP #$300;#$310;#10

 DUMP #$300;#10

 DUMP #$310;#10

 _WAIT

 JSR]HOME

 _PRN "ZERO-PAGE BACKUPS",8D

 _PRN "=================",8D8D

 _PRN "THIS LIBRARY USES NEARLY EVERY",8D

 _PRN "PART OF THE ZERO PAGE THAT IS",8D

 _PRN "UNUSED BY DOS, APPLESOFT OR THE ",8D

 _PRN "MONITOR. AT TIMES, YOU MAY WANT TO",8D

 _PRN "USE THOSE LOCATIONS YOURSELF WITHOUT",8D

 _PRN "THE RISK OF THE LIBRARY WRITING OVER",8D

 _PRN "YOUR DATA. THAT'S WHERE ZSAVE AND",8D

 _PRN "ZLOAD COME INTO PLAY.",8D8D

 _WAIT

 _PRN "ZSAVE BACKUPS THE ZERO-PAGE MEMORY THAT",8D

 _PRN "IS UNUSED BY DOS/APPLESOFT/MONITOR,",8D

 _PRN "COPYING IT TO THE SPECIFIED LOCATION. ",8D

 _PRN "THEN, ZLOAD IS USED TO RESTORE THOSE",8D

 _PRN "'UNUSED' BYTES TO YOUR OWN DATA AFTER A",8D

 _PRN "LIBRARY ROUTINE IS CALLED.",8D

 _WAIT

 JSR]HOME

 _PRN "SO, WE CAN SAVE THE ZERO-PAGE AT $300",8D

 _PRN "WITH THE FOLLOWING:",8D8D

 _PRN " ZSAVE #$300",8D8D

 _PRN "AND THEN CHANGE THE ZERO PAGE SLIGHTLY:",8D8D

 _PRN " LDA #$99",8D

 _PRN " STA $06",8D

 _PRN " STA $07",8D

 _PRN " STA $08",8D

 _PRN " STA $09",8D

 _PRN " STA $19",8D8D

 ZSAVE #$300

 LDA #$99

 STA $06

 STA $07

AppleIIAsmLib Reference Manual 107

v0.5.0

 STA $08

 STA $09

 STA $19

 _WAIT

 JSR]HOME

 _PRN "NOW WE'LL DUMP THE ZERO PAGE TO",8D

 _PRN "SHOW THE CHANGES:",8D

 DUMP #$0;#10

 DUMP #10;#10

 DUMP #20;#10

 _PRN " ",8D8D

 _PRN "NOTE THAT ALREADY, THE $10 HAS BEEN",8D

 _PRN "CHANGED BY THE LIBRARY! THUS THE",8D

 _PRN "NEED FOR A BACKUP. SO, IN ORDER",8D

 _PRN "TO RECOVER OUR ZERO PAGE, USE ZLOAD:",8D8D

 _PRN " ZLOAD #$300",8D8D

 _WAIT

 _PRN "WHICH WILL THEN LEAVE US WITH:",8D

 _WAIT

 ZLOAD #$300

 DUMP #0;#10

 DUMP #10;#10

 DUMP #20;#10

 _WAIT

 JSR]HOME

 _PRN "BEEP AND DELAY",8D

 _PRN "==============",8D8D

 _PRN "LASTLY, WE HAVE THE BEEP MACRO",8D

 _PRN "AND THE DELAY MACRO FROM THE",8D

 _PRN "COMMON LIBRARY. THESE ARE PRETTY",8D

 _PRN "SELF-EXPLANATORY: 'BEEP' SENDS THE",8D

 _PRN "STANDARD TONE TO THE SPEAKER FOR ",8D

 _PRN "SPECIFIED NUMBER OF CYCLES, WHILE ",8D

 _PRN "DELAY SUSPENDS EXECUTION FOR THE",8D

 _PRN "SPECIFIED NUMBER OF MILLISECONDS. ",8D

 _PRN "SO: ",8D8D

 _PRN " BEEP #10",8D

 _PRN " DELAY #255",8D

 _PRN " BEEP #20",8D

 _PRN " DELAY #255",8D

 _PRN " BEEP #30",8D8D

 _PRN "RESULTS IN:",8D8D

 _WAIT

 BEEP #10

 DELAY #255

 BEEP #20

AppleIIAsmLib Reference Manual 108

v0.5.0

 DELAY #255

 BEEP #30

 _WAIT

 JSR]HOME

 _PRN "WE'RE DONE HERE!",8D8D8D

*

 JMP REENTRY

*

``````````````````````````````

* BOTTOM INCLUDES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

** BOTTOM INCLUDES

*

 PUT MIN.LIB.REQUIRED

*

** INDIVIDUAL SUBROUTINE INCLUDES

*

* COMMON LIBRARY SUBROUTINES

*

 PUT MIN.SUB.DELAYMS

 PUT MIN.SUB.MEMFILL

 PUT MIN.SUB.MEMMOVE

 PUT MIN.SUB.MEMSWAP

 PUT MIN.SUB.ZMSAVE

 PUT MIN.SUB.ZMLOAD

AppleIIAsmLib Reference Manual 109

v0.5.0

Disk 2: STDIO

The second disk in the library is dedicated to standard input

and output macros and subroutines. This primarily consists of

keyboard and paddle input and text screen output. More

specialized input and output routines are handled in other

packages. It contains the following library components:

• HOOKS.STDIO

• MAC.STDIO

• DEMO.STDIO

• SUB.DPRINT

• SUB.PRNSTR

• SUB.SINPUT

• SUB.TBLINE

• SUB.TCIRCLE

• SUB.THLINE

• SUB.TRECTF

• SUB.TVLINE

• SUB.TXTPUT

• SUB.XPRINT

HOOKS.STDIO contains the various hooks that are either used by

the subroutines and macros on the disk or are especially

relevant to standard input and output.

MAC.STDIO contains all of the macros dedicated to standard input

and output procedures.

Each of the files with the SUB prefix contains the subroutine

indicated in the rest of the filename.

AppleIIAsmLib Reference Manual 110

v0.5.0

HOOKS.STDIO

The hooks in this file all relate to basic input and output for

text and the paddles.

*

``````````````````````````````

* HOOKS.STDIO *

* *

* THESE ARE HOOKS THAT ARE *

* USED BY THE STDIO LIBRARY. *

* COMMENTED HOOKS ARE RELATED *

* BUT CURRENTLY UNUSED. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 07-JUL-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

* OUTPUT HOOKS

*

COUT1 EQU $FDF0 ; FASTER SCREEN OUTPUT

COUT EQU $FDED ; MONITOR STD OUTPUT

HOME EQU $FC58 ; CLEAR SCREEN, HOME CURSOR

VTAB EQU $FC22 ; MONITOR CURSOR POS ROUTINE

CURSH EQU $24 ; HPOS OF COUT CURSOR

CURSV EQU $25 ; VPOS OF COUT CURSOR

KEYBUFF EQU $0200 ; KEYBUFFER START

GSTROBE EQU $C040 ; GAME CONNECTOR STROBE

GBCALC EQU $F847 ; SCREEN CALCULATION

GBPSH EQU $26

*

* INPUT HOOKS

*

KYBD EQU $C000 ; LDA SINGLE KEYPRESS

STROBE EQU $C010 ; CLEAR KYBD BUFFER

GETLN EQU $FD6F ; MONITOR GET LINE OF KB INPUT

GETKEY EQU $FD0C ; MONITOR GET SINGLE KEY INPUT

*

* PADDLE HOOKS

*

PREAD EQU $FB1E ; READ STATE OF PADDLE

AppleIIAsmLib Reference Manual 111

v0.5.0

PB0 EQU $C061 ; PADDLE BUTTON 0

PB1 EQU $C062

PB2 EQU $C063

PB3 EQU $C060

*

** UNUSED BY LIBRARY

*

*WNDLEFT EQU $20 ; SCROLL WINDOW LEFT

*WNDWIDTH EQU $21 ; SCROLL WINDOW WIDTH

*WNDTOP EQU $22 ; SCROLL WINDOW TOP

*WNDBOT EQU $23 ; SCROLL WINDOW BOTTOM

*TEXTP1 EQU $0400 ; START OF TEXT PAGE 1

*TEXTP2 EQU $0800 ; START OF TEXT PAGE 2

*PAGE1 EQU $C054 ; SOFT SWITCH USE PAGE 1

*PAGE2 EQU $C055 ; SOFT SWITCH USE PAGE 2

*S80COL EQU $C01F ; READ ONLY; CHECK IF 80C

*TXTSET EQU $C051 ; TEXT ON SOFT SWITCH

*SETWND EQU $FB4B ; SET NORMAL WINDOW MODE

*CURADV EQU $FBF4 ; ADVANCE CURSOR RIGHT

*CURBS EQU $FC10 ; CURSOR LEFT

*CURUP EQU $FC1A ; CURSOR UP

*CR EQU $FC62 ; CARRIAGE RETURN TO SCREEN

*LF EQU $FC66 ; LINE FEED ONLY TO SCREEN

*CLEOL EQU $FC9C ; CLEAR TEXT TO END OF LINE

*OPAPP EQU $C061

*CLAPP EQU $C062

AppleIIAsmLib Reference Manual 112

v0.5.0

MAC.STDIO

MAC.STDIO contains all of the macros related to standard input

and output. It contains the following macros:

• COL40

• COL80

• CURB

• CURD

• CURF

• CURU

• DIE80

• GKEY

• INP

• MTXT0

• MTXT1

• PBX

• PDL

• PRN

• RCPOS

• SPRN

• SCPOS

• SETCX

• SETCY

• TCIRC

• THLIN

• TLINE

• TPUT

• TRECF

• TVLIN

• WAIT

AppleIIAsmLib Reference Manual 113

v0.5.0

*

``````````````````````````````

* MAC.STDIO *

* *

* THIS IS A MACRO LIBRARY FOR *

* STANDARD INPUT AND OUTPUT. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 07-JUL-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

* *

* SUBROUTINES FILES USED: *

* *

* SUB.XPRINT *

* SUB.DPRINT *

* SUB.SINPUT *

* SUB.GPBX *

* SUB.TVLINE *

* SUB.THLINE *

* SUB.TRECTF *

* SUB.TBLINE *

* SUB.TCIRCLE *

* SUB.TXTPUT *

* SUB.PRNSTR *

* *

* LIST OF MACROS *

* *

* PRN : FLEXIBLE PRINT *

* SPRN : PRINT STRING *

* INP : STRING INPUT *

* GKEY : GET SINGLE KEY *

* SCPOS : SET CURS POS AT X,Y *

* SETCX : SET CURSOR X *

* SETCY : SET CURSOR Y *

* CURF : CURSOR FORWARD *

* CURB : CURSOR BACKWARD *

* CURU : CURSOR UP *

* CURD : CURSOR DOWN *

* RCPOS : READ CURSOR POSITION *

* PDL : READ PADDLE STATE *

* TLINE : DIAGONAL TEXT LINE *

* TCIRC : TEXT CIRCLE *

AppleIIAsmLib Reference Manual 114

v0.5.0

* PBX : READ PDL BTN X *

* TVLIN : TEXT VERTICAL LINE *

* THLIN : TEXT HORIZ LINE *

* TRECF : TEXT FILL RECTANGLE *

* TPUT : TEXT CHAR PLOT AT XY *

* COL40 : FORCE 40COL MODE *

* COL80 : FORCE 80COL MODE *

* DIE80 : KILL 80COL FIRMWARE *

* MTXT0 : DISABLE MOUSETEXT *

* MTXT1 : ENABLE MOUSETEXT *

* WAIT : WAIT FOR KEYPRESS *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

AppleIIAsmLib Reference Manual 115

v0.5.0

MAC.STDIO >> PRN

The PRN macro prints a string

directly to the screen. First, a

test is given to determine

whether a literal string or an

address is being passed. If the

parameter is a literal string,

the XPRINT subroutine is called.

Otherwise, the parameter is

parsed as an address in the zero

page, and DPRINT is called.

``````````````````````````````

* PRN *

* *

* PRINT A LITERAL STRING OR *

* A NULL-TERMINATED STRING AT *

* A GIVEN ADDRESS. *

* *

* PARAMETERS *

* *

*]1 = STRING OR ADDRESS *

* *

* SAMPLE USAGE: *

* *

* PRN "HELLO, WORLD!" *

* PRN #$300 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

PRN MAC

 IF ",]1 ; IF PARAM=STRING

 JSR XPRINT ; SPECIAL PRINT

 ASC]1 ; PUT STRING HERE

 HEX 00 ; STRING TERMINATE

 ELSE ; ELSE, PARAM IS

 ; MEMORY LOCATION

 PRN (macro)

 Input:

]1 = string or address

 Output:

 Outputs the literal

 String provided or the

 Null-terminated string

 Located at the given

 Address.

 Destroys: AXYNVZCM

 Cycles: 94+

 Size: 32+ bytes

AppleIIAsmLib Reference Manual 116

v0.5.0

 _MLIT]1 ; PARSE FOR LITERAL

 JSR DPRINT ; OR INDIRECT

 FIN

 <<<

AppleIIAsmLib Reference Manual 117

v0.5.0

MAC.STDIO >> SPRN

The SPRN macro prints a string

with a preceding length byte to

the screen. Unlike the PRN

macro, this does not stop

printing once a null character

is encountered; once the number

of bytes represented by the

length byte are printed, control

is returned to the calling

routine.

*

``````````````````````````````

* SPRN *

* *

* PRINTS THE STRING LOCATED AT *

* THE SPECIFIED ADDRESS, WHICH *

* HAS A PRECEDING LENGTH BYTE. *

* *

* PARAMETERS: *

* *

*]1 = STRING ADDRESS *

* *

* SAMPLE USAGE *

* *

* SPRN #$300 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

SPRN MAC

 _AXLIT]1

 JSR PRNSTR

 <<<

 SPRN (macro)

 Input:

]1 = string address

 Output:

 String printed to screen

 Destroys: AXYNVZCM

 Cycles: 40+

 Size: 12 bytes

AppleIIAsmLib Reference Manual 118

v0.5.0

MAC.STDIO >> INP

The INP macro receives a string

from keyboard input (followed by

return) and holds it in RETURN.

The characters corresponding to

the keypresses are displayed on

the screen as they are typed.

Control is returned to the

calling routine once the return

key is pressed.

*

``````````````````````````````

* INP *

* *

* INPUTS A STRING FROM KEYBRD *

* AND STORES IT IN [RETURN] *

* *

* PARAMETERS *

* *

* NONE *

* *

* SAMPLE USAGE: *

* *

* INP *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

INP MAC

 JSR SINPUT

 <<<

 INP (macro)

 Input:

 none

 Output:

 Whatever is typed

 Destroys: AXYNVZC

 Cycles: 60+

 Size: 45 bytes

AppleIIAsmLib Reference Manual 119

v0.5.0

MAC.STDIO >> GKEY

The GKEY macro halts execution

of the calling subroutine until

a key is pressed. The

corresponding character to the

key is not echoed to the screen.

The keycode is passed back via

the accumulator.

*

``````````````````````````````

* GKEY *

* *

* WAITS FOR USER TO PRESS A *

* KEY, THEN STORES THAT IN .A *

* *

* PARAMETERS *

* *

* NONE *

* *

* SAMPLE USAGE: *

* *

* GKEY *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

GKEY MAC

 JSR GETKEY ; MONITOR GET SUBROUTINE

 LDY #0

 STY STROBE ; RESET KBD STROBE

 <<<

 GKEY (macro)

 Input:

 none

 Output:

 .A = key code

 Destroys: AXYNZC

 Cycles: 12+

 Size: 7 bytes

AppleIIAsmLib Reference Manual 120

v0.5.0

MAC.STDIO >> SCPOS

The SCPOS macro sets the cursor

position at the given X and Y

coordinates.

*

``````````````````````````````

* SCPOS *

* *

* SETS THE CURSOR POSITION. *

* *

* PARAMETERS *

* *

*]1 = X POSITION *

*]2 = Y POSITION *

* *

* SAMPLE USAGE: *

* *

* SCPOS #10;#10 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

SCPOS MAC

 LDX]1

 STX CURSH ; PUT X INTO HPOS

 LDX]2

 STX CURSV ; PUT Y INTO VPOS

 JSR VTAB ; EXECUTE VTAB MONITOR ROUTINE

 <<<

 SCPOS (macro)

 Input:

]1 = X position

]2 = Y position

 Output:

 none

 Destroys: AXYNVCM

 Cycles: 20+

 Size: 15 bytes

AppleIIAsmLib Reference Manual 121

v0.5.0

MAC.STDIO >> SETCX

The SETCX macro sets the

horizontal (X) position of the

cursor.

*

``````````````````````````````

* SETCX *

* *

* SETS THE CURSOR X POSITION. *

* *

* PARAMETERS *

* *

*]1 = X POSITION *

* *

* SAMPLE USAGE *

* *

* SETCX #10 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

SETCX MAC

 LDX]1

 STX CURSH ; SET HORIZ POS

 JSR VTAB ; CALL VTAB MONITOR ROUTINE

 <<<

 SETCX (macro)

 Input:

]1 = X position

 Output:

 none

 Destroys: AXZC

 Cycles: 11+

 Size: 8 bytes

AppleIIAsmLib Reference Manual 122

v0.5.0

MAC.STDIO >> SETCY

The SETCY macro sets the

vertical (Y) position of the

cursor.

*

``````````````````````````````

* SETCY *

* *

* SET THE CURSOR Y POSITION. *

* *

* PARAMETERS *

* *

*]1 = Y POSITION *

* *

* SETCY #10 *

* *

* SAMPLE USAGE: SETCY #10 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

SETCY MAC

 LDY]1

 STY CURSV ; SET VERTICAL POS

 JSR VTAB ; CALL VTAB MONITOR ROUTINE

 <<<

 SETCY (macro)

 Input:

]1 = Y position

 Output:

 none

 Destroys: YZC

 Cycles: 12+

 Size: 9 bytes

AppleIIAsmLib Reference Manual 123

v0.5.0

MAC.STDIO >> CURF

The CURF macro moves the cursor

forward by the given number of

spaces.

*

``````````````````````````````

* CURF *

* *

* MOVE CURSOR FORWARD A NUMBER *

* OF SPACES. *

* *

* PARAMETERS *

* *

*]1 = # OF SPACES TO MOVE *

* *

* SAMPLE USAGE *

* *

* CURF #10 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

CURF MAC

 LDA]1 ; GET # TO ADD TO CURRENT

 CLC ; POS; CLEAR CARRY

 ADC CURSH ; ADD CURSH

 STA CURSH ; STORE IN CURSH

 JSR VTAB ; MONITOR VTAB SUBROUTINE

 <<<

 CURF (macro)

 Input:

]1 = number of spaces to

 move forward.

 Output:

 none

 Destroys: AZC

 Cycles: 17+

 Size: 12 bytes

AppleIIAsmLib Reference Manual 124

v0.5.0

MAC.STDIO >> CURB

The CURB macro moves the cursor

backward by the specified number

of spaces.

*

``````````````````````````````

* CURB *

* *

* MOVE THE CURSOR BACKWARD BY *

* A NUMBER OF SPACES. *

* *

* PARAMETERS *

* *

*]1 = # OF SPACES TO MOVE *

* *

* SAMPLE USAGE *

* *

* CURB #10 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

CURB MAC

 LDA CURSH ; GET CURRENT CURSOR HORIZ

 SEC ; SET CARRY

 SBC]1 ; SUBTRACT GIVEN PARAM

 STA CURSH ; STORE BACK IN CURSH

 JSR VTAB ; VTAB MONITOR SUBROUTINE

 <<<

 CURB (macro)

 Input:

]1 = number of spaces to

 move backward

 Output:

 none

 Destroys: AZNC

 Cycles: 17+

 Size: 12 bytes

AppleIIAsmLib Reference Manual 125

v0.5.0

MAC.STDIO >> CURU

The CURU macro moves the cursor

up vertically for the specified

number of spaces.

*

``````````````````````````````

* CURU *

* *

* MOVE CURSOR UP BY A NUMBER *

* OF SPACES. *

* *

* PARAMETERS *

* *

*]1 = # OF SPACES TO GO UP *

* *

* SAMPLE USAGE *

* *

* CURU #10 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

CURU MAC

 LDA CURSV ; GET CURRENT CURSOR VERT

 SEC ; SET CARRY

 SBC]1 ; SUBTRACT GIVEN PARAM

 STA CURSV ; STORE BACK IN CURSV

 JSR VTAB ; VTAB MONITOR ROUTINE

 <<<

 CURU (macro)

 Input:

]1 = number of spaces to

 move up

 Output:

 none

 Destroys: ANZCV

 Cycles: 18+

 Size: 12 bytes

AppleIIAsmLib Reference Manual 126

v0.5.0

MAC.STDIO >> CURD

The CURD macro moves the cursor

down by a specified number of

spaces.

*

``````````````````````````````

* CURD *

* *

* MOVE THE CURSOR DOWN BY A *

* NUMBER OF SPACES. *

* *

* PARAMETERS *

* *

*]1 = # OF SPACES TO MOVE *

* *

* SAMPLE USAGE: CURD #10 *

* *

* CURD #10 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

CURD MAC

 LDA CURSV ; GET CURRENT VERT POS

 CLC ; CLEAR CARRY

 ADC]1 ; ADD GIVEN PARAMETER

 STA CURSV ; STORE BACK IN CURSV

 JSR VTAB ; VTAB MONITOR SUBROUTINE

 <<<

 CURD (macro)

 Input:

]1 = number of spaces to

 move down

 Output:

 none

 Destroys: ANZCV

 Cycles: 18+

 Size: 12 bytes

AppleIIAsmLib Reference Manual 127

v0.5.0

MAC.STDIO >> RCPOS

The RCPOS macro retrieves the

character found at the given X,Y

coordinates on the screen (text

mode). That character is stored

in the accumulator.

*

``````````````````````````````

* RCPOS *

* *

* READ THE CHARACTER AT POS *

* X,Y AND LOADS INTO ACCUM *

* *

* PARAMETERS *

* *

*]1 = X POSITION *

*]2 = Y POSITION *

* *

* SAMPLE USAGE *

* *

* RCPOS #3;#9 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

RCPOS MAC

 LDY]1 ; ROW

 LDA]2 ; COLUMN

 JSR GBCALC ; GET ADDR FOR SCREEN POS

 LDA (GBPSH),Y ; GET CHAR IN ADDRESS

 <<<

 RCPOS (macro)

 Input:

]1 = X position

]2 = Y position

 Output:

 none

 Destroys: AYNZCV

 Cycles: 20+

 Size: 12 bytes

AppleIIAsmLib Reference Manual 128

v0.5.0

MAC.STDIO >> PDL

The PDL macro reads the state of

the given paddle number (usually

#0) and stores a value between 0

and 255 in the .Y register.

*

``````````````````````````````

* PDL *

* *

* SIMPLY READS STATE OF PADDLE *

* NUMBER [NUM] AND STORES IT *

* IN THE Y REGISTER. *

* *

* PARAMETERS *

* *

*]1 = PADDLE # TO READ *

* *

* SAMPLE USAGE *

* *

* PDL #0 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

PDL MAC ; GET PADDLE VALUE

 LDX]1 ; READ PADDLE #]1 (USUALLY 0)

 JSR PREAD ; PADDLE READING STORED IN Y

 <<<

 PDL (macro)

 Input:

]1 = paddle number

 Output:

 .Y = paddle state

 Destroys: AXNVZ

 Cycles: 9+

 Size: 6 bytes

AppleIIAsmLib Reference Manual 129

v0.5.0

MAC.STDIO >> PBX

The PBX macro reads the state of

the specified paddle button.

These can be referred to in the

parameters as PB0, PB1, PB2, or

PB3, which signify the different

addresses to read.

*

``````````````````````````````

* PBX *

* *

* READ THE SPECIFIED PADDLE *

* BUTTON. *

* *

* PARAMETERS *

* *

*]1 = PADDLE BUTTON TO READ *

* *

* PB0: $C061 PB1: $C062 *

* PB2: $C063 PB4: $C060 *

* *

* SAMPLE USAGE: *

* *

* PBX PB0 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

PBX MAC

 LDX #1

 LDA]1 ; IF BTN = PUSHED

 BMI EXIT ; IF HIBYTE SET, BUTTON PUSHED

 LDX #0 ; OTHERWISE, BUTTON NOT PUSHED

EXIT

 <<<

 PBX (macro)

 Input:

]1 = paddle button addr

 Output:

 .X = button state

 Destroys: AXNZ

 Cycles: 9

 Size: 8 bytes

AppleIIAsmLib Reference Manual 130

v0.5.0

MAC.STDIO >> TVLIN

The TVLIN macro creates a

vertical line in text mode with

a provided character. This is

printed to screen memory, and

does not interfere with COUT,

cursor position, etc.

*

``````````````````````````````

* TVLIN *

* *

* CREATE A VERTICAL LINE WITH *

* A GIVEN TEXT FILL CHARACTER *

* *

* PARAMETERS *

* *

*]1 = START OF VERT LINE *

*]2 = END OF VERT LINE *

*]3 = X POSITION OF LINE *

*]4 = FILL CHARACTER *

* *

* SAMPLE USAGE *

* *

* TVLIN #0;#10;#3;#$18 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

TVLIN MAC

 LDA]1 ; Y START

 STA WPAR2

 LDA]2 ; Y END

 TVLIN (macro)

 Input:

]1 = starting vertical

 (Y) position

]2 = ending vertical (Y)

 position

]3 = X position

]4 = fill character

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 55+

 Size: 19 bytes

AppleIIAsmLib Reference Manual 131

v0.5.0

 STA WPAR2+1

 LDA]3 ; X POSITION

 STA WPAR1

 LDA]4 ; CHARACTER

 STA BPAR1

 JSR TVLINE

 <<<

AppleIIAsmLib Reference Manual 132

v0.5.0

MAC.STDIO >> THLIN

The THLIN macro creates a

horizontal line in text mode

with the specified fill

character. This is blitted

directly to screen memory for

speed and for avoiding COUT

interference.

*

``````````````````````````````

* THLIN *

* *

* CREATE A HORIZONTAL LINE *

* FROM A FILL CHARACTER. *

* *

* PARAMETERS *

* *

*]1 = START OF HORIZ LINE *

*]2 = END OF HORIZ LINE *

*]3 = Y POSITION OF LINE *

*]4 = FILL CHARACTER *

* *

* SAMPLE USAGE *

* *

* THLIN #0;#10;#12;#$18 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

THLIN MAC

 LDA]1 ; X START

 STA WPAR1

 LDA]2 ; X END

 THLIN (macro)

 Input:

]1 = start of horizontal

 line

]2 = end of horizontal

 line

]3 = vertical position

]4 = fill character

 Output:

 Horizontal line to screen

 Destroys:

 Cycles: 112+

 Size: 19 bytes

AppleIIAsmLib Reference Manual 133

v0.5.0

 STA WPAR1+1

 LDA]3 ; Y POS

 STA BPAR1

 LDA]4 ; FILL CHAR

 STA BPAR2

 JSR THLINE

 <<<

AppleIIAsmLib Reference Manual 134

v0.5.0

MAC.STDIO >> TRECF

The TRECF macro draws a text

rectangle to the screen at the

given coordinates, filled with

the specified character.

*

``````````````````````````````

* TRECF *

* *

* CREATE A RECTANGLE FILLED *

* WITH A GIVEN TEXT CHARACTER *

* *

* PARAMETERS *

* *

*]1 = HORIZ START POSITION *

*]2 = VERT START POSITION *

*]3 = HORIZ END POSITION *

*]4 = VERT END POSITION *

*]5 = FILL CHARACTER *

* *

* SAMPLE USAGE *

* *

* TRECF #0;#10;#0;#10;#'X' *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

TRECF MAC

 LDA]1 ; LEFT BOUNDARY

 STA WPAR1

 LDA]2 ; TOP BOUNDARY

 TRECF (macro)

 Input:

]1 = X origin

]2 = Y origin

]3 = X destination

]4 = Y destination

]5 = fill character

 Output:

 none

 Destroys:

 Cycles: 95+

 Size: 23 bytes

AppleIIAsmLib Reference Manual 135

v0.5.0

 STA WPAR2

 LDA]3 ; RIGHT BOUNDARY

 STA WPAR1+1

 LDA]4 ; BOTTOM BOUNDARY

 STA WPAR2+1

 LDA]5 ; FILL CHAR

 STA BPAR1

 JSR TRECTF

 <<<

AppleIIAsmLib Reference Manual 136

v0.5.0

MAC.STDIO >> TPUT

The TPUT macro displays a single

character on the screen at the

given X,Y coordinates. Like

TVLIN and THLIN, the character

is directly plotted to screen

memory, bypassing COUT.

*

``````````````````````````````

* TPUT TEXT CHARACTER PLOT *

* *

* PLOT A SINGLE TEXT CHARACTER *

* DIRECTLY TO SCREEN MEMORY AT *

* A GIVEN X,Y POSITION. *

* *

* PARAMETERS *

* *

*]1 = X POSITION *

*]2 = Y POSITION *

*]3 = CHARACTER TO PLOT *

* *

* SAMPLE USAGE *

* *

* TPUT #10;#10;#AA *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

TPUT MAC

 LDX]1 ; XPOS INTO .X

 LDY]2 ; YPOS INTO .Y

 LDA]3 ; FILL IN .A

 JSR TXTPUT

 <<<

 TPUT (macro)

 Input:

]1 = horizontal(X)

 position

]2 = vertical(Y)

 position

]3 = character to plot

 Output:

 Character on screen

 Destroys: AXYNVZCM

 Cycles: 41+

 Size: 9 bytes

AppleIIAsmLib Reference Manual 137

v0.5.0

MAC.STDIO >> DIE80

The DIE80 macro kills 80-column

mode, effectively forcing 40-

column mode.

*

``````````````````````````````

* DIE80 *

* *

* SEND CTRL-U TO COUT, FORCING *

* 40 COLUMN MODE. *

* *

* PARAMETERS *

* *

* NONE *

* *

* USAGE *

* *

* DIE80 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

DIE80 MAC

 LDA #21 ; CTRL-U CHARACTER

 JSR COUT ; SEND TO SCREEN

 <<<

 DIE80 (macro)

 Input:

 none

 Output:

 none

 Destroys: ANVC

 Cycles: 8

 Size: 5 bytes

AppleIIAsmLib Reference Manual 138

v0.5.0

MAC.STDIO >> COL80

The COL80 macro turns on 80-

column mode. Note that this only

works with a system capable of

using 80 columns.

*

``````````````````````````````

* COL80 *

* *

* FORCE 80-COLUMN MODE. *

* *

* PARAMETERS *

* *

* NONE *

* *

* USAGE *

* *

* COL80 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

COL80 MAC

 LDA #18 ; CTRL-R CHARACTER

 JSR COUT ; SEND TO SCREEN

 <<<

 COL80 (macro)

 Input:

 none

 Output:

 80-cloumn mode

 Destroys: ANVC

 Cycles: 8

 Size: 5 bytes

AppleIIAsmLib Reference Manual 139

v0.5.0

MAC.STDIO >> COL40

The COL40 macro turns on the

default 40-column mode. If this

does not work on a particular

system, DIE80 may work better.

*

``````````````````````````````

* COL40 *

* *

* FORCE 40-COLUMN MODE *

* *

* PARAMETERS *

* *

* NONE *

* *

* USAGE *

* *

* COL40 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

COL40 MAC

 LDA #17 ; CTRL-Q CHARACTER

 JSR COUT ; SEND TO SCREEN

 <<<

 COL40 (macro)

 Input:

 none

 Output:

 40-column mode

 Destroys: ANVC

 Cycles: 8

 Size: 5 bytes

AppleIIAsmLib Reference Manual 140

v0.5.0

MAC.STDIO >> MTXT0

The MTXT0 macro turns off

mousetext, if it was turned on

in a capable system in the first

place.

*

``````````````````````````````

* MTXT0 *

* *

* DISABLE MOUSETEXT, IF IT IS *

* ENABLED. *

* *

* PARAMETERS *

* *

* NONE *

* *

* USAGE *

* *

* MTXT0 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

MTXT0 MAC

 LDA #24 ; CTRL-X

 JSR COUT ; SEND TO SCREEN

 <<<

 MTXT0 (macro)

 Input:

 none

 Output:

 none

 Destroys: ANVC

 Cycles: 8

 Size: 5 bytes

AppleIIAsmLib Reference Manual 141

v0.5.0

MAC.STDIO >> MTXT1

The MTXT1 macro turns on

mousetext, if the system is

capable of using it.

*

``````````````````````````````

* MTXT1 *

* *

* ENABLE MOUSETEXT IF IT IS *

* AVAILABLE. *

* *

* PARAMETERS *

* *

* NONE *

* *

* USAGE *

* *

* MTXT1 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

MTXT1 MAC

 LDA #27 ; CTRL-[

 JSR COUT ; SEND TO SCREEN

 <<<

 MTXT1 (macro)

 Input:

 none

 Output:

 none

 Destroys: ANVC

 Cycles: 8

 Size: 5 bytes

AppleIIAsmLib Reference Manual 142

v0.5.0

MAC.STDIO >> WAIT

The WAIT macro halts the main

subroutine’s execution until a

key is pressed, then returns the

key code in the accumulator.

Note that this is not echoed to

the screen.

*

``````````````````````````````

* WAIT *

* *

* WAIT FOR A KEYPRESS WITHOUT *

* INTERFERING WITH COUT. KEY *

* CODE IS STORED IN .A. *

* *

* PARAMETERS *

* *

* NONE *

* *

* USAGE *

* *

* WAIT *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

WAIT MAC

]WTLP LDA KYBD ; READ KEYBOARD BUFFER

 BPL]WTLP ; IF 0, KEEP LOOPING

 AND #$7F ; OTHERWISE, SET HI BIT

 STA STROBE ; CLEAR STROBE

 <<<

 WAIT (macro)

 Input:

 none

 Output:

 .A = key code

 Destroys: ANV

 Cycles: 10+

 Size: 10 bytes

AppleIIAsmLib Reference Manual 143

v0.5.0

MAC.STDIO >> TLINE

The TLINE macro creates a line

from the starting point X,Y to

the ending point X2,Y2 in text

mode with the specified fill

character. This macro calls the

TBLINE subroutine, which uses

Bressenham’s line algorithm and

plots the characters directly to

screen memory.

*

``````````````````````````````

* TLINE *

* *

* USE THE BRESSENHAM LINE *

* ALGORITHM TO DRAW A LINE *

* WITH A FILL CHARACTER. *

* *

* PARAMETERS *

* *

*]1 = X-ORIGIN *

*]2 = Y-ORIGIN *

*]3 = X-DESTINATION *

*]4 = Y-DESTINATION *

* *

* USAGE *

* *

* TLINE #0;#0;#23;#39 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

TLINE MAC

 LDA]1

 STA WPAR1

 LDA]2

 STA WPAR1+1

 TLINE (macro)

 Input:

]1 = X origin

]2 = Y origin

]3 = X destination

]4 = Y destination

 Output:

 Text line to screen

 Destroys: AXYNVZCM

 Cycles: 309+

 Size: bytes

AppleIIAsmLib Reference Manual 144

v0.5.0

 LDA]3

 STA WPAR2

 LDA]4

 STA WPAR2+1

 LDA]5

 STA BPAR1

 JSR TBLINE

 <<<

AppleIIAsmLib Reference Manual 145

v0.5.0

MAC.STDIO >> TCIRC

The TCIRC macro draws a circle

on the screen at a given radius

with a specified fill character

at the X,Y coordinates passed.

This macro calls the TCIRCLE

routine, which utilizes

Bressenham’s circle algorithm to

plot characters directly to

screen memory.

*

``````````````````````````````

* TCIRC *

* *

* USE THE BRESSENHAM CIRCLE *

* ALGORITHM TO DRAW A CIRCLE *

* WITH A FILL CHARACTER. *

* *

* PARAMETERS *

* *

*]1 = CENTER X-LOCATION *

*]2 = CENTER Y-LOCATION *

*]3 = RADIUS *

*]4 = FILL CHARACTER *

* *

* USAGE *

* *

* TCIRC #19;#11;#10;#"*" *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

TCIRC MAC

 LDA]1

 STA WPAR1

 LDA]2

 STA WPAR2

 TCIRC (macro)

 Input:

]1 = X center

]2 = Y center

]3 = radius

]4 = fill character

 Output:

 Circle to text screen

 Destroys: AXYNVZCM

 Cycles: 516+

 Size: 19 bytes

AppleIIAsmLib Reference Manual 146

v0.5.0

 LDA]3

 STA BPAR1

 LDA]4

 STA BPAR2

 JSR TCIRCLE

 <<<

AppleIIAsmLib Reference Manual 147

v0.5.0

SUB.DPRINT >> DPRINT

The DPRINT subroutine prints a

null-terminated string to the

screen via COUT from the given

address. A total of only 256

characters will print at one

time.

*

``````````````````````````````

* DPRINT (NATHAN RIGGS) *

* *

* PRINT A ZERO-TERMINATED *

* STRING AT A GIVEN ADDRESS. *

* *

* INPUT: *

* *

* WPAR1 = STRING ADDRESS (2B) *

* *

* OUTPUT: *

* *

* PRINT STRING TO SCREEN *

* *

* DESTROYS: AXYNVBDIZCMS *

* ^^^^ ^ ^ *

* *

* CYCLES: 61+ *

* SIZE: 27 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]ADDR1 EQU WPAR1

*

DPRINT

*

 LDY #$00 ; RESET COUNTER

 DPRINT (sub)

 Input:

 WPAR1 = string address,

 two bytes

 Output:

 Print string to screen

 Destroys: AXYNZM

 Cycles: 61+

 Size: 27 bytes

AppleIIAsmLib Reference Manual 148

v0.5.0

:LOOP

 LDA (]ADDR1),Y

 BEQ :EXIT ; IF CHAR = $00 THEN EXIT

 JSR COUT1 ; OTHERWISE, PRINT CHAR

 INY ; INCREAS COUNTER

 BNE :LOOP ; IF COUNTER < 256, LOOP

:EXIT

 RTS

AppleIIAsmLib Reference Manual 149

v0.5.0

SUB.TBLINE >> TBLINE

The TBLINE subroutine creates a

line composed of a given text

character from X,Y to X2,Y2. For

the sake of speed, this

subroutine uses the Bressenham

line algorithm to plot the line

directly to screen memory.

*

``````````````````````````````

* TBLINE (NATHAN RIGGS) *

* *

* OUTPUTS A LINE FROM COORDS *

* X1,Y1 TO X2,Y2 USING THE *

* BRESSENHAM LINE ALOGORITHM *

* *

* INPUT: *

* *

*]X1 STORED IN WPAR1 *

*]X2 STORED IN WPAR1+1 *

*]Y1 STORED IN WPAR2 *

*]Y2 STORED IN WPAR2+1 *

*]F STORED IN BPAR1 *

* *

* OUTPUT: *

* *

* NONE *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 283+ *

* SIZE: 188 BYTES *

 TBLINE (sub)

 Input:

 WPAR1 = X origin

 WPAR2 = Y origin

 WPAR1+1 = X destination

 WPAR2+1 = Y destination

 Output:

 Line to screen

 Destroys: AXYNVZCM

 Cycles: 283+

 Size: 188 bytes

AppleIIAsmLib Reference Manual 150

v0.5.0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]X1 EQU WPAR1 ; PARAMETERS PASSED VIA

]X2 EQU WPAR2 ; ZERO PAGE LOCATIONS

]Y1 EQU WPAR1+1

]Y2 EQU WPAR2+1

]F EQU BPAR1

*

]DX EQU VARTAB ; CHANGE IN X; 1 BYTE

]DY EQU VARTAB+1 ; CHANGE IN Y; 1 BYTE

]SX EQU VARTAB+2 ; X POSITION STEP; 1 BYTE

]SY EQU VARTAB+3 ; Y POSITION STEP; 1 BYTE

]ERR EQU VARTAB+4 ; SLOPE ERROR; 1 BYTE

]ERR2 EQU VARTAB+5 ; COMPARISON COPY OF]ERR; 1 BYTE

*

TBLINE

*

** FIRST CALCULATE INITIAL VALUES

*

** CHECK IF Y STEP IS POSITIVE OR NEGATIVE

*

 LDX #$FF ; .X = -1

 LDA]Y1 ; GET Y1 - Y2

 SEC ; RESET CARRY

 SBC]Y2

 BPL :YSTORE ; IF POSITIVE, SKIP TO STORE

 LDX #1 ; .X = +1

 EOR #$FF ; NEG ACCUMULATOR

 CLC

 ADC #1

:YSTORE

 STA]DY ; STORE CHANGE IN Y

 STX]SY ; STORE + OR - Y STEPPER

*

** NOW CHECK POSITIVE OR NEGATIVE X STEP

*

 LDX #$FF ; .X = -1

 LDA]X1 ; GET X1 - X2

 SEC ; RESET CARRY

 SBC]X2 ; SUBTRACT X2

 BPL :XSTORE ; IF POSITIVE, SKIP TO X STORE

 LDX #1 ; .X = +1

 EOR #$FF ; NEGATIVE ACCUMULATOR

 CLC

 ADC #1

:XSTORE

AppleIIAsmLib Reference Manual 151

v0.5.0

 STA]DX ; STORE CHANGE IN X

 STX]SX ; STORE + OR - X STEPPER

*

** IF CHANGE IN X IS GREATER THAN CHANGE IN Y,

** THEN INITIAL ERROR IS THE CHANGE IN X; ELSE,

** INITIAL ERROR IS THE CHANGE IN Y

*

 CMP]DY ; DX IS ALREADY IN .A

 BEQ :SKIP ; IF EQUAL, US CHANGE IN Y

 BPL :SKIP2 ; IF GREATER THAN, USE CHANGE IN X

:SKIP

 LDA]DY ; GET CHANGE IN Y

 EOR #$FF ; NEGATE

 CLC

 ADC #1

:SKIP2

 STA]ERR ; STORE EITHER DX OR DY IN ERR

 ASL]DX ; DX = DX * 2

 ASL]DY ; DY = DY * 2

*

** NOW LOOP THROUGH EACH POINT ON LINE

*

:LP

*

** PRINT CHARACTER FIRST

*

 LDA]Y1 ; .A = Y POSITION

 LDY]X1 ; .Y = X POSITION

 JSR GBCALC ; FIND SCREEN MEM LOCATION

 LDA]F ; LOAD FILL INTO .A

 STA (GBPSH),Y ; PUSH TO SCREEN MEMORY

*

** NOW CHECK IF X1 = X2, Y = Y2

*

 LDA]X1 ; IF X1 != X2 THEN

 CMP]X2 ; KEEP LOOPING

 BNE :KEEPGO

 LDA]Y1 ; ELSE, CHECK IF Y1 = Y2

 CMP]Y2

 BEQ :EXIT ; IF EQUAL, EXIT; ELSE, LOOP

:KEEPGO

 LDA]ERR ; LOAD ERR AND BACKUP

 STA]ERR2 ; FOR LATER COMPARISON

 CLC ; CLEAR CARRY

 ADC]DX ; ADD CHANGE IN X

 BMI :SKIPX ; IF RESULT IS -, SKIP

AppleIIAsmLib Reference Manual 152

v0.5.0

 BEQ :SKIPX ; TO CHANGING Y POS

 LDA]ERR ; RELOAD ERR

 SEC ; SET CARRY

 SBC]DY ; SUBTRACT CHANGE IN Y

 STA]ERR ; STORE ERROR

 LDA]X1 ; LOAD CURRENT X POSITION

 CLC ; CLEAR CARRY

 ADC]SX ; INCREASE OR DECREASE BY 1

 STA]X1 ; STORE NEW X POSITION

:SKIPX

 LDA]ERR2 ; LOAD EARLIER ERR

 CMP]DY ; IF ERR - CHANGE IN Y IS +

 BPL :SKIPY ; SKIP CHANGING Y POS

 LDA]ERR ; RELOAD ERR

 CLC ; CLEAR CARRY

 ADC]DX ; ADD CHANGE IN X

 STA]ERR ; STORE NEW ERR

 LDA]Y1 ; LOAD Y POSITION

 CLC ; CLEAR CARRY

 ADC]SY ; INCREASE OR DECREASE YPOS BY 1

 STA]Y1 ; STORE NEW Y POSITION

:SKIPY

 JMP :LP ; LOOP LINE DRAWING

:EXIT

 RTS

AppleIIAsmLib Reference Manual 153

v0.5.0

SUB.SINPUT >> SINPUT

The SINPUT subroutine halts the

calling routine’s execution

while it waits for input from

the keyboard, echoing the keys

pressed to the screen. Once the

return key has been pressed, the

string is then stored in RETURN

and control is passed back to

main execution.

*

``````````````````````````````

* SINPUT (NATHAN RIGGS) *

* *

* INPUT *

* *

* NONE *

* *

* OUTPUT: *

* *

* .X = LENGTH OF STRING *

* RETURN = STRING TYPED *

* RETLEN = LENGTH OF STRING *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^ *

* *

* CYCLES: 60+ *

* SIZE: 45 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]STRLEN EQU VARTAB ; 1 BYTE

*

SINPUT

*

 LDX #$00

 SINPUT (sub)

 Input:

 None

 Output:

 .X = string length

 RETLEN = string length

 RETURN = string typed

 Destroys: AXYNVZC

 Cycles: 60+

 Size: 45 bytes

AppleIIAsmLib Reference Manual 154

v0.5.0

 JSR GETLN

 STX]STRLEN ; STORE STR LENGTH

 CPX #0 ; IF LEN = 0, EXIT

 BNE :INP_CLR

 STX RETLEN

 STX RETURN

 JMP :EXIT

:INP_CLR

 LDA]STRLEN ; LENGTH OF STRING

 STA RETURN ; STRING LENGTH FIRST BYTE

 STA RETLEN ; PUT LENGTH + 1 HERE

 INC RETLEN

 LDX #255

 LDY #0

:LOOP

 INX

 INY

 LDA KEYBUFF,X ; PUT STR INTO NEW LOC

 STA RETURN,Y

 CPX]STRLEN ; IF Y < STR LENGTH

 BNE :LOOP ; LOOP; ELSE, EXIT

:EXIT

 RTS

AppleIIAsmLib Reference Manual 155

v0.5.0

SUB.XPRINT >> XPRINT

The XPRINT subroutine prints a

null-terminated string that

follows the call to the

subroutine, returning back to

the program by adding the string

length to the program counter.

The string cannot be more than

255 characters long.

*

``````````````````````````````

* XPRINT (NATHAN RIGGS) *

* *

* INPUT: *

* *

* ASC AFTER SUBROUTINE CALL *

* THAT CONTAINS STRING TO PRN *

* *

* OUTPUT *

* *

* STRING TO SCREEN *

* *

* DESTROY: AXYNVBDIZCMS *

* ^ ^^^ ^^ *

* *

* CYCLES: 63+ *

* SIZE: 33 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

XPRINT

 PLA ; GET CURRENT

 STA ADDR1 ; EXECUTION ADDRESS

 PLA

 STA ADDR1+1

 LDY #$01 ; POINT TO NEXT

 ; INSTRUCTION

 XPRINT (sub)

 Input:

 ASC string following call

 To the subroutine

 Output:

 String to screen

 Destroys: AYNVZC

 Cycles: 63+

 Size: 33 bytes

AppleIIAsmLib Reference Manual 156

v0.5.0

:LOOP

 LDA (ADDR1),Y ; GET CHARACTER

 BEQ :EXIT ; IF CHAR = $00 THEN EXIT

 JSR COUT1 ; OTHERWISE, PRINT CHAR

 INY ; INCREASE COUNTER

 BNE :LOOP ; IF COUNTER < 255, LOOP

:EXIT

 CLC ; CLEAR CARRY

 TYA ; MOVE .Y TO .A

 ADC ADDR1 ; ADD RETURN LOBYTE

 STA ADDR1 ; SAVE

 LDA ADDR1+1 ; GET RETURN HIBYTE

 ADC #$00 ; ADD CARRY

 PHA ; PUSH TO STACK

 LDA ADDR1

 PHA ; PUSH TO STACK

 RTS

AppleIIAsmLib Reference Manual 157

v0.5.0

SUB.THLINE >> THLINE

The THLINE subroutine creates a

horizontal line at the specified

Y position, starting at a given

X origin and ending at the X

destination. This line is

created with the specified fill

character.

*

``````````````````````````````

* THLINE (NATHAN RIGGS) *

* *

* INPUT: *

* *

* WPAR1 = X ORIGIN *

* WPAR1+1 = X DESTINATION *

* BPAR1 = Y POSITION *

* BPAR2 = FILL CHARACTER *

* *

* OUTPUT: HORIZONTAL LINE TO *

* SCREEN *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^^ ^^^ *

* *

* CYCLES: 90+ *

* SIZE: 47 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]X1 EQU WPAR1 ; 1 BYTE

]X2 EQU WPAR1+1 ; 1 BYTE

]Y1 EQU BPAR1 ; 1 BYTE

]F EQU BPAR2 ; 1 BYTE

 THLINE (sub)

 Input:

 WPAR1 = X origin

 BPAR1 = Y position

 BPAR2 = fill character

 WPAR1+1 = X destination

 Output:

 Horizontal line to screen

 Destroys: AXYNVBZCM

 Cycles: 90+

 Size: 47 bytes

AppleIIAsmLib Reference Manual 158

v0.5.0

*

THLINE

 LDA]Y1 ; LOAD ROW

 LDY]X1 ; LOAD X START POS

:LOOP

 JSR GBCALC ; GOSUB GBASCALC ROUTINE,

 ; WHICH FINDS MEMLOC FOR

 ; POSITION ON SCREEN

 LDA]F

 STA (GBPSH),Y ; PUSH]F TO SCREEN MEM

 LDA]Y1

 INY ; INCREASE X POS

 CPY]X2 ; IF LESS THAN X END POS

 BNE :LOOP ; REPEAT UNTIL DONE

:EXIT

 RTS

AppleIIAsmLib Reference Manual 159

v0.5.0

SUB.TCIRCLE >> TCIRCLE

The TCIRCLE subroutine creates a

circle of text on the screen

with a given radius at the

specified X,Y center

coordinates. The circle uses

Bressenham’s circle algorithm,

and plots directly to screen

memory.

While this wasn’t quite copied

line by line, substantial debt

is owed to Marc Golombeck’s 6502

Assembly implementation of the

algorithm.

*

``````````````````````````````

* TCIRCLE (NATHAN RIGGS) *

* *

* INPUT: *

* *

* WPAR1 = X CENTER POS *

* WPAR2 = Y CENTER POS *

* BPAR1 = RADIUS *

* BPAR2 = FILL CHARACTER *

* *

* OUTPUT: *

* *

* USES BRESENHAM'S CIRCLE *

* ALGORITHM TO DRAW A CIRCLE *

* TO THE 40-COLUMN TEXTMODE *

* SCREEN. *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 494+ *

* SIZE: 420 BYTES *

* *

* SUBSTANTIAL DEBT IS OWED TO *

 TCIRCLE (sub)

 Input:

 WPAR1 = center X position

 WPAR2 = center Y position

 BPAR1 = radius

 BPAR2 = fill character

 Output:

 Circle to screen

 Destroys: AXYNVZCM

 Cycles: 494+

 Size: 420 bytes

AppleIIAsmLib Reference Manual 160

v0.5.0

* MARC GOLOMBECK AND HIS GREAT *

* IMPLEMENTATION OF THE *

* BRESENHAM CIRCLE ALGORITHM *

* IN 6502 AND APPLESOFT, WHICH *

* IS BASED ON THE GERMAN LANG *

* VERSION OF WIKIPEDIA'S ENTRY *

* ON THE ALGORITHM THAT HAS A *

* BASIC PSEUDOCODE EXAMPLE. *

* THAT EXAMPLE, WITH CHANGES *

* VARIABLE NAMES, IS INCLUDED *

* BELOW. *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]XC EQU WPAR1

]YC EQU WPAR2

]R EQU BPAR1

]F EQU BPAR2

*

]Y EQU VARTAB ; CENTER YPOS

]X EQU VARTAB+1 ; CENTER XPOS

]DY EQU VARTAB+2 ; CHANGE IN Y

]DX EQU VARTAB+4 ; CHANGE IN X

]ERR EQU VARTAB+6 ; ERROR VALUE

]DIAM EQU VARTAB+8 ; DIAMETER

]XT EQU VARTAB+10 ; INVERTED X VALUE

]YT EQU VARTAB+12 ; INVERTED Y VALUE

*

* *

* BASIC PSEUDOCODE *

* *

*

* X = R

* Y = 0

* ERROR = R

* SETPIXEL XC + X, YC + Y

* WHILE Y < X

* DY = Y * 2 + 1

* Y = Y + 1

* ERROR = ERROR - DY

* IF ERROR < 0 THEN

* DX = 1 - X * 2

* X = X - 1

* ERROR = ERROR - DX

* END IF

AppleIIAsmLib Reference Manual 161

v0.5.0

* SETPIXEL XC + X, YC + Y

* SETPIXEL XC - X, YC + Y

* SETPIXEL XC - X, YC - Y

* SETPIXEL XC + X, YC - Y

* SETPIXEL XC + Y, YC + X

* SETPIXEL XC - Y, YC + X

* SETPIXEL XC - Y, YC - X

* SETPIXEL XC + Y, YC - X

* WEND

*

TCIRCLE

*

** FIRST, INITIALIZE VARIABLES

*

 LDA #0 ; CLEAR YPOS

 STA]Y

 LDA]R ; LOAD RADIUS

 STA]X ; X = RADIUS

 STA]ERR ; ERROR = RADIUS

 ASL ; R * 2

 STA]DIAM ; STORE DIAMETER

*

** NOW DRAW FIRST PART OF CIRCLE

*

** CALCULATE -X AND -Y

*

 LDA]X ; GET XPOS

 EOR #$FF ; NEGATE

 CLC

 ADC #1

 STA]XT ; STORE NEGATED IN XT

 LDA]Y ; GET YPOS

 EOR #$FF ; NEGATE

 CLC

 ADC #1

 STA]YT ; STORE NEGATED IN YT

*

** PLOT XC+X,YC

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 CLC ; CLEAR CARRY

 ADC]X ; ADD CURRENT XPOS

 TAY ; TRANSER TO .Y

 TAX ; AND .X

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 JSR GBCALC ; GET X,Y SCREEN MEMORY POS

AppleIIAsmLib Reference Manual 162

v0.5.0

 LDA]F ; LOAD FILL CHAR

 STA (GBPSH),Y ; STORE IN SCREEN MEMORY

*

** PLOT XC-X,YC

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 CLC ; CLEAR CARRY

 ADC]XT ; ADD NEGATED CURRENT XPOS

 TAX ; TRANSFER TO .X

 TAY ; AND .Y

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 JSR GBCALC ; GET X,Y SCREEN MEMORY POS

 LDA]F ; LOAD FILL CHAR

 STA (GBPSH),Y ; STORE IN SCREEN MEMORY

*

** PLOT XC,YC+X

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 TAY ; TRANSFER TO .Y

 TAX ; AND .X

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 CLC ; CLEAR CARRY

 ADC]X ; ADD CURRENT XPOS

 JSR GBCALC ; GET X,Y SCREEN MEMORY POS

 LDA]F ; LOAD FILL CHAR

 STA (GBPSH),Y ; STORE IN SCREEN MEMORY

*

** PLOT XC,YC-X

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 TAY ; TRANSFER TO .Y

 TAX ; AND .X

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 CLC ; CLEAR CARRY

 ADC]XT ; ADD NEGATED CURRENT XPOS

 JSR GBCALC ; GET X,Y SCREEN MEMORY POS

 LDA]F ; LOAD FILL CHAR

 STA (GBPSH),Y ; STORE IN SCREEN MEMORY

*

** NOW LOOP UNTIL CIRCLE IS FINISHED

*

:LOOP

*

** CHECK IF CIRCLE FINISHED

*

 LDA]Y ; IF Y > X

AppleIIAsmLib Reference Manual 163

v0.5.0

 CMP]X

 BCC :LPCONT ; CONTINUE LOOPING

 JMP :EXIT ; OTHERWISE, CIRCLE DONE

:LPCONT

:STEPY ; STEP THE Y POSITION

 LDA]Y ; LOAD YPOS

 ASL ; MULTIPLY BY 2

*CLC

 ADC #1 ; ADD +1

 STA]DY ; STORE CHANGE OF Y

 INC]Y ; INCREASE YPOS

 LDA]DY ; NEGATE

 EOR #$FF

 CLC

 ADC #1

 ADC]ERR ; ADD ERR

 STA]ERR ; ERR = ERR - DY

 BPL :PLOT ; IF ERR IS +, SKIP TO PLOT

:STEPX

 LDA]X ; LOAD XPOS

 ASL ; MULTIPLY BY 2

 EOR #$FF ; NEGATE

 CLC

 ADC #1

 ADC #1 ; (X*2) + 1

 STA]DX ; STORE CHANGE OF X

 DEC]X ; DECREASE YPOS

 LDA]DX ; NEGATE

 EOR #$FF

 CLC

 ADC #1

 ADC]ERR ; ADD ERR

 STA]ERR ; ERR = ERR - DX

*

:PLOT

*

** NOW CALCULATE -X AND -Y

*

 LDA]X

 EOR #$FF ; NEGATE

 CLC

 ADC #1

 STA]XT

 LDA]Y

 EOR #$FF ; NEGATE

 CLC

AppleIIAsmLib Reference Manual 164

v0.5.0

 ADC #1

 STA]YT

*

** NOW PLOT CIRCLE OCTANTS

*

** PLOT XC+X,YC+Y

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 CLC ; CLEAR CARRY

 ADC]X ; ADD CURRENT XPOS

 TAY ; TRANSFER TO .Y

 TAX ; AND .X

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 CLC ; CLEAR CARRY

 ADC]Y ; ADD CURRENT YPOS

 JSR GBCALC ; GET X,Y SCREEN ADDRESS

 LDA]F ; LOAD FILL CHAR

 STA (GBPSH),Y ; STORE AT SCREEN ADDRESS

*

** PLOT XC-X,YC+Y

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 CLC ; CLEAR CARRY

 ADC]XT ; ADD NEGATED CURRENT XPOS

 TAY ; TRANSFER TO .Y

 TAX ; AND TO .X

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 CLC ; CLEAR CARRY

 ADC]Y ; ADD CURRENT YPOS

 JSR GBCALC ; GET X,Y SCREEN ADDRESS

 LDA]F ; LOAD FILL CHAR

 STA (GBPSH),Y ; STORE AT SCREEN ADDRESS

*

** PLOT XC-X,YC-Y

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 CLC ; CLEAR CARRY

 ADC]XT ; ADD NEGATED CURRENT XPOS

 TAY ; TRANSFER TO .Y

 TAX ; AND .X

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 CLC ; CLEAR CARRY

 ADC]YT ; ADD NEGATED CURRENT YPOS

 JSR GBCALC ; GET X,Y SCREEN ADDRESS

 LDA]F ; LOAD FILL CHARACTER

 STA (GBPSH),Y ; STORE AT SCREEN ADDRESS

AppleIIAsmLib Reference Manual 165

v0.5.0

*

** PLOT XC+X,YC-Y

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 CLC ; CLEAR CARRY

 ADC]X ; ADD CURRENT XPOS

 TAY ; TRANSFER TO .Y

 TAX ; AND .X

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 CLC ; CLEAR CARRY

 ADC]YT ; ADD NEGATE CURRENT YPOS

 JSR GBCALC ; GET X,Y SCREEN ADDRESS

 LDA]F ; LOAD FILL CHAR

 STA (GBPSH),Y ; STORE AT SCREEN ADDRESS

*

** PLOT XC+Y,YC+X

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 CLC ; CLEAR CARRY

 ADC]Y ; ADD CURRENT YPOS

 TAX ; TRANSFER TO .X

 TAY ; AND .Y

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 CLC ; CLEAR CARRY

 ADC]X ; ADD CURRENT XPOS

 JSR GBCALC ; GET X,Y SCREEN ADDRESS

 LDA]F ; LOAD FILL CHAR

 STA (GBPSH),Y ; STORE AT SCREEN ADDRESS

*

** PLOT XC-Y,YC+X

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 CLC ; CLEAR CARRY

 ADC]YT ; ADD NEGATED CURRENT YPOS

 TAX ; TRANSFER TO .X

 TAY ; AND .Y

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 CLC ; CLEAR CARRY

 ADC]X ; ADD CURRENT XPOS

 JSR GBCALC ; GET X,Y SCREEN ADDRESS

 LDA]F ; LOAD FILL CHAR

 STA (GBPSH),Y ; STORE AT SCREEN ADDRESS

*

** PLOT XC-Y,YC-X

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

AppleIIAsmLib Reference Manual 166

v0.5.0

 CLC ; CLEAR CARRY

 ADC]YT ; ADD NEGATED CURRENT YPOS

 TAX ; TRANSFER TO .X

 TAY ; AND .Y

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 CLC ; CLEAR CARRY

 ADC]XT ; ADD NEGATED CURRENT XPOS

 JSR GBCALC ; GET X,Y SCREEN ADDRESS

 LDA]F ; LOAD FILL CHAR

 STA (GBPSH),Y ; STORE AT SCREEN ADDRESS

*

** PLOT XC+Y,YC-X

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 CLC ; CLEAR CARRY

 ADC]Y ; ADD CURRENT YPOS

 TAY ; TRANSFER TO .Y

 TAX ; AND .X

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 CLC

 ADC]XT ; ADD NEGATED CURRENT XPOS

 JSR GBCALC ; GET X,Y SCREEN ADDRESS

 LDA]F ; LOAD FILL CHAR

 STA (GBPSH),Y ; STORE AT SCREEN ADDRESS

 JMP :LOOP ; LOOP UNTIL FINISHED

:EXIT

 RTS

AppleIIAsmLib Reference Manual 167

v0.5.0

SUB.TVLINE >> TVLINE

The TVLINE subroutine creates a

text vertical line on the screen

at the given row from a passed Y

origin and Y destination. The

line is plotted directly to

screen memory.

*

``````````````````````````````

* TVLINE (NATHAN RIGGS) *

* *

* INPUT: *

* *

*]X1 STORED AT WPAR1 *

*]Y1 STORED AT WPAR2 *

*]Y2 STORED AT WPAR2+1 *

*]F STORED AT BPAR1 *

* *

* OUTPUT: VERT LINE TO SCREEN *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 33+ *

* SIZE: 34 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]X1 EQU WPAR1 ; 1 BYTE

]Y1 EQU WPAR2 ; 1 BYTE

]Y2 EQU WPAR2+1 ; 1 BYTE

]F EQU BPAR1 ; 1 BYTE

*

 TVLINE (sub)

 Input:

 WPAR1 = X position

 WPAR2 = Y origin

 WPAR2+1 = Y destination

 BPAR1 = fill character

 Output:

 Vertical line to screen

 Destroys: AXYNVZCM

 Cycles: 33+

 Size: 34bytes

AppleIIAsmLib Reference Manual 168

v0.5.0

TVLINE

*

 LDA]Y1

 LDY]X1

:LOOP

 JSR GBCALC ; GET POS SCREEN ADDRESS

 LDA]F

 STA (GBPSH),Y ; PLOT TO SCREEN MEMORY

 INC]Y1

 LDA]Y1

 CMP]Y2 ; IF Y1 < Y2

 BNE :LOOP ; LOOP; ELSE, CONTINUE

:EXIT

 RTS

AppleIIAsmLib Reference Manual 169

v0.5.0

SUB.TRECTF >> TRECTF

The TRECTF subroutine draws a

rectangle filled with the given

character at the provided X,Y

coordinate. The rectangle is

drawn directly to screen memory,

bypassing COUT.

*

``````````````````````````````

* TRECTF (NATHAN RIGGS) *

* *

* INPUT: *

* *

* WPAR1 = X ORIGIN *

* WPAR1+1 = X DESTINATION *

* WPAR2 = Y ORIGIN *

* WPAR2+1 = Y DESTINATION *

* BPAR1 = FILL CHARACTER *

* *

* OUTPUT *

* *

* FILLED RECTANGLE TO SCREEN *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 69+ *

* SIZE: 74 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

 TRECTF (sub)

 Input:

 WPAR1 = X origin

 WPAR2 = Y origin

 BPAR1 = fill character

 WPAR1+1 = X destination

 WPAR2+1 = Y destination

 Output:

 Filled rectangle to the

 screen

 Destroys: AXYNVZCM

 Cycles: 69+

 Size: 74 bytes

AppleIIAsmLib Reference Manual 170

v0.5.0

]X1 EQU WPAR1 ; 1 BYTE

]X2 EQU WPAR1+1 ; 1 BYTE

]Y1 EQU WPAR2 ; 1 BYTE

]Y2 EQU WPAR2+1 ; 1 BYTE

]F EQU BPAR1 ; 1 BYTE

*

]XC EQU VARTAB ; 1 BYTE

]YC EQU VARTAB+1 ; 1 BYTE

*

TRECTF

 LDA]X1

 STA]XC

 LDA]Y1

 STA]YC

:LP1 ; PRINT HORIZONTAL LINE

 LDA]YC

 LDY]XC

 JSR GBCALC ; GET SCREEN MEMORY ADDR

 LDA]F ; OF CURRENT POSITION

 STA (GBPSH),Y ; PUT CHAR IN LOCATION

 LDA]YC

 INY ; INCREASE XPOS

 STY]XC

 CPY]X2 ; IF XPOS < XMAX,

 BNE :LP1 ; KEEP PRINTING LINE

*

 LDA]X1 ; OTHERWISE, RESET XPOS

 STA]XC

 INC]YC ; AND INCREASE YPOS

 LDA]YC

 CMP]Y2 ; IF YPOS < YMAX

 BNE :LP1 ; PRINT HORIZONTAL LINE

:EXIT

 RTS

AppleIIAsmLib Reference Manual 171

v0.5.0

SUB.TXTPUT >> TXTPUT

The TXTPUT subroutine plots a

given character to the screen,

directly placing the value in

screen memory.

*

``````````````````````````````

* TXTPUT (NATHAN RIGGS) *

* *

* INPUT: *

* *

* .A = FILL CHAR *

* .X = X POSITION *

* .Y = Y POSITION *

* *

* OUTPUT *

* *

* CHAR TO SCREEN AT X,Y *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 29+ *

* SIZE: 30 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]Y1 EQU VARTAB ; 1 BYTE

]X1 EQU VARTAB+1 ; 1 BYTE

]F EQU VARTAB+3 ; 1 BYTE

 CYC ON

*

 TXTPUT (sub)

 Input:

 .A = fill character

 .X = X position

 .Y = Y position

 Output:

 Character to screen

 Destroys: AXYNVZC

 Cycles: 29+

 Size: 30 bytes

AppleIIAsmLib Reference Manual 172

v0.5.0

TXTPUT

*

 STA]F ; GET FILL CHAR

 STY]Y1 ; GET Y POS

 STX]X1 ; GET XPOS

*

 LDA]Y1

 LDY]X1

 JSR GBCALC ; GET SCREEN ADDRESS

 LDA]F

 STA (GBPSH),Y ; PUSH CHAR TO SCREEN ADDR

:EXIT

 RTS

AppleIIAsmLib Reference Manual 173

v0.5.0

SUB.PRNSTR >> PRNSTR

The PRNSTR subroutine prints a

string to the screen that is

preceded by a single length

byte; once that length is

reached in the loop, no more

characters are printed.

``````````````````````````````

* PRNSTR (NATHAN RIGGS) *

* *

* INPUT: *

* *

* .A = ADDRESS LOBYTE *

* .X = ADDRESS HIBYTE *

* *

* OUTPUT: *

* *

* PRINTS STRING TO SCREEN. *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 28+ *

* SIZE: 22 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]STRLEN EQU VARTAB ; 1 BYTE

*

PRNSTR

*

 STA ADDR1

 STX ADDR1+1

*

 LDY #0

 PRNSTR (sub)

 Input:

 .A = address lobyte

 .X = address hibyte

 Output:

 Print string to screen

 Destroys: AXYNVZC

 Cycles: 28+

 Size: 22 bytes

AppleIIAsmLib Reference Manual 174

v0.5.0

 LDA (ADDR1),Y ; GET STRING LENGTH

 STA]STRLEN

:LP

 INY

 LDA (ADDR1),Y ; GET CHARACTER

 JSR COUT1 ; PRINT CHARACTER TO SCREEN

 CPY]STRLEN ; IF Y < LENGTH

 BNE :LP

 ; LOOP; ELSE

 LDY #0

 LDA (ADDR1),Y

 RTS

AppleIIAsmLib Reference Manual 175

v0.5.0

DEMO.STDIO

DEMO.STDIO contains brief showcases and samples of the various

macros related to standard input and output. These are by no

means complicated implementations; for more rigorous use, see

the integrated demos.

*

``````````````````````````````

* DEMO.STDIO *

* *

* A DEMO OF THE MACROS AND *

* SUBROUTINES IN THE STDIO *

* APPLEIIASM LIBRARY. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 07-JUL-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

** ASSEMBLER DIRECTIVES

*

 CYC AVE

 EXP OFF

 TR ON

 DSK DEMO.STDIO

 OBJ $BFE0

 ORG $6000

*

``````````````````````````````

* TOP INCLUDES (HOOKS,MACROS) *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

 PUT MIN.HEAD.REQUIRED

 USE MIN.MAC.REQUIRED

 USE MIN.MAC.STDIO

 PUT MIN.HOOKS.STDIO

*

``````````````````````````````

* PROGRAM MAIN BODY *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

AppleIIAsmLib Reference Manual 176

v0.5.0

*

 JSR HOME ; CLEAR SCREEN

*

 PRN "STDIO DEMO",8D

 PRN "----------",8D8D

 PRN "WELCOME! THIS IS A DEMO FOR",8D

 PRN "THE STDIO LIBRARY MACROS AND ",8D

 PRN "SUBROUTINES.",8D8D

 WAIT

 PRN "OUR FIRST OBVIOUS MACRO USED",8D

 PRN "IS PRN. THIS MACRO CAN PRINT A",8D

 PRN "GIVEN STRING, OR PRINT THE STRING",8D

 PRN "AT A GIVEN ADDRESS THAT IS REFERENCED",8D

 PRN "EITHER DIRECTLY (#) OR INDIRECTLY.",8D

 PRN "THEREFORE: ",8D8D

 WAIT

 PRN " PRN 'HELLO!'",8D8D

 PRN "PRINTS HELLO, WHEREAS",8D8D

 PRN " PRN #STRING1",8D8D

 PRN "PRINTS THE STRING LOCATED AT",8D

 PRN "THAT EXACT ADDRESS."

 WAIT

 JSR HOME

 PRN "MEANWHILE,",8D8D

 PRN " PRN STRING2",8D8D

 PRN "PRINTS THE STRING AT THE ADDRESS PASSED",8D

 PRN "VIA THAT MEMORY LOCATION.",8D8D

 WAIT

 PRN "IT IS IMPORTANT TO NOTE THAT",8D

 PRN "WHENEVER THERE IS AN OPTION FOR",8D

 PRN "EITHER A STRING OR A MEMORY ADDRESS,",8D

 PRN "THIS IS HOW ALL SUBROUTINES WORK IN",8D

 PRN "THIS LIBRARY. IN OTHER DEMOS, IT MAY",8D

 PRN "BE ASSUMED THAT THE READER KNOWS THIS."

 WAIT

 JSR HOME

 PRN "OUR NEXT SUBROUTINE NEEDING ",8D

 PRN "OUR ATTENTION IS CALLED BY THE",8D

 PRN "COL40 MACRO. THIS FORCES USING",8D

 PRN "40-COLUMN MODE, AND IS ESPECIALLY",8D

 PRN "NECESSARY FOR ROUTINES THAT PRINT",8D

 PRN "DIRECTLY TO SCREEN MEMORY INSTEAD",8D

 PRN "OF USING COUT ROUTINES. SO,"8D8D

 PRN " COL40",8D8D

 PRN "WILL PUT US IN 40-COLUMN MODE",8D

 PRN "AFTER HITTING A KEY NOW."

AppleIIAsmLib Reference Manual 177

v0.5.0

 WAIT

 COL40

 JSR HOME

 PRN "YOU CAN ALSO FORCE 80-COLUMN MODE",8D

 PRN "WITH THE COL80 MACRO, BUT BE",8D

 PRN "AWARE THAT TRECF,TPUT,THLIN",8D

 PRN "AND TVLIN WILL ONLY WORK",8D

 PRN "AS INTENDED IN 40 COLUMNS.",8D8D

 PRN "LET'S LOOK AT THESE MACROS NOW."

 WAIT

 JSR HOME

 PRN "ASCII DRAWING",8D

 PRN "=============",8D8D

 PRN "AT TIMES, YOU MAY NEED TO ",8D

 PRN "PUT A BLOCK OF TEXT THAT CONSISTS",8D

 PRN "OF A SINGLE CHARACTER AS QUICKLY",8D

 PRN "AS POSSIBLE. CURRENTLY, THERE ARE",8D

 PRN "FOUR MACROS DEDICATED TO JUST ",8D

 PRN "THAT: THLIN, TVLIN, TRECF, AND TPUT.",8D8D

 WAIT

 PRN "THE SIMPLEST OF THESE IS TPUT:",8D

 PRN "IT OUTPUTS A SINGLE CHARACTER AT",8D

 PRN "THE GIVEN XY COORDINATES. SO,",8D8D

 PRN " TPUT #38;#20;#'$'",8D8D

 PRN "WILL PLACE THE '$' CHARACTER",8D

 PRN "AT THE X-POSITION 38 AND Y-POSITION",8D

 PRN "20. LET'S TRY THAT NOW...",8D8D

 WAIT

 TPUT #38;#20;#"$"

 PRN "SEE? RIGHT OVER HERE -->"

 WAIT

 JSR HOME

 PRN "NOT THAT THE CURSOR'S POSITION",8D

 PRN "IS NOT DISTURBED BY TPUT; THIS",8D

 PRN "IS DUE TO THE FACT THAT THE ROUTINE",8D

 PRN "BYPASSES COUT AND INSTEAD DIRECTLY",8D

 PRN "POKES THE CHARACTER INTO SCREEN MEMORY.",8D

 PRN "THIS IS PRIMARILY FOR SPEED, BUT AGAIN",8D

 PRN "KEEP IN MIND THAT THIS DOES NOT WORK",8D

 PRN "CORRECTLY IN 80-COLUMN MODE.",8D8D

 WAIT

 PRN "THLIN, TVLIN, AND TRECF OPERATE IN",8D

 PRN "THE SAME WAY. LET'S LOOK AT THOSE NEXT."

 TPUT #38;#12;#"K"

 TPUT #38;#13;#"E"

 TPUT #38;#14;#"E"

AppleIIAsmLib Reference Manual 178

v0.5.0

 TPUT #38;#15;#"P"

 TPUT #38;#17;#"G"

 TPUT #38;#18;#"O"

 TPUT #38;#19;#"I"

 TPUT #38;#20;#"N"

 TPUT #38;#21;#"G"

 WAIT

 JSR HOME

 PRN "THLIN AND TVLIN BOTH CREATE LINES",8D

 PRN "FROM A SINGLE CHARACTER, HORIZONTALLY",8D

 PRN "AND VERTICALLY RESPECTIVELY. THUS",8D8D

 PRN " THLIN #25;#35;#20;#'X'",8D8D

 WAIT

 THLIN #25;#35;#20;#"X"

 PRN "CREATES A HORIZONTAL LINE FROM THE",8D

 PRN "X-POSITION 25 TO 35 AT THE Y-POSITION",8D

 PRN "OF 20 WITH THE CHARACTER 'X'. LIKEWISE,",8D8D

 PRN " TVLIN #10;#20;#35;#'Y'",8D8D

 WAIT

 TVLIN #10;#20;#35;#"Y"

 PRN "CREATES A VERTICAL LINE FROM Y-POSITION",8D

 PRN "10 TO 20 AT THE X-POSITION 35."

 WAIT

 JSR HOME

 PRN "NOTE THAT THE LAST POSITION GIVEN",8D

 PRN "IS NOT ACTUALLY FILLED. THIS IS",8D

 PRN "TO KEEP PLACEMENT MORE INTUITIVE.",8D

 PRN "HOWEVER, WHEN TRYING TO ARRANGE LINES",8D

 PRN "CONNECTED TOGETHER, YOU WILL HAVE TO",8D

 PRN "ADJUST YOUR NUMBERS ACCORDINGLY. TO",8D

 PRN "CREATE A BOX, FOR INSTANCE, YOU WOULD",8D

 PRN "NEED TO WRITE:",8D8D

 PRN " THLIN #25;#35;#20;#'X'",8D

 PRN " TVLIN #10;#20;#34;#'X'",8D

 PRN " TVLIN #10;#20;#25;#'X'",8D

 PRN " THLIN #25;#35;#10;#'X'",8D8D

 WAIT

 THLIN #25;#35;#20;#"X"

 TVLIN #10;#20;#34;#"X"

 TVLIN #10;#20;#25;#"X"

 THLIN #25;#35;#10;#"X"

 PRN "YAY!"

*

*

 WAIT

AppleIIAsmLib Reference Manual 179

v0.5.0

 JSR HOME

 PRN "THE TLINE MACRO DRAWS A LINE FROM",8D

 PRN "X1,Y1 TO X2,Y2 WITH A FILL CHARACTER.",8D

 PRN "USE TVLIN OR THLINE IF YOU ARE",8D

 PRN "DRAWING HORIZONTAL OR VERTICAL LINES,",8D

 PRN "AS THESE USE FEWER CYCLES.",8D8D

 PRN " TLINE #20;#12;#30;#22;#'*'",8D

 PRN " TLINE #30;#22;#10;#15;#'*'",8D

 PRN " TLINE #10;#15;#30;#15;'*'",8D

 PRN " TLINE #30;#15;#10;#22;#'*'",8D

 PRN " TLINE #10;#22;#20;#12;#'*'",8D8D

 PRN "WILL OUTPUT:"

 WAIT

 TLINE #20;#12;#30;#22;#"*"

 TLINE #30;#22;#10;#15;#"*"

 TLINE #10;#15;#30;#15;#"*"

 TLINE #30;#15;#10;#22;#"*"

 TLINE #10;#22;#20;#12;#"*"

 WAIT

 JSR HOME

 PRN "YOU CAN ALSO CREATE CIRCLES WITH",8D

 PRN "THE TCIRC MACRO. IN THE PARAMS,",8D

 PRN "YOU SPECIFY THE X POSITION OF THE",8D

 PRN "CENTER, THE Y POSITION OF IT, ",8D

 PRN " THE CIRCLE'S RADIUS, AND THE ",8D

 PRN "FILL CHAR OF THE CIRCLE'S OUTLINE.",8D

 PRN "THUS:",8D8D

 PRN "TCIRC #30;#14;#7;#'*'",8D

 PRN "TCIRC #30;#14;#6;#'.'",8D

 PRN "TCIRC #30;#14;#5;#'#'",8D

 PRN "TCIRC #30;#14;#4;#':'",8D

 PRN "TCIRC #30;#14;#3;#'@'",8D

 PRN "TCIRC #30;#14;#2;#'+'",8D8D

 PRN "WILL PRODUCE:"

 WAIT

 TCIRC #30;#14;#7;#"*"

 TCIRC #30;#14;#6;#"."

 TCIRC #30;#14;#5;#"#"

 TCIRC #30;#14;#4;#":"

 TCIRC #30;#14;#3;#"@"

 TCIRC #30;#14;#2;#"+"

 WAIT

 JSR HOME

 PRN "THE LAST OF THESE KIND OF MACROS",8D

 PRN "IS TRECF, WHICH CREATES A FILLED",8D

 PRN "BOX. THIS CAN BE ESPECIALLY USEFUL",8D

AppleIIAsmLib Reference Manual 180

v0.5.0

 PRN "FOR CREATING A SEMBLANCE OF 'WINDOWS'",8D

 PRN "ON THE TEXT SCREEN. SO:",8D8D

 PRN " TRECF #10;#10;#20;#20;#'#'",8D8D

 PRN "WILL RESULT IN:",8D8D

 WAIT

 TRECF #10;#10;#20;#20;#"#"

 PRN "W00T!"

 WAIT

 JSR HOME

 PRN "CURSOR POSITIONING",8D

 PRN "==================",8D8D

 PRN "THE REST OF THESE ROUTINES",8D

 PRN "USE COUT1 FOUR CONVENIENCE AND",8D

 PRN "SAVING A FEW BYTES HERE AND THERE.",8D

 PRN "THIS MEANS, AMONG OTHER THINGS, THAT",8D

 PRN "THE SYSTEM MONITOR KEEPS TRACK",8D

 PRN "OF OUR CURSOR POSITION, AND WE CAN",8D

 PRN "CALL ITS ROUTINES TO ALTER SAID",8D

 PRN "POSITION. THIS IS ACHIEVED WITH THE",8D

 PRN "FOLLOWING MACROS, WHICH WE WILL EXPLORE",8D

 PRN "NEXT:",8D8D

 PRN " SETCX SETCY",8D

 PRN " SCPOS RCPOS",8D

 PRN " CURF CURB",8D

 PRN " CURU CURD"

 WAIT

 JSR HOME

 PRN "SETCX AND SETCY SIMPLY SET THE X",8D

 PRN "AND Y POSITIONS OF THE CURSOR,",8D

 PRN "RESPECTIVELY. SO:",8D8D

 PRN " SETCX #20",8D8D

 WAIT

 SETCX #20

 PRN "SETS THE CURSOR'S",8D

 PRN "X-POSITION TO 20, WHEREAS",8D8D

 PRN " SETCY #20",8D8D

 WAIT

 SETCY #20

 PRN "SET'S THE Y-POSITION TO 20."

 WAIT

 JSR HOME

 PRN "YOU CAN SET THESE COORDINATES",8D

 PRN "AT ONCE WITH THE SCPOS MACRO. SO:",8D8D

 PRN " SCPOS #8;#10"

 WAIT

 SCPOS #8;#10

AppleIIAsmLib Reference Manual 181

v0.5.0

 PRN "SETS THE CURSOR AT X POSITION",8D

 PRN "OF 8 AND A Y POSITION OF 10.",8D8D

 WAIT

 PRN "YOU CAN ALSO READ THE CHARACTER",8D

 PRN "AT A GIVEN POSITION WITH THE ",8D

 PRN "RCPOS MACRO. THUS,",8D8D

 PRN " RCPOS #8;#10 "

 WAIT

 PRN "RETURNS: "

 RCPOS #8;#10

 JSR COUT1

 WAIT

 JSR HOME

 PRN "THE LAST OF THE CURSOR POSITIONING",8D

 PRN "MACROS ARE CURF, CURB, CURD AND CURU.",8D

 PRN "THESE ALL MOVE THE CURSOR RELATIVE",8D

 PRN "TO ITS CURRENT POSITION. CURF MOVES",8D

 PRN "IT FORWARD BY THE SPECIFIED AMOUNT,",8D

 PRN "CURB MOVES BACKWARDS, CURD MOVES",8D

 PRN "DOWN AND CURU MOVES UP. THUS:",8D8D

 PRN " CURF #5 ",8D8D

 PRN "MOVES THE CURSOR "

 WAIT

 CURF #5

 PRN "FORWARD BY FIVE.",8D8D

 PRN "THE OTHER MACROS USE THE SAME",8D

 PRN "SYNTAX."

 WAIT

 JSR HOME

 PRN "MOUSETEXT",8D

 PRN "=========",8D8D

 PRN "ON CAPABLE SYSTEMS, MOUSETEXT",8D

 PRN "CAN BE TURNED ON WITH THE",8D

 PRN "MTXT1 MACRO AND TURNED OFF WITH",8D

 PRN "THE MTXT0 MACRO. SINCE THIS",8D

 PRN "WON'T HAVE A DEMO OF IT HERE."

 WAIT

 JSR HOME

 PRN "INPUT MACROS",8D

 PRN "============",8D8D

 PRN "CURRENTLY, THIS STDIO LIBRARY",8D

 PRN "CONTAINS FIVE MACROS FOR USER",8D

 PRN "INPUT. THEY ARE AS FOLLOWS:",8D8D

 PRN " INP STRING INPUT",8D

 PRN " GKEY CHARACTER INPUT",8D

 PRN " PDL PADDLE INPUT",8D

AppleIIAsmLib Reference Manual 182

v0.5.0

 PRN " PBX PADDLE BUTTON INPUT",8D

 PRN " WAIT CHARACTER INPUT, NO MONITOR"

 WAIT

 JSR HOME

 PRN "WE HAVE ALREADY MADE SUBSTANTIAL",8D

 PRN "USE OF THE WAIT MACRO--THAT'S ",8D

 PRN "WHAT IS CALLED EVERY TIME THIS",8D

 PRN "DEMO PAUSES. ONCE A KEY IS PRESSED,",8D

 PRN "THE ASCII CODE FOR IT IS STORED",8D

 PRN "IN THE .A REGISTER. THIS MACRO",8D

 PRN "ACCEPTS NO PARAMETERS.",8D8D

 PRN "A SPECIAL FEATURE OF THE WAIT",8D

 PRN "MACRO IS THAT IT DOES NOT USE THE",8D

 PRN "TYPICAL MONITOR ROUTINES FOR INPUT,",8D

 PRN "AND READS THE KEYBOARD DIRECTLY,",8D

 PRN "ALLOWING US TO NOT HAVE A CURSOR ON",8D

 PRN "THE SCREEN, AMONG OTHER BENEFITS.",8D

 PRN "THIS IS IN CONTRAST TO GKEY, WHICH",8D

 PRN "USES THE MONITOR ROUTINE TO ACHIEVE",8D

 PRN "THE SAME RESULT: "

 GKEY

 JSR HOME

 PRN "THE INP MACRO SIMILARLY USES THE",8D

 PRN "MONITOR'S INPUT ROUTINE. THIS MEANS",8D

 PRN "THAT IT SUFFERS THE SAME PROBLEMS",8D

 PRN "AS DOES APPLESOFT BASIC'S INPUT",8D

 PRN "COMMAND: COMMAS AND SPECIAL CHARACTERS",8D

 PRN "COMPLICATE MATTERS. IN FUTURE PATCHES,",8D

 PRN "AN ALTERNATE NON-MONITOR ROUTINE",8D

 PRN "WILL BECOME AVAILABLE.",8D8D

 PRN "TYPE SOMETHING AND PRESS RETURN:",8D

 INP

 PRN " ",8D

 PRN "YOU CAN THEN PRINT THE STRING TO ",8D

 PRN "SCREEN USING THE SPRN MACRO:",8D8D

 PRN "YOU TYPED:"

 SPRN #RETURN

 WAIT

 JSR HOME

 PRN "PADDLE BUTTONS CAN BE READ VIA",8D

 PRN "THE PBX MACRO. THE SYNAX IS AS",8D

 PRN "FOLLOWS:",8D8D

 PRN " PBX [BUTTON ADDRESS]",8D8D

 WAIT

 PRN "THE HOOKS.STDIO FILE CONTAINS THE",8D

 PRN "ADDRESSES FOR THE FOR PADDLE BUTTONS,",8D

AppleIIAsmLib Reference Manual 183

v0.5.0

 PRN "CONVENIENTLY CALLED PB0, PB1, PB2, ",8D

 PRN "AND PB3. THUS:",8D8D

 WAIT

 PRN " PBX #PB0",8D8D

 PRN "CHECKS IF PADDLE BUTTON 0 IS PRESSED,",8D

 PRN "AND RETURNS 1 IN THE .A REGISTER IF SO.",8D

 PRN "OTHERWISE, A ZERO IS RETURNED.",8D8D

 WAIT

 PRN "SINCE THIS REQUIRES SPECIAL HARDWARE,",8D

 PRN "WE WON'T BE USING THE MACRO HERE. NOTE",8D

 PRN "THAT ON A][E, //C, AND][GS, THE OPEN",8D

 PRN "APPLE KEY IS MAPPED TO BUTTON ZERO."

 WAIT

 JSR HOME

 PRN "LASTLY, THE PREAD MACRO READS THE STATE",8D

 PRN "OF THE GIVEN PADDLE'S POTENTIOMETER.",8D

 PRN "A VALUE OF 0-255 IS RETURNED IN THE .Y",8D

 PRN "REGISTER. SO:",8D8D

 WAIT

 PRN " PREAD #0",8D8D

 PRN "WILL READ THE STATE OF PADDLE 0, WHICH",8D

 PRN "IS THE MOST COMMON TO READ. AGAIN,",8D

 PRN "DUE TO A NEED FOR SPECIAL HARDWARE, WE",8D

 PRN "WON'T BE ILLUSTRATING IT HERE."

 WAIT

 JSR HOME

 PRN " ",8D

 PRN "THAT'S ALL, FOLKS!",8D8D

*

 JMP REENTRY

*

``````````````````````````````

* BOTTOM INCLUDES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

 PUT MIN.LIB.REQUIRED

*

** INDIVIDUAL SUBROUTINE INCLUDES

*

* STDIO SUBROUTINES

*

 PUT MIN.SUB.XPRINT

 PUT MIN.SUB.DPRINT

 PUT MIN.SUB.THLINE

 PUT MIN.SUB.TVLINE

 PUT MIN.SUB.TRECTF

AppleIIAsmLib Reference Manual 184

v0.5.0

 PUT MIN.SUB.TXTPUT

 PUT MIN.SUB.TBLINE

 PUT MIN.SUB.TCIRCLE

 PUT MIN.SUB.SINPUT

 PUT MIN.SUB.PRNSTR

*

AppleIIAsmLib Reference Manual 185

v0.5.0

Disk 3: ARRAYS

The third disk in the library contains macros and subroutines

for handling arrays. These arrays can be either 8-bit, meaning

they can hold 255 elements in a single dimension, or 16-bit,

meaning they can hold 65,025 elements in a single dimension.

Additionally, the arrays can come in one dimension or two

dimensions. Regardless of the type, all array elements have a

maximum length of 255 bytes.

It should always be remembered that the subroutines for each

type of array will only work with the type of array assigned;

otherwise, garbage will result. The subroutines and macros can

be recognized for the array type by the ending number: 82 means

an 8-bit, two-dimensional array, whereas 161 would denote a 16-

bit, one-dimensional array.

Beyond the required files and some utilities, this disk contains

the following components:

• HOOKS.ARRAYS

• MAC.ARRAYS

• SUB.ADIM81

• SUB.AGET81

• SUB.APUT81

• SUB.ADIM82

• SUB.AGET82

• SUB.APUT82

• SUB.ADIM161

• SUB.AGET161

• SUB.APUT161

• SUB.ADIM162

• SUB.AGET162

• SUB.APUT162

AppleIIAsmLib Reference Manual 186

v0.5.0

HOOKS.ARRAYS

The HOOKS.ARRAYS file contains dummy code at the moment, as

there aren’t too many useful hooks for array manipulation. The

dummy code is set so that the Merlin 8 Pro Assembler does not

exit with a file not found error.

*

``````````````````````````````

* HOOKS.ARRAYS *

* *

* CURRENTLY, THIS HOOKS FILE *

* ONLY CONTAINS DUMMY CODE IN *

* ORDER TO PREVENT AN ERROR *

* DURING ASSEMBLY (EMPTY *

* FILE). *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 13-JUL-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

ARRMAX EQU 8192 ; MAXIMUM # OF BYTES

 ; AN ARRAY CAN USE

*

AppleIIAsmLib Reference Manual 187

v0.5.0

MAC.ARRAYS

The MAC.ARRAYS file contains all macros in the library related

to array functionality. This includes:

• ADIM81

• AGET81

• APUT81

• ADIM82

• AGET82

• APUT82

• ADIM161

• AGET161

• APUT161

• ADIM162

• AGET162

• APUT162

AppleIIAsmLib Reference Manual 188

v0.5.0

*

``````````````````````````````

* MAC.ARRAYS *

* *

* A MACRO LIBRARY FOR 8BIT AND *

* 16BIT ARRAYS, BOTH IN ONE *

* DIMENSION AND TWO DIMENSIONS *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 13-JUL-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

* *

* SUBROUTINE FILES USED *

* *

* SUB.ADIM161 *

* SUB.ADIM162 *

* SUB.ADIM81 *

* SUB.ADIM82 *

* SUB.AGET161 *

* SUB.AGET162 *

* SUB.AGET81 *

* SUB.AGET82 *

* SUB.APUT161 *

* SUB.APUT162 *

* SUB.APUT81 *

* SUB.APUT82 *

* *

* LIST OF MACROS *

* *

* DIM81: DIM 1D, 8BIT ARRAY *

* GET81: GET ELEMENT IN 8BIT, *

* 1D ARRAY. *

* PUT81: PUT VALUE INTO ARRAY *

* AT SPECIFIED INDEX *

* DIM82: DIM A 2D, 8BIT ARRAY *

* GET82: GET ELEMENT IN 8BIT, *

* 2D ARRAY *

* PUT82: PUT VALUE INTO ARRAY *

* AT SPECIFIED INDEX *

* DIM161: DIM 1D, 16BIT ARRAY *

* GET161: GET ELEMENT FROM 1D, *

* 16BIT ARRAY. *

AppleIIAsmLib Reference Manual 189

v0.5.0

* PUT161: PUT VALUE INTO A 1D, *

* 16BIT ARRAY INDEX. *

* DIM162: DIM 2D, 16BIT ARRAY *

* GET162: GET ELEMENT FROM 2D, *

* 16BIT ARRAY. *

* PUT162: PUT VALUE INTO A 2D, *

* 16BIT ARRAY INDEX. *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

AppleIIAsmLib Reference Manual 190

v0.5.0

MAC.ARRAYS >> DIM81

The DIM81 macro initializes a

new 8-bit, one-dimensional array

at the given array address with

the specified number of elements

at the given length. Initially,

all elements are filled with the

value provided via]4. Since

this is an 8-bit array, it can

hold no more than 255 elements,

with each element capable of

having a length between 1 and

255.

A one dimensional 8-bit array

has a two-byte header where byte

0 of the array holds the number

of elements in the array, while

byte 1 contains the length of

each element. Then the data held by the array follows.

``````````````````````````````

* DIM81 (NATHAN RIGGS) *

* *

* CREATE A ONE DIMENSIONAL, *

* 8-BIT ARRAY AT THE GIVEN *

* ADDRESS. *

* *

* PARAMETERS *

* *

*]1 = ARRAY ADDRESS *

*]2 = ARRAY BYTE LENGTH *

*]3 = ELEMENT BYTE LENGTH *

*]4 = FILL VALUE *

* *

* SAMPLE USAGE *

* *

* DIM81 #$300;#10;#2;#0 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

DIM81 MAC

 _MLIT]1;WPAR1 ; PARSE IF LITERAL OR NOT

 LDA]2 ; ARRAY LENGTH

 STA WPAR2

 DIM81 (macro)

 Input:

]1 = array address (2b)

]2 = # of elements (1b)

]3 = element length (1b)

]4 = fill value (1b)

 Output:

 New 8-bit Array(]2)

 Destroys: AXYNVZCM

 Cycles: 214+

 Size: 39 bytes

AppleIIAsmLib Reference Manual 191

v0.5.0

 LDA]3 ; ELEMENT LENGTH

 STA WPAR3

 LDA]4

 STA BPAR1 ; FILL VAL

 JSR ADIM81

 <<<

AppleIIAsmLib Reference Manual 192

v0.5.0

MAC.ARRAYS >> GET81

The GET81 macro retrieves the

value held in an 8-bit, one-

dimensional array and copies it

into RETURN. RETLEN holds the

length of the element copied.

Note that trying to use GET81 on

an array initialized as a 16-bit

array or a two-dimensional array

will result in faulty data. Use

the corresponding subroutines

and macros for each type of

array accordingly.

*

``````````````````````````````

* GET81 (NATHAN RIGGS) *

* *

* RETRIEVE A VALUE FROM THE *

* GIVEN ARRAY AT THE SPECIFIED *

* ELEMENT INDEX AND STORE THE *

* VALUE IN RETURN. *

* *

* PARAMETERS *

* *

*]1 = ARRAY ADDRESS *

*]2 = ELEMENT INDEX *

* *

* SAMPLE USAGE *

* *

* GET81 #$300;#5 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

GET81 MAC

 _AXLIT]1 ; PARSE ADDRESS

 LDY]2 ; ELEM INDEX

 JSR AGET81

 <<<

 GET81 (macro)

 Input:

]1 = array address (2b)

]2 = element index (1b)

 Output:

 RETURN = element value

 RETLEN = element length

 Destroys: AXYNVZCM

 Cycles: 148+

 Size: 11 bytes

AppleIIAsmLib Reference Manual 193

v0.5.0

MAC.ARRAYS >> PUT81

The PUT81 macro puts a value

stored in a given source address

into an 8-bit, one-dimensional

array. The length of the element

is determined by addressing the

array header, so special care

should be taken to make sure

that proper lengths are used;

trash will be sent to the array

element, if not.

*

``````````````````````````````

* PUT81 (NATHAN RIGGS) *

* *

* PUTS THE DATA FOUND AT THE *

* GIVEN ADDRESS INTO THE ARRAY *

* AT THE GIVEN INDEX. *

* *

* PARAMETERS *

* *

*]1 = SOURCE ADDRESS *

*]2 = ARRAY ADDRESS *

*]3 = ELEMENT INDEX *

* *

* SAMPLE USAGE *

* *

* PUT81 #$300;#$3A0;#5 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

PUT81 MAC

 _MLIT]1;WPAR1 ; PARSE SOURCE ADDRESS

 _MLIT]2;WPAR2 ; PARSE DEST ADDRESS

 LDA]3 ; DEST INDEX

 STA BPAR1

 JSR APUT81

 <<<

 PUT81 (macro)

 Input:

]1 = source address (2b)

]2 = array address (2b)

]3 = element index (1b)

 Output:

 Array(]2) =]1

 Destroys: AXYNVZCM

 Cycles: 240+

 Size: 55 bytes

AppleIIAsmLib Reference Manual 194

v0.5.0

MAC.ARRAYS >> DIM82

The DIM82 macro initializes a

new 8-bit, two-dimensional array

with the given number of

elements for each dimension at

the specified element length.

Note that since this is an 8-bit

array, it can hold up to 255

elements only, with each having

a length of 1 to 255.

A two-dimensional 8-bit array

has a three-byte header that

contains vital information about

the array. Byte 0 hold the

number of elements in the first

dimension, byte 1 holds the

number of elements in the second

dimension, and byte 3 holds the

length of each element. The

total number of elements can be derived by simply multiplying

the number of elements in the first dimension by the number of

elements in the 2nd dimension.

*

``````````````````````````````

* DIM82 (NATHAN RIGGS) *

* *

* INITIALIZES AN 8-BIT ARRAY *

* WITH TWO DIMENSIONS. *

* *

* PARAMETERS *

* *

*]1 = ARRAY ADDRESS *

*]2 = X DIMENSION *

*]3 = Y DIMENSION *

*]4 = ELEMENT SIZE *

*]5 = FILL VALUE *

* *

* SAMPLE USAGE *

* *

* DIM82 #$300;#4;#4;#1;#0 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

DIM82 MAC

 DIM82 (macro)

 Input:

]1 = array address (2b)

]2 = first dim index (1b)

]3 = 2nd dim index (1b)

]4 = element length (1b)

]5 = fill value (1b)

 Output:

 New 8-bit Array(]2,]3)

 Destroys: AXYNVZCM

 Cycles: 324+

 Size: 43 bytes

AppleIIAsmLib Reference Manual 195

v0.5.0

 _MLIT]1;WPAR1 ; PARSE ARRAY ADDRESS

 LDA]2 ; X DIM

 STA WPAR2

 LDA]3 ; Y DIM

 STA WPAR3

 LDA]4 ; ELEMENT LENGTH

 STA BPAR2

 LDA]5 ; FILL VAL

 STA BPAR1

 JSR ADIM82

 <<<

AppleIIAsmLib Reference Manual 196

v0.5.0

MAC.ARRAYS >> GET82

The GET82 macro retrieves the

value held in an 8-bit, 2-

dimensional array at the given

index pair. This value is stored

in RETURN, and the element

length is stored in RETLEN.

Like with other GET and PUT

macros, this only works properly

with arrays initialized as the

same array type as this

subroutine expects; namely, it

must be an 8-bit, two-

dimensional array created by

DIM82.

*

``````````````````````````````

* GET82 (NATHAN RIGGS) *

* *

* RETRIEVE VALUE FROM ELEMENT *

* OF 8-BIT, TWO DIMENSIONAL *

* ARRAY. *

* *

* PARAMETERS *

* *

*]1 = ARRAY ADDRESS *

*]2 = X INDEX *

*]3 = Y INDEX *

* *

* SAMPLE USAGE *

* *

* GET82 #$300;#2;#3 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

GET82 MAC

 _MLIT]1;WPAR1

 LDA]2 ; X INDEX

 STA BPAR1

 LDA]3 ; Y INDEX

 STA BPAR2

 JSR AGET82

 <<<

 GET82 (macro)

 Input:

]1 = array address (2b)

]2 = first dim index (1b)

]3 = 2nd dim index (1b)

 Output:

 RETURN = element value

 RETLEN = element length

 Destroys: AXYNVZCM

 Cycles: 322+

 Size: 35 bytes

AppleIIAsmLib Reference Manual 197

v0.5.0

MAC.ARRAYS >> PUT82

The PUT82 macro copies the value

in a source address range to an

element in a two-dimensional 8-

bit array. Like with other PUT

macros, the length of the value

to be transferred is determined

by the element length byte of

the array; therefore, special

attention should be given to the

lengths of those values passed.

*

``````````````````````````````

* PUT82 (NATHAN RIGGS) *

* *

* SET VALUE OF AN ELEMENT IN *

* AN 8-BIT, TWO-DIMENSIONAL *

* ARRAY. *

* *

* PARAMETERS *

* *

*]1 = SOURCE ADDRESS *

*]2 = DEST ARRAY ADDRESS *

*]3 = ELEMENT X INDEX *

*]4 = Y INDEX *

* *

* SAMPLE USAGE *

* *

* PUT82 #$300;$3A0;#2;#3 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

PUT82 MAC

 _MLIT]1;WPAR1 ; PARSE SOURCE ADDRESS

 _MLIT]2;WPAR2 ; PARSE DEST ADDRESS

 LDA]3 ; X INDEX

 STA BPAR1

 PUT82 (macro)

 Input:

]1 = source address (2b)

]2 = array address (2b)

]3 = first dim index (1b)

]4 = 2nd dim index (1b)

 Output:

 Array(]3,]4) =]1

 Destroys: AXYNVZCM

 Cycles: 328+

 Size: 59 bytes

AppleIIAsmLib Reference Manual 198

v0.5.0

 LDA]4 ; Y INDEX

 STA BPAR2

 JSR APUT82

 <<<

AppleIIAsmLib Reference Manual 199

v0.5.0

MAC.ARRAYS >> DIM161

The DIM161 macro initializes a

16-bit, one-dimensional array

with the given number of

elements that have the specified

length each. Since this a 16-bit

array, it can hold a total of

65,025 elements, with a maximum

element length of 255.

Note that this can quickly get

out of hand: 65,025 elements at

a single byte each will already

more than fill the total amount

of RAM in most Apple II

computers. Additionally,

execution speed is significantly

worse than using 8-bit arrays.

As such, this should only be

used when more than 255 elements are necessary.

16-bit two-dimensional arrays contain a three-byte header. Byte

0 holds the low byte of the number of elements, and byte 1 holds

the high byte. Byte 3 holds the element length, with the array’s

data following.

*

``````````````````````````````

* DIM161 (NATHAN RIGGS) *

* *

* INITIALIZE A 16-BIT ARRAY *

* WITH A SINGLE DIMENSION. *

* *

* PARAMETERS *

* *

*]1 = ARRAY ADDRESS *

*]2 = ARRAY BYTE LENGTH *

*]3 = ELEMENT BYTE LENGTH *

*]4 = ARRAY FILL VALUE *

* *

* SAMPLE USAGE *

* *

* DIM161 #$300;#10;#2;#$00 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

 DIM161 (macro)

 Input:

]1 = array address (2b)

]2 = # of elements (2b)

]3 = element length (1b)

]4 = fill value (1b)

 Output:

 New 16-bit Array(]2)

 Destroys: AXYNVZCM

 Cycles: 226+

 Size: 59 bytes

AppleIIAsmLib Reference Manual 200

v0.5.0

DIM161 MAC

 _MLIT]1;WPAR1 ; PARSE ARRAY ADDRESS

 _MLIT]2;WPAR2 ; PARSE BYTE LENGTH

 LDA]3 ; ELEMENT LENGTH

 STA WPAR3

 LDA]4 ; FILL VALUE

 STA BPAR1

 JSR ADIM161

 <<<

AppleIIAsmLib Reference Manual 201

v0.5.0

MAC.ARRAYS >> PUT161

The PUT161 macro copies the

value held in a given source

address range to the specified

element in a one-dimensional,

16-bit array. As with all array

PUT macros and subroutines, the

length of the values to be

transferred is determined by the

element length byte in the array

header.

*

``````````````````````````````

* PUT161 (NATHAN RIGGS) *

* *

* SET THE VALUE OF AN INDEX *

* ELEMENT IN A 16-BIT, ONE- *

* DIMENSIONAL ARRAY. *

* *

* PARAMETERS *

* *

*]1 = SOURCE ADDRESS *

*]2 = ARRAY ADDRESS *

*]3 = ELEMENT INDEX *

* *

* SAMPLE USAGE *

* *

* PUT161 #$300;$3A0;#5 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

PUT161 MAC

 _MLIT]1;WPAR1 ; PARSE SOURCE ADDRESS

 _MLIT]2;WPAR2 ; PARSE ARRAY ADDRESS

 _MLIT]3;WPAR3 ; PARSE INDEX

 JSR APUT161

 <<<

 PUT161 (macro)

 Input:

]1 = source address (2b)

]2 = array address (2b)

]3 = element index

 Output:

 16-bit Array(]3) =]1

 Destroys: AXYNVZCM

 Cycles: 247+

 Size: 75 bytes

AppleIIAsmLib Reference Manual 202

v0.5.0

MAC.ARRAYS >> GET161

The GET161 macro retrieves the

value at a given element index

from a one-dimensional 16-bit

array. This value is transferred

to RETURN, with its length

stored in RETLEN.

*

``````````````````````````````

* GET161 (NATHAN RIGGS) *

* *

* GET THE VALUE STORED IN THE *

* ELEMENT OF A 16-BIT, ONE- *

* DIMENSIONAL ARRAY. *

* *

* PARAMETERS *

* *

*]1 = SOURCE ADDRESS *

*]2 = ARRAY ADDRESS *

* *

* SAMPLE USAGE *

* *

* GET161 #$3A0;#300 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

GET161 MAC

 _MLIT]1;WPAR1 ; PARSE SOURCE ADDRESS

 _MLIT]2;WPAR2 ; PARSE INDEX

 JSR AGET161

 <<<

 GET161 (macro)

 Input:

]1 = source address (2b)

]2 = element index (2b)

 Output:

 RETURN = element value

 RETLEN = element length

 Destroys: AXYNVZCM

 Cycles: 172+

 Size: 51 bytes

AppleIIAsmLib Reference Manual 203

v0.5.0

MAC.ARRAYS >> DIM162

The DIM162 macro initializes a

16-bit, two-dimensional array.

Each dimension can theoretically

hold 65,025 elements, but higher

values are either impractical or

impossible on most standard

Apple II systems. Each element

can be as high as 255 bytes

long.

Two-dimensional 16-bit arrays

have a five-byte header that

defines the dimension lengths

and element lengths. Byte 0

holds the low byte of the first

dimension’s length, and byte 1

holds the high byte. Byte 2

holds the low byte of the second

dimension’s length, and byte 3

holds the high byte likewise. Finally, byte 4 holds the length

of each element, which is referred to by GET162 and PUT162.

For most purposes, 8-bit arrays should work fine, and are

additionally much faster than 16-bit arrays. Use DIM162 only if

you need an array with two dimensions that hold more than 255

elements each.

*

``````````````````````````````

* DIM162 (NATHAN RIGGS) *

* *

* INITIALIZE A 16-BIT, TWO- *

* DIMENSIONAL ARRAY. *

* *

* PARAMETERS *

* *

*]1 = ARRAY ADDRESS *

*]2 = X DIMENSION *

*]3 = Y DIMENSION *

*]4 = ELEMENT SIZE *

*]5 = FILL VALUE *

* *

* SAMPLE USAGE *

* *

 DIM162 (macro)

 Input:

]1 = array address (2b)

]2 = 1st dim length (2b)

]3 = 2nd dim length (2b)

]4 = element length (1b)

]5 = fill value (1b)

 Output:

 New 16-bit Array(]2,]3)

 Destroys: AXYNVZCM

 Cycles: 500+

 Size: 83 bytes

AppleIIAsmLib Reference Manual 204

v0.5.0

* DIM162 #$300;#4;#4;#1;#0 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

DIM162 MAC

 _MLIT]1;WPAR3 ; PARSE ARRAY ADDRESS

 _MLIT]2;WPAR1 ; PARSE X DIMENSION

 _MLIT]3;WPAR2 ; PARSE Y DIMENSION

 LDA]4 ; ELEMENT LENGTH

 STA BPAR1

 LDA]5 ; FILL VAL

 STA BPAR2

 JSR ADIM162

 <<<

AppleIIAsmLib Reference Manual 205

v0.5.0

MAC.ARRAYS >> PUT162

The PUT162 macro sets the value

at a given element in a 16-bit,

two-dimensional array. Like

other PUT macros, the length of

the value being transferred is

determined by the element length

byte in the array header.

*

``````````````````````````````

* PUT162 (NATHAN RIGGS) *

* *

* SET VALUE OF AN ELEMENT IN *

* A 16-BIT, TWO-DIMENSIONAL *

* ARRAY. *

* *

* PARAMETERS *

* *

*]1 = SOURCE ADDRESS *

*]2 = DEST ARRAY ADDRESS *

*]3 = ELEMENT X INDEX *

*]4 = Y INDEX *

* *

* SAMPLE USAGE *

* *

* PUT162 #$3A0;#280;#2 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

PUT162 MAC

 _MLIT]1;WPAR1 ; PARSE SOURCE ADDRESS

 _MLIT]2;WPAR2 ; PARSE ARRAY ADDRESS

 _MLIT]3;WPAR3 ; PARSE X INDEX

 _MLIT]4;ADDR1 ; PARSE Y INDEX

 JSR APUT162

 <<<

 PUT162 (macro)

 Input:

]1 = source address (2b)

]2 = array address (2b)

]3 = 1st dim index (2b)

]4 = 2nd dim index (2b)

 Output:

 16b Array(]3,]4) =]1

 Destroys: AXYNVZCM

 Cycles: 490+

 Size: 99 bytes

AppleIIAsmLib Reference Manual 206

v0.5.0

MAC.ARRAYS >> GET162

The GET162 macro retrieves the

value stored in a specified

element of a 16-bit, two-

dimensional array. This value is

held in RETURN, whereas its

length is stored in RETLEN.

*

``````````````````````````````

* GET162 (NATHAN RIGGS) *

* *

* GET THE VALUE STORED AT AN *

* ELEMENT OF A 16-BIT, TWO- *

* DIMENSIONAL ARRAY. *

* *

* PARAMETERS *

* *

*]1 = ARRAY ADDRESS *

*]2 = ELEMENT X INDEX *

*]3 = Y INDEX *

* *

* SAMPLE USAGE *

* *

* GET162 #$300;#1000;#10 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

GET162 MAC

 _MLIT]1;WPAR1 ; PARSE ARAY ADDRESS

 _MLIT]2;WPAR2 ; PARSE X INDEX

 _MLIT]3;WPAR3 ; PARSE Y INDEX

 JSR AGET162

 <<<

*

 GET162 (macro)

 Input:

]1 = array address (2b)

]2 = 1st dim index (2b)

]3 = 2nd dim index (2b)

 Output:

 RETURN = element value

 RETLEN = element length

 Destroys: AXYNVZCM

 Cycles: 476+

 Size: 75 bytes

AppleIIAsmLib Reference Manual 207

v0.5.0

SUB.ADIM81 >> ADIM81

The ADIM81 subroutine

initializes an 8-bit array with

a single dimension. This means

that it can hold a total of 255

elements, each with a possible

maximum length of 255.

The 8-bit, single dimension

array has a 2-byte header. Byte

0 holds the number of elements

in the array, while byte 1 holds

the element length.

*

``````````````````````````````

* ADIM81 (NATHAN RIGGS) *

* *

* INPUT *

* *

* WPAR1 = ARRAY ADDRESS (2B) *

* WPAR2 = # OF ELEMENTS *

* WPAR3 = LENGTH OF ELEMENTS *

* BPAR1 = FILL VALUE *

* *

* OUTPUT *

* *

* RETURN = TOTAL BYTES USED *

* RETLEN = 2 *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 176+ *

* SIZE: 160 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]ADDR EQU WPAR1

]ASIZE EQU WPAR2

 ADIM81 (sub)

 Input:

 WPAR1 = array addr (2b)

 WPAR2 = # of elems (1b)

 WPAR3 = elem length (1b)

 BPAR1 = fill value (1b)

 Output:

 RETURN = total bytes

 RETLEN = 2

 Destroys: AXYNVZCM

 Cycles: 176+

 Size: 160 bytes

AppleIIAsmLib Reference Manual 208

v0.5.0

]ESIZE EQU WPAR3

]FILL EQU BPAR1

*

]MSIZE EQU VARTAB ; TOTAL BYTES OF ARRAY

]ASZBAK EQU VARTAB+4 ; ARRAY SIZE BACKUP

]ESZBAK EQU VARTAB+6 ; ELEMENT SIZE BACKUP

*

ADIM81

 LDA]ESIZE

 STA]ESZBAK

 LDA]ASIZE

 STA]ASZBAK

 LDA #0

 STA]ASIZE+1

 STA]ASZBAK+1

*

** MULTIPLY ARRAY SIZE BY ELEMENT SIZE

*

 LDY #0 ; RESET HIBYTE FOR MULTIPLY

 TYA ; RESET LOBYTE FOR MULTIPLY

 LDY]ASIZE+1

 STY SCRATCH ; SAVE HIBYTE IN SCRATCH

 BEQ :ENTLP ; IF ZERO, SKIP TO LOOP

:DOADD

 CLC ; ADD ASIZE TO LOBYTE

 ADC]ASIZE

 TAX ; TEMPORARILY STORE IN .X

 TYA ; TRANSFER HIBYTE TO .A

 ADC SCRATCH ; ADD HIBYTE

 TAY ; STORE BACK IN .Y

 TXA ; LOAD LOBYTE IN .A AGAIN

:LP ; LOOP START

 ASL]ASIZE ; MULTIPLY ASIZE BY 2

 ROL SCRATCH ; MULTIPLY HIBYTE BY 2

:ENTLP

 LSR]ESIZE ; DIVIDE ESIZE BY 2

 BCS :DOADD ; IF >= LOBYTE IN .A, ADD AGAIN

 BNE :LP ; OTHERWISE, RELOOP

*

 STX]MSIZE ; STORE LOBYTE

 STY]MSIZE+1 ; STORE HIBYTE

 LDA]MSIZE ; NOW ADD TO BYTES

 CLC ; TO MSIZE FOR ARRAY HEADER

 ADC #2

 STA]MSIZE ; STORE LOBYTE

 LDA]MSIZE+1

AppleIIAsmLib Reference Manual 209

v0.5.0

 ADC #0 ; CARRY FOR HIBYTE

 STA]MSIZE+1

*

** NOW CLEAR MEMORY BLOCKS

*

 LDA]FILL ; GET FILL VALUE

 LDX]MSIZE+1 ; X = # O PAGES TO DO

 BEQ :PART ; BRANCH IF HIBYTE = 0

 LDY #0 ; RESET INDEX

:FULL

 STA (]ADDR),Y ; FILL CURRENT BYTE

 INY ; INCREMENT INDEX

 BNE :FULL ; LOOP UNTIL PAGE DONE

 INC]ADDR+1 ; GO TO NEXT PAGE

 DEX ; DECREMENT COUNTER

 BNE :FULL ; LOOP IF PAGES LEFT

:PART

 LDX]MSIZE ; PARTIAL PAGE BYTES

 BEQ :MFEXIT ; EXIT IF LOBYTE = 0

 LDY #0 ; RESENT INDEX

:PARTLP

 STA (]ADDR),Y ; STORE VAL

 INY ; INCREMENT INDEX

 DEX ; DECREMENT COUNTER

 BNE :PARTLP ; LOOP UNTIL DONE

:MFEXIT

 LDY #0 ; STORE NUMBER OF ELEMENTS

 LDA]ASZBAK ; INTO FIRST BYTE OF ARRAY

 STA (]ADDR),Y

 INY

 LDA]ESZBAK ; STORE ELEMENT SIZE INTO

 STA (]ADDR),Y ; SECOND BYTE OF ARRAY

 LDX]ADDR ; GET LOBYTE OF ARRAY ADDRESS

 LDY]ADDR+1 ; AND HIBYTE TO RETURN IN .X, .Y

 LDA]ASZBAK ; RETURN NUMBER OF ELEMENTS IN .A

 LDA]MSIZE ; STORE TOTAL ARRAY SIZE

 STA RETURN ; IN RETURN

 LDA]MSIZE+1

 STA RETURN+1

 LDA #2 ; SET RETURN LENGTH TO

 STA RETLEN ; 2 BYTES

 RTS

AppleIIAsmLib Reference Manual 210

v0.5.0

SUB.AGET81 >> AGET81

The AGET81 subroutine retrieves

a value from an 8-bit, single

dimension array that has been

created by the ADIM81

subroutine. This value is stored

in RETURN, with its length in

RETLEN.

*

``````````````````````````````

* AGET81 (NATHAN RIGGS) *

* *

* INPUT: *

* *

* .A = ARRAY ADDRESS LOBYTE *

* .X = ARRAY ADDRESS HIBYTE *

* .Y = ARRAY ELEMENT INDEX *

* *

* OUTPUT: *

* *

* .A = LENGTH OF ELEMENT *

* RETURN = ELEMENT VALUE *

* RETLEN = ELEMENT LENGTH *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 134 *

* SIZE: 134 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

 AGET81 (sub)

 Input:

 .A = array address

 low byte

 .X = array address

 high byte

 .Y = element index

 Output:

 .A = element length

 RETURN = element value

 RETLEN = element length

 Destroys: AXYNVZCM

 Cycles: 134+

 Size: 134 bytes

AppleIIAsmLib Reference Manual 211

v0.5.0

*

]RES EQU VARTAB ; MATH RESULTS

]IDX EQU VARTAB+2 ; ELEMENT INDEX

]ESIZE EQU VARTAB+4 ; ELEMENT SIZE

]ALEN EQU VARTAB+5 ; NUMBER OF ELEMENTS

*

AGET81

 STA ADDR1 ; .A HOLDS ARRAY ADDRESS LOBYTE

 STX ADDR1+1 ; .X HOLDS ADDRESS HIBYTE

 STY]IDX ; .Y HOLDS THE INDEX

 LDA #0 ; CLEAR INDEX HIBYTE

 STA]IDX+1

 LDY #1 ; GET ELEMENT SIZE FROM ARRAY

 LDA (ADDR1),Y ; HEADER

 STA]ESIZE

 STA RETLEN ; STORE IN RETLEN

 DEY ; MOVE TO BYTE 0 OF HEADER

 LDA (ADDR1),Y ; GET NUMBER OF ELEMENTS

 STA]ALEN ; FROM THE ARRAY HEADER

*

** MULTIPLY INDEX BY ELEMENT SIZE, ADD 2

*

 TYA ; Y ALREADY HOLDS ZERO

 STY SCRATCH ; RESET LO AND HI TO 0

 BEQ :ENTLP ; IF ZERO, SKIP TO LOOP

:DOADD

 CLC ; CLEAR CARRY FLAG

 ADC]IDX ; ADD INDEX LOBYTE

 TAX ; TEMPORARILY STORE IN .X

 TYA ; TRANSFER HIBYTE TO .A

 ADC SCRATCH ; ADD HIBYTE

 TAY ; STORE BACK INTO .Y

 TXA ; RELOAD LOBYTE IN .A

:LP

 ASL]IDX ; MULTIPLY INDEX BY TWO

 ROL SCRATCH ; ADJUST HIBYTE CARRY

:ENTLP

 LSR]ESIZE ; DIVIDE ELEMENT SIZE BY 2

 BCS :DOADD ; IF >= LOBYTE IN .A, ADD AGAIN

 BNE :LP

*

 STX]IDX ; STORE LOBYTE

 STY]IDX+1 ; STORE HIBYTE

 CLC ; CLEAR CARRY

 LDA #2 ; ADD 2 BYTES TO INDEX

 ADC]IDX ; TO ACCOUNT FOR ARRAY HEADER

AppleIIAsmLib Reference Manual 212

v0.5.0

 STA]RES ; AND STORE IN RESULT

 LDA #0 ; ACCOUNT FOR HIBYTE CARRY

 ADC]IDX+1

 STA]RES+1

*

** NOW ADD TO BASE ADDRESS TO GET ELEMENT ADDRESS

*

 CLC ; CLEAR CARRY FLAG

 LDA]RES ; LOAD RESULT FROM EARLIER

 ADC ADDR1 ; ADD ARRAY ADDRESS LOBYTE

 STA]RES ; STORE BACK IN RESULT

 LDA]RES+1 ; LOAD PRIOR RESULT HIBYTE

 ADC ADDR1+1 ; ADD ARRAY ADDRESS HIBYTE

 STA]RES+1 ; STORE BACK IN RESULT HIBYTE

*

** NOW MOVE ELEMENT DATA TO RETURN LOCATION

*

 LDY #0 ; RESENT INDEX

 LDA]RES ; LOAD ADDRESS LOBYTE

 STA ADDR1 ; PUT IN ZERO PAGE POINTER

 LDA]RES+1 ; GET RESULT HIBYTE

 STA ADDR1+1 ; PUT IN ZERO PAGE POINTER

:LDLOOP

 LDA (ADDR1),Y ; LOAD BYTE FROM ELEMENT

 STA RETURN,Y ; STORE IN RETURN

 INY ; INCREASE BYTE INDEX

 CPY RETLEN ; IF .Y <= ELEMENT SIZE

 BCC :LDLOOP ; CONTINUE LOOPING

 BEQ :LDLOOP ; KEEP LOOPING

*

 LDX]RES ; RETURN ELEMENT ADDRESS

 LDY]RES+1 ; IN .X (LOBYTE) AND .Y (HI)

 LDA RETLEN ; RETURN ELEMENT LENGTH IN .A

 RTS

AppleIIAsmLib Reference Manual 213

v0.5.0

SUB.APUT81 >> APUT81

The APUT81 subroutine places the

value at the specified address

into an 8-bit, single-dimension

array element. The length of the

data is determined by the

array’s element length byte.

This only works with arrays

created by the ADIM81

subroutine.

*

``````````````````````````````

* APUT81 (NATHAN RIGGS) *

* *

* PUT DATA FROM SRC LOCATION *

* INTO 1D, 8BIT ARRAY AT THE *

* SPECIFIED ELEMENT. *

* *

* INPUT: *

* *

* WPAR1 = SOURCE ADDRESS *

* WPAR2 = DESTINATION ADDRESS *

* BPAR1 = ARRAY INDEX *

* *

* OUTPUT: *

* *

* .A = ELEMENT SIZE *

* .X = ELEMENT ADDRESS LOBYTE *

* .Y = ELEMENT ADDRESS HIBYTE *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

 APUT81 (sub)

 Input:

 WPAR1 = source addr (2b)

 WPAR2 = dest addr (2b)

 BPAR1 = array index (1b)

 Output:

 .A = element length

 .X = element address

 low byte

 .Y = element address

 high byte

 Destroys: AXYNVZCM

 Cycles: 170+

 Size: 145 bytes

AppleIIAsmLib Reference Manual 214

v0.5.0

* *

* CYCLES: 170+ *

* SIZE: 145 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]ADDRS EQU WPAR1 ; SOURCE ADDRESS

]ADDRD EQU WPAR2 ; DESTINATION

]AIDX EQU BPAR1 ; ARRAY INDEX

]SCRATCH EQU ADDR1 ; ZEROED HIBYTE

*

]ESIZE EQU VARTAB ; ELEMENT SIZE

]ESIZEBK EQU VARTAB+1 ; ^BACKUP

]ASIZE EQU VARTAB+2 ; # OF ELEMENTS

]IDX EQU VARTAB+5 ; INDEX

]RES EQU VARTAB+7 ; MULTIPLICATION RESULT

*

APUT81

 LDA]AIDX ; STORE IN 2 LOCATIONS

 STA]IDX ; FOR A BACKUP LATER

*

** MULTIPLY INDEX BY ELEM SIZE AND ADD 2

*

 LDY #1 ; GET ELEMENT LENGTH FROM

 LDA (]ADDRD),Y ; BYTE 1 OF ARRAY

 STA]ESIZE

 STA]ESIZEBK

 LDY #0 ; RESET INDEX

 LDA (]ADDRD),Y ; GET NUMBER OF ELEMENTS

 STA]ASIZE ; FROM ARRAY

 TYA ; .A = 0

 STY]SCRATCH ; LOBYTE = 0

 STY]SCRATCH+1 ; HIBYTE = 0

 BEQ :ENTLPA ; IF 0, SKIP TO LOOP

:DOADD

 CLC ; CLEAR CARRY FLAG

 ADC]AIDX ; ADD INDEX LOBYTE

 TAX ; TEMPORARILY STORE IN .X

 TYA ; TRANSFER HIBYTE TO .A

 ADC]SCRATCH ; ADD HIBYTE

 TAY ; STORE BACK IN .Y

 TXA ; RELOAD LOBYTE TO .A

:LPA

 ASL]AIDX ; MUL INDEX BY TWO

 ROL]SCRATCH ; ADJUST HIBYTE CARRY

:ENTLPA

 LSR]ESIZE ; DIVIDE ELEMENT SIZE BY 2

AppleIIAsmLib Reference Manual 215

v0.5.0

 BCS :DOADD ; IF >= LOBYTE IN .A, ADD AGAIN

 BNE :LPA

 STX]IDX ; STORE LOBYTE

 STY]IDX+1 ; STORE HIBYTE

 CLC ; CLEAR CARRY FLAG

 LDA #2 ; ADD 2 BYTES TO INDEX

 ADC]IDX ; TO ACCOUNT FOR HEADER

 STA]RES ; STORE LOBYTE

 LDA #0 ; ACCOUNT FOR HIBYTE CARRY

 ADC]IDX+1

 STA]RES+1

*

** ADD RESULT TO ARRAY ADDRESS TO GET ELEMENT ADDR

*

 CLC ; CLEAR CARRY FLAG

 LDA]RES ; LOAD RESULT FROM EARLIER

 ADC]ADDRD ; ADD ARRAY ADDRESS LOBYTE

 STA]RES ; STORE BACK IN RESULT

 LDA]RES+1 ; ADD ARRAY ADDRESS HIBYTE

 ADC]ADDRD+1 ;

 STA]RES+1 ; STORE HIBYTE

*

 STA]ADDRD+1 ; STORE IN ZERO PAGE HIBYTE

 LDA]RES ; STORE LOBYTE TO ZERO PAGE

 STA]ADDRD

*

** COPY FROM SRC ADDR3 TO ELEMENT LOCATION ADDR

*

:LP

 LDA (]ADDRS),Y ; LOAD BYTE FROM SOURCE

 STA (]ADDRD),Y ; STORE IN ELEMENT ADDRESS

 INY ; INCREASE BYTE INDEX

 CPY]ESIZEBK ; COMPARE TO ELEMENT SIZE

 BNE :LP ; IF !=, KEEP COPYING

*

 LDY]ADDRD+1 ; .Y = ELEMENT ADDRESS HIBYTE

 LDX]ADDRD ; .X = LOBYTE

 LDA]ESIZE ; .A = ELEMENT SIZE

 RTS

AppleIIAsmLib Reference Manual 216

v0.5.0

SUB.ADIM82 >> ADIM82

The ADIM82 subroutine

initializes an 8-bit, two-

dimensional array. Each

dimension can carry a maximum of

255 elements, with a total of

65,025 single elements

(multiplied). Each element can

be a maximum of 255 bytes long.

An 8-bit, two-dimensional array

has a 3-byte header. Byte 0

contains the number of indices

of the first dimension, and byte

1 holds the number of indices in

the second dimension. The third

byte holds the element length.

*

``````````````````````````````

* ADIM82 (NATHAN RIGGS) *

* *

* INITIALIZE AN 8BIT, 2D ARRAY *

* *

* INPUT: *

* *

* WPAR1 = ARRAY ADDRESS *

* WPAR2 = 1ST DIM LENGTH *

* WPAR3 = 2ND DIM LENGTH *

* BPAR1 = FILL VALUE *

* BPAR2 = ELEMENT LENGTH *

* *

* OUTPUT: *

* *

* .A = ELEMENT SIZE *

* RETURN = TOTAL ARRAY SIZE *

 ADIM82 (sub)

 Input:

 WPAR1 = array address

 (2b)

 WPAR2 = first dimension

 length (1b)

 WPAR3 = second dimension

 Length (1b)

 BPAR1 = fill value (1b)

 BPAR2 = element length

 (2b)

 Output:

 .A = element size

 RETURN = total array size

 RETLEN = 4

 Destroys: AXYNVZCM

 Cycles: 282+

 Size: 244 bytes

AppleIIAsmLib Reference Manual 217

v0.5.0

* RETLEN = 4 *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 282+ *

* SIZE: 244 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]ADDR EQU WPAR1 ; ARRAY ADDRESS

]AXSIZE EQU WPAR2 ; FIRST DIM # OF ELEMENTS

]AYSIZE EQU WPAR3 ; SECOND DIM # OF ELEMENTS

]FILL EQU BPAR1 ; FILL VALUE

]ESIZE EQU BPAR2 ; ELEMENT SIZE

*

]PROD EQU VARTAB ; PRODUCT

]AXBAK EQU VARTAB+4 ; ARRAY X SIZE BACKUP

]AYBAK EQU VARTAB+5 ; ARRAY Y SIZE BACKUP

]MLIER EQU VARTAB+6 ; MULTIPLIER

]MCAND EQU VARTAB+8 ; MULTIPLICAND, ELEMENT SIZE

*

ADIM82

 LDA]ESIZE ; ELEMENT LENGTH

 STA]MCAND ; AND STORE AS MULTIPLICAND

 LDA]AYSIZE ; GET ARRAY Y SIZE

 STA]AYBAK ; BACK IT UP

 LDA]AXSIZE

 STA]AXBAK ; AND BACK THAT UP TOO

 LDA #0 ; CLEAR MCAND HIBYTE

 STA]MCAND+1

*

** MULTIPLY X AND Y

*

 TAY ; AND LOBYTE

 STY SCRATCH

 BEQ :ENTLP ; IF ZERO, SKIP TO LOOP

:DOADD

 CLC ; CLEAR CARRY FLAG

 ADC]AXSIZE ; ADD X LENGTH

 TAX ; TEMPORARILY STORE IN .X

 TYA ; TRANSFER HIBYTE TO .A

 ADC SCRATCH ; ADD HIBYTE

 TAY ; STORE BACK IN .Y

 TXA ; RELOAD LOBYTE INTO .A

:LP

 ASL]AXSIZE ; MULTIPLY X LENGTH BY 2

AppleIIAsmLib Reference Manual 218

v0.5.0

 ROL SCRATCH ; ADJUST HIBYTE

:ENTLP

 LSR]AYSIZE ; DIVIDE Y LENGTH BY 2

 BCS :DOADD ; IF >= LOBYTE IN .A,

 BNE :LP ; ADD AGAIN; OTHERWISE, LOOP

 STX]MLIER ; STORE LOBYTE IN MULTIPLIER

 STY]MLIER+1 ; STORE HIBYTE IN MULTIPLIER

*

** NOW MULTIPLY BY LENGTH OF ELEMENTS

*

 LDA #0 ; CLEAR PRODUCT LOBYTE

 STA]PROD

 STA]PROD+1 ; CLEAR NEXT BYTE

 STA]PROD+2 ; CLEAR NEXT BYTE

 STA]PROD+3 ; CLEAR HIBYTE

 LDX #$10 ; LOAD $10 IN .X (#16)

:SHIFTR LSR]MLIER+1 ; DIVIDE MLIER BY TWO

 ROR]MLIER ; ADJUST LOBYTE

 BCC :ROTR ; IF LESS THAN PRODUCT, ROTATE

 LDA]PROD+2 ; LOAD PRODUCT 3RD BYTE

 CLC ; CLEAR CARRY

 ADC]MCAND ; ADD MULTIPLICAND

 STA]PROD+2 ; STORE BACK INTO PRODUCT 3RD BYTE

 LDA]PROD+3 ; LOAD PRODUCT HIBYTE

 ADC]MCAND+1 ; ADD MULTIPLICAND HIBYTE

:ROTR

 ROR ; ROTATE .A RIGHT

 STA]PROD+3 ; STORE IN PRODUCT HIBYTE

 ROR]PROD+2 ; ROTATE PRODUCT 3RD BYTE

 ROR]PROD+1 ; ROTATE PRODUCT 2ND BYTE

 ROR]PROD ; ROTATE PRODUCT LOBYTE

 DEX ; DECREMENT COUNTER

 BNE :SHIFTR ; IF NOT 0, BACK TO SHIFTER

*

 LDA]PROD ; LOAD PRODUCT LOBYTE TO .A

 CLC ; CLEAR CARRY FLAG

 ADC #3 ; ADD 3

 STA]PROD ; STORE BACK INTO PRODUCT LOBYTE

 LDA]PROD+1

 ADC #0 ; INITIATE CARRY FOR 2ND BYTE

 STA]PROD+1

 LDA]PROD+2

 ADC #0 ; AND THIRD BYTE

 STA]PROD+2

*

** NOW CLEAR MEMORY BLOCKS, WHOLE PAGES FIRST

AppleIIAsmLib Reference Manual 219

v0.5.0

*

 LDA]FILL ; GET FILL VALUE

 LDX]PROD+1 ; LOAD SECOND BYTE OF PRODUCT

 BEQ :PART ; IF 0, THEN ONLY PARTIAL PAGE

 LDY #0 ; CLEAR INDEX

:FULL

 STA (]ADDR),Y ; COPY FILL BYTE TO ADDRESS

 INY ; INCREASE INDEX

 BNE :FULL ; IF NO OVERFLOW, KEEP FILL

 INC]ADDR+1 ; INCREASE ADDRESS HIBYTE

 DEX ; DECREMENT COUNTER

 BNE :FULL ; LOOP UNTIL PAGES DONE

:PART

 LDX]PROD ; LOAD PRODUCT LOBYTE TO X

 BEQ :MFEXIT ; IF ZERO, THEN WE'RE DONE

 LDY #0 ; RESET INDEX

:PARTLP

 STA (]ADDR),Y ; STORE FILL BYTE

 INY ; INCREASE INDEX

 DEX ; DECREASE COUNTER

 BNE :PARTLP ; LOOP UNTIL DONE

:MFEXIT

 LDY #0 ; RESET INDEX

 LDA]AXBAK ; PUT X LENGTH INTO

 STA (]ADDR),Y ; FIRST BYTE OF ARRAY

 INY ; INCREMENT INDEX

 LDA]AYBAK ; PUT Y LENGTH INTO

 STA (]ADDR),Y ; SECOND BYTE OF ARRAY

 INY ; INCREMENT INDEX

 LDA]MCAND ; PUT ELEMENT SIZE

 STA (]ADDR),Y ; INTO 3RD BYTE OF ARRAY

 LDX]ADDR ; RETURN ARRAY ADDR LOBYTE IN .X

 LDY]ADDR+1 ; RETURN ARRAY ADDR HIBYTE IN .Y

 LDA]PROD ; STORE PRODUCT LOBYTE IN RETURN

 STA RETURN

 LDA]PROD+1 ; STORE NEXT BYTE

 STA RETURN+1

 LDA]PROD+2 ; NEXT BYTE

 STA RETURN+2

 LDA]PROD+3 ; STORE HIBYTE

 STA RETURN+3

 LDA #4 ; SIZE OF RETURN

 STA RETLEN ; SPECIFY RETURN LENGTH

 LDA]MCAND ; RETURN ELEMENT SIZE IN .A

 RTS

AppleIIAsmLib Reference Manual 220

v0.5.0

SUB.AGET82 >> AGET82

The AGET82 retrieves the data

from an element in an 8-bit,

two-dimensional array

initialized by the ADIM82

subroutine. The data is held in

RETURN, with its length in

RETLEN.

*

``````````````````````````````

* AGET82 (NATHAN RIGGS) *

* *

* INPUT: *

* *

* WPAR1 = ARRAY ADDRESS *

* BPAR1 = 1ST DIM INDEX *

* BPAR2 = 2ND DIM INDEX *

* *

* OUTPUT: *

* *

* .A = ELEMENT LENGTH *

* RETURN = ELEMENT DATA *

* RETLEN = ELEMENT LENGTH *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 288+ *

* SIZE: 243 BYTES *

 AGET82 (sub)

 Input:

 WPAR1 = array address

 (2b)

 BPAR1 = first dimension

 index (1b)

 BPAR2 = second dimension

 index (1b)

 Output:

 .A = element length

 RETURN = element data

 RETLEN = element length

 Destroys: AXYNVZCM

 Cycles: 288+

 Size: 243 bytes

AppleIIAsmLib Reference Manual 221

v0.5.0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]ADDR EQU WPAR1 ; ARRAY ADDRESS

]XIDX EQU BPAR1 ; 1ST DIMENSION INDEX

]YIDX EQU BPAR2 ; 2ND DIMENSION INDEX

*

]XLEN EQU VARTAB+0 ; X DIMENSION LENGTH

]YLEN EQU VARTAB+2 ; Y DIMENSION LENGTH

]PROD EQU VARTAB+4 ; PRODUCT

]MLIER EQU VARTAB+8 ; MULTIPLIER

]MCAND EQU VARTAB+10 ; MULTIPLICAND

]ELEN EQU VARTAB+12 ; ELEMENT LENGTH

]PBAK EQU VARTAB+14 ; PRODUCT BACKUP

*

AGET82

 LDY #0 ; RESET INDEX

 LDA (]ADDR),Y ; GET X-LENGTH FROM ARRAY

 STA]XLEN

 LDY #1 ; INCREMENT INDEX

 LDA (]ADDR),Y ; GET Y-LENGTH FROM ARRAY

 STA]YLEN

 LDY #2 ; INCREMENT INDEX

 LDA (]ADDR),Y ; GET ELEMENT LENGTH FROM ARRAY

 STA]ELEN

*

** MULTIPLY Y-INDEX BY Y-LENGTH

*

 LDA #0 ; RESET LOBYTE

 TAY ; RESET HIBYTE

 STY SCRATCH ; SAVE HIBYTE IN SCRATCH

 BEQ :ENTLP ; IF ZERO, SKIP TO LOOP

:DOADD

 CLC ; CLEAR CARRY FLAG

 ADC]YIDX ; ADD Y-INDEX

 TAX ; TEMPORARILY STORE IN .X

 TYA ; LOAD HIBYTE TO .A

 ADC SCRATCH ; ADD HIBYTE

 TAY ; TRANSFER BACK INTO .Y

 TXA ; RELOAD LOBYTE

:LP

 ASL]YIDX ; MULTIPLY Y-INDEX BY 2

 ROL SCRATCH ; DEAL WITH HIBYTE

:ENTLP

 LSR]YLEN ; DIVIDE Y-LENGTH BY 2

 BCS :DOADD ; IF >= LOBYTE IN .A, ADD AGAIN

 BNE :LP ; ELSE, LOOP

AppleIIAsmLib Reference Manual 222

v0.5.0

 STX]PBAK ; STORE LOBYTE IN PRODUCT BACKUP

 STY]PBAK+1 ; STORE HIBYTE

*

** NOW MULTIPLY LENGTH OF ELEMENTS BY XIDX

*

 LDA]XIDX ; PUT X-INDEX INTO

 STA]MLIER ; MULTIPLIER

 LDA]ELEN ; ELEMENT LENGTH INTO

 STA]MCAND ; MULTIPLICAND

 LDA #0 ; RESET PRODUCT LOBYTE

 STA]MLIER+1 ; RESET MULTIPLIER HIBYTE

 STA]MCAND+1 ; RESET MULTIPLICAND HIBYTE

 STA]PROD

 STA]PROD+1 ; RESET PRODUCT 2ND BYTE

 STA]PROD+2 ; RESET PRODUCT 3RD BYTE

 STA]PROD+3 ; RESET PRODUCT HIBYTE

 LDX #$10 ; LOAD $10 INTO .X (#16)

:SHIFTR LSR]MLIER+1 ; DIVIDE MULTIPLIER BY 2

 ROR]MLIER ; ADJUST LOBYTE

 BCC :ROTR ; IF < PRODUCT, ROTATE

 LDA]PROD+2 ; LOAD PRODUCT 3RD BYTE

 CLC ; CLEAR CARRY FLAG

 ADC]MCAND ; ADD MULTIPLICAND

 STA]PROD+2 ; STORE BACK INTO 3RD

 LDA]PROD+3 ; LOAD HIBYTE

 ADC]MCAND+1 ; ADD MULTIPLICAND HIBYTE

:ROTR

 ROR ; ROTATE .A RIGHT

 STA]PROD+3 ; STORE IN PRODUCT HIBYTE

 ROR]PROD+2 ; ROTATE PRODUCT 3RD BYTE

 ROR]PROD+1 ; ROTATE PRODUCT 2ND BYTE

 ROR]PROD ; ROTATE PRODUCT LOBYTE

 DEX ; DECREMENT COUNTER

 BNE :SHIFTR ; IF NOT 0, BACK TO SHIFTER

 LDA]PROD ; LOAD PRODUCT LOBYTE

 CLC ; CLEAR CARRY FLAG

 ADC #3 ; INCREASE BY 3

 STA]PROD ; STORE BACK INTO LOBYTE

 LDA]PROD+1 ; ACCOUNT FOR CARRIES

 ADC #0

 STA]PROD+1

*

** NOW ADD THAT TO EARLIER CALC

*

 CLC ; CLEAR CARRY FLAG

 LDA]PROD ; LOAD PRODUCT LOBYTE

AppleIIAsmLib Reference Manual 223

v0.5.0

 ADC]PBAK ; ADD PREVIOUS PRODUCT

 STA]PROD ; STORE NEW PRODUCT LOBYTE

 LDA]PROD+1 ; LOAD PRODUCT HIBYTE

 ADC]PBAK+1 ; ADD PREV PRODUCT HIBYTE

 STA]PROD+1 ; STORE PRODUCT HIBYTE

*

** NOW ADD ARRAY ADDRESS TO GET INDEX ADDR

*

 CLC ; CLEAR CARRY FLAG

 LDA]PROD ; LOAD PRODUCT LOBYTE

 ADC]ADDR ; ADD ARRAY ADDRESS LOBYTE

 STA]PROD ; STORE BACK IN PRODUCT LOBYTE

 LDA]PROD+1 ; LOAD HIBYTE

 ADC]ADDR+1 ; ADD ADDRESS HIBYTE

 STA]PROD+1 ; STORE IN PRODUCT HIBYTE

*

 LDY]PROD ; LOAD PRODUCT LOBYTE IN .Y

 LDX]PROD+1 ; LOAD HIBYTE IN .X FOR SOME REASON

 STY]ADDR ; TRANSFER TO ZERO PAGE

 STX]ADDR+1

 LDY #0 ; RESET INDEX

:RLP

 LDA (]ADDR),Y ; LOAD BYTE

 STA RETURN,Y ; STORE IN RETURN

 INY ; INCREASE INDEX

 CPY]ELEN ; IF INDEX != ELEMENT LENGTH

 BNE :RLP ; THEN KEEP COPYING

 LDA]ELEN ; OTHERWISE, STORE ELEMENT LENGTH

 STA RETLEN ; INTO RETURN LENGTH

 LDA RETLEN ; AND IN .A

 LDX]ADDR ; RETURN ARRAY ADDRESS LOBYTE IN .X

 LDY]ADDR+1 ; RETURN HIBYTE IN .Y

 RTS

AppleIIAsmLib Reference Manual 224

v0.5.0

SUB.APUT82 >> APUT82

The APUT82 subroutine copies the

data from a source address range

into an 8-bit, two dimensional

array element. The length of the

data copied is determined by the

array’s element length byte,

which is set by ADIM82.

*

``````````````````````````````

* APUT82 (NATHAN RIGGS) *

* *

* PUT DATA FROM SOURCE INTO *

* A 2D, 8BIT ARRAY ELEMENT. *

* *

* INPUT: *

* *

* WPAR1 = SOURCE ADDRESS *

* WPAR2 = ARRAY ADDRESS *

* BPAR1 = 1ST DIM INDEX *

* BPAR2 = 2ND DIM INDEX *

* *

* OUTPUT: *

* *

 APUT82 (sub)

 Input:

 WPAR1 = source address

 (2b)

 WPAR2 = array address

 (2b)

 BPAR1 = first dimension

 index (1b)

 BPAR2 = second dimension

 index (1b)

 Output:

 .A = element size

 .X = element address

 low byte

 .Y = element address

 high byte

 Destroys: AXYNVZCM

 Cycles: 274+

 Size: 239 bytes

AppleIIAsmLib Reference Manual 225

v0.5.0

* .A = ELEMENT SIZE *

* .X = ELEMENT ADDR LOBYTE *

* .Y = ELEMENT ADDR HIBYTE *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 274 *

* SIZE: 239 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]ADDRS EQU WPAR1 ; SOURCE ADDRESS

]ADDRD EQU WPAR2 ; ARRAY ADDRESS

]XIDX EQU BPAR1 ; X INDEX

]YIDX EQU BPAR2 ; Y INDEX

*

]ESIZE EQU VARTAB ; ELEMENT LENGTH

]MCAND EQU VARTAB+1 ; MULTIPLICAND

]MLIER EQU VARTAB+3 ; MULTIPLIER

]PROD EQU VARTAB+5 ; PRODUCT

]XLEN EQU VARTAB+9 ; ARRAY X-LENGTH

]YLEN EQU VARTAB+13 ; ARRAY Y-LENGTH

]PBAK EQU VARTAB+15 ; PRODUCT BACKUP

*

APUT82

 LDY #0 ; RESET INDEX

 LDA (]ADDRD),Y ; GET ARRAY X-LENGTH

 STA]XLEN

 LDY #1 ; INCREMENT INDEX

 LDA (]ADDRD),Y ; GET ARRAY Y-LENGTH

 STA]YLEN

 LDY #2 ; INCREMENT INDEX

 LDA (]ADDRD),Y ; GET ARRAY ELEMENT LENGTH

 STA]ESIZE

*

** MULTIPLY Y-INDEX BY Y-LENGTH

*

 LDA #0 ; RESET LOBYTE

 TAY ; RESET HIBYTE

 STY SCRATCH ; SAVE HIBYTE IN SCRATCH

 BEQ :ENTLP ; IF ZERO, SKIP TO LOOP

:DOADD

 CLC ; CLEAR CARRY FLAG

 ADC]YIDX ; ADD Y-INDEX

 TAX ; STORE IN .X

 TYA ; LOAD HIBYTE

AppleIIAsmLib Reference Manual 226

v0.5.0

 ADC SCRATCH ; ADD HIBYTE

 TAY ; STORE IN .Y

 TXA ; RELOAD LOBYTE

:LP

 ASL]YIDX ; MULTIPLY Y-INDEX BY 2

 ROL SCRATCH ; DEAL WITH HIBYTE

:ENTLP

 LSR]YLEN ; DIVIDE Y-LENGTH BY 2

 BCS :DOADD ; IF >= LOBYTE, ADD AGAIN

 BNE :LP ; ELSE, LOOP

 STX]PBAK ; STORE LOBYTE IN PRODUCT BACKUP

 STY]PBAK+1 ; STORE HIBYTE

 LDA]XIDX ; PUT X-INDEX INTO MULTIPLIER

 STA]MLIER

 LDA #0 ; RESET HIBYTE

 STA]MLIER+1 ; TRANSFER HIBYTE

 LDA]ESIZE ; PUT ELEMENT LENGTH

 STA]MCAND ; INTO MULTIPLICAND

 LDA #0 ; RESET HIBYTE

 STA]MCAND+1

*

** NOW MULTIPLY XIDX BY ELEMENT LENGTH

*

 STA]PROD ; RESET PRODUCT LOBYTE

 STA]PROD+1 ; RESET 2ND BYTE

 STA]PROD+2 ; RESET 3RD BYTE

 STA]PROD+3 ; RESET HIBYTE

 LDX #$10 ; LOAD $10 INTO .X (#16)

:SHIFTR LSR]MLIER+1 ; DIVIDE MULTIPLIER BY 2

 ROR]MLIER ; DEAL WITH HIBYTE

 BCC :ROTR ; IF < RODUCT, ROTATE

 LDA]PROD+2 ; LOAD PRODUCT 3RD BYTE

 CLC ; CLEAR CARRY FLAG

 ADC]MCAND ; ADD MULTIPLICAND

 STA]PROD+2 ; STORE 3RD BYTE

 LDA]PROD+3 ; LOAD HIBYTE

 ADC]MCAND+1 ; ADD MULTIPLICAND HIBYTE

:ROTR

 ROR ; ROTATE .A RIGHT

 STA]PROD+3 ; STORE IN PRODUCT HIBYTE

 ROR]PROD+2 ; ROTATE PRODUCT 3RD BYTE

 ROR]PROD+1 ; ROTATE RODUCT 2ND

 ROR]PROD ; ROTATE LOBYTE

 DEX ; DECREMENT COUNTER

 BNE :SHIFTR ; IF NOT 0, BACK TO SHIFTER

*

AppleIIAsmLib Reference Manual 227

v0.5.0

** NOW ADD PRODUCT TO REST

*

 LDA]PBAK ; LOAD FIRST PRODUCT LOBYTE

 CLC ; CLEAR CARRY FLAG

 ADC]PROD ; ADD 2ND PRODUCT LOBYTE

 STA]PROD ; STORE NEW PRODUCT LOBYTE

 LDA]PBAK+1 ; LOAD FIRST PRODUCT HIBYTE

 ADC]PROD+1 ; ADD 2ND HIBYTE

 STA]PROD+1 ; STORE HIBYTE

 LDA]PROD ; LOAD NEW PRODUCT LOBYTE

 CLC ; CLEAR CARRY FLAG

 ADC #3 ; INCREASE BY 3

 STA]PROD ; STORE IN LOBYTE

 LDA]PROD+1 ; APPLY CARRY TO HIBYTE

 ADC #0

 STA]PROD+1

*

** ADD ARRAY ADDRESS TO GET INDEX

*

 CLC ; CLEAR CARRY FLAG

 LDA]PROD ; LOAD PRODUCT LOBYTE

 ADC]ADDRD ; ADD ARRAY ADDRESS LOBYTE

 STA]PROD ; STORE IN PRODUCT

 LDA]PROD+1 ; LOAD PRODUCT HIBYTE

 ADC]ADDRD+1 ; ADD ARRAYH ADDRESS HIBYTE

 STA]PROD+1 ; STORE HIBYTE

 LDX]PROD ; PUT ELEMENT ADDRESS LOBYTE IN .X

 LDY]PROD+1 ; PUT HIBYTE IN Y

 STX ADDR2 ; STORE IN ZERO PAGE

 STY ADDR2+1

 LDY #0 ; RESET INDEX

*

** COPY FROM SRC ADDR TO DEST ADDR

*

:CLP

 LDA (]ADDRS),Y ; GET BYTE FROM SOURCE

 STA (ADDR2),Y ; STORE IN ELEMENT

 INY ; INCREASE INDEX

 CPY]ESIZE ; IF < ELEMENT SIZE,

 BNE :CLP ; CONTINUE COPYING

 LDX ADDR2 ; PUT ELEMENT LOBYTE IN .X

 LDY ADDR2+1 ; PUT HIBYTE IN .Y

 LDA]ESIZE ; PUT ELEMENT SIZE IN .A

 RTS

AppleIIAsmLib Reference Manual 228

v0.5.0

SUB.ADIM161 >> ADIM161

The ADIM161 subroutine

initializes a 16-bit, one-

dimensional array that can hold

a total of 65,025 elements. This

array has a three byte header:

byte 0 contains the low byte of

the number of elements, and byte

1 contains the high byte. Byte 3

holds the length of each

element, from 0 to 255.

*

``````````````````````````````

* ADIM161 (NATHAN RIGGS) *

* *

* INITIALIZE A 16BIT, 2D ARRAY *

* *

* INPUT: *

* *

* WPAR1 = ARRAY ADDRESS *

* WPAR2 = # OF ELEMENTS *

* WPAR3 = ELEMENT LENGTH *

* BPAR1 = FILL VALUE *

* *

* OUTPUT: *

* *

* .A = ELEMENT SIZE *

* RETURN = TOTAL ARRAY SIZE *

* RETLEN = 2 *

* *

 ADIM161 (sub)

 Input:

 WPAR1 = array address

 (2b)

 WPAR2 = # of elements

 (2b)

 WPAR3 = element length

 (1b)

 BPAR1 = fill value (1b)

 Output:

 .A = element size

 RETURN = total size

 RETLEN = 2

 Destroys: AXYNVZCM

 Cycles: 172+

 Size: 162 bytes

AppleIIAsmLib Reference Manual 229

v0.5.0

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 172+ *

* SIZE: 162 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]ADDRD EQU WPAR1

]ASIZE EQU WPAR2

]ESIZE EQU WPAR3

]FILL EQU BPAR1

*

]MSIZE EQU VARTAB ; TOTAL ARRAY BYTES

]ASZBAK EQU VARTAB+4 ; BACKUP OF ELEMENT #

]ESZBAK EQU VARTAB+7 ; BACKUP

*

ADIM161

 LDA]ESIZE ; ELEMENT SIZE

 STA]ESZBAK ; ELEMENT LENGTH BACKUP

 LDA]ASIZE

 STA]ASZBAK ; ARRAY SIZE BACKUP

 LDA]ASIZE+1

 STA]ASZBAK+1 ; BACKUP

 STA SCRATCH ; HIBYTE FOR MULTIPLICATION

 LDA]ADDRD

 STA ADDR2

 LDA]ADDRD+1

 STA ADDR2+1

 LDY #0 ; CLEAR INDEX

 LDA #0 ; CLEAR ACCUMULATOR

 BEQ :ENTLP ; IF 0, SKIP TO LOOP

*

** MULTIPLY ARRAY SIZE BY ELEMENT SIZE

*

:DOADD

 CLC ; CLEAR CARRY FLAG

 ADC]ASIZE ; ADD ARRAY SIZE

 TAX ; HOLD IN .X

 TYA ; LOAD HIBYTE

 ADC SCRATCH ; ADD HIBYTE

 TAY ; HOLD IN .Y

 TXA ; RELOAD LOBYTE

:LP

 ASL]ASIZE ; MULTIPLY ARRAY SIZE BY 2

 ROL SCRATCH ; ADJUST HIBYTE

:ENTLP

AppleIIAsmLib Reference Manual 230

v0.5.0

 LSR]ESIZE ; DIVIDE ELEMENT SIZE BY 2

 BCS :DOADD ; IF >= LOBYTE IN .A,

 BNE :LP ; ADD AGAIN--ELSE, LOOP

 CLC ; CLEAR CARRY

 TXA ; LOBYTE TO .A

 ADC #3 ; ADD 2 FOR HEADER

 STA]MSIZE ; STORE IN TOTAL LOBYTE

 TYA ; HIBYTE TO .A

 ADC #0 ; DO CARRY

 STA]MSIZE+1 ; STORE IN TOTAL HIBYTE

*

** CLEAR MEMORY BLOCKS

*

 LDA]FILL ; GET FILL VALUE

 LDX]MSIZE+1 ; LOAD TOTAL SIZE LOBYTE

 BEQ :PART ; IF NO WHOLE PAGES, JUST PART

 LDY #0 ; RESET INDEX

:FULL

 STA (]ADDRD),Y ; COPY BYTE TO ADDRESS

 INY ; NEXT BYTE

 BNE :FULL ; LOOP UNTIL PAGE DONE

 INC]ADDRD+1 ; GO TO NEXT PAGE

 DEX ; DECREMENT COUNTER

 BNE :FULL ; LOOP IF PAGES LEFT

:PART

 LDX]MSIZE ; PARTIAL PAGE BYTES

 BEQ :MFEXIT ; EXIT IF = 0

 LDY #0 ; RESET INDEX

:PARTLP

 STA (]ADDRD),Y ; STORE BYTE

 INY ; INCREMENT INDEX

 DEX ; DECREMENT COUNTER

 BNE :PARTLP ; LOOP UNTIL DONE

:MFEXIT

 LDY #0 ; RESET INDEX

 LDA]ASZBAK ; STORE ARRAY SIZE IN HEADER

 STA (ADDR2),Y

 INY ; INCREASE INDEX

 LDA]ASZBAK+1 ; STORE ARRAY SIZE HIBYTE

 STA (ADDR2),Y

 INY ; INCREMENT INDEX

 LDA]ESZBAK ; STORE ELEMENT SIZE

 STA (ADDR2),Y ; IN HEADER

 LDX]ADDRD ; .X HOLDS ARRAY ADDRESS LOBYTE

 LDY]ADDRD+1 ; .Y HOLDS HIBYTE

 LDA]MSIZE ; STORE TOTAL ARRAY SIZE

AppleIIAsmLib Reference Manual 231

v0.5.0

 STA RETURN ; IN RETURN

 LDA]MSIZE+1

 STA RETURN+1

 LDA #2

 STA RETLEN ; 2 BYTE LENGTH

 LDA]ASZBAK ; .A HOLDS # OF ELEMENTS

 RTS

AppleIIAsmLib Reference Manual 232

v0.5.0

SUB.AGET161 >> AGET161

The AGET161 subroutine retrieves

data from a 16-bit, one-

dimensional array element

created by ADIM161 and stores

the data in RETURN. The length

of the data is stored in RETLEN.

*

``````````````````````````````

* AGET161 (NATHAN RIGGS) *

* *

* GET DATA IN ARRAY ELEMENT *

* *

* INPUT: *

* *

* WPAR1 = ARRAY ADDRESS *

* WPAR2 = ELEMENT INDEX *

* *

* OUTPUT: *

* *

* .A = ELEMENT LENGTH *

* .X = ELEMENT ADDR LOBYTE *

* .Y = ELEMENT ADDR HIBYTE *

* RETURN = ELEMENT DATA *

* RETLEN = ELEMENT LENGTH *

 AGET161 (sub)

 Input:

 WPAR1 = array address

 (2b)

 WPAR2 = element index

 (2b)

 Output:

 .A = element length

 .X = element address

 low byte

 .Y = element address

 high byte

 RETURN = element data

 RETLEN = element length

 Destroys: AXYNVZCM

 Cycles: 126+

 Size: 135 bytes

AppleIIAsmLib Reference Manual 233

v0.5.0

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 126 *

* SIZE: 135 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]AIDX EQU WPAR2

]ADDR EQU WPAR1

*

]ESIZE EQU VARTAB ; ELEMENT LENGTH

]ESIZEB EQU VARTAB+1 ; ^BACKUP

]ASIZE EQU VARTAB+2 ; NUMBER OF ELEMENTS

]IDX EQU VARTAB+6 ; INDEX BACKUP

*

AGET161

 LDA]AIDX

 STA]IDX

 LDA]AIDX+1 ; GET INDEX HIBYTE

 STA]AIDX+1

 STA SCRATCH

 LDY #0 ; RESET INDEX

 LDA (]ADDR),Y ; GET NUMBER OF

 STA]ASIZE ; ARRAY ELEMENTS

 LDY #1 ; GET HIBYTE OF

 LDA (]ADDR),Y ; # OF ARRAY ELEMENTS

 STA]ASIZE+1

 INY ; INCREASE BYTE INDEX

 LDA (]ADDR),Y ; GET ELEMENT LENGTH

 STA]ESIZE

 STA]ESIZEB

*

** MULTIPLY INDEX BY ELEMENT SIZE, ADD 3

*

 LDY #0 ; RESET .Y AND .A

 LDA #0

 BEQ :ENTLPA ; IF ZERO, SKIP TO LOOP

:DOADD

 CLC ; CLEAR CARRY

 ADC]AIDX ; ADD INDEX TO .A

 TAX ; HOLD IN .X

 TYA ; LOAD HIBYTE

 ADC SCRATCH ; ADD HIBYTE

 TAY ; HOLD IN .Y

 TXA ; RELOAD LOBYTE

AppleIIAsmLib Reference Manual 234

v0.5.0

:LPA

 ASL]AIDX ; MULTIPLY INDEX BY 2

 ROL SCRATCH ; ADJUST HIBYTE

:ENTLPA

 LSR]ESIZE ; DIVIDE ELEMENT LENGTH BY 2

 BCS :DOADD ; IF BIT 1 SHIFTED IN CARRY, ADD MORE

 BNE :LPA ; CONTINUE LOOPING IF ZERO FLAG UNSET

 STX]IDX ; STORE LOBYTE

 STY]IDX+1 ; STORE HIBYTE

 LDA #3 ; ADD 3 TO INDEX LOBYTE

 CLC ; CLEAR CARRY

 ADC]IDX

 STA ADDR2 ; STORE ON ZERO PAGE

 LDA]IDX+1 ; ADJUST HIBYTE

 ADC #0

 STA ADDR2+1

*

 LDA ADDR2 ; ADD ARRAY ADDRESS

 CLC

 ADC]ADDR ; LOBYTE

 STA ADDR2

 LDA ADDR2+1 ; HIBYTE

 ADC]ADDR+1

 STA ADDR2+1

 LDY #0 ; RESET BYTE INDEX

:LP

 LDA (ADDR2),Y ; GET BYTE FROM ELEMENT

 STA RETURN,Y ; PUT INTO RETURN

 INY ; INCREASE BYTE INDEX

 CPY]ESIZEB ; IF INDEX != ELEMENT LENGTH

 BNE :LP ; CONTINUE LOOP

 LDA]ESIZEB ; .A = ELEMENT SIZE

 STA RETLEN ; STORE IN RETLEN

 LDY ADDR2+1 ; .Y = ELEMENT ADDRESS HIBYTE

 LDX ADDR2 ; .X = ELEMENT ADDRESS LOBYTE

 RTS

AppleIIAsmLib Reference Manual 235

v0.5.0

SUB.APUT161 >> APUT161

The APUT161 subroutine sets the

data in a 16-bit, one-

dimensional array element. The

length of the data is determined

by the element length byte in

the array header, which is set

by ADIM161.

*

``````````````````````````````

* APUT161 (NATHAN RIGGS) *

* *

* INPUT: *

* *

* WPAR1 = SOURCE ADDRESS *

* WPAR2 = ARRAY ADDRESS *

* WPAR3 = ELEMENT INDEX *

* *

* OUTPUT: *

* *

* .A = ELEMENT LENGTH *

* .X = ARRAY ADDRESS LOBYTE *

* .Y = ARRAY ADDRESS HIBYTE *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

 APUT161 (sub)

 Input:

 WPAR1 = source address

 (2b)

 WPAR2 = array address

 (2b)

 WPAR3 = element index

 (1b)

 Output:

 .A = element length

 .X = array address

 low byte

 .Y = array address

 high byte

 Destroys: AXYNVZCM

 Cycles: 181+

 Size: 135 bytes

AppleIIAsmLib Reference Manual 236

v0.5.0

* CYCLES: 181+ *

* SIZE: 135 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]ADDRS EQU WPAR1

]ADDRD EQU WPAR2

]AIDX EQU WPAR3

*

]ESIZE EQU VARTAB ; ELEMENT SIZE

]ESIZEB EQU VARTAB+1 ; ^BACKUP

]ASIZE EQU VARTAB+2 ; NUMBER OF ELEMENTS

]IDX EQU VARTAB+6 ; ANOTHER INDEX

*

APUT161

 LDA]AIDX

 STA]IDX

 LDA]AIDX+1

 STA]IDX+1

 STA SCRATCH

 LDY #0 ; RESET BYTE COUNTER

 LDA (]ADDRD),Y ; GET NUMBER OF ELEMENTS

 STA]ASIZE ; LOBYTE

 LDY #1 ; INCREMENT INDEX

 LDA (]ADDRD),Y ; GET NUMBER OF ELEMENTS

 STA]ASIZE+1 ; HIBYTE

 INY ; INCREMENT INDEX

 LDA (]ADDRD),Y ; GET ELEMENT LENGTH

 STA]ESIZE

 STA]ESIZEB ; BACKUP

*

** MULTIPLY INDEX BY ELEMENT SIZE, THEN ADD 3

*

 LDY #0 ; RESET LOBYTE

 LDA #0 ; AND HIBYTE

 BEQ :ENTLPA ; SKIP TO LOOP

:DOADD

 CLC ; CLEAR CARRY

 ADC]AIDX ; ADD INDEX LOBYTE

 TAX ; HOLD IN .X

 TYA ; LOAD HIBYTE

 ADC SCRATCH ; ADD HIBYTE

 TAY ; HOLD BACK IN .Y

 TXA ; RETURN LOBYTE TO .A

:LPA

 ASL]AIDX ; MULTIPLY INDEX BY 2

 ROL SCRATCH ; ADJUST HIBYTE

AppleIIAsmLib Reference Manual 237

v0.5.0

:ENTLPA

 LSR]ESIZE ; DIVIDE ELEM LENGTH BY 2

 BCS :DOADD ; IF 1 SHIFTED TO CARRY, ADD AGAIN

 BNE :LPA ; CONTINUE LOOP IF ZERO UNSET

 STX]IDX ; LOBYTE IN .X

 STY]IDX+1 ; HIBYTE IN .Y

 CLC

 LDA #3 ; ADD 3 TO LOBYTE

 ADC]IDX

 STA ADDR2 ; STORE ON ZERO PAGE

 LDA]IDX+1 ; ADJUST HIBYTE

 ADC #0

 STA ADDR2+1

*

 CLC ; CLEAR CARRY

 LDA ADDR2 ; ADD ARRAY ADDRESS

 ADC]ADDRD ; LOBYTE

 STA ADDR2 ; ADD ARRAY ADDRESS

 LDA ADDR2+1 ; HIBYTE

 ADC]ADDRD+1

 STA ADDR2+1

 LDY #0

:LP

*

** OOPS; NEED TO CONVERT THIS TO 16 BITS

*

 LDA (]ADDRS),Y ; GET BYTE FROM SOURCE

 STA (ADDR2),Y ; STORE IN ELEMENT

 INY ; INCREMENT BYTE INDEX

 CPY]ESIZEB ; IF INDEX != ELEMENT LENGTH

 BNE :LP ; KEEP LOOPING

 LDY ADDR2+1 ; HIBYTE OF ELEMENT ADDRESS

 LDX ADDR2 ; LOBYTE

 LDA]ESIZEB ; .A = ELEMENT SIZE

 RTS

AppleIIAsmLib Reference Manual 238

v0.5.0

SUB.ADIM162 >> ADIM162

The ADIM162 subroutine

initializes a two-dimensional

16-bit array. Each dimension can

theoretically hold 65,025

indices each, with a total

number of elements of

4,228,250,625 that can carry a
length of 255 bytes each.

Obviously, this is beyond the

RAM capacity of even the most

souped up Apple II, save for the

GS (and even then, it would have

to be heavily modified).

Two-dimensional 16-bit arrays

have a 5-byte header. Byte 0

holds the low byte of the number

of indices in the first

dimension, with byte 1 holding

the high byte. Byte 2 likewise

holds the low byte of the second

dimension’s number of indices,

with the high in byte 3. Lastly,

byte 4 holds the element length,

with the data of the array following.

*

``````````````````````````````

* ADIM162 (NATHAN RIGGS) *

* *

* INPUT: *

* *

* WPAR1 = 1ST DIM LENGTH *

* WPAR2 = 2ND DIM LENGTH *

* WPAR3 = ARRAY ADDRESS *

* BPAR1 = ELEMENT LENGTH *

* BPAR2 = FILL VALUE *

* *

* OUTPUT: *

* *

* .A = ELEMENT LENGTH *

* RETURN = ELEMENT DATA *

* RETLEN = ELEMENT LENGTH *

 ADIM162 (sub)

 Input:

 WPAR1 = first dimension

 Length (2b)

 WPAR2 = second dimension

 Length (2b)

 WPAR3 = array address

 (2b)

 BPAR1 = element length

 (1b)

 BPAR2 = fill value (1b)

 Output:

 .A = element length

 RETURN = element data

 RETLEN = element length

 Destroys: AXYNVZCM

 Cycles: 426+

 Size: 312 bytes

AppleIIAsmLib Reference Manual 239

v0.5.0

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 426+ *

* SIZE: 312 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]AXSIZE EQU WPAR1

]AYSIZE EQU WPAR2

]ELEN EQU BPAR1

]FILL EQU BPAR2

]ADDR EQU WPAR3

]ADDR2 EQU ADDR1

*

]PROD EQU VARTAB ; PRODUCT

]AXBAK EQU VARTAB+4 ; X SIZE BACKUP

]AYBAK EQU VARTAB+6 ; Y SIZE BACKUP

]MLIER EQU VARTAB+8 ; MULTIPLIER

]MCAND EQU VARTAB+10 ; MULTIPLICAND

*

ADIM162

 LDA]AYSIZE

 STA]AYBAK

 STA]MCAND

 LDA]AYSIZE+1

 STA]AYBAK+1

 STA]MCAND+1

 LDA]AXSIZE

 STA]AXBAK

 STA]MLIER

 LDA]AXSIZE+1

 STA]AXBAK+1

 STA]MLIER+1

 LDA]ADDR ; GET ARRAY ADDRESS

 STA]ADDR2 ; LOBYTE; PUT IN ZERO PAGE

 LDA]ADDR+1 ; GET ARRAY ADDRESS HIBYTE

 STA]ADDR2+1

*

** MULTIPLY X AND Y

*

 LDA #0 ; RESET HIBYTE,LOBYTE

 STA]PROD+2 ; CLEAR PRODUCT BYTE 3

 STA]PROD+3 ; CLEAR PRODUCT BYTE 4

 LDX #$10 ; (#16)

:SHIFT_R

AppleIIAsmLib Reference Manual 240

v0.5.0

 LSR]MLIER+1 ; DIVIDE MLIER BY TWO

 ROR]MLIER ; ADJUST LOBYTE

 BCC :ROT_R ; IF 0 IN CARRY, ROTATE MORE

 LDA]PROD+2 ; GET 3RD BYTE OF PRODUCT

 CLC

 ADC]MCAND ; ADD MULTIPLICAND

 STA]PROD+2 ; STORE 3RD BYTE

 LDA]PROD+3 ; LOAD 4TH BYTE

 ADC]MCAND+1 ; ADD MULTIPLICAND HIBYTE

:ROT_R

 ROR ; ROTATE PARTIAL PRODUCT

 STA]PROD+3 ; STORE IN HIBYTE

 ROR]PROD+2 ; ROTATE THIRD BYTE

 ROR]PROD+1 ; ROTATE 2ND BYTE

 ROR]PROD ; ROTATE LOBYTE

 DEX ; DECREASE COUNTER

 BNE :SHIFT_R ; IF NOT ZERO, BACK TO SHIFTER

*

 LDA]ELEN ; PUT ELEMENT LENGTH

 STA]MCAND ; INTO MULTIPLICAND

 LDA #0 ; CLEAR HIBYTE

 STA]MCAND+1 ;

 LDA]PROD ; LOAD EARLIER PRODUCT

 STA]MLIER ; STORE LOBYTE IN MULTIPLIER

 LDA]PROD+1 ; DO SAME FOR HIBYTE

 STA]MLIER+1

*

** NOW MULTIPLY BY LENGTH OF ELEMENTS

*

 LDA #0 ; CLEAR PRODUCT

 STA]PROD

 STA]PROD+1

 STA]PROD+2

 STA]PROD+3

 LDX #$10

:SHIFTR LSR]MLIER+1 ; SHIFT BYTES LEFT (/2)

 ROR]MLIER ; ADJUST LOBYTE

 BCC :ROTR ; IF CARRY = 0, ROTATE

 LDA]PROD+2 ; LOAD 3RD BYTE OF PRODUCT

 CLC

 ADC]MCAND ; ADD MULTIPLICAND

 STA]PROD+2 ; STORE IN 3RD BYTE

 LDA]PROD+3 ; LOAD HIBYTE

 ADC]MCAND+1 ; ADD MULTIPLICAND HIBYTE

:ROTR

 ROR ; ROTATE .A RIGHT

AppleIIAsmLib Reference Manual 241

v0.5.0

 STA]PROD+3 ; ROTATE 4TH

 ROR]PROD+2 ; ROTATE 3RD

 ROR]PROD+1 ; ROTATE 2ND

 ROR]PROD ; ROTATE LOBYTE

 DEX ; DECREMENT COUNTER

 BNE :SHIFTR ; IF NOT 0, BACK TO SHIFTER

*

 CLC ; CLEAR CARRY

 LDA]PROD ; INCREASE BY 5

 ADC #5

 STA]PROD ; SAVE LOBYTE

 LDA]PROD+1

 ADC #0

 STA]PROD+1 ; SAVE HIBYTE

*

** NOW CLEAR MEMORY BLOCKS, WHOLE PAGES FIRST

*

 LDA]FILL ; GET FILL VALUE

 LDX]PROD+1 ; LOAD PRODUCT 2ND BYTE

 BEQ :PART ; IF 0, THEN PARTIAL PAGE

 LDY #0 ; CLEAR INDEX

:FULL

 STA (]ADDR),Y ; COPY FILL BYTE TO ADDRESS

 INY ; INCREASE BYTE COUNTER

 BNE :FULL ; LOOP UNTIL PAGES DONE

 INC]ADDR+1 ; INCREASE HIBYTE

 DEX ; DECREASE COUNTER

 BNE :FULL ; LOOP UNTIL PAGES DONE

*

** NOW DO REMAINING BYTES

*

:PART

 LDX]PROD ; LOAD PRODUCT LOBYTE IN X

 BEQ :MFEXIT ; IF 0, THEN WE'RE DONE

 LDY #0 ; CLEAR BYTE INDEX

:PARTLP

 STA (]ADDR),Y ; STORE FILL BYTE

 INY ; INCREASE BYTE INDEX

 DEX ; DECREASE COUNTER

 BNE :PARTLP ; LOOP UNTIL DONE

:MFEXIT

 LDY #0 ; CLEAR BYTE INDEX

 LDA]AXBAK ; LOAD ORIGINAL X LENGTH

 STA (]ADDR2),Y ; STORE IN ARRAY HEADER

 INY ; INCREASE BYTE COUNTER

 LDA]AXBAK+1 ; STORE HIBYTE

AppleIIAsmLib Reference Manual 242

v0.5.0

 STA (]ADDR2),Y

 INY ; INCREASE BYTE INDEX

 LDA]AYBAK ; LOAD Y LENGTH LOBYTE

 STA (]ADDR2),Y ; STORE IN ARRAY HEADER

 INY ; INCREMENT BYTE INDEX

 LDA]AYBAK+1 ; STORE Y HIBYTE

 STA (]ADDR2),Y

 INY ; INCREMENT BYTE INDEX

 LDA]ELEN ; STORE ELEMENT LENGTH

 STA (]ADDR2),Y

*

 LDY]ADDR2 ; LOBYTE OF ARRAY ADDRESS

 LDX]ADDR2+1 ; ARRAY ADDRESS HIBYTE

 LDA]PROD ; STORE TOTAL ARRAY SIZE

 STA RETURN ; IN BYTES IN RETURN

 LDA]PROD+1

 STA RETURN+1

 LDA]PROD+2

 STA RETURN+2

 LDA]PROD+3

 STA RETURN+3

 LDA #4 ; SIZE OF RETURN

 STA RETLEN

 RTS

AppleIIAsmLib Reference Manual 243

v0.5.0

SUB.AGET162 >> AGET162

The AGET162 retrieves the data

held in an element of a 16-bit,

two-dimensional array and stores

it in RETURN, with the element

length held in RETVAL. This will

work correctly only with arrays

initialized with ADIM162.

*

``````````````````````````````

* AGET162 (NATHAN RIGGS) *

* *

* INPUT: *

* *

* WPAR1 = ARRAY ADDRESS *

* WPAR2 = 1ST DIM INDEX *

* WPAR3 = 2ND DIM INDEX *

* *

* OUTPUT: *

* *

* .A = ELEMENT LENGTH *

* RETURN: ELEMENT DATA *

* RETLEN: ELEMENT LENGTH *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 410+ *

* SIZE: 277 BYTES *

 AGET162 (sub)

 Input:

 WPAR1 = array address

 (2b)

 WPAR2 = first dimension

 index (2b)

 WPAR3 = second dimension

 index (2b)

 Output:

 .A = element length

 RETURN = element data

 RETLEN = element length

 Destroys: AXYNVZCM

 Cycles: 410+

 Size: 277 bytes

AppleIIAsmLib Reference Manual 244

v0.5.0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]ADDR EQU WPAR1

]XIDX EQU WPAR2

]YIDX EQU WPAR3

*

]ESIZE EQU VARTAB ; ELEMENT LENGTH

]MCAND EQU VARTAB+2 ; MULTIPLICAND

]MLIER EQU VARTAB+4 ; MULTIPLIER

]PROD EQU VARTAB+6 ; PRODUCT

]PBAK EQU VARTAB+10 ; ^BACKUP

]XLEN EQU VARTAB+12 ; X-DIM LENGTH

]YLEN EQU VARTAB+14 ; Y-DIM LENGTH

*

AGET162

 LDY #4 ; READ BYTE 4 FROM HEADER

 LDA (]ADDR),Y ; TO GET ELEMENT SIZE

 STA]ESIZE

 LDY #0 ; READ BYTE 0 FROM HEADER

 LDA (]ADDR),Y ; TO GET X-DIM LENGTH LOBYTE

 STA]XLEN

 LDY #1 ; READ BYTE 1 FROM HEADER

 LDA (]ADDR),Y ; TO GET X-DIM LENGTH HIBYTE

 STA]XLEN+1

 LDY #2 ; READ BYTE 2 FROM HEADER

 LDA (]ADDR),Y ; TO GET Y-DIM LENGTH LOBYTE

 STA]YLEN

 LDY #3 ; READ BYTE 3 OF HEADER

 LDA (]ADDR),Y ; TO GET Y-DIM LENGTH HIBYTE

 STA]YLEN+1

 LDY #0 ; RESET BYTE INDEX

*

** MULTIPLY Y-INDEX BY Y-LENGTH

*

 LDA]YIDX ; PUT Y-INDEX INTO

 STA]MLIER ; MULTIPLIER

 LDA]YIDX+1 ; ALSO HIBYTE

 STA]MLIER+1

 LDA]YLEN ; PUT Y-DIM LENGTH LOBYTE

 STA]MCAND ; INTO MULTIPLICAND

 LDA]YLEN+1 ; ALSO HIBYTE

 STA]MCAND+1

 LDA #00 ; RESET

 STA]PROD ; PRODUCT BYTES

 STA]PROD+1

 STA]PROD+2

AppleIIAsmLib Reference Manual 245

v0.5.0

 STA]PROD+3

 LDX #$10 ; LOAD #16 INTO X REGISTER

:SHIFT_R

 LSR]MLIER+1 ; DIVIDE MULTIPLIER BY 2

 ROR]MLIER ; ADJUST HIBYTE

 BCC :ROT_R ; IF 0 PUT INTO CARRY, ROTATE MORE

 LDA]PROD+2 ; LOAD PRODUCT 3RD BYTE

 CLC ; CLEAR CARRY

 ADC]MCAND ; ADD MULTIPLICAND

 STA]PROD+2 ; STORE IN PRODUCT 3RD

 LDA]PROD+3 ; LOAD PRODUCT HIBYTE

 ADC]MCAND+1 ; ADD MULTIPLICAN HIBYTE

:ROT_R

 ROR ; ROTATE .A RIGHT

 STA]PROD+3 ; STORE IN PRODUCT HIBYTE

 ROR]PROD+2 ; ROTATE 3RD BYTE

 ROR]PROD+1 ; ROTATE 2ND BYTE

 ROR]PROD ; ROTATE LOBYTE

 DEX ; DECREASE X COUNTER

 BNE :SHIFT_R ; IF NOT ZERO, SHIFT AGAIN

*

** NOW MULTIPLY XIDX BY ELEMENT SIZE

*

 LDA]PROD ; BACKUP PREVIOUS PRODUCT

 STA]PBAK ; 1ST AND 2ND BYTES; THE

 LDA]PROD+1 ; 3RD AND 4TH ARE NOT USED

 STA]PBAK+1

 LDA]XIDX ; LOAD X-INDEX LOBYTE

 STA]MLIER ; AND STORE IN MULTIPLIER

 LDA]XIDX+1 ; LOAD HIBYTE AND STORE

 STA]MLIER+1

 LDA]ESIZE ; LOAD ELEMENT SIZE AND

 STA]MCAND ; STORE LOBYTE IN MULTIPLICAND

 LDA #0 ; CLEAR MULTIPLICAND HIBYTE

 STA]MCAND+1

*

 STA]PROD ; CLEAR ALL PRODUCT BYTES

 STA]PROD+1

 STA]PROD+2

 STA]PROD+3

 LDX #$10 ; LOAD #16 IN COUNTER

:SHIFTR LSR]MLIER+1 ; DIVIDE MULTIPLIER HIBYTE BY 2

 ROR]MLIER ; ADJUST LOBYTE

 BCC :ROTR ; IF 0 PUT IN CARRY, ROTATE

 LDA]PROD+2 ; LOAD PRODUCT 3RD BYTE

 CLC ; CLEAR CARRY

AppleIIAsmLib Reference Manual 246

v0.5.0

 ADC]MCAND ; ADD MULTIPLICAND LOBYTE

 STA]PROD+2 ; STORE PRODUCT 3RD BYTE

 LDA]PROD+3 ; LOAD PRODUCT HIBYTE

 ADC]MCAND+1 ; ADD MULTIPLICAND HIBYTE

:ROTR

 ROR ; ROTATE .A RIGHT

 STA]PROD+3 ; STORE IN PRODUCT HIBYTE

 ROR]PROD+2 ; ROTATE PRODUCT 3RD BYTE

 ROR]PROD+1 ; ROTATE 2ND BYTE

 ROR]PROD ; ROTATE LOBYTE

 DEX ; DECREMENT X COUNTER

 BNE :SHIFTR ; IF != 0, SHIFT AGAIN

*

** NOW ADD X * ESIZE TO RUNNING PRODUCT

*

 CLC ; CLEAR CARRY

 LDA]PROD ; ADD PREVIOUS PRODUCT

 ADC]PBAK ; LOBYTE TO CURRENT

 STA]PROD ; AND STORE IN PRODUCT

 LDA]PROD+1 ; DO THE SAME WITH HIBYTES

 ADC]PBAK+1

 STA]PROD+1

 CLC ; CLEAR CARRY

 LDA]PROD ; ADD 5 BYTES TO PRODUCT

 ADC #5 ; TO ACCOUNT FOR ARRAY HEADER

 STA]PROD

 LDA]PROD+1

 ADC #0 ; ADJUST HIBYTE

 STA]PROD+1

*

** NOW ADD BASE ADDRESS OF ARRAY TO GET

** THE ADDRESS OF THE INDEX VALUE

*

 CLC ; CLEAR CARRY

 LDA]PROD ; ADD PRODUCT TO ARRAY

 ADC]ADDR ; ADDRESS, LOBYTES

 STA ADDR2 ; STORE IN ZERO PAGE

 LDA]PROD+1 ; DO THE SAME WITH HIBYTES

 ADC]ADDR+1

 STA ADDR2+1

 LDY #0 ; RESET BYTE INDEX

*

** COPY FROM SRC ADDR TO DEST ADDR

*

:CLP

 LDA (ADDR2),Y ; LOAD BYTE FROM ELEMENT

AppleIIAsmLib Reference Manual 247

v0.5.0

 STA RETURN,Y ; AND STORE IN RETURN

 INY ; INCREMENT BYTE COUNTER

 CPY]ESIZE ; IF != ELEMENT LENGTH,

 BNE :CLP ; CONTINUE LOOPING

 LDA]ESIZE ; .A = ELEMENT SIZE

 STA RETLEN ; ALSO IN RETLEN

 LDY ADDR2+1 ; .Y = ELEMENT ADDRESS HIBYTE

 LDX ADDR2 ; .X = ELEMENT ADDRESS LOBYTE

 RTS

AppleIIAsmLib Reference Manual 248

v0.5.0

SUB.APUT162 >> APUT162

The APUT162 subroutine sets the

data in a 16-bit, two-

dimensional array’s element at

the given 2D index. The length

of the data to be copied to the

element is determined by the

length byte of the array.

*

``````````````````````````````

* APUT162 (NATHAN RIGGS) *

* *

* INPUT: *

* *

* WPAR1 = SOURCE ADDRESS *

* WPAR2 = ARRAY ADDRESS *

* WPAR3 = 1ST DIM INDEX *

* ADDR1 = 2ND DIM INDEX *

* *

* OUTPUT: *

* *

* .A = ELEMENT LENGTH *

* .X = ELEMENT ADDR LOBYTE *

* .Y = ELEMENT ADDR HIBYTE *

* *

 APUT162 (sub)

 Input:

 WPAR1 = source address

 (2b)

 WPAR2 = array address

 (2b)

 WPAR3 = first dimension

 index (2b)

 ADDR1 = second dimension

 index (2b)

 Output:

 .A = element length

 .X = element address

 low byte

 .Y = element address

 high byte

 Destroys: AXYNVZCM

 Cycles: 404+

 Size: 273 bytes

AppleIIAsmLib Reference Manual 249

v0.5.0

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 404+ *

* SIZE: 273 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]ADDRS EQU WPAR1

]ADDRD EQU WPAR2

]XIDX EQU WPAR3

]YIDX EQU ADDR1

*

]ESIZE EQU VARTAB ; ELEMENT LENGTH

]MCAND EQU VARTAB+6 ; MULTIPLICAND

]MLIER EQU VARTAB+8 ; MULTIPLIER

]PBAK EQU VARTAB+10 ; PRODUCT BACKUP

]XLEN EQU VARTAB+12 ; X-DIMENSION LENGTH

]YLEN EQU VARTAB+14 ; Y-DIMENSION LENGTH

]PROD EQU VARTAB+16 ; PRODUCT OF MULTIPLICATION

*

APUT162

 LDY #4 ; LOAD BYTE 4 OF ARRAY

 LDA (]ADDRD),Y ; HEADER TO GET ELEMENT LENGTH

 STA]ESIZE

 LDY #0 ; LOAD BYTE 0 TO GET

 LDA (]ADDRD),Y ; X-DIMENSION LENGTH LOBYTE

 STA]XLEN

 LDY #1 ; LOAD BYTE 1 TO GET

 LDA (]ADDRD),Y ; X-DIMENSION LENGTH HIBYTE

 STA]XLEN+1

 LDY #2 ; LOAD BYTE 2 TO GET THE

 LDA (]ADDRD),Y ; Y-DIMENSION LENGTH LOBYTE

 STA]YLEN

 LDY #3 ; LOAD BYTE 3 TO GET THE

 LDA (]ADDRD),Y ; Y-DIMENSION LENGTH HIBYTE

 STA]YLEN+1

 LDY #0 ; RESET BYTE INDEX

*

** MULTIPLY Y-INDEX BY Y-LENGTH

*

 LDA]YIDX ; LOAD Y-INDEX LOBYTE

 STA]MLIER ; PUT IN MULTIPLIER LOBYTE

 LDA]YIDX+1 ; DO SAME FOR HIBYTES

 STA]MLIER+1

 LDA]YLEN ; PUT Y-DIM LENGTH LOBYTE

 STA]MCAND ; INTO MULTIPLICAND

AppleIIAsmLib Reference Manual 250

v0.5.0

 LDA]YLEN+1 ; DO SAME FOR HIBYTE

 STA]MCAND+1

 LDA #00 ; CLEAR PRODUCT BYTES

 STA]PROD

 STA]PROD+1

 STA]PROD+2

 STA]PROD+3

 LDX #$10 ; INIT COUNTER TO #16

:SHIFT_R

 LSR]MLIER+1 ; DIVIDE MULTIPLIER HIBYTE BY 2

 ROR]MLIER ; ADJUST LOBYTE

 BCC :ROT_R ; IF 0 PUT IN CARRY, ROTATE PRODUCT

 LDA]PROD+2 ; LOAD PRODUCT 3RD BYTE

 CLC ; CLEAR CARRY

 ADC]MCAND ; ADD MULTIPLICAND

 STA]PROD+2 ; STORE 3RD BYTE

 LDA]PROD+3 ; LOAD PRODUCT HIBYTE

 ADC]MCAND+1 ; ADD MULTIPLICAND HIBYTE

:ROT_R

 ROR ; ROTATE .A RIGHT

 STA]PROD+3 ; STORE IN PRODUCT HIBYTE

 ROR]PROD+2 ; ROTATE 3RD BYTE

 ROR]PROD+1 ; ROTATE 2ND

 ROR]PROD ; ROTATE LOBYTE

 DEX ; DECREASE X COUNTER

 BNE :SHIFT_R ; IF NOT ZERO, LOOP AGAIN

*

** NOW MULTIPLY XIDX BY ELEMENT SIZE

*

 LDA]PROD ; BACKUP PREVIOUS

 STA]PBAK ; PRODUCT FOR USE LATER

 LDA]PROD+1 ; DO SAME FOR HIBYTE

 STA]PBAK+1

 LDA]XIDX ; PUT X-INDEX LOBYTE

 STA]MLIER ; INTO MULTIPLIER

 LDA]XIDX+1 ; DO SAME FOR HIBYTE

 STA]MLIER+1

 LDA]ESIZE ; PUT ELEMENT SIZE

 STA]MCAND ; INTO MULTIPLICAND

 LDA #0 ; CLEAR MULTIPLICAND HIBYTE

 STA]MCAND+1

*

 STA]PROD ; CLEAR PRODUCT

 STA]PROD+1

 STA]PROD+2

 STA]PROD+3

AppleIIAsmLib Reference Manual 251

v0.5.0

 LDX #$10 ; INIT X COUNTER TO #16

:SHIFTR LSR]MLIER+1 ; DIVIDE MULTIPLIER BY 2

 ROR]MLIER ; ADJUST LOBYTE

 BCC :ROTR ; IF 0 PUT INTO CARRY, ROTATE PROD

 LDA]PROD+2 ; LOAD PRODUCT 3RD BYTE

 CLC ; CLEAR CARRY

 ADC]MCAND ; ADD MULTIPLICAND LOBYTE

 STA]PROD+2

 LDA]PROD+3 ; LOAD PRODUCT HIBYTE

 ADC]MCAND+1 ; HAD MULTIPLICAND HIBYTE

:ROTR

 ROR ; ROTATE .A RIGHT

 STA]PROD+3 ; STORE PRODUCT HIBYTE

 ROR]PROD+2 ; ROTATE 3RD BYTE

 ROR]PROD+1 ; ROTATE 2ND BYTE

 ROR]PROD ; ROTATE LOBYTE

 DEX ; DECREASE X COUNTER

 BNE :SHIFTR ; IF NOT 0, KEEP LOOPING

*

** NOW ADD X * ESIZE TO RUNNING PRODUCT

*

 CLC ; CLEAR CARRY

 LDA]PROD ; ADD CURRENT PRODUCT

 ADC]PBAK ; TO PREVIOUS PRODUCT

 STA]PROD ; AND STORE BACK IN PRODUCT

 LDA]PROD+1

 ADC]PBAK+1

 STA]PROD+1

 CLC ; CLEAR CARRY

 LDA]PROD ; INCREASE LOBYTE BY 5

 ADC #5 ; TO ACCOUNT FOR ARRAY

 STA]PROD ; HEADER

 LDA]PROD+1

 ADC #0 ; ADJUST HIBYTE

 STA]PROD+1

*

** ADD ARRAY ADDRESS TO GET INDEX

*

 CLC ; CLEAR CARRY

 LDA]PROD ; ADD ARRAY ADDRESS

 ADC]ADDRD ; TO PRODUCT TO GET

 STA ADDR2 ; ELEMENT ADDRESS; STORE

 LDA]PROD+1 ; ADDRESS ON ZERO PAGE

 ADC]ADDRD+1

 STA ADDR2+1

 LDY #0 ; RESET BYTE INDEX

AppleIIAsmLib Reference Manual 252

v0.5.0

:CLP

 LDA (]ADDRS),Y ; LOAD BYTE FROM SOURCE

 STA (ADDR2),Y ; STORE AT ELEMENT ADDRESS

 INY ; INCREASE BYTE INDEX

 CPY]ESIZE ; IF != ELEMENT LENGTH, LOOP

 BNE :CLP

 LDY ADDR2+1 ; .Y = ELEMENT ADDRESS HIBYTE

 LDX ADDR2 ; .X = ELEMENT ADDRESS LOBYTE

 LDA]ESIZE ; .A = ELEMENT LENGTH

 RTS

AppleIIAsmLib Reference Manual 253

v0.5.0

DEMO.ARRAYS

DEMO.ARRAYS can be assembled into a program that illustrates how

each macro works. This is not, however, an exhaustive test; for

more complicated usage, see the integrated demos.

*

``````````````````````````````

* DEMO.ARRAYS *

* *

* A DECIDEDLY NON-EXHAUSTIVE *

* DEMO OF ARRAY FUNCTIONALITY *

* IN THE APPLEIIASM LIBRARY. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 14-JUL-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

** ASSEMBLER DIRECTIVES

*

 CYC AVE

 EXP OFF

 TR ON

 DSK DEMO.ARRAYS

 OBJ $BFE0

 ORG $6000

*

``````````````````````````````

* TOP INCLUDES (HOOKS,MACROS) *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

 PUT MIN.HEAD.REQUIRED

 USE MIN.MAC.REQUIRED

 USE MIN.MAC.ARRAYS

 PUT MIN.HOOKS.ARRAYS

*

``````````````````````````````

* PROGRAM MAIN BODY *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

AppleIIAsmLib Reference Manual 254

v0.5.0

]VAR1 EQU $300

]COUNT1 EQU $320

]ARRAY1 EQU $4000

]ARRAY2 EQU $5000

]HOME EQU $FC58

*

 JSR]HOME

 _PRN "1D AND 2D 8BIT/16BIT ARRAYS",8D

 _PRN "===========================",8D8D

 _PRN "THIS MACRO LIBRARY AND VARIOUS",8D

 _PRN "SUBROUTINES ARE USED FOR THE CREATION,",8D

 _PRN "ACCESS AND MANAGEMENT OF ARRAYS THAT",8D

 _PRN "CAN BE EITHER ONE OR TWO DIMENSIONS",8D

 _PRN "AND CAN HAVE EITHER 255 ELEMENTS PER",8D

 _PRN "DIMENSION IN THE CASE OF 8BIT ARRAYS OR",8D

 _PRN "UP TO 65,530 ELEMENTS IN THE CASE OF",8D

 _PRN "16BIT ARRAYS--AT LEAST, THEORETICALLY.",8D

 _PRN "SINCE THAT WOULD TAKE UP THE ENTIRETY",8D

 _PRN "OF RAM ON MOST APPLE][COMPUTERS,",8D

 _PRN "HAVING THAT MANY ELEMENTS IS NOT LIKELY.",8D8D

 _WAIT

 JSR]HOME

 _PRN "AT LEAST IN THIS LIBRARY, ARRAYS",8D

 _PRN "ARE FAIRLY SIMPLE DATA STRUCTURES.",8D

 _PRN "EVERY ARRAY HAS A HEADER THAT SPECIFIES",8D

 _PRN "THE NUMBER OF ELEMENTS PER DIMENSION",8D

 _PRN "AS WELL AS THE LENGTH OF EACH ELEMENT.",8D

 _PRN "THESE ARE SET WITH THE DIM MACROS AND",8D

 _PRN "SUBROUTINES:",8D8D

 _PRN "DIM81: INIT 1-DIMENSIONAL 8BIT ARRAY",8D

 _PRN "DIM82: INIT 2-DIMENSIONAL 8BIT ARRAY",8D

 _PRN "DIM161: INIT 1-DIMENSIONAL 16BIT ARRAY",8D

 _PRN "DIM162: INIT 2-DIMENSIONAL 16BIT ARRAY",8D8D

 _WAIT

 _PRN "IF YOU NEED FEWER THAN 255 ELEMENTS",8D

 _PRN "IN A DIMENSION, I HIGHLY SUGGEST",8D

 _PRN "USING THE 8BIT ARRAY MACROS AND,",8D

 _PRN "SUBROUTINES, AS THERE IS A SIGNIFICANT",8D

 _PRN "SAVING OF BYTES AND CPU CYCLES.",8D

 _WAIT

 JSR]HOME

 _PRN "LIKE THE DIM MACROS, EACH ARRAY",8D

 _PRN "TYPE ALSO HAS A GET AND PUT MACRO AND",8D

 _PRN "SET OF SUBROUTINES DEDICATED TO IT:",8D8D

 _WAIT

 _PRN "GET81: RETRIEVE THE DATA IN A GIVEN",8D

AppleIIAsmLib Reference Manual 255

v0.5.0

 _PRN " ELEMENT AND PUT IN RETURN.",8D

 _PRN "GET82: RETRIEVE DATA FROM ELEMENT AT",8D

 _PRN " X,Y AND PUT IN RETURN.",8D

 _PRN "GET161: GET DATA FROM 16-BIT ELEMENT",8D

 _PRN " AND PUT IN RETURN.",8D

 _PRN "GET162: GET DATA FROM ELEMENT AT 16BIT",8D

 _PRN " X,Y LOCATION AND PUT IN RETURN.",8D8D

 _WAIT

 _PRN "PUT81: PUT DATA FROM SOURCE LOCATION IN",8D

 _PRN " AN ARRAY'S ELEMENT.",8D

 _PRN "PUT82: PUT DATA FROM SOURCE ADDRESS IN",8D

 _PRN " ARRAY ELEMENT AT X,Y.",8D

 _PRN "PUT161: PUT DATA FROM SOURCE ADDRESS IN",8D

 _PRN " 16-BIT ARRAY ELEMENT.",8D

 _PRN "PUT162: PUT DATA FROM SOURCE INTO 16BIT",8D

 _PRN " ARRAY ELEMENT AT X,Y.",8D8D

 _WAIT

*

 JSR]HOME

 _PRN "ONE-DIMENSIONAL, 8-BIT ARRAYS",8D

 _PRN "=============================",8D8D

 _PRN "DIM81, GET81, AND PU81 ARE USED FOR",8D

 _PRN "1D ARRAYS THAT DON'T NEED MORE THAN",8D

 _PRN "A SINGLE DIMENSION OF LESS THAN 255",8D

 _PRN "ELEMENTS. FOR MANY USES, THIS SUFFICES;",8D

 _PRN "THE FACT THAT THE APPLE][IS AN 8-BIT",8D

 _PRN "COMPUTER ATTESTS TO THIS FACT.",8D8D

 _WAIT

 _PRN "HOWEVER, THERE ARE A NUMBER OF CASES ",8D

 _PRN "IN WHICH 8-BIT INDEXING ISN'T ENOUGH.",8D

 _PRN "AGAIN, MAKE THE CHOICE BASED ON NEED,",8D

 _PRN "NOT CONVENIENCE. IF 255 ELEMENTS IS",8D

 _PRN "ENOUGH TO ACCOMPLISH THE TASK, USE ",8D

 _PRN "THESE MACROS AND SUBROUTINES.",8D8D

 _WAIT

 JSR]HOME

 _PRN "EIGHT BITS AND ONE DIMENSION: DIM",8D

 _PRN "=================================",8D8D

 _PRN "THE DIM81 MACRO CREATES A THREE",8D

 _PRN "BYTE HEADER THAT HOLDS, IN ORDER:",8D8D

 _PRN "BYTE 0: NUMBER OF ELEMENTS",8D

 _PRN "BYTE 1: ELEMENT SIZE",8D8D

 _PRN "THE GET81 AND PUT81 ROUTINES USE ",8D

 _PRN "THIS HEADER TO KNOW HOW MUCH DATA",8D

 _PRN "TO READ AND WRITE FROM AN ELEMENT.",8D

 _PRN "BASIC CHECKS AGAINST THE INTENDED",8D

AppleIIAsmLib Reference Manual 256

v0.5.0

 _PRN "NUMBER OF ELEMENTS CAN ALSO BE DONE",8D

 _PRN "USING THIS HEADER.",8D8D

 _WAIT

 _PRN " DIM81 #ARRAY1;#10;#2;#$FF",8D8D

 _PRN "CREATES AN 8BIT, 1D ARRAY AT THE",8D

 _PRN "ADDRESS OF #ARRAY1 WITH TEN ELEMENTS",8D

 _PRN "OF 2 BYTES EACH. ALL ELEMENTS ARE",8D

 _PRN "FILLED WITH THE LAS PARAMETER, $FF."

 _WAIT

 JSR]HOME

 _PRN "WE CAN DUMP #ARRAY1 BEFORE AND",8D

 _PRN "AFTER USING DIM81 TO SHOW THE",8D

 _PRN "DIFFERENCE:",8D8D

 _PRN "BEFORE:",8D8D

 DUMP #]ARRAY1;#2

 DUMP #]ARRAY1+2;#10

 DUMP #]ARRAY1+12;#10

 _PRN " ",8D8D

 _WAIT

 DIM81 #]ARRAY1;#10;#2;#$FF

 _PRN "AFTER:",8D8D

 DUMP #]ARRAY1;#2

 DUMP #]ARRAY1+2;#10

 DUMP #]ARRAY1+12;#10

 _WAIT

 JSR]HOME

 _PRN "8 BITS AND ONE DIMENSION: PUT",8D

 _PRN "=============================",8D8D

 _PRN "THE PUT81 MACRO PUTS THE DATA FROM",8D

 _PRN "A SOURCE ADDRESS INTO AN 8BIT, 1D",8D

 _PRN "ARRAY ELEMENT. THE SOURCE ADDRESS,",8D

 _PRN "ARRAY ADDRESS AND THE ELEMENT NUMBER",8D

 _PRN "ARE SPECIFIED AS PARAMETERS, IN",8D

 _PRN "THAT ORDER. NOTE THAT THE NUMBER OF",8D

 _PRN "BYTES TO COPY INTO THE ELEMENT IS",8D

 _PRN "PREDETERMINED BY THE ELEMENT SIZE",8D

 _PRN "SET BY DIM81 IN THE HEADER.",8D8D

 _PRN "THUS:",8D8D

 _WAIT

 _PRN " LDA #0",8D

 _PRN " STA]VAR1",8D

 _PRN " STA]VAR1+1",8D

 _PRN " PUT81 #]VAR1;#ARRAY1;#3",8D8D

 _PRN "WILL PUT $0000 IN ARRAY1'S ",8D

 _PRN "ELEMENT 3, WHICH IS TECHNICALLY THE",8D

 _PRN "FOURTH ELEMENT DUE TO ZERO INDEXING."

AppleIIAsmLib Reference Manual 257

v0.5.0

 LDA #0

 STA]VAR1

 STA]VAR1+1

 PUT81 #]VAR1;#]ARRAY1;#3

 _WAIT

 JSR]HOME

 _PRN "IF WE DUMP THE ARRAY AGAIN, WE ",8D

 _PRN "CAN READILY SEE THE CHANGE:",8D8D

 _WAIT

 DUMP #]ARRAY1;#2

 DUMP #]ARRAY1+2;#10

 DUMP #]ARRAY1+12;#10

 _WAIT

 _PRN " ",8D8D

 _PRN "OF COURSE, THIS IS OF LIMITED",8D

 _PRN "USE WITHOUT A FUNCTION TO EXTRACT",8D

 _PRN "THE ELEMENT INA USEFUL FASHION--",8D

 _PRN "RELYING ON THE DUMP MACRO ONLY GOES",8D

 _PRN "SO FAR. THAT'S WHERE OUR THIRD MACRO",8D

 _PRN "AND SUBROUTINE COMES IN..."

 _WAIT

 JSR]HOME

 _PRN "8-BIT, 1-DIMENSION ARRAYS: GET",8D

 _PRN "==============================",8D8D

 _PRN "THE GET81 MACRO GETS THE DATA",8D

 _PRN "STORED IN AN ELEMENT AND COPIES IT",8D

 _PRN "TO RETURN, STORING THE ELEMENT",8D

 _PRN "LENGTH IN RETLEN. THIS ALLOWS YOU",8D

 _PRN "TO USE THE ARRAY..WELL, LIKE AN",8D

 _PRN "ARRAY. SO:",8D8D

 _WAIT

 _PRN " GET81 #ARRAY1;#3",8D8D

 _PRN "RETRIEVES ELEMENT 3 OF ARRAY1 AND",8D

 _PRN "STORES IT IN RETURN FOR USE BY YOUR",8D

 _PRN "PROGRAM. WE CAN DUMP RETURN BEFORE",8D

 _PRN "AND AFTER USING GET81 TO SHOW",8D

 _PRN "THE DIFFERENCE:",8D8D

 _WAIT

 _PRN "BEFORE:",8D

 DUMP #RETURN;RETLEN

 _WAIT

 _PRN " ",8D8D

 _PRN "AFTER: ",8D

 GET81 #]ARRAY1;#3

 DUMP #RETURN;RETLEN

 _WAIT

AppleIIAsmLib Reference Manual 258

v0.5.0

 JSR]HOME

 _PRN "16-BITS AND ONE DIMENSION: DIM161",8D

 _PRN "=================================",8D8D

 _PRN "DIM161 WORKS IN FORM AND FUNCTION JUST",8D

 _PRN "AS DIM81 DOES, EXCEPT IT ACCEPTS",8D

 _PRN "A TWO-BYTE VALUE FOR THE NUMBER",8D

 _PRN "OF ELEMENTS. BECAUSE OF THIS, THE ARRAY",8D

 _PRN "HEADER CREATED IS THREE BYTES INSTEAD",8D

 _PRN "OF THE TWO IN 8-BIT ARRAYS. SO:",8D8D

 _WAIT

 _PRN " DIM161 #ARRAY1;#300;#2;#$00",8D8D

 _PRN "WILL INITIALIZE AN ARRAY WITH 0..300",8D

 _PRN "ELEMENTS, ONE DIMENSION. AGAIN, THIS",8D

 _PRN "CAN TECHNICALLY USE A BIT MORE THAN",8D

 _PRN "65,000 ELEMENTS, BUT THIS IS BEYOND",8D

 _PRN "IMPRACTICAL FOR THE PURPOSES OF THIS",8D

 _PRN "LIBRARY, AS A CONSECUTIVE 64K OF BYTES",8D

 _PRN "IS UNLIKELY IN MOST APPLE II SYSTEMS.",8D8D

 _WAIT

 DIM161 #]ARRAY1;#300;#2;#$00

 JSR]HOME

 _PRN "16-BITS AND ONE DIMENSION: PUT",8D

 _PRN "==============================",8D8D

 _PRN "NOW THAT WE HAVE CREATED OUR ARRAY,",8D

 _PRN "WE CAN USE PUT161 TO CHANGE THE DATA",8D

 _PRN "IN EACH ELEMENT. AGAIN, THIS WORKS",8D

 _PRN "EXACTLY LIKE PUT81, BUT WITH SOME",8D

 _PRN "EXTRA BYTES HERE AND THERE TO ACCOUNT",8D

 _PRN "FOR THE EXTRA BREADTH. LET'S FILL",8D

 _PRN "EACH ELEMENT 0..300 WITH ITS OWN VALUE--",8D

 _PRN "THAT IS, 0 WILL HOLD 0, 1 WILL HOLD 1,",8D

 _PRN "299 WILL HOLD 2999 AND 300 WILL HOLD",8D

 _PRN "300:",8D8D

 _WAIT

 _PRN " LDA #0",8D

 _PRN " STA]COUNT",8D

 _PRN " STA]COUNT+1",8D

 _PRN " TAX",8D

 _PRN " TAY",8D

 _PRN "LP ",8D

 _PRN " PUT161 #]COUNT'#]ARRAY1;]COUNT",8D

 _PRN " LDA]COUNT",8D

 _PRN " CLC",8D

 _PRN " ADC #1",8D

 _PRN " STA]COUNT",8D

 _PRN " LDA]COUNT+1",8D

AppleIIAsmLib Reference Manual 259

v0.5.0

 _PRN " ADC #0",8D

 _PRN " STA]COUNT+1",8D

 _PRN " CMP #$01",8D

 _PRN " BNE LP",8D

 _PRN " LDA]COUNT",8D

 _PRN " CMP #$2C",8D

 _PRN " BNE LP"

 _WAIT

*

 LDA #0

 STA]COUNT1

 STA]COUNT1+1

 TAX

 TAY

LP161

 PUT161 #]COUNT1;#]ARRAY1;]COUNT1

 LDA]COUNT1

 DUMP #]COUNT1;#2

 LDA]COUNT1

 CLC

 ADC #1

 STA]COUNT1

 LDA]COUNT1+1

 ADC #0

 STA]COUNT1+1

 CMP #$01

 BNE LP161

 LDA]COUNT1

 CMP #$2D

 BNE LP161

 _WAIT

*

 JSR]HOME

 _PRN "WE CAN NOW DUMP THE ENTIRE ARRAY",8D

 _PRN "TO SEE HOW EACH ELEMENT IS STORED,"

 _PRN "ALONG WITH THE THREE BYTE HEADER:",8D8D

 _WAIT

 DUMP #]ARRAY1;#3

 _WAIT

 DUMP #]ARRAY1+3;#60

 _WAIT

 DUMP #]ARRAY1+63;#60

 _WAIT

 DUMP #]ARRAY1+123;#60

 _WAIT

 DUMP #]ARRAY1+183;#60

AppleIIAsmLib Reference Manual 260

v0.5.0

 _WAIT

 DUMP #]ARRAY1+243;#60

 _WAIT

 DUMP #]ARRAY1+303;#60

 _WAIT

 DUMP #]ARRAY1+363;#60

 _WAIT

 DUMP #]ARRAY1+423;#60

 _WAIT

 DUMP #]ARRAY1+483;#60

 _WAIT

 DUMP #]ARRAY1+543;#64

 _PRN " ",8D8D

 _PRN "WELL THAT CERTAINLY WAS A DUMP...",8D8D

 _WAIT

 JSR]HOME

 _PRN "16-BITS IN ONE DIMENSION: GET",8D

 _PRN "=============================",8D8D

 _PRN "AND OF COURSE, WE HAVE THE SAME GET",8D

 _PRN "MACRO FOR 16-BIT, 1D ARRAYS, GET162. THIS",8D

 _PRN "AGAIN FUNCTIONS THE SAME AS ITS 8-BIT",8D

 _PRN "COUNTERPART, EXCEPT THE INDEX IS TWO ",8D

 _PRN "BYTES RATHER THAN ONE.",8D8D

 _PRN " ",8D8D

 _PRN "THUS:",8D8D

 _WAIT

 _PRN " GET161 #]ARRAY1;#270",8D8D

 _PRN "RETURNS: "

 GET161 #]ARRAY1;#270

 DUMP #RETURN;RETLEN

 _WAIT

 JSR]HOME

 _PRN "8-BIT, 2D ARRAYS: FML ANOTHER DIM",8D

 _PRN "=================================",8D8D

 _PRN "AT THIS POINT, YOU SHOULD HAVE A",8D

 _PRN "GOOD GRASP AS TO HOW ARRAYS WORK",8D

 _PRN "IN THIS LIBRARY. TWO-DIMENSIONAL",8D

 _PRN "ARRAYS DO NOT SIGNIFICANTLY DIFFER",8D

 _PRN "FROM ONE-DIMENSIONAL ARRAYS; IT JUST",8D

 _PRN "MEANS THAT AN EXTRA ELEMENT INDEX IS",8D

 _PRN "NEEDED AS A PARAMETER. AS SUCH, WE CAN",8D

 _PRN "MOSTLY BREEZE THROUGH THE REST OF THESE.",8D8D

 _WAIT

 _PRN "TO INITIALIZE A 2D, 8BIT ARRAY:",8D8D

 _PRN " DIM82 #ARRAY1;#10;#10;#1;#00",8D8D

 _PRN "THIS CREATES AN ARRAY OF TEN BY TEN",8D

AppleIIAsmLib Reference Manual 261

v0.5.0

 _PRN "ELEMENTS (TOTAL OF 100 ELEMENTS) WITH ",8D

 _PRN "A LENGTH OF ONE BYTE. EACH ELEMENT",8D

 _PRN "IS INITIALIZED TO A VALUE OF 0."

 _WAIT

 DIM82 #]ARRAY1;#10;#10;#1;#0

 JSR]HOME

 _PRN "NOTE THAT WE HAVE A LONGER HEADER",8D

 _PRN "THANKS TO THE EXTRA ELEMENT INDEX. THE",8D

 _PRN "HEADER CONTAINS THE X-DIMENSION AS ",8D

 _PRN "BYTE ZERO, Y-DIMENSION AS BYTE ONE,",8D

 _PRN "AND ELEMENT LENGTH AS BYTE TWO, AS SUCH:",8D8D

 DUMP #]ARRAY1;#3

 _WAIT

 _PRN " ",8D8D

 _PRN "AND THE REST OF THE ARRAY:",8D8D

 DUMP #]ARRAY1+3;#10

 DUMP #]ARRAY1+13;#10

 DUMP #]ARRAY1+23;#10

 DUMP #]ARRAY1+33;#10

 DUMP #]ARRAY1+43;#10

 DUMP #]ARRAY1+53;#10

 DUMP #]ARRAY1+63;#10

 DUMP #]ARRAY1+73;#10

 DUMP #]ARRAY1+83;#10

 DUMP #]ARRAY1+93;#10

 _WAIT

 JSR]HOME

 _PRN "8-BIT, 2-DIMENSIONAL ARRAYS: PUT, GET",8D

 _PRN "=====================================",8D8D

 _PRN "AND OF COURSE, JUST AS WITH 1D ARRAYS",8D

 _PRN "WE CAN USE PUT82 AND GET82 TO WRITE",8D

 _PRN "TO AND READ FROM THE ARRAY:",8D8D

 _WAIT

 _PRN " LDA #$FF",8D

 _PRN " STA]VAR1",8D

 _PRN " PUT82 #]VAR1;#]ARRAY1;#4;#5",8D

 _PRN " GET82 #]ARRAY1;#4;#5",8D

 _PRN " DUMP #RETURN;RETLEN",8D8D

 _PRN "PRODUCES:",8D8D

 _WAIT

 LDA #$FF

 STA]VAR1

 PUT82 #]VAR1;#]ARRAY1;#4;#5

 GET82 #]ARRAY1;#4;#5

 DUMP #RETURN;RETLEN

 _WAIT

AppleIIAsmLib Reference Manual 262

v0.5.0

 JSR]HOME

 _PRN "16-BIT 2D ARRAYS: DIM, GET, PUT",8D

 _PRN "===============================",8D8D

 _PRN "AND LASTLY, WE CAN USE 16-BIT, TWO-",8D

 _PRN "DIMENSIONAL ARRAYS VIA THE DIM162,",8D

 _PRN "PUT162, AND GET162 MACROS:",8D8D

 _PRN " DIM162 #]ARRAY1;#300;#300;#1;#$00",8D

 _PRN " PUT162 #]VAR1;#]ARRAY1;#280;#280",8D

 _PRN " GET162 #]ARRAY1;#280;#280",8D

 _PRN " DUMP #RETURN;RETLEN",8D8D

 _PRN "PRODUCES:",8D8D

 _WAIT

 DIM162 #]ARRAY1;#300;#2;#1;#$00

 PUT162 #]VAR1;#]ARRAY1;#280;#1

 GET162 #]ARRAY1;#280;#1

 DUMP #RETURN;RETLEN

 _WAIT

 JSR]HOME

 _PRN " ",8D8D

 _PRN "FIN.",8D8D8D

*

 JMP REENTRY

*

``````````````````````````````

* BOTTOM INCLUDES (ROUTINES) *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

 PUT MIN.LIB.REQUIRED

*

** INDIVIDUAL SUBROUTINE INCLUDES

*

** 8-BIT 1-DIMENSIONAL ARRAY SUBROUTINES

*

 PUT MIN.SUB.ADIM81

 PUT MIN.SUB.AGET81

 PUT MIN.SUB.APUT81

*

** 8-BIT 2-DIMENSIONAL ARRAY SUBROUTINES

*

 PUT MIN.SUB.ADIM82

 PUT MIN.SUB.AGET82

 PUT MIN.SUB.APUT82

*

** 16-BIT 1-DIMENSIONAL ARRAYS

*

 PUT MIN.SUB.ADIM161

AppleIIAsmLib Reference Manual 263

v0.5.0

 PUT MIN.SUB.APUT161

 PUT MIN.SUB.AGET161

*

** 16-BIT 2-DIMENSIONAL ARRAYS

*

 PUT MIN.SUB.ADIM162

 PUT MIN.SUB.APUT162

 PUT MIN.SUB.AGET162

AppleIIAsmLib Reference Manual 264

v0.5.0

Disk 4: MATH

The fourth disk in the AppleIIAsm library contains macros and

subroutines dedicated to 8-bit and 16-bit integer math.

Additionally, hooks are provided to the various floating-point

routine addresses built into Applesoft—but this should only be

used when absolutely necessary, as these are substantially

slower. It should also be noted that these routines are

currently written to handle unsigned values, though in some

cases signed values will work as well.

In the future, fixed-point mathematics routines will also be

included here.

The disk contains the following:

• HOOKS.MATH

• MAC.MATH

• DEMO.MATH

• SUB.ADDIT16

• SUB.COMP16

• SUB.DIVD16

• SUB.DIVD8

• SUB.MULT16

• SUB.MULT8

• SUB.RAND16

• SUB.RAND8

• SUB.RANDB

• SUB.SUBT16

AppleIIAsmLib Reference Manual 265

v0.5.0

HOOKS.MATH

The HOOKS.MATH file contains various hooks useful to

mathematical functions. Most of these are related to floating-

point operations, which are built into Applesoft.

*

``````````````````````````````

* HOOKS.MATH *

* *

* THIS HOOKS FILE CONTAINS *

* HOOKS TO VARIOUS ROUTINES *

* RELATED TO MATHEMATICS. IN *

* PARTICULAR, WOZNIAK'S *

* FLOATING-POINT ALGORITHMS *

* ARE POINTED TO HERE, IF *

* INTEGER MATH IS NOT ENOUGH *

* FOR THE TASK AT HAND. *

* *

* NOTE THAT UNLESS ABSOLUTELY *

* NECESSARY, YOU SHOULD USE *

* THE INTEGER MATH ROUTINES, *

* AS THEY ARE MUCH FASTER. IN *

* THE FUTURE, FIXED-POINT MATH *

* MAY BE ADDED TO THE LIBRARY *

* AS WELL. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 15-JUL-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

GETNUM EQU $FFA7 ; ASCII TO HEX IN 3E & 3F

RNDL EQU $4E ; RANDOM NUMBER LOW

RNDH EQU $4F ; RANDOM NUMBER HIGH

*

FAC EQU $9D ; FLOATING POINT ACCUM

FSUB EQU $E7A7 ; FLOATING POINT SUBTRACT

FADD EQU $E7BE

FMULT EQU $E97F ; FP MULTIPLY

FDIV EQU $EA66 ; FP DIVIDE

AppleIIAsmLib Reference Manual 266

v0.5.0

FMULTT EQU $E982

FDIVT EQU $EA69

FADDT EQU $E7C1

FSUBT EQU $E7AA

*

MOVFM EQU $EAF9 ; MOVE FAC > MEM

MOVMF EQU $EB2B ; MOVE MEM > FAC

NORM EQU $E82E

CONUPK EQU $E9E3

*

FLOG EQU $E941 ; LOGARITHM

FSQR EQU $EE8D ; SQUARE ROOT

FCOS EQU $EFEA ; FP COSINE

FSIN EQU $EFF1 ; SINE

FTAN EQU $F03A ; TANGENT

FATN EQU $F09E ; ATANGENT

*

AppleIIAsmLib Reference Manual 267

v0.5.0

MAC.MATH

MAC.MATH contains all of the macros related to 8-bit and 16-bit

integer math, as well as macros related to pseudo-random number

generation. It contains the following macros:

• ADD8

• SUB8

• ADD16

• SUB16

• MUL16

• DIV16

• RAND

• CMP16

• MUL8

• DIV8

• RND16

• RND8

*

``````````````````````````````

* MAC.MATH *

* *

* THIS FILE CONTAINS ALL OF *

* THE INTEGER MATH MACROS. *

* GIVEN THAT THERE HAVE BEEN *

* 50 YEARS OF OPTIMIZATIONS *

* FOR 6502 MATH SUBROUTINES, *

* I WON'T BE REINVENTING THE *

* WHEEL TOO MUCH HERE. CREDIT *

* FOR INSPIRATION (OR JUST *

* PLAIN COPYING) IS GIVEN IN *

* THE SUBROUTINE FILES. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 15-JUL-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

* *

* SUBROUTINE FILES USED *

AppleIIAsmLib Reference Manual 268

v0.5.0

* *

* SUB.ADDIT16 *

* SUB.COMP16 *

* SUB.DIVD16 *

* SUB.DIVD8 *

* SUB.MULT16 *

* SUB.MULT8 *

* SUB.RAND16 *

* SUB.RAND8 *

* SUB.RANDB *

* SUB.SUBT16 *

* *

* LIST OF MACROS *

* *

* ADD8 : ADD 8BIT NUMBERS *

* SUB8 : SUBTRACT 8BIT NUMS *

* ADD16 : ADD 16BIT NUMBERS *

* SUB16 : SUBTRACT 16BIT NUMS *

* MUL16 : MULTIPLY 16BIT NUMS *

* DIV16 : DIVIDE 16BIT NUMS *

* RNDB : GET RANDOM BETWEEN *

* CMP16 : COMPARE 16BIT NUMS *

* MUL8 : MULTIPLY 8BIT NUMS *

* DIV8 : DIVIDE 8BIT NUMS *

* RND16 : RANDOM WORD *

* RND8 : RANDOM BYTE *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

AppleIIAsmLib Reference Manual 269

v0.5.0

MAC.MATH >> ADD8

The ADD8 macro adds two 8-bit

addends and returns a sum in .A

as well as in RETURN, with

RETLEN holding the byte-length

of 1.

*

``````````````````````````````

* ADD8 (NATHAN RIGGS) *

* *

* DIRTY MACRO TO ADD TWO BYTES *

* *

* PARAMETERS *

* *

*]1 = ADDEND 1 *

*]2 = ADDEND 2 *

* *

* SAMPLE USAGE *

* *

* ADD8 #3;#4 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

ADD8 MAC

 LDA #1

 STA RETLEN

 LDA]1

 CLC

 ADC]2

 STA RETURN

 <<<

 ADD8 (macro)

 Input:

]1 = 1st addend (1b)

]2 = 2nd addend (1b)

 Output:

 .A = sum

 RETURN = sum

 RETLEN = 1

 Destroys: AXYNVZCM

 Cycles: 22+

 Size: 16 bytes

AppleIIAsmLib Reference Manual 270

v0.5.0

MAC.MATH >> SUB8

The SUB8 macro subtracts a

subtrahend from a minuend and

stores the result in .A and

RETURN with the byte-length of 1

in RETLEN.

*

``````````````````````````````

* SUB8 (NATHAN RIGGS) *

* *

* MACRO TO SUBTRACT TWO BYTES *

* *

* PARAMETERS *

* *

*]1 = MINUEND *

*]2 = SUBTRAHEND *

* *

* SAMPLE USAGE *

* *

* SUB8 #4;#3 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

SUB8 MAC

 LDA #1

 STA RETLEN

 LDA]1

 SEC

 SBC]2

 STA RETURN

 <<<

 SUB8 (macro)

 Input:

]1 = minuend (1b)

]2 = subtrahend (1b)

 Output:

 .A = result

 RETURN = result

 RETLEN = 1

 Destroys: AXYNVZCM

 Cycles: 18+

 Size: 16 bytes

AppleIIAsmLib Reference Manual 271

v0.5.0

MAC.MATH >> ADD16

The ADD16 macro adds two 16-bit

values and returns a 16-bit sum

in .A (low byte) and .X (high

byte). This is additionally

stored in RETURN, with a RETLEN

of 2. Note that if the sum is

greater than a 16-bit value,

only the lowest two bytes are

returned.

*

``````````````````````````````

* ADD16 (NATHAN RIGGS) *

* *

* ADD TWO 16BIT VALUES, STORE *

* RESULT IN A, X (LOW, HIGH) *

* *

* PARAMETERS *

* *

*]1 = ADDEND 1 *

*]2 = ADDEND 2 *

* *

* SAMPLE USAGE *

* *

* ADD16 #3000;#4000 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

ADD16 MAC

 _MLIT]1;WPAR1

 _MLIT]2;WPAR2

 JSR ADDIT16

 <<<

 ADD16 (macro)

 Input:

]1 = 1st addend (2b)

]2 = 2nd addend (2b)

 Output:

 .A = sum low byte

 .X = sum high byte

 RETURN = sum

 RETLEN = 2

 Destroys: AXYNVZCM

 Cycles: 83+

 Size: 72 bytes

AppleIIAsmLib Reference Manual 272

v0.5.0

MAC.MATH >> SUB16

The SUB16 macro subtracts a 16-

bit value subtrahend from a 16-

bit value minuend, returning the

result in .A (low byte) and .X

(high byte). This result is also

stored in RETURN, with a RETLEN

of 2.

*

``````````````````````````````

* SUB16 (NATHAN RIGGS) *

* *

* SUBTRACTS ONE 16BIT INTEGER *

* FROM ANOTHER, STORING THE *

* RESULT IN A,X (LOW, HIGH) *

* *

* PARAMETERS *

* *

*]1 = MINUEND *

*]2 = SUBTRAHEND *

* *

* SAMPLE USAGE *

* *

* SUB16 #2000;#1500 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

SUB16 MAC

 _MLIT]1;WPAR1

 _MLIT]2;WPAR2

 JSR SUBT16

 <<<

 SUB16 (macro)

 Input:

]1 = minuend (2b)

]2 = subtrahend (2b)

 Output:

 .A = result low byte

 .X = result high byte

 RETURN = result

 RETLEN = 2

 Destroys: AXYNVZCM

 Cycles: 69+

 Size: 61 bytes

AppleIIAsmLib Reference Manual 273

v0.5.0

MAC.MATH >> MUL16

The MUL16 macro multiplies two

16-bit values and returns the

16-bit product in .A (low byte)

and .X (high byte).

Additionally, a 32-bit product

is stored in RETURN if the

larger value is required. Note

that this 32-bit value is only

correct, however, when the

values being multiplied are

unsigned.

*

``````````````````````````````

* MUL16 (NATHAN RIGGS) *

* *

* MULTIPLIES TWO 16BIT NUMBERS *

* AND RETURNS THE PRODUCT IN *

* A,X (LOW, HIGH). *

* *

* PARAMETERS *

* *

*]1 = MULTIPLICAND *

*]2 = MULTIPLIER *

* *

* SAMPLE USAGE *

* *

* MUL16 #400;#500 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

MUL16 MAC

 _MLIT]1;WPAR1

 _MLIT]2;WPAR2

 JSR MULT16

 <<<

 MUL16 (macro)

 Input:

]1 = multiplicand (2b)

]2 = multiplier (2b)

 Output:

 .A = product low byte

 .X = product high byte

 RETURN = product (4b)

 RETLEN = 4

 Destroys: AXYNVZCM

 Cycles: 141+

 Size: 109 bytes

AppleIIAsmLib Reference Manual 274

v0.5.0

MAC.MATH >> DIV16

The DIV16 macro divides a 16-bit

dividend by a 16-bit divisor,

returning the result in .A (low

byte) and .X (high byte). The

result is also stored in RETURN

with a 2 byte length.

*

``````````````````````````````

* DIV16 (NATHAN RIGGS) *

* *

* DIVIDES ONE 16BIT NUMBER BY *

* ANOTHER AND RETURNS THE *

* RESULT IN A,X (LOW,HIGH). *

* *

* PARAMETERS *

* *

*]1 = DIVIDEND *

*]2 = DIVISOR *

* *

* SAMPLE USAGE *

* *

* DIV16 #3000;#300 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

DIV16 MAC

 _MLIT]1;WPAR1

 _MLIT]2;WPAR2

 JSR DIVD16 ; UNSIGNED

 FIN

 <<<

 DIV16 (macro)

 Input:

]1 = dividend (2b)

]2 = divisor (2b)

 Output:

 .A = result low byte

 .X = result high byte

 RETURN = result (2b)

 RETLEN = 2

 Destroys: AXYNVZCM

 Cycles: 132+

 Size: 101 bytes

AppleIIAsmLib Reference Manual 275

v0.5.0

MAC.MATH >> RAND

The RAND macro returns an 8-bit

pseudorandom number in .A

between the given low value and

high value. This is also stored

in RETURN.

*

``````````````````````````````

* RAND (NATHAN RIGGS) *

* *

* RETURNS A RANDOM NUMBER IN *

* REGISTER A THAT IS BETWEEN *

* THE LOW AND HIGH BOUNDARIES *

* PASSED IN THE PARAMETERS. *

* *

* NOTE THAT THIS RETURNS A *

* BYTE, AND THUS ONLY DEALS *

* WITH VALUES BETWEEN 0..255. *

* *

* PARAMETERS *

* *

*]1 = LOW BOUNDARY *

*]2 = HIGH BOUNDARY *

* *

* SAMPLE USAGE *

* *

* RNDB #50;#100 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

RAND MAC

 RAND (macro)

 Input:

]1 = low boundary (1b)

]2 = high boundary (1b)

 Output:

 .A = pseudorandom value

 RETURN = pseudorandom

 value

 RETLEN = 1

 Destroys: AXYNVZCM

 Cycles: 256+

 Size: 482 bytes

AppleIIAsmLib Reference Manual 276

v0.5.0

 LDA]1 ; LOW

 LDX]2 ; HIGH

 JSR RANDB

 <<<

AppleIIAsmLib Reference Manual 277

v0.5.0

MAC.MATH >> CMP16

The CMP16 macro compares two 16-

bit values and alters the status

flags depending on the result of

the comparison and whether

values are signed or unsigned.

For unsigned values, the

following flags are set under

the given conditions:

• The Z flag is set to 1 if

both values are equal.

• The C flag is set to 0 if

the first parameter is

greater than the second

parameter.

• The C flag is set to 1 if the first parameter is less than

or equal to the second parameter.

For signed values, the following flags are set under the given

conditions:

• The Z flag is set to 1 if the both values are equal.

• The N flag is set to 1 if the first parameter is greater

than the second parameter.

• The N flag is set to 0 if the first parameter is less than

or equal to the second parameter.

*

``````````````````````````````

* CMP16 (NATHAN RIGGS) *

* *

* COMPARES TWO 16BIT VALUES *

* AND ALTERS THE P-REGISTER *

* ACCORDINGLY (FLAGS). *

* *

* PARAMETERS *

* *

*]1 = WORD 1 TO COMPARE *

*]2 = WORD 2 TO COMPARE *

* *

* SAMPLE USAGE *

 CMP16 (macro)

 Input:

]1 = 1st word to compare

]2 = 2nd word to compare

 Output:

 See description

 Destroys: AXYNVZCM

 Cycles: 91+

 Size: 75 bytes

AppleIIAsmLib Reference Manual 278

v0.5.0

* *

* CMP16 #1023;#3021 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

CMP16 MAC

 _MLIT]1;WPAR1

 _MLIT]2;WPAR2

 JSR COMP16

 <<<

AppleIIAsmLib Reference Manual 279

v0.5.0

MAC.MATH >> MUL8

The MUL8 macro multiplies two 8-

bit values and returns a 16-bit

product in .A (low byte) and .X

(high byte). The product is also

stored in RETURN.

*

``````````````````````````````

* MUL8 (NATHAN RIGGS) *

* *

* MULTIPLIES TWO 8BIT VALUES *

* AND RETURNS A 16BIT RESULT *

* IN A,X (LOW, HIGH). *

* *

* PARAMETERS *

* *

*]1 = MULTIPLICAND *

*]2 = MULTIPLIER *

* *

* SAMPLE USAGE *

* *

* MUL8 #10;#20 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

MUL8 MAC

 LDA]1

 LDX]2

 JSR MULT8

 <<<

 MUL8 (macro)

 Input:

]1 = multiplicand (1b)

]2 = multiplier (1b)

 Output:

 .A = product low byte

 .X = product high byte

 RETURN = product

 RETLEN = 2

 Destroys: AXYNVZCM

 Cycles: 89+

 Size: 53 bytes

AppleIIAsmLib Reference Manual 280

v0.5.0

MAC.MATH >> DIV8

The DIV8 macro divides a first

parameter by the second

parameter and returns the

quotient in .A with the

remainder returned in .X. The

quotient is also stored in

RETURN.

*

``````````````````````````````

* DIV8 (NATHAN RIGGS) *

* *

* DIVIDES ONE 8BIT NUMBER BY *

* ANOTHER AND STORES THE *

* QUOTIENT IN A WITH THE *

* REMAINDER IN X. *

* *

* PARAMETERS *

* *

*]1 = DIVIDEND *

*]2 = DIVISOR *

* *

* SAMPLE USAGE *

* *

* DIV8 #100;#10 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

DIV8 MAC

 LDA]1

 LDX]2

 JSR DIVD8

 <<<

 DIV8 (macro)

 Input:

]1 = dividend (1b)

]2 = divisor (1b)

 Output:

 .A = quotient

 .X = remainder

 Destroys: AXYNVZCM

 Cycles: 66+

 Size: 40 bytes

AppleIIAsmLib Reference Manual 281

v0.5.0

MAC.MATH >> RND16

The RND16 macro returns a 16-bit

pseudorandom number (1..65536)

in .A (low byte) and .X (high

byte).

*

``````````````````````````````

* RND16 (NATHAN RIGGS) *

* *

* RETURN A 16-BIT PSEUDORANDOM *

* NUMBER. *

* *

* PARAMETERS *

* *

* NONE *

* *

* SAMPLE USAGE *

* *

* RND16 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

RND16 MAC

 JSR RAND16

 <<<

 RND16 (macro)

 Input:

 none

 Output:

 .A = value low byte

 .X = value high byte

 RETURN = value (2b)

 RETLEN = 2

 Destroys: AXYNVZCM

 Cycles: 96+

 Size: 64 bytes

AppleIIAsmLib Reference Manual 282

v0.5.0

MAC.MATH >> RND8

The RND8 macro generates an 8-

bit pseudorandom value (1..255)

and returns it in .A. This value

is also held in RETURN.

*

``````````````````````````````

* RND8 (NATHAN RIGGS) *

* *

* RETURN AN 8-BIT PSEUDORANDOM *

* NUMBER. *

* *

* PARAMETERS *

* *

* NONE *

* *

* SAMPLE USAGE *

* *

* RND8 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

RND8 MAC

 JSR RAND8

 <<<

*

 RND8 (macro)

 Input:

 none

 Output:

 .A = value

 RETURN = value

 RETLEN = 1

 Destroys: AXYNVZCM

 Cycles: 50+

 Size: 30 bytes

AppleIIAsmLib Reference Manual 283

v0.5.0

SUB.ADDIT16 >> ADDIT16

The ADDIT16 subroutine adds the

two 16-bit numbers held in WPAR1

and WPAR2 and stores the result

(summand) in RETURN. The summand

is also held in .A (low) and .X

(high).

``````````````````````````````

* ADDIT16 (NATHAN RIGGS) *

* *

* ADD TWO 16-BIT VALUES. *

* *

* INPUT: *

* *

* WPAR1 = AUGEND *

* WPAR2 = ADDEND *

* *

* OUTPUT: *

* *

* .A = SUMMAND LOW BYTE *

* .X = SUMMAND HIGH BYTE *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^ ^^^ *

* *

* CYCLES: 43+ *

* SIZE: 24 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]ADD1 EQU WPAR1

 ADDIT16 (sub)

 Input:

 WPAR1 = augend (2 bytes)

 WPAR2 = addend (2 bytes)

 Output:

 .A = summand low byte

 .X = summand high byte

 RETLEN = byte length (2)

 RETURN = summand

 Destroys: AXYNVZCM

 Cycles: 43+

 Size: 24 bytes

AppleIIAsmLib Reference Manual 284

v0.5.0

]ADD2 EQU WPAR2

*

ADDIT16

 LDA #2

 STA RETLEN

 LDA]ADD1 ; ADD LOBYTES

 CLC ; CLEAR CARRY

 ADC]ADD2

 TAY ; TEMPORARY STORE IN .Y

 LDA]ADD1+1 ; ADD HIBYTES

 ADC]ADD2+1

 TAX ; STORE IN .X

 TYA ; XFER LOBYTE TO .A

 STA RETURN

 STX RETURN+1

 RTS

AppleIIAsmLib Reference Manual 285

v0.5.0

SUB.COMP16 >> COMP16

The COMP16 subroutine provides

the functionality of a CMP

instruction for 16-bit values.

The status flags are set under

the following conditions:

• If first operand is equal

to the second, then the

zero flag is set to 1.

• If first unsigned operand

is greater than the second

unsigned operand, then the

carry flag is set to zero.

• If the first unsigned operand is less than or equal to the

second unsigned operand, then the carry flag is set to 1.

• If the first signed operand is greater than the second

signed operand, then the negative flag is set to 1.

• If the first signed operand is less than or equal to the

second signed operand, then the negative flag is set to 0.

*

``````````````````````````````

* COMP16 (NATHAN RIGGS) *

* *

* 16-BIT COMPARISON DIRECTIVE *

* *

* BASED ON LEVENTHAL AND *

* SAVILLE'S /6502 ASSEMBLY *

* LANGUAGE ROUTINES/ LISTING *

* *

* INPUT: *

* *

*]WPAR1 = 16-BIT CMP VALUE *

*]WPAR2 = 16-BIT CMP VALUE *

* *

* OUTPUT: *

* *

 COMP16 (sub)

 Input:

 WPAR1 = 1st comparison

 WPAR2 = 2nd comparison

 Output:

 See description

 Destroys: AXYNVZCM

 Cycles: 51+

 Size: 27 bytes

AppleIIAsmLib Reference Manual 286

v0.5.0

* Z FLAG = 1 IF VALUES EQUAL *

* C FLAG = 0 IF CMP1 > CMP2, *

* 1 IF CMP1 <= CMP2 *

* N FLAG = 1 IF SIGNED CMP1 > *

* SIGNED CMP2, 0 IF *

* SIGNED CMP1 <= *

* SIGNED CMP2 *

* *

* DESTROY: AXYNVBDIZCMS *

* ^ ^^^^^^^^ *

* *

* CYCLES: 51+ *

* SIZE: 27 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]CMP1 EQU WPAR1 ; COMPARISON VAR 1

]CMP2 EQU WPAR2 ; COMPARISON VAR 2

*

COMP16

 LDA]CMP1 ; FIRST, COMPARE LOW BYTES

 CMP]CMP2

 BEQ :EQUAL ; BRANCH IF EQUAL

 LDA]CMP1+1 ; COMPARE HIGH BYTES

 SBC]CMP2+1 ; SET ZERO FLAG TO 0,

 ORA #1 ; SINCE LOW BYTES NOT EQUAL

 BVS :OVFLOW ; HANDLE V FLAG FOR SIGNED

 RTS

:EQUAL

 LDA]CMP1+1 ; COMPARE HIGH BYTES

 SBC]CMP2+1

 BVS :OVFLOW ; HANDLE OVERFLOW FOR SIGNED

 RTS

:OVFLOW

 EOR #$80 ; COMPLEMENT NEGATIVE FLAG

 ORA #1 ; IF OVERFLOW, Z = 0

 RTS

AppleIIAsmLib Reference Manual 287

v0.5.0

SUB.DIVD16 >> DIVD16

The DIVD16 subroutine divides

the first 16-bit operand (the

dividend) by the second 16-bit

operand (the divisor). A 16-bit

result is then return in .A (low

byte) and .X (high byte), as

well as in the RETURN memory

location.

*

``````````````````````````````

* DIVD16 (NATHAN RIGGS) *

* *

* DIVIDE WITH 16-BIT VALUES. *

* *

* ADAPTED FROM LISTINGS IN THE *

* C=64 MAGAZINES. *

* *

* INPUT: *

* *

* WPAR1 = DIVIDEND *

* WPAR2 = DIVISOR *

* *

* OUTPUT: *

* *

* .A = LOBYTE OF RESULT *

* .X = HIBYTE OF RESULT *

* RETURN = RESULT (2 BYTES) *

* RETLEN = RESULT BYTE LENGTH *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^ ^^^ *

* *

 DIVD16 (sub)

 Input:

 WPAR1 = dividend (2)

 WPAR2 = divisor (2)

 Output:

 .A = result low byte

 .X = result high byte

 RETURN = result (2)

 RETLEN = 2

 Destroys: AXYNVZCM

 Cycles: 92+

 Size: 53 bytes

AppleIIAsmLib Reference Manual 288

v0.5.0

* CYCLES: 92+ *

* SIZE: 53 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]DVEND EQU WPAR1

]DVSOR EQU WPAR2

]REM EQU WPAR3

]RESULT EQU WPAR1

*

DIVD16

 LDA #0 ; RESET REMAINDER

 STA]REM

 STA]REM+1

 LDX #16 ; NUMBER OF BITS

:DVLP

 ASL]DVEND ; LOBYTE * 2

 ROL]DVEND+1 ; HIBYTE * 2

 ROL]REM ; LOBYTE * 2

 ROL]REM+1 ; HIBYTE * 2

 LDA]REM

 SEC ; SET CARRY

 SBC]DVSOR ; SUBTRACT DIVISOR

 TAY ; TO SEE IF IT FITS IN DVEND,

 LDA]REM+1 ; HOLD LOBYTE IN .Y

 SBC]DVSOR+1 ; AND DO SAME WITH HIBYTES

 BCC :SKIP ; IF C=0, DVSOR DOESN'T FIT

*

 STA]REM+1 ; ELSE SAVE RESULT AS REM

 STY]REM

 INC]RESULT ; AND INC RES

:SKIP

 DEX ; DECREASE BIT COUNTER

 BNE :DVLP ; RELOOP IF > 0

 LDA #2 ; LENGTH OF RESULT IN BYTES

 STA RETLEN ; STORED IN RETLEN

 LDA]RESULT ; STORE RESULT LOBYTE

 STA RETURN ; IN .A AND RETURN

 LDX]RESULT+1 ; STORE HIBYTE IN .X

 STX RETURN+1 ; AND IN RETURN+1

 RTS

AppleIIAsmLib Reference Manual 289

v0.5.0

SUB.DIVD8 >> DIVD8

The DIVD8 subroutine divides one

8-bit number by another,

returning the result in .A with

the remainder in .X. The result

is also stored in RETURN as a

single byte.

*

``````````````````````````````

* DIVD8 (NATHAN RIGGS) *

* *

* DIVIDE WITH TWO 8-BIT VALUES *

* *

* INPUT: *

* *

* WPAR1 = DIVIDEND *

* WPAR2 = DIVISOR *

* *

* OUTPUT: *

* *

* .A = RESULT *

* .X = REMAINDER *

* RETURN = RESULT *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^ ^ ^^^ *

* *

* CYCLES: 58+ *

* SIZE: 34 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

 DIVD8 (sub)

 Input:

 WPAR1 = dividend

 WPAR2 = divisor

 Output:

 .A = result

 .X = remainder

 RETURN = result

 RETLEN = 1

 Destroys: AXYNVZCM

 Cycles: 58+

 Size: 34 bytes

AppleIIAsmLib Reference Manual 290

v0.5.0

*

]DVEND EQU WPAR1 ; DIVIDEND

]DVSOR EQU WPAR2 ; DIVISOR

*

DIVD8

 STX]DVEND ; .X HOLDS DIVIDEND

 STA]DVSOR ; .A HOLDS DIVISOR

 LDA #$00 ; CLEAR ACCUMULATOR

 LDX #8 ; COUNTER

 ASL]DVSOR ; SHIFT LEFT DIVISOR

:L1 ROL ; ROTATE LEFT .A

 CMP]DVEND ; COMPARE TO DIVIDEND

 BCC :L2 ; IF NEXT BIT = 0, BRANCH :L2

 SBC]DVEND ; OTHERWISE, SUBTRACT DIVIDEND

:L2 ROL]DVSOR ; ROTATE LEFT DIVISOR

 DEX ; DECREMENT COUNTER

 BNE :L1 ; IF > 0, LOOP

 TAX ; REMAINDER IN .X

 LDA #1

 STA RETLEN

 LDA]DVSOR ; RESULT IN .A

 STA RETURN

 RTS

AppleIIAsmLib Reference Manual 291

v0.5.0

SUB.MULT16 >> MULT16

The MULT16 subroutine multiplies

two given 16-bit numbers passed

via WPAR1 and WPAR2 and stores

the 16-bit result in .A (low

byte) and .X (high byte). If the

multiplier and multiplicand are

unsigned, a 32-bit product can

be read from RETURN (4 bytes).

If the values are signed,

however, only the two lowest

bits are reliable.

*

``````````````````````````````

* MULT16 (NATHAN RIGGS) *

* *

* MULTIPLY TWO 16-BIT VALUES. *

* NOTE THAT THIS ONLY WORKS *

* CORRECTLY WITH UNSIGNED *

* VALUES. *

* *

* INPUT: *

* *

* WPAR1 = MULTIPLICAND *

* WPAR2 = MULTIPLIER *

* *

* OUTPUT: *

* *

* RETURN = 32-BIT PRODUCT *

* RETLEN = 4 (BYTE LENGTH) *

* .A = LOWEST PRODUCT BYTE *

* .X = 2ND LOWEST BYTE (COPY) *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^ ^ ^^^ *

* *

 MULT16 (sub)

 Input:

 WPAR1 = multiplier (2b)

 WPAR2 = multiplicand (2b)

 Output:

 .A = lowest product byte

 .X = 2nd lowest prod byte

 RETURN = 32-bit product

 RETLEN = 4 (byte length)

 Destroys: AXYNVZCM

 Cycles: 101+

 Size: 61 bytes

AppleIIAsmLib Reference Manual 292

v0.5.0

* CYCLES: 101+ *

* SIZE: 61 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]MCAND EQU WPAR1 ; MULTIPLICAND

]MLIER EQU WPAR2 ; MULTIPLIER

]HPROD EQU WPAR3 ; HIGH BYTES OF PRODUCT

*

MULT16

 LDA #0 ; ZERO OUT TOP TWO

 STA]HPROD ; HIGH BYTES OF 32-BIT

 STA]HPROD+1 ; RESULT

 LDX #17 ; # OF BITS IN MLIER PLUS 1

 ; FOR LAST CARRY INTO PRODUCT

 CLC ; CLEAR CARRY FOR 1ST TIME

 ; THROUGH LOOP.

:MLP

*

** IF NEXT BIT = 1, HPROD += 1

*

 ROR]HPROD+1 ; SHIFT HIGHEST BYTE

 ROR]HPROD ; SHIFT 2ND-HIGHEST

 ROR]MLIER+1 ; SHIFT 3RD-HIGHEST

 ROR]MLIER ; SHIFT LOW BYTE

 BCC :DX ; BRANCH IF NEXT BIT = 0

 CLC ; OTHERWISE NEXT BIT =1,

 LDA]MCAND ; SO ADD MCAND TO PRODUCT

 ADC]HPROD

 STA]HPROD ; STORE NEW LOBYTE

 LDA]MCAND+1

 ADC]HPROD+1

 STA]HPROD+1 ; STORE NEW HIBYTE

:DX

 DEX ; DECREASE COUNTER

 BNE :MLP ; DO MUL LOOP UNTIL .X = 0

*

** NOW STORE IN RETURN, WITH LOWEST TWO

** BYTES ALSO LEFT IN .A (LO) AND .X (HI)

*

 LDA #4 ; LENGTH OF PRODUCT

 STA RETLEN ; STORED IN RETLEN

 LDA]HPROD+1

 STA RETURN+3

 LDA]HPROD

 STA RETURN+2

 LDX]MLIER+1

AppleIIAsmLib Reference Manual 293

v0.5.0

 STX RETURN+1

 LDA]MLIER

 STA RETURN

 RTS

AppleIIAsmLib Reference Manual 294

v0.5.0

SUB.MULT8 >> MULT8

The MULT8 subroutine accepts an

8-bit multiplier and an 8-bit

multiplicand from WPAR1 and

WPAR2, respectively, and returns

the 16-bit product in .A (low

byte) and .X (high byte). This

product is also placed in RETURN

for retrieval.

*

``````````````````````````````

* MULT8 (NATHAN RIGGS) *

* *

* MULTIPLY TWO 8-BIT NUMBERS. *

* *

* INPUT: *

* *

* WPAR1 = MULTIPLIER *

* WPAR2 = MULTIPLICAND *

* *

* OUTPUT: *

* *

* .A = PRODUCT LOW BYTE *

* .X = PRODUCT HIGH BYTE *

* RETURN = PRODUCT (2 BYTES) *

* RETLEN = 2 *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^ ^^^ *

* *

* CYCLES: 81+ *

* SIZE: 47 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

 MULT8 (sub)

 Input:

 WPAR1 = multiplier (1b)

 WPAR2 = multiplicand (1b)

 Output:

 .A = product low byte

 .X = product high byte

 RETURN = product (2b)

 RETLEN = 2

 Destroys: AXYNVZCM

 Cycles: 81+

 Size: 47 bytes

AppleIIAsmLib Reference Manual 295

v0.5.0

*

]MUL1 EQU WPAR1

]MUL2 EQU WPAR2

*

MULT8

 STA]MUL1

 STX]MUL2

 LDA #0 ; CLEAR REGISTERS

 TAY

 TAX

 STA]MUL1+1 ; CLEAR HIBYTE

 BEQ :GOLOOP

:DOADD

 CLC ; CLEAR CARRY

 ADC]MUL1 ; ADD MULTIPLIER

 TAX ; HOLD IN .Y

 TYA ; XFER .X TO .A

 ADC]MUL1+1 ; ADD MULTIPLIER HIBYTE

 TAY ; HOLD BACK IN .X

 TXA ; MOVE LOBYTE INTO .A

:LP

 ASL]MUL1 ; SHIFT LEFT

 ROL]MUL1+1 ; ROLL HIBYTE

:GOLOOP

 LSR]MUL2 ; SHIFT MULTIPLIER

 BCS :DOADD ; IF 1 SHIFTED INTO CARRY, ADD AGAIN

 BNE :LP ; OTHERWISE, LOP

 LDA #2 ; 16-BIT LENGTH, 2 BYTES

 STA RETLEN ; FOR RETURN LENGTH

 STX RETURN ; STORE LOBYTE

 STY RETURN+1 ; STORE HIBYTE

 TXA ; LOBYTE TO .A

 LDX RETURN+1 ; HIBYTE TO .X

 RTS

AppleIIAsmLib Reference Manual 296

v0.5.0

SUB.RAND16 >> RAND16

The RAND16 subroutine returns a

16-bit pseudo-random number with

the low byte held in .A and the

high byte stored in .X. This

two-byte value is also stored in

RETURN, with a RETLEN of 2.

``````````````````````````````

* RAND16 : 16BIT RANDOM NUMBER *

- -

* GENERATE A 16BIT PSEUDO- *

* RANDOM NUMBER AND RETURN IT *

* IN Y,X (LOW, HIGH). *

* *

* ORIGINAL AUTHOR IS WHITE *

* FLAME, AS SHARED ON *

* CODEBASE64. *

* *

* NOTE: THERE ARE 2048 MAGIC *

* NUMBERS THAT COULD BE EOR'D *

* TO GENERATE A PSEUDO-RANDOM *

* PATTERN THAT DOESN'T REPEAT *

* UNTIL 65535 ITERATIONS. TOO *

* MANY TO LIST HERE, BUT SOME *

* ARE: $002D, $1979, $1B47, *

* $41BB, $3D91, $B5E9, $FFEB *

* *

* INPUT: *

* *

 RAND16 (sub)

 Input:

 none

 Output:

 .A = random value low

 byte

 .X = random value high

 byte

 RETURN = random value

 RETLEN = 2 (byte length)

 Destroys: AXYNVZCM

 Cycles: 90+

 Size: 60 bytes

AppleIIAsmLib Reference Manual 297

v0.5.0

* NONE *

* *

* OUTPUT: *

* *

* .A = RND VAL LOW BYTE *

* .X = RND VAL HIGH BYTE *

* RETURN = RND VALUE (2B) *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^ ^^^ *

* *

* CYCLES: 90+ *

* SIZE: 60 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]SEED EQU WPAR1

*

RAND16

 LDA RNDL ; GET SEED LOBYTE

 STA]SEED

 LDA RNDH ; GET SEED HIBYTE

 STA]SEED+1

*

 LDA]SEED ; CHECK IF $0 OR $8000

 BEQ :LOW0

*

** DO A NORMAL SHIFT

*

 ASL]SEED ; MUTATE

 LDA]SEED+1

 ROL

 BCC :NOEOR ; IF CARRY CLEAR, EXIT

:DOEOR ; HIGH BYTE IN A

 EOR #>$0369 ; EXCLUSIVE OR WITH MAGIC NUMBER

 STA]SEED+1 ; STORE BACK INTO HIBYTE

 LDA]SEED

 EOR #<$0369 ; DO THE SAME WITH LOW BYTE

 STA]SEED

 JMP :EXIT

:LOW0

 LDA]SEED+1

 BEQ :DOEOR ; IF HIBYTE IS ALSO 0, APPLY EOR

 ASL

 BEQ :NOEOR ; IF 00, THEN IT WAS $80

 BCS :DOEOR ; ELSE DO EOR

:NOEOR

AppleIIAsmLib Reference Manual 298

v0.5.0

 STA]SEED+1

:EXIT

 LDX]SEED+1 ; VAL HIBYTE IN .X

 LDY]SEED ; LOBYTE TEMP IN .Y

 STY RETURN ; TRANSFER TO RETURN AREA

 STX RETURN+1

 LDA #2 ; LENGTH OF RETURN IN BYTES

 STA RETLEN

 TYA ; TRANSFER LOBYTE TO .A

 RTS

AppleIIAsmLib Reference Manual 299

v0.5.0

SUB.RAND8 >> RAND8

The RAND8 subroutine returns a

single-byte pseudo-random number

in the .A register as well as in

RETURN.

*

``````````````````````````````

* RAND8 (NATHAN RIGGS) *

* *

* GENERATE PSEUDO-RANDOM BYTE *

* *

* INPUT: *

* *

* NONE *

* *

* OUTPUT: *

* *

* .A = RANDOM BYTE *

* RETURN = RANDOM BYTE *

* RETLEN = #1 *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^ ^^^ *

* *

* CYCLES: 44+ *

* SIZE: 27 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

RAND8

 LDX #8 ; NUMBER OF BITS

 RAND8 (sub)

 Input:

 none

 Output:

 .A = random byte value

 RETURN = random byte val

 RETLEN = 1

 Destroys: AXYNVZCM

 Cycles: 44+

 Size: 27 bytes

AppleIIAsmLib Reference Manual 300

v0.5.0

 LDA RNDL+0 ; GET SEED

:A

 ASL ;SHIFT THE REG

 ROL RNDL+1 ; ROTATE HIGH BYTE

 BCC :B ; IF 1 BIT SHIFTED OUT,

 EOR #$2D ; APPLY XOR FEEDBACK

:B

 DEX ; DECREASE BIT COUNTER

 BNE :A ; IF NOT ZERO, RELOOP

 STA RNDL+0 ; STORE NEW SEED

 STA RETURN ; STORE IN RETURN

 LDY #1 ; RETURN BYTE LENGTH

 STY RETLEN ; IN RETLEN

 CMP #0 ; RELOAD FLAGS

 RTS

*

AppleIIAsmLib Reference Manual 301

v0.5.0

SUB.RANDB >> RANDB

The RANDB subroutine returns a

single byte pseudo-random number

between a low value of BPAR1 and

a high value of BPAR2. This

number is returned in .A as well

as in RETURN.

Note that this subroutine uses

many more cycles than RAND8.

Therefore, when the actual

number matters less than the

probability of its value being

returned, it is best to use the

RAND8 subroutine.

*

``````````````````````````````

* RANDB (NATHAN RIGGS) *

* *

* GET A RANDOM VALUE BETWEEN *

* A MIN AND MAX BOUNDARY. *

* *

* INPUT: *

* *

* BPAR1 = MINIMUM VALUE *

* BPAR2 = MAXIMUM VALUE *

* *

* OUTPUT: *

* *

* .A = NEW VALUE *

* RETURN = NEW VALUE *

* RETLEN = 1 (BYTE COUNT) *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 248+ *

* SIZE: 476 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

 RANDB (sub)

 Input:

 BPAR1 = minimum boundary

 BPAR2 = maximum boundary

 Output:

 .A = random number

 RETURN = random number

 RETLEN = 1

 Destroys: AXYNVZCM

 Cycles: 248+

 Size: 476 bytes

AppleIIAsmLib Reference Manual 302

v0.5.0

*

]NEWMIN EQU BPAR1 ; MINIMUM PARAMETER

]NEWMAX EQU BPAR2 ; MAXIMUM PARAMETER

]OLDMIN EQU WPAR1 ; OLD MINIMUM (1)

]OLDMAX EQU WPAR1+1 ; OLD MAXIMUM (255)

]OLDRNG EQU VARTAB ; OLD RANGE

]NEWRNG EQU VARTAB+2 ; NEW RANGE

]MULRNG EQU VARTAB+4 ; MULTIPLIED RANGE

]DIVRNG EQU VARTAB+6 ; DIVIDED RANGE

]VALRNG EQU VARTAB+8 ; VALUE RANGE

]OLDVAL EQU VARTAB+10 ; OLD VALUE

]NEWVAL EQU VARTAB+12 ; NEW VALUE

]NUM1HI EQU VARTAB+14 ; MULTIPLICATION HI BYTE

]REMAIN EQU VARTAB+16 ; REMAINDER

*

RANDB

 STX]NEWMAX ; NEW HIGH VALUE

 STA]NEWMIN ; NEW LOW VALUE OF RANGE

*

** GET OLDMIN,OLDMAX,OLDVAL

*

 LDA #1 ; OLD LOW IS ALWAYS 1

 STA]OLDMIN

 LDA #255 ; OLD HIGH IS ALWAYS 255

 STA]OLDMAX

*

 LDX #8 ; NUMBER OF BITS IN #

 LDA RNDL+0 ; LOAD SEED VALUE

:AA

 ASL ; SHIFT ACCUMULATOR

 ROL RNDL+1

 BCC :BB ; IF NEXT BIT IS 0, BRANCH

 EOR #$2D ; ELSE, APPLY XOR FEEDBACK

:BB

 DEX ; DECREASE .X COUNTER

 BNE :AA ; IF > 0, KEEP LOOPING

 STA RNDL+0 ; OVERWRITE SEED VALUE

 CMP #0 ; RESET FLAGS

 STA]OLDVAL ; STORE RANDOM NUMBER

*

** NEWVALUE = (((OLDVAL-NEWMIN) * (NEWMAX-NEWMIN) /

** (OLDMAX-OLDMIN)) + NEWMIN

*

** OLDRANGE = (OLDMAX-OLDMIN)

** NEWRANGE = (NEWMAX - NEWMIN)

** NEWVAL = (((OLDVAL-OLDMIN) * NEWRANGE) / OLDRANGE) + NEWMIN

AppleIIAsmLib Reference Manual 303

v0.5.0

*

 LDA]OLDMAX ; SUBTRACT OLDMIN

 SEC ; FROM OLDMAX, STORE

 SBC]OLDMIN ; IN OLDRANGE

 STA]OLDRNG

*

 LDA]NEWMAX ; SUBTRACT NEWMIN

 SEC ; FROM NEWMAX, THEN

 SBC]NEWMIN ; STORE IN NEWRANGE

 STA]NEWRNG

*

 LDA]OLDVAL ; SUBTRACT OLDMIN

 SEC ; FROM OLDVAL AND

 SBC]OLDMIN ; STORE IN VALRANGE

 STA]VALRNG

*

** GET MULRANGE: VALRANGE * NEWRANGE

*

 LDA #00 ; CLEAR ACCUMULATOR,

 TAY ; .Y AND THE HIGH BYTE

 STY]NUM1HI

 BEQ :ENTLP ; IF ZERO, BRANCH

:DOADD

 CLC ; CLEAR CARRY

 ADC]VALRNG ; ADD VALUE RANGE TO .A

 TAX ; HOLD IN .X

 TYA ; .Y BACK TO .A

 ADC]NUM1HI ; ADD HIBYTE

 TAY ; MOVE BACK TO .Y

 TXA ; .X BACK TO .A

:MLP

 ASL]VALRNG ; SHIFT VALUE RANGE

 ROL]NUM1HI ; ADJUST HIGH BYTE

:ENTLP

 LSR]NEWRNG ; SHIFT NEW RANGE

 BCS :DOADD ; IF LAST BIT WAS 1, LOOP ADD

 BNE :MLP ; IF ZERO FLAG CLEAR, LOOP SHIFT

 STA]MULRNG ; STORE RESULT LOW BYTE

 STY]MULRNG+1 ; STORE HIGH BYTE

*

** NOW GET DIVRANGE: MULRANGE / OLDRANGE

*

:DIVIDE

 LDA #0 ; CLEAR ACCUMULATOR

 STA]REMAIN ; AND THE REMAINDER LOBYTE

 STA]REMAIN+1 ; AND REMAINDER HIBYTE

AppleIIAsmLib Reference Manual 304

v0.5.0

 LDX #16 ; NUMBER OF BYTES

*

:DIVLP

 ASL]MULRNG ; LOW BYTE * 2

 ROL]MULRNG+1 ; HIGH BYTE * 2

 ROL]REMAIN ; REMAINDER LOW BYTE * 2

 ROL]REMAIN+1 ; HIGH BYTE * 2

 LDA]REMAIN ; SUBTRACT OLDRANGE

 SEC ; FROM REMAINDER

 SBC]OLDRNG

 TAY ; HOLD IN .Y

 LDA]REMAIN+1 ; SUBTRACT HIGH BYTES

 SBC]OLDRNG+1

 BCC :SKIP ; IF NO CARRY, THEN NOT DONE

*

 STA]REMAIN+1 ; SAVE SBC AS NEW REMAINDER

 STY]REMAIN

 INC]DIVRNG ; INCREMENT THE RESULT

*

:SKIP DEX ; DECREMENT COUNTER

 BNE :DIVLP ; IF ZERNO, RELOOP

*

** NOW ADD NEWMIN TO DIVRANGE

*

 LDA]DIVRNG ; USE LOW BYTE ONLY

 CLC ; AND ADD TO]NEWMIN

 ADC]NEWMIN ; TO GET THE NEW VALUE

 STA]NEWVAL

 STA RETURN ; COPY TO RETURN

 LDX #1 ; RETURN LENGTH

 STX RETLEN

 RTS

AppleIIAsmLib Reference Manual 305

v0.5.0

SUB.SUBT16 >> SUBT16

The SUBT16 subroutine subtracts

a 16-bit subtrahend stored in

WPAR2 from the 16-bit minuend in

WPAR1. The difference is stored

in .A (low byte) and .X (high

byte), as well as in RETURN.

RETLEN contains the byte-length

of RETURN, which is always 2.

This subroutine is likely to be

supplemented with a macro that

achieves the same result,

allowing the programmer to

decide between speed of

execution versus the length of

the program in bytes.

*

``````````````````````````````

* SUBT16 (NATHAN RIGGS) *

* *

* SUBTRACT A 16-BIT SUBTRAHEND *

* FROM A MINUEND. *

* *

* INPUT *

* *

* WPAR1 = MINUEND *

* WPAR2 = SUBTRAHEND *

* *

* OUTPUT: *

* *

* .A = DIFFERENCE LOW BYTE *

* .X = DIFFERENCE HIGH BYTE *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^ ^^^ *

* *

* CYCLES: 43+ *

* SIZE: 24 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

 SUBT16 (sub)

 Input:

 WPAR1 = minuend (2b)

 WPAR2 = subtrahend (2b)

 Output:

 .A = difference low byte

 .X = difference high byte

 RETURN = difference

 RETLEN = 2 (byte length)

 Destroys: AXYNVZCM

 Cycles: 43+

 Size: 24 bytes

AppleIIAsmLib Reference Manual 306

v0.5.0

*

]MINU EQU WPAR1 ; MINUEND

]SUBT EQU WPAR2 ; SUBTRAHEND

*

SUBT16

 LDA #2

 STA RETLEN

 LDA]MINU ; SUBTRACT SUBTRAHEND

 SEC ; LOBYTE FROM MINUEND

 SBC]SUBT ; LOBYTE

 TAY ; HOLD LOBYTE IN .Y

 LDA]MINU+1 ; SUBTRACT SUBTRAHEND

 SBC]SUBT+1 ; HIBYTE FROM MINUEND

 TAX ; HIGH BYTE, PASS IN .X

 TYA ; LOBYTE BACK IN .A

 STA RETURN

 STX RETURN+1

 RTS

AppleIIAsmLib Reference Manual 307

v0.5.0

DEMO.MATH

The DEMO.MATH program showcases the functionality of the

SUB.MATH subroutines and macros. These are not exhaustive, and

are intended to simply illustrate how the library works rather

than test the limits of each subroutine.

*

``````````````````````````````

* DEMO.MATH *

* *

* A DEMO OF THE INTEGER MATH *

* MACROS INCLUDED AS PART OF *

* THE APPLEIIASM LIBRARY. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 16-JUL-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

** ASSEMBLER DIRECTIVES

*

 CYC AVE

 EXP OFF

 TR ON

 DSK DEMO.MATH

 OBJ $BFE0

 ORG $6000

*

``````````````````````````````

* TOP INCLUDES (HOOKS,MACROS) *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

 PUT MIN.HEAD.REQUIRED

 USE MIN.MAC.REQUIRED

 PUT MIN.HOOKS.MATH

 USE MIN.MAC.MATH

]HOME EQU $FC58

*

``````````````````````````````

* PROGRAM MAIN BODY *

AppleIIAsmLib Reference Manual 308

v0.5.0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

 JSR]HOME

 _PRN "INTEGER MATH DEMO",8D

 _PRN "=================",8D8D

 _PRN "THIS DISK CONTAINS MACROS AND",8D

 _PRN "SUBROUTINES RELATED TO INTEGER",8D

 _PRN "MATH (UNSIGNED ONLY, SO FAR), AS",8D

 _PRN "WELL AS HOOKS TO USE THE STANDARD",8D

 _PRN "APPLESOFT FLOATING-POINT ",8D

 _PRN "SUBROUTINES.",8D8D

 _PRN "THE FLOATING-POINT ROUTINES",8D

 _PRN "ARE NOT COVERED HERE.",8D8D

 _WAIT

 JSR]HOME

 _PRN "16-BIT INTEGER MATH",8D

 _PRN "===================",8D8D

 _PRN "ADD16, SUB16, MUL16, DIV16",8D8D

 _PRN "THE 16-BIT INTEGER MATH MACROS",8D

 _PRN "ARE USED TO CALCULATE UNSIGNED VALUES",8D

 _PRN "BETWEEN 0 AND 65,025. THESE ARE TWO-",8D

 _PRN "BYTE VALUES.",8D8D

 _PRN "NOTE THAT BECAUSE OF INCREASED BYTE",8D

 _PRN "AND CPU CYCLE EXPENSES, THESE SHOULD",8D

 _PRN "ONLY BE USED IF 8-BIT CALCULATION ISN'T",8D

 _PRN "ADEQUATE.",8D

 _WAIT

 JSR]HOME

 _PRN "LET'S START WITH ADDING TWO 16-BIT",8D

 _PRN "NUMBERS. THE ADD16 MACRO ACCEPTS TWO",8D

 _PRN "16-BIT PARAMETERS, ADDS THEM TOGETHER,",8D

 _PRN "AND THEN HOLDS THE VALUE IN RETURN,",8D

 _PRN "WITH THE BYTE-LENGTH STORED IN RETLEN.",8D8D

 _PRN "NOTE THAT THE SUM RETURNED IS ALSO A",8D

 _PRN "16-BIT VALUE; THUS, A TOTAL SUM CAN BE",8D

 _PRN "NO HIGHER THAN 65,025. THE SUM IS",8D

 _PRN "ALSO RETURNED IN .A (LOW BYTE) AND",8D

 _PRN ".X (HIGH BYTE) FOR FASTER REFERENCE.",8D8D

 _WAIT

 _PRN "THUS, THE FOLLOWING CODE:",8D8D

 _PRN " ADD16 #10000;#20000",8D8D

 _PRN "WILL RESULT IN:",8D8D

 _WAIT

 ADD16 #10000;#20000

 DUMP #RETURN;RETLEN

 _WAIT

AppleIIAsmLib Reference Manual 309

v0.5.0

 JSR]HOME

 _PRN "16-BIT SUBTRACTION WORKS MUCH THE",8D

 _PRN "SAME. THE DIFFERENCE IS STORED IN",8D

 _PRN "RETURN AS WELL AS IN .A (LOW) AND",8D

 _PRN ".X (HIGH), AND RETLEN CONTAINS",8D

 _PRN "THE BYTE-LENGTH OF THE DIFFERENCE.",8D8D

 _PRN "THUS, THE FOLLOWING CODE:",8D8D

 _PRN " SUB16 #20000;#10000",8D8D

 _PRN "PRODUCES:",8D8D

 _WAIT

 SUB16 #20000;#10000

 DUMP #RETURN;RETLEN

 _WAIT

 JSR]HOME

 _PRN "16-BIT MULTIPLICATION AGAIN WORKS",8D

 _PRN "MUCH LIKE ADDITION AND SUBTRACTION,",8D

 _PRN "EXCEPT THE ORDER OF THE PARAMETERS DOES",8D

 _PRN "NOT MATTER.",8D8D

 _WAIT

 _PRN "UNLIKE 16-BIT ADDITION AND 16-BIT",8D

 _PRN "SUBTRACTION, THE MUL16 MACRO ",8D

 _PRN "RETURNS A 32-BYTE VALUE (4 BYTES). NOTE",8D

 _PRN "THAT IF EITHER OF THE PARAMETERS ARE",8D

 _PRN "SIGNED, THE TWO HIGHEST BYTES WILL BE",8D

 _PRN "WRONG.",8D8D

 _WAIT

 _PRN "THUS, MULTIPLYING TWO NUMBERS IS AS",8D

 _PRN "EASY TO ACCOMPLISH AS:",8D8D

 _PRN " MUL16 #300;#1000",8D8D

 _PRN "WHICH OUTPUTS THE PRODUCT TO RETURN:",8D8D

 _WAIT

 MUL16 #300;#1000

 DUMP #RETURN;RETLEN

 _WAIT

 JSR]HOME

 _PRN "FINALLY, THE DIV16 MACRO HANDLES ",8D

 _PRN "16-BIT DIVISION, STORING THE RESULT",8D

 _PRN "IN RETURN. THIS IS ALSO STORED IN",8D

 _PRN ".A (LOW BYTE) AND .X (HIGH BYTE). THE ",8D

 _PRN "REMAINDER OF THE OPERATION IS STORED",8D

 _PRN "IN .Y.",8D8D

 _WAIT

 _PRN "THUS:",8D8D

 _PRN " DIV16 #10000;#1000",8D8D

 _PRN "WILL RETURN:",8D8D

 _WAIT

AppleIIAsmLib Reference Manual 310

v0.5.0

 DIV16 #10000;#1000

 DUMP #RETURN;RETLEN

 _WAIT

 JSR]HOME

 _PRN "8-BIT INTEGER MATHEMATICS",8D

 _PRN "=========================",8D8D

 _PRN "8-BIT MATH MOSTLY WORKS THE SAME",8D

 _PRN "AS 16-BIT MATH MACROS, BUT SINCE",8D

 _PRN "8-BIT ADDITION AND SUBTRACTION ARE",8D

 _PRN "MUCH SIMPLER IN 6502, THEY ARE ONLY",8D

 _PRN "MACROS WITHOUT SUBROUTINES, AND ",8D

 _PRN "STRICTLY USE THE REGISTERS FOR PASSING",8D

 _PRN "DATA.",8D8D

 _PRN "SINCE THEY ARE SO SIMILAR IN FORM",8D

 _PRN "AND FUNCTION, WE WILL COVER THOSE",8D

 _PRN "TOGETHER.",8D8D

 _WAIT

 JSR]HOME

 _PRN "THE ADD8 AND SUB8 MACROS ADD AND",8D

 _PRN "SUBTRACT 8-BIT VALUES, RESPECTIVELY.",8D

 _PRN "THE RESULT OF BOTH OPERATIONS IS",8D

 _PRN "STORED IN THE ACCUMULATOR. AS SUCH:",8D8D

 _WAIT

 _PRN " ADD8 #10;#20",8D8D

 _PRN "WILL RETURN:",8D8D

 ADD8 #10;#20

 DUMP #RETURN;RETLEN

 _PRN "AND:",8D8D

 _WAIT

 _PRN " SUB8 #20;#10",8D8D

 _PRN "WILL RETURN:",8D8D

 SUB8 #20;#10

 DUMP #RETURN;RETLEN

 _WAIT

 JSR]HOME

 _PRN "THE DIV8 AND MUL8 MACROS WORK AS",8D

 _PRN "EXPECTED: LIKE DIV16 AND MUL16, BUT",8D

 _PRN "WORK ONLY WITH 8-BIT VALUES INSTEAD.",8D8D

 _PRN "THUS:",8D8D

 _PRN " MUL8 #10;#10",8D8D

 _PRN "RETURNS:",8D8D

 _WAIT

 MUL8 #10;#10

 DUMP #RETURN;RETLEN

 _WAIT

 _PRN "AND:",8D8D

AppleIIAsmLib Reference Manual 311

v0.5.0

 _PRN " DIV8 #100;#10",8D8D

 _PRN "RETURNS:",8D8D

 _WAIT

 DIV8 #100;#10

 DUMP #RETURN;RETLEN

 _WAIT

 JSR]HOME

 _PRN "PSEUDO-RANDOM NUMBERS",8D

 _PRN "=====================",8D8D

 _PRN "THERE ARE THREE MACROS DEDICATED TO",8D

 _PRN "PSEUDO-RANDOM NUMBER GENERATION:",8D

 _PRN "RND8, RND16, AND RAND. ",8D8D

 _WAIT

 _PRN "RND8 RETURNS A PSEUDO-RANDOM BYTE IN",8D

 _PRN ".A AND IN RETURN (0..255), WHEREAS",8D

 _PRN "RND16 RETURNS A 16-BIT VALUE (2 BYTES)",8D

 _PRN "IN RETURN AND IN .A (LOW BYTE) AND .X",8D

 _PRN "(HIGH BYTE). LASTLY, THE RAND MACRO",8D

 _PRN "RETURNS A BYTE VALUE BETWEEN A GIVEN ",8D

 _PRN "LOW VALUE AND HIGH VALUE.",8D8D

 _WAIT

 _PRN "RND8 AND RND16 DO NOT ACCEPT ANY",8D

 _PRN "PARAMETERS; ONLY RAND ACCEPTS ANY INPUT",8D

 _PRN "WHATSOEVER. THUS:",8D8D

 _WAIT

 _PRN " RAND #10;#20",8D8D

 _PRN "RETURNS A NUMBER BETWEEN 10 AND 20:",8D8D

 RAND #10;#20

 DUMP #RETURN;RETLEN

 _WAIT

 JSR]HOME

 _PRN "16-BIT COMPARISON",8D

 _PRN "=================",8D8D

 _PRN "LASTLY, THE ODD MACRO OUT IN THIS",8D

 _PRN "MACRO COLLECTION IS CMP16, WHICH",8D

 _PRN "PERFORMS THE EQUIVALENT OF THE 6502",8D

 _PRN "ASSEMBLY CMP COMMAND (COMPARE) BUT ON A",8D

 _PRN "16-BIT VALUE. THIS IS ACHIEVED BY",8D

 _PRN "SETTING FLAG BITS IN THE .P REGISTER",8D

 _PRN "BASED ON WHETHER THE TWO VALUES ARE",8D

 _PRN "EQUAL, OR ONE IS LESS THAN OR GREATER",8D

 _PRN "THAN THE OTHER. ",8D8D

 _WAIT

 _PRN "THE FOLLOWING FLAGS ARE SET BASED",8D

 _PRN "ON THE RELATIONSHIP OF THE PARAMETERS:",8D8D

 _PRN "UNSIGNED PARAMETERS:",8D8D

AppleIIAsmLib Reference Manual 312

v0.5.0

 _PRN " Z = 1 IF PARAMETERS ARE EQUAL",8D

 _PRN " C = 0 IF FIRST PARAMETER > SECOND",8D

 _PRN " 1 IF FIRST PARAMETER <= SECOND",8D8D

 _WAIT

 _PRN "SIGNED PARAMETERS:",8D8D

 _PRN " N = 1 IF FIRST PARAMETER > SECOND",8D

 _PRN " 0 IF FIRST PARAMETER <= SECOND",8D

*

 _WAIT

 JSR]HOME

 _PRN "WE ARE DONE HERE.",8D8D8D

 JMP REENTRY

*

``````````````````````````````

* BOTTOM INCLUDES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

** BOTTOM INCLUDES

*

 PUT MIN.LIB.REQUIRED

*

** INDIVIDUAL SUBROUTINE INCLUDES

*

** 8-BIT MATH SUBROUTINES

*

 PUT MIN.SUB.MULT8

 PUT MIN.SUB.DIVD8

 PUT MIN.SUB.RAND8

 PUT MIN.SUB.RANDB

*

** 16-BIT MATH SUBROUTINES

*

 PUT MIN.SUB.ADDIT16

 PUT MIN.SUB.SUBT16

 PUT MIN.SUB.COMP16

 PUT MIN.SUB.MULT16

 PUT MIN.SUB.DIVD16

 PUT MIN.SUB.RAND16

*

AppleIIAsmLib Reference Manual 313

v0.5.0

STRINGS LIBRARY

The strings library holds macros and subroutines dedicated to

string manipulation. Currently, this only covers 8-bit strings:

strings with a single preceding byte that defines the length,

followed by the characters in the string (not to exceed 255).

Null-terminated strings are handled mostly in the STDIO library,

but 16-bit or larger strings may be handled here in the future.

• HOOKS.STRINGS

• MAC.STRINGS

• DEMO.STRINGS

• SUB.PRNSTR

• SUB.STRCAT

• SUB.STRCOMP

• SUB.SUBCOPY

• SUB.SUBDEL

• SUB.SUBINS

• SUB.SUBPOS

HOOKS.STRINGS includes hooks related to string manipulation.

Currently, there aren’t too many of these.

MAC.STRINGS contains all of the macros related to string

manipulation.

DEMO.STRINGS is a demo of all of the string manipulation macros.

SUB.PRNSTR holds the subroutine for printing a string with a

preceding length byte. This is pretty much identical to the

PRNSTR routine in the STDIO library; one or the other may be

deleted in future iterations.

SUB.STRCAT contains the subroutine dedicated to string

concatenation.

SUB.STRCOMP includes the subroutine used for string comparison.

SUB.SUBCOPY contains the subroutine dedicated to copying a

substring from a source string.

SUB.SUBINS holds the SUBINS subroutine, which inserts a

substring into another string at the given position.

AppleIIAsmLib Reference Manual 314

v0.5.0

SUB.SUBPOS includes the subroutine that finds the position of a

substring in a given source string.

AppleIIAsmLib Reference Manual 315

v0.5.0

HOOKS.STRINGS

This file contains hooks related to string manipulation.

Currently, this is very limited. Future revisions will include

some hooks to basic Applesoft routines.

*

``````````````````````````````

* HOOKS.STRINGS *

* *

* THIS FILE CONTAINS ALL OF *

* THE HOOKS REQUIRED BY THE *

* STRING LIBRARY. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 19-SEP-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

SCOUT1 EQU $FDF0

*

AppleIIAsmLib Reference Manual 316

v0.5.0

MAC.STRINGS

MAC.STRINGS contains all of the macros related to 8-bit string

manipulation. 16-bit and 32-bit routines may be included in the

future, as well as macros and subroutines dedicated to parsing

strings for tasks like command line interaction, breaking down

mathematical expressions stored as strings, and so on.

``````````````````````````````

* MAC.STRINGS *

* *

* THIS FILE CONTAINS ALL OF *

* THE MACROS RELATED TO STRING *

* MANIPULATION. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 17-SEP-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

* *

* SUBROUTINE FILES USED *

* *

* SUB.PRNSTR *

* SUB.STRCAT *

* SUB.STRCOMP *

* SUB.SUBCOPY *

* SUB.SUBDEL *

* SUB.SUBINS *

* SUB.SUBPOS *

* *

* LIST OF MACROS *

* *

* SCMP : STRING COMPARE *

* SCAT : STRING CONCATENATE *

* SPRN : PRINT STRING *

* SPOS : FIND SUBSTRING POS *

* SCOP : SUBSTRING COPY *

* SDEL : SUBSTRING DELETE *

* SINS : SUNBSTRING INSERT *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

AppleIIAsmLib Reference Manual 317

v0.5.0

MAC.STRINGS >> SCMP

The SCMP macro compares one

string to another and changes

the status register in response.

First, the strings are tested to

be equal or not. If so, the ZERO

flag is set to 1; if not, the

ZERO flag is set to 0.

If the strings do not match,

further testing is done on the

lengths of the strings, with the

results affecting the carry

flag. If the first string has

fewer characters than the second

string, the CARRY flag is set to

0; otherwise, it is set to 1.

``````````````````````````````

* SCMP (NATHAN RIGGS) *

* *

* COMPARES TWO STRINGS AND *

* CHANGES THE ZERO FLAG TO 1 *

* IF THE STRINGS ARE EQUAL. IF *

* UNEQUAL, THE MACRO THEN *

* COMPARES THE LENGTHS; IF THE *

* FIRST IS LESS THAN SECOND, *

* THE CARRY FLAG IS SET TO 0. *

* OTHERWISE, IT IS SET TO 1. *

* *

* PARAMETERS *

* *

*]1 = 1ST STRING TO COMPARE *

*]2 = 2ND STRING TO COMPARE *

* *

* SAMPLE USAGE *

* *

* SCMP "TEST";"TEST" *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

SCMP MAC

 STY SCRATCH

 _MSTR]1;WPAR1

 _MSTR]2;WPAR2

 SCMP (macro)

 Input:

]1 = 1st string

]2 = 2nd string

 Output:

 See description

 Destroys: AXYNVZCM

 Cycles: 113+

 Size: 88 bytes

AppleIIAsmLib Reference Manual 318

v0.5.0

 JSR STRCMP

 LDY SCRATCH

 <<<

AppleIIAsmLib Reference Manual 319

v0.5.0

MAC.STRINGS >> SCAT

The SCAT macro takes two strings

and concatenates the second

string onto the first. This new

string is then stored in

RETLEN/RETURN, with the length

byte also being passed back via

.A.

*

``````````````````````````````

* SCAT (NATHAN RIGGS) *

* *

* CONCATENATE TWO STRINGS *

* *

* PARAMETERS *

* *

*]1 = FIRST STRING *

*]2 = SECOND STRING *

* *

* SAMPLE USAGE *

* *

* SCAT "I AM";" TIRED" *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

SCAT MAC

 STY SCRATCH

 _MSTR]1;WPAR1

 _MSTR]2;WPAR2

 JSR STRCAT

 LDY SCRATCH

 <<<

 SCAT (macro)

 Input:

]1 = 1st string

]2 = 2nd string

 Output:

 .A = length byte

 RETURN = new string chars

 RETLEN = length byte

 Destroys: AXYNVZCM

 Cycles: 167+

 Size: 130 bytes

AppleIIAsmLib Reference Manual 320

v0.5.0

MAC.STRINGS >> SPRN

The SPRN macro simply prints an

8-bit string with a preceding

length byte held at a certain

address to the screen, via the

COUT1 hook.

*

``````````````````````````````

* SPRN : PRINT STRING *

* *

* PRINT A STRING TO THE SCREEN *

* *

* PARAMETERS *

* *

*]1 = STRING TO PRINT *

* *

* SAMPLE USAGE *

* *

* SPRN "TESTING" *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

SPRN MAC

 STY SCRATCH

 _AXLIT]1

 JSR PRNSTR

 LDY SCRATCH

 <<<

 SPRN (macro)

 Input:

]1 = string to print

 Output:

 .A = string length

 Destroys: AXYNVZCM

 Cycles: 64+

 Size: 37 bytes

AppleIIAsmLib Reference Manual 321

v0.5.0

MAC.STRINGS >> SPOS

The SPOS macro finds the

position of a substring within a

larger string and returns that

index via .A and RETURN.

*

``````````````````````````````

* SPOS (NATHAN RIGGS) *

* *

* FIND THE POSITION OF A SUB- *

* STRING IN A GIVEN STRING. *

* *

* PARAMETERS *

* *

*]1 = SOURCE STRING *

*]2 = SUBSTRING *

* *

* SAMPLE USAGE *

* *

* SPOS "A TEST";"TEST" *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

SPOS MAC

 STY SCRATCH

 _MSTR]1;WPAR2

 _MSTR]2;WPAR1

 JSR SUBPOS

 LDY SCRATCH

 <<<

 SPOS (macro)

 Input:

]1 = source string

]2 = substring

 Output:

 .A = substring index

 RETURN = substring index

 RETLEN = 1

 Destroys: AXYNVZCM

 Cycles: 150+

 Size: 103 bytes

AppleIIAsmLib Reference Manual 322

v0.5.0

MAC.STRINGS >> SCPY

The SCPY macro copies a

substring from a source string

and stores it in RETLEN/RETURN

as a new string. The length byte

is also passed back via .A.

*

``````````````````````````````

* SCPY (NATHAN RIGGS) *

* *

* COPY SUBSTRING FROM STRING *

* *

* PARAMETERS *

* *

*]1 = SOURCE STRING *

*]2 = SUBSTRING INDEX *

*]3 = SUBSTRING LENGTH *

* *

* SAMPLE USAGE *

* *

* SCPY "HELLO WORLD";#7;#5 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

SCPY MAC

 STY SCRATCH

 _MSTR]1;WPAR1

 LDA]2

 STA BPAR2

 LDA]3

 SCPY (macro)

 Input:

]1 = source string

]2 = substring index

]3 = substring length

 Output:

 .A = new string length

 RETURN = new string chars

 RETLEN = length byte

 Destroys: AXYNVZCM

 Cycles: 160+

 Size: 72 bytes

AppleIIAsmLib Reference Manual 323

v0.5.0

 STA BPAR1

 JSR SUBCOPY

 LDY SCRATCH

 <<<

AppleIIAsmLib Reference Manual 324

v0.5.0

MAC.STRINGS >> SDEL

The SDEL macro deletes a

substring starting at a given

index in a source string for a

given length of bytes and then

stores the resulting string in

RETLEN/RETURN. The length byte

is additionally set back via .A.

*

``````````````````````````````

* SDEL (NATHAN RIGGS) *

* *

* DELETE SUBSTRING FROM STRING *

* *

* PARAMETERS *

* *

*]1 = SOURCE STRING *

*]2 = SUBSTRING INDEX *

*]3 = SUBSTRING LENGTH *

* *

* SAMPLE USAGE *

* *

* SUBDEL "12345";#2;#2 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

SDEL MAC

 STY SCRATCH

 _MSTR]1;WPAR1

 LDA]2

 STA BPAR2

 LDA]3

 STA BPAR1

 JSR SUBDEL

 LDY SCRATCH

 <<<

 SDEL (macro)

 Input:

]1 = source string

]2 = substring index

]3 = substring length

 Output:

 .A = new string length

 Destroys: AXYNVZCM

 Cycles: 133+

 Size: 90 bytes

AppleIIAsmLib Reference Manual 325

v0.5.0

MAC.STRINGS >> SINS

The SINS macro inserts a

substring into another string

and holds the result in

RETLEN/RETURN, while also

holding the new length in .A.

*

``````````````````````````````

* SINS (NATHAN RIGGS) *

* *

* INSERT SUBSTRING INTO STRING *

* *

* PARAMETERS *

* *

*]1 = STRING ADDRESS *

*]2 = SUBSTRING ADDRESS *

*]3 = SUBSTRING INDEX *

* *

* SAMPLE USAGE *

* *

* SINS "1245";"3";#3 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

SINS MAC

 STY SCRATCH

 _MSTR]1;WPAR2

 _MSTR]2;WPAR1

 LDA]3

 STA BPAR1

 SINS (macro)

 Input:

]1 = string address

]2 = substring address

]3 substring index

 Output:

 .A = new string length

 RETURN = new string chars

 RETLEN = length byte

 Destroys: AXYNVZCM

 Cycles: 161+

 Size: 128 bytes

AppleIIAsmLib Reference Manual 326

v0.5.0

 JSR SUBINS

 LDY SCRATCH

 <<<

AppleIIAsmLib Reference Manual 327

v0.5.0

SUB.PRNSTR >> PRNSTR

The PRNSTR subroutine prints an

8-bit string with a preceding

length byte from the specified

address to the screen via COUT1,

at the current cursor position.

The length of the printed string

is returned in .A.

Note that this is used for

strings with a preceding byte

length only. Zero-terminated

strings, in their limited use,

are covered by the STDIO

library.

``````````````````````````````

* PRNSTR (NATHAN RIGGS) *

* *

* PRINTS STRING TO SCREEN. *

* *

* INPUT: *

* *

* .A = ADDRESS LOBYTE *

* .X = ADDRESS HIBYTE *

* *

* OUTPUT: *

* *

* .A = STRING LENGTH *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 46+ *

* SIZE: 26 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]LEN EQU VARTAB ; STRING LENGTH

]STR EQU ADDR1 ; ZERO-PAGE ADDRESS POINTER

*

PRNSTR

*

 STA]STR ; STORE LOW BYTE OF STRING ADDR

 PRNSTR (sub)

 Input:

 .A = address low byte

 .X = address high byte

 Output:

 .A = string length

 Destroys: AXYNVZCM

 Cycles: 46+

 Size: 26 bytes

AppleIIAsmLib Reference Manual 328

v0.5.0

 STX]STR+1 ; STORE HIGH BYTE OF ADDR

 LDY #0 ; RESET .Y COUNTER

 LDA (]STR),Y ; GET STRING LENGTH

 STA]LEN ; STORE LENGTH

:LP

 INY ; INCREASE COUNTER

 LDA (]STR),Y ; GET CHARACTER FROM STRING

 JSR SCOUT1 ; PRINT CHARACTER TO SCREEN

 CPY]LEN ; IF Y < LENGTH

 BNE :LP ; THEN LOOP

 LDA]LEN ; RETURN LENGTH IN .A

 RTS

AppleIIAsmLib Reference Manual 329

v0.5.0

SUB.STRCAT >> STRCAT

The STRCAT subroutine

concatenates two strings and

stores the new string in RETURN,

holding the length byte in

RETLEN as well as in .A.

Note that when printing or

copying the new string, you

should reference it at RETLEN in

order to include the length byte

as part of the string. As such:

 SPRN #RETURN

Will cause an error, whereas the

proper way to print the returned

string is:

 SPRN #RETLEN

``````````````````````````````

* STRCAT (NATHAN RIGGS) *

* *

* CONCATENATE TWO STRINGS AND *

* STORE THE NEW STRING IN *

* RETURN, WITH THE LENGTH BYTE *

* AT RETLEN. *

* *

* NOTE THAT THE WHOLE STRING *

* IS ACTUALLY PLACED IN RETLEN *

* TO ACCOUNT FOR THE LENGTH *

* BYTE THAT PRECEDES IT. *

* *

* INPUT: *

* *

* WPAR1 = 1ST STRING *

* WPAR2 = 2ND STRING ADDRESS *

* *

* OUTPUT: *

* *

* .A = NEW STRING LENGTH *

* RETURN = NEW STRING ADDRESS *

 STRCAT (sub)

 Input:

 WPAR1 = 1st string addr

 WPAR2 = 2nd string addr

 Output:

 .A = new string length

 RETURN = new string

 RETLEN = length byte

 Destroys: AXYNVZCM

 Cycles: 115+

 Size: 75 bytes

AppleIIAsmLib Reference Manual 330

v0.5.0

* RETLEN = NEW STRING LENGTH *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 115+ *

* SIZE: 75 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]S1LEN EQU VARTAB+1 ; FIRST STRING LENGTH

]S2LEN EQU VARTAB+3 ; SECOND STRING LENGTH

]INDEX EQU WPAR3 ; ADDRESS TO PLACE 2ND STRING

]STR2 EQU WPAR2 ; POINTER TO 2ND STRING

]STR1 EQU WPAR1 ; POINTER TO 1ST STRING

*

STRCAT

*

 LDY #0 ; CLEAR INDEX POINTER

 LDA (]STR1),Y ; GET LENGTH OF 1ST STRING

 STA]S1LEN ; STORE IN 1ST STRING LENGTH

 LDA (]STR2),Y ; GET LENGTH OF 2ND STRING

 STA]S2LEN ; STORE 2ND STRING LENGTH

*

** DETERMINE NUMBER OF CHAR

*

 LDA]S2LEN ; GET 2ND STRING LENGTH

 CLC ; CLEAR CARRY

 ADC]S1LEN ; ADD TO LENGTH OF 1ST STRING

 STA RETLEN ; SAVE SUM OF TWO LENGTHS

 BCC :DOCAT ; NO OVERFLOW, JUST CONCATENATE

 LDA #255 ; OTHERWISE, 255 IS MAX

 STA RETLEN

*

:DOCAT

*

 LDY #0 ; OFFSET INDEX BY 1

:CAT1

 INY

 LDA (]STR1),Y ; LOAD 1ST STRING INDEXED CHAR

 STA RETLEN,Y ; STORE IN RETURN AT SAME INDEX

 CPY]S1LEN ; IF .Y < 1ST STRING LENGTH

 BNE :CAT1 ; THEN LOOP UNTIL FALSE

*

 TYA ; TRANSFER COUNTER TO .A

 CLC ; CLEAR CARRY

 ADC #<RETLEN ; ADD LOW BYTE OF RETLEN ADDRESS

AppleIIAsmLib Reference Manual 331

v0.5.0

 STA]INDEX ; STORE AS NEW ADDRESS LOW BYTE

 LDA #0 ; NOW ADJUST HIGH BYTE

 ADC #>RETLEN+1 ; OF NEW ADDRESS

 STA]INDEX+1 ; AND STORE HIGH BYTE

 CLC ; RESET CARRY

 LDY #0

*

:CAT2

 INY

 LDA (]STR2),Y ; LOAD 2ND STRING INDEXED CHAR

 STA (]INDEX),Y ; STORE AT NEW ADDRESS

 CPY RETLEN ; IF .Y < 2ND STRING LENGTH

 BEQ :EXIT

 BNE :CAT2 ; LOOP UNTIL FALSE

:EXIT

 LDA RETLEN ; RETURN NEW LENGTH IN .A

 RTS

AppleIIAsmLib Reference Manual 332

v0.5.0

SUB.STRCOMP >> STRCMP

The STRCMP subroutine takes two

strings and compares them,

setting the status flags

accordingly. First, the strings

are tested for being a perfect

match. If so, then the Z flag is

set to 1; otherwise, it is set

to 0.

Further, if the strings do not

match, then the strings are

tested regarding length. If the

first string has a length

smaller than the 2nd, then the

carry flag is set to 0;

otherwise, it is set to 1.

``````````````````````````````

* STRCMP (NATHAN RIGGS) *

* *

* COMPARES A STRING TO ANOTHER *

* STRING AND SETS THE FLAGS *

* ACCORDINGLY: *

* *

* Z = 1 IF STRINGS MATCH *

* Z = 0 IF STRINGS DON'T MATCH *

* *

* IF THE STRINGS MATCH UP TO *

* THE LENGTH OF THE SHORTEST *

* STRING, THE STRING LENGTHS *

* ARE THEN COMPARED AND THE *

* CARRY FLAG IS SET AS SUCH: *

* *

* C = 0 IF 1ST STRING < 2ND *

* C = 1 IF 1ST STRING >= 2ND *

* *

* INPUT: *

* *

* WPAR1 = 1ST STRING ADDRESS *

* WPAR2 = 2ND STRING ADDRESS *

* *

* OUTPUT: *

 STRCMP (sub)

 Input:

 WPAR1 = 1st string

 WPAR2 = 2nd string

 Output:

 See description

 Destroys: AXYNVZCM

 Cycles: 61+

 Size: 32 bytes

AppleIIAsmLib Reference Manual 333

v0.5.0

* *

* SEE DESCRIPTION *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 61+ *

* SIZE: 32 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]STR1 EQU WPAR1 ; ZP POINTER TO 1ST STRING

]STR2 EQU WPAR2 ; ZP POINTER TO 2ND STRING

*

STRCMP

*

 LDY #0 ; RESET .Y COUNTER

 LDA (]STR1),Y ; GET LENGTH OF 1ST STRING

 CMP (]STR2),Y ; IF STR1 LENGTH < STR2 LENGTH

 BCC :BEGCMP ; THEN BEGIN COMPARISON; ELSE

 LDA (]STR2),Y ; USE STR2 LENGTH INSTEAD

:BEGCMP

 TAX ; X IS LENGTH OF SHORTER STRING

 BEQ :TSTLEN ; IF LENGTH IS 0, TEST LENGTH

 LDY #1 ; ELSE SET .Y TO FIRST CHAR OF STRINGS

:CMPLP

 LDA (]STR1),Y ; GET INDEXED CHAR OF 1ST STRING

 CMP (]STR2),Y ; COMPARE TO INDEXED CHAR OF 2ND

 BNE :EXIT ; EXIT IF THE CHARS ARE NOT EQUAL

 ; Z,C WILL BE PROPERLY SET

 INY ; INCREASE CHARACTER INDEX

 DEX ; DECREMENT COUNTER

 BNE :CMPLP ; CONTINUE UNTIL ALL CHARS CHECKED

:TSTLEN

 LDY #0 ; NOW COMPARE LENGTHS

 LDA (]STR1),Y ; GET LENGTH OF 1ST STRING

 CMP (]STR2),Y ; SET OR CLEAR THE FLAGS

:EXIT

 RTS

AppleIIAsmLib Reference Manual 334

v0.5.0

SUB.SUBCOPY >> SUBCOPY

The SUBCOPY subroutine copies a

substring from a source string

and stores the new string into

RETLEN/RETURN. The substring

length is additionally returned

in .A.

``````````````````````````````

* SUBCOPY (NATHAN RIGGS) *

* *

* COPY A SUBSTRING FROM A *

* STRING AND STORE IN RETURN. *

* *

* INPUT: *

* *

* BPAR1 = SUBSTRING LENGTH *

* BPAR2 = SUBSTRING INDEX *

* WPAR1 = SOURCE STRING ADDR *

* *

* OUTPUT: *

* *

* .A = SUBSTRING LENGTH *

* RETURN = SUBSTRING *

* RETLEN = SUBSTRING LENGTH *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 46+ *

* SIZE: 27 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

 SUBCOPY (sub)

 Input:

 BPAR1 = substring length

 BPAR2 = substring index

 WPAR1 = source address

 Output:

 .A = substring length

 RETURN = substring chars

 RETLEN = substring length

 Destroys: AXYNVZCM

 Cycles: 46+

 Size: 27 bytes

AppleIIAsmLib Reference Manual 335

v0.5.0

*

]SUBLEN EQU BPAR1 ; SUBSTRING LENGTH

]SUBIND EQU BPAR2 ; SUBSTRING INDEX

]STR EQU WPAR1 ; SOURCE STRING

*

SUBCOPY

*

 LDY]SUBIND ; STARTING COPY INDEX

 LDA]SUBLEN ; SUBSTRING LENGTH

 STA RETLEN ; STORE SUBSTRING LENGTH IN RETLEN

 LDX #0

:COPY

 LDA (]STR),Y ; GET SUBSTRING CHARACTER

 STA RETURN,X ; STORE CHAR IN RETURN

 CPX]SUBLEN ; IF .X COUNTER = SUBSTRING LENGTH

 BEQ :EXIT ; THEN FINISHED WITH LOOP

 INY ; OTHERWISE, INCREMENT .Y

 INX ; AND INCREMENT .X

 CLC ; CLEAR CARRY FOR FORCED BRANCH

 BCC :COPY ; LOOP

:EXIT

 LDA]SUBLEN ; RETURN SUBSTRING LENGTH IN .A

 RTS

AppleIIAsmLib Reference Manual 336

v0.5.0

SUB.SUBDEL >> SUBDEL

The SUBDEL subroutine deletes a

substring at a given index and

length from a source string,

placing the resulting new string

in RETLEN/RETURN.

``````````````````````````````

* SUBDEL (NATHAN RIGGS) *

* *

* INPUT: *

* *

* .A = ADDRESS LOBYTE *

* .X = ADDRESS HIBYTE *

* *

* OUTPUT: *

* *

* .A = STRING LENGTH *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 79+ *

* SIZE: 47 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]SUBLEN EQU BPAR1

]SUBIND EQU BPAR2

]STR EQU WPAR1

*

SUBDEL

 SUBDEL (sub)

 Input:

 BPAR1 = substring length

 BPAR2 = substring index

 WPAR1 = source address

 Output:

 .A = string length

 RETURN = new string chars

 RETLEN = length byte

 Destroys: AXYNVZCM

 Cycles: 79+

 Size: 47 bytes

AppleIIAsmLib Reference Manual 337

v0.5.0

*

 DEC]SUBIND

 INC]SUBLEN

 LDY #0 ; RESET .Y INDEX

 LDA (]STR),Y ; GET STRING LENGTH

 SEC ; SET CARRY

 SBC]SUBLEN ; SUBTRACT SUBSTRING LENGTH

 STA RETLEN ; STORE NEW LENGTH IN RETLEN

 INC RETLEN

:LP1

 INY ; INCREASE .Y INDEX

 LDA (]STR),Y ; LOAD CHARACTER FROM STRING

 STA RETLEN,Y ; STORE IN RETURN

 CPY]SUBIND ; IF .Y != SUBSTRING INDEX

 BNE :LP1 ; THEN CONTINUE LOOPING

*

 LDX]SUBIND ; OTHERWISE, .X INDEX = SUBSTRING

INDEX

 TYA ; TRANSFER .Y INDEX TO .A

 CLC ; CLEAR CARRY

 ADC]SUBLEN ; ADD .Y INDEX TO SUBSTRING LENGTH

 TAY ; FOR NEW POSITION, THEN BACK TO .Y

 DEX

 DEY

:LP2

 INY ; INCREMENT .Y INDEX

 INX ; INCREMEMNT .X INDEX

 LDA (]STR),Y ; GET CHAR AT STARTING AFTER SUBSTRING

 STA RETURN,X ; STORE IN RETURN AT SEPARATE INDEX

 CPX RETLEN ; IF .X != NEW STRING LENGTH,

 BNE :LP2 ; CONTINUE LOOPING

:EXIT

 LDA RETLEN ; LOAD NEW STRING LENGTH IN .A

 RTS

 CPY #255 ; IF AT LENGTH MAX

 BEQ :EXIT ; THEN QUIT COPYING

AppleIIAsmLib Reference Manual 338

v0.5.0

SUB.SUBINS >> SUBINS

The SUBINS subroutine inserts a

substring into a destination

string at a given index. The new

string is stored in

RETLEN/RETURN, with the string

length additionally held in .A.

``````````````````````````````

* SUBINS (NATHAN RIGGS) *

* *

* INPUT: *

* *

* WPAR1 = SUBSTRING ADDRESS *

* WPAR2 = STRING ADDRESS *

* BPAR1 = INSERTION INDEX *

* *

* OUTPUT: *

* *

* .A = NEW STRING LENGTH *

* RETURN = NEW STRING CHARS *

* RETLEN = NEW STRING LENGTH *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 106+ *

* SIZE: 67 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]SUB EQU WPAR1

 SUBINS (sub)

 Input:

 WPAR1 = substring addr

 WPAR2 = string address

 BPAR1 = insertion index

 Output:

 .A = new string length

 RETURN = new string chars

 RETLEN = length byte

 Destroys: AXYNVZCM

 Cycles: 106+

 Size: 67 bytes

AppleIIAsmLib Reference Manual 339

v0.5.0

]STR EQU WPAR2

]INDEX EQU BPAR1

]OLDIND EQU VARTAB

]TMP EQU VARTAB+2

]SUBLEN EQU VARTAB+4

*

SUBINS

*

 DEC]INDEX

 LDY #0 ; SET .Y INDEX TO 0

 LDA (]STR),Y ; GET STRING LENGTH

 STA]TMP ; TEMPORARILY STORE

 LDA (]SUB),Y ; GET SUBSTRING LENGTH

 STA]SUBLEN

 CLC ; CLEAR CARRY

 ADC]TMP ; ADD SOURCE STRING LENGTH

 STA RETLEN ; STORE NEW STRING LENGTH

 BCC :CONT ; IF NO OVERFLOW, CONTINUE

 LDA #255 ; ELSE, NEW STRING LENGTH IS 255

 STA RETLEN ; STORE IN RETLEN

:CONT

*

 LDA]INDEX ; IF INDEX IS 0, GO STRAIGHT

 BEQ :SUBCOPY ; TO COPYING SUBSTRING FIRST

:LP1

 INY ; INCREASE INDEX

 LDA (]STR),Y ; GET SOURCE STRING CHARACTER

 STA RETLEN,Y ; STORE IN RETURN

 CPY]INDEX ; IF WE DON'T HIT SUBSTRING INDEX

 BNE :LP1 ; KEEP ON COPYING

:SUBCOPY

 STY]OLDIND ; STORE CURRENT STRING INDEX

 TYA ; TRANSFER .Y COUNTER TO

 TAX ; .X COUNTER TEMPORARILY

 LDY #0 ; RESET .Y COUNTER

:SUBLP

 INY ; INCREASE .Y SUBSTRING INDEX

 INX ; CONTINUE INCREASING .X INDEX

 LDA (]SUB),Y ; LOAD INDEXED CHAR FROM SUBSTRING

 STA RETLEN,X ; STORE INTO RETURN AT CONTINUING

INDEX

 CPY]SUBLEN ; IF .Y != SUBSTRING LENGTH

 BNE :SUBLP ; THEN CONTINUE COPYING

*

 LDY]OLDIND ; RESTORE OLD INDEX

:FINLP

AppleIIAsmLib Reference Manual 340

v0.5.0

 INY ; INCREASE ORIGINAL INDEX

 INX ; INCREASE NEW INDEX

 LDA (]STR),Y ; LOAD NEXT CHAR FROM STRING

 STA RETLEN,X ; AND STORE AFTER SUBSTRING

 CPY]STR ; IF ORIGINAL STRING LENGTH

 BNE :FINLP ; IS NOT YET HIT, KEEP LOOPING

:EXIT

 LDA RETLEN ; RETURN NEW LENGTH IN .A

 RTS

AppleIIAsmLib Reference Manual 341

v0.5.0

DEMO.STRINGS

The DEMO.STRINGS listing illustrates the usage of each macro in

the strings library. It should be remembered that this demo does

not exhaustively test the macros and routines in question, nor

does it illustrate multiple ways to pass parameters (literal,

address, pointer, etc.).

*

* *

* -< STRINGS DEMO >- *

* *

* VERSION 00.03.00 *

* *

* 20-JAN-2019 *

* *

* *

* NATHAN D. RIGGS *

* NATHAN.RIGGS@OUTLOOK.COM *

* *

*

** ASSEMBLER DIRECTIVES

*

 CYC AVE

 EXP OFF

 TR ON

 DSK DEMO.STRINGS

 OBJ $BFE0

 ORG $6000

*

``````````````````````````````

* TOP INCLUDES (PUTS, MACROS) *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

 PUT MIN.HEAD.REQUIRED

 USE MIN.MAC.REQUIRED

 USE MIN.MAC.STRINGS

 PUT MIN.HOOKS.STRINGS

]HOME EQU $FC58

*

``````````````````````````````

* PROGRAM MAIN BODY *

AppleIIAsmLib Reference Manual 342

v0.5.0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

 JSR]HOME

 _PRN "STRING MACROS AND SUBROUTINES",8D

 _PRN "=============================",8D8D

 _PRN "THIS DEMO ILLUSTRATES THE USAGE",8D

 _PRN "OF MACROS RELATED TO STRING",8D

 _PRN "MANIPULATION. CURRENTLY, THIS IS ",8D

 _PRN "LIMITED TO 8-BIT STRINGS WITH",8D

 _PRN "A PRECEDING LENGTH BYTE, BUT MAY",8D

 _PRN "ENCOMPASS OTHER TYPES IN THE FUTURE.",8D8D

 _PRN "THE FOLLOWING MACROS WILL BE COVERED:",8D8D

 _PRN " - SPRN",8D

 _PRN " - SCAT",8D

 _PRN " - SCPY",8D

 _PRN " - SDEL",8D

 _PRN " - SINS",8D

 _PRN " - SPOS",8D

 _PRN " - SCMP",8D8D

 _WAIT

 JSR]HOME

 _PRN "THE FIRST AND EASIEST MACRO TO",8D

 _PRN "USE AND EXPLAIN IS SPRN, WHICH ",8D

 _PRN "STANDS FOR STRING PRINT. AS THE",8D

 _PRN "NAME IMPLIES, THIS MACRO PRINTS",8D

 _PRN "THE STRING AT A GIVEN ADDRESS USING",8D

 _PRN "COUT. THUS:",8D8D

 _PRN " SPRN #STR1",8D8D

 _PRN "WILL RETURN:",8D8D

 _WAIT

 SPRN #STR1

 _WAIT

 JSR]HOME

 _PRN "THE NEXT MACRO, SCAT, IS USED",8D

 _PRN "TO CONCATENATE ONE STRING TO",8D

 _PRN "ANOTHER, STORING THE NEW STRING",8D

 _PRN "IN RETURN. EITHER A LITERAL",8D

 _PRN "STRING OR AN ADDRESS CAN BE USED",8D

 _PRN "IN EACH PARAMETER. THUS:",8D8D

 _PRN " SCAT 'HELLO,';' WORLD!'",8D

 _PRN " SPRN #RETLEN",8D8D

 _PRN "WILL RETURN:",8D8D

 _WAIT

 SCAT "HELLO,";" WORLD!"

 SPRN #RETLEN

 _WAIT

AppleIIAsmLib Reference Manual 343

v0.5.0

 JSR]HOME

 _PRN "THE NEXT MACRO IS SCPY, WHICH",8D

 _PRN "STANDS FOR SUBSTRING COPY. THIS",8D

 _PRN "MACRO COPIES A SUBSTRING FROM A",8D

 _PRN "GIVEN STRING (LITERAL OR ADDRESS)",8D

 _PRN "AT THE GIVEN INDEX AND LENGTH,",8D

 _PRN "STORING IT IN RETURN. THUS:",8D8D

 _PRN " SCPY 'KILL ALL HUMANS';#1;#8",8D

 _PRN " SPRN #RETLEN",8D8D

 _PRN "RETURNS:",8D8D

 _WAIT

 SCPY "KILL ALL HUMANS";#1;#8

 SPRN #RETLEN

 _WAIT

 JSR]HOME

 _PRN "THE NEXT MACRO, SDEL, DELETES",8D

 _PRN "A SUBSTRING FROM A GIVEN STRING",8D

 _PRN "AND RETURNS THE NEW STRING IN",8D

 _PRN "RETURN. THUS:",8D8D

 _PRN " SDEL 'HELLO, WORLD!';#6;#8",8D

 _PRN " SPRN #RETLEN",8D8D

 _PRN "RETURNS:",8D8D

 _WAIT

 SDEL "HELLO, WORLD!";#6;#8

 SPRN #RETLEN

 _WAIT

 JSR]HOME

 _PRN "THE SPOS MACRO LOOKS FOR A",8D

 _PRN "GIVEN SUBSTRING WITHIN A GIVEN",8D

 _PRN "STRING, RETURNING 0 IF NO MATCH ",8D

 _PRN "IS FOUND OR RETURNING THE INDEX AT",8D

 _PRN "WHICH THE SUBSTRING IS FOUND. THUS:",8D8D

 _PRN " SPOS 'I HATE CAPITALISM';'CAPITALISM'",8D

 _PRN " ",8D

 _PRN "WILL RETURN:",8D8D

 _WAIT

 SPOS "I HATE CAPITALISM";"CAPITALISM"

 DUMP #RETURN;#1

 _WAIT

 JSR]HOME

 _PRN "NEXT WE HAVE THE SINS MACRO, WHICH",8D

 _PRN "STANDS FOR 'SUBSTRING INSERT.' THIS",8D

 _PRN "MACRO INSERTS A SUBSTRING INTO A ",8D

 _PRN "SOURCE STRING AT A GIVEN POSITION AND",8D

 _PRN "PUTS THE NEW STRING IN RETURN. THUS:",8D8D

 _PRN " SINS 'I LOVE BABIES';' TO HATE';#7",8D8D

AppleIIAsmLib Reference Manual 344

v0.5.0

 _PRN "WILL RETURN:",8D8D

 _WAIT

 SINS "I LOVE BABIES";" TO HATE";#7

 SPRN #RETLEN

 _WAIT

 JSR]HOME

 _PRN "LASTLY WE HAVE THE SCMP MACRO, WHICH",8D

 _PRN "STANDS FOR 'STRING COMPARE.' THIS MACRO",8D

 _PRN "COMPARES TWO STRINGS AND SETS STATUS",8D

 _PRN "FLAGS ACCORDINGLY, MAINLY THE ZERO",8D

 _PRN "FLAG AND THE CARRY FLAG.",8D8D

 _WAIT

 _PRN "THE ZERO FLAG IS SET TO 0 IF THE",8D

 _PRN "STRINGS ARE AN EXACT MATCH; OTHERWISE",8D

 _PRN "THE ZERO FLAG IS SET TO 1. IF THE",8D

 _PRN "STRINGS DON'T MATCH, THEY ARE TESTED",8D

 _PRN "TO SEE IF THEY ARE THE SAME LENGTH.",8D

 _PRN "IF THE FIRST STRING IS SMALLER, THEN",8D

 _PRN "THE CARRY IS SET TO 0; IF IT IS ",8D

 _PRN "EQUAL TO OR LARGER THAN THE 2ND, THEN",8D

 _PRN "THE CARRY IS SET TO 1.",8D8D

 _WAIT

 _PRN "THESE CAN BE TESTED BY USING",8D

 _PRN "BRANCH INSTRUCTIONS LIKE BEQ FOR THE ",8D

 _PRN "ZERO FLAG OR BCC FOR THE CARRY. THUS:",8D8D

 _WAIT

 _PRN " SCMP 'TEST';'TEST'",8D

 _PRN " BEQ :NOMATCH",8D

 _PRN " _PRN 'THE STRINGS MATCH!'",8D

 _PRN " JMP :EXIT",8D

 _PRN " :NOMATCH",8D

 _PRN " _PRN 'STRINGS DO NOT MATCH!'",8D

 _PRN " :EXIT",8D8D

 _PRN "WILL RETURN:",8D8D

 _WAIT

 SCMP "TEST";"TEST"

 BEQ NOMATCH

 _PRN "THE STRINGS MATCH!",8D8D

 JMP EXIT1

NOMATCH

 _PRN "THE STRINGS DO NOT MATCH!",8D8D

EXIT1

 _WAIT

 JSR]HOME

 _PRN "FIN.",8D8D

*

AppleIIAsmLib Reference Manual 345

v0.5.0

 JMP $3D0

*

``````````````````````````````

* BOTTOM INCLUDES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

** BOTTOM INCLUDES

*

 PUT MIN.LIB.REQUIRED

*

** INDIVIDUAL SUBROUTINE INCLUDES

*

** STRING SUBROUTINES

*

 PUT MIN.SUB.PRNSTR

 PUT MIN.SUB.STRCAT

 PUT MIN.SUB.STRCOMP

*

** SUBSTRING SUBROUTINES

*

 PUT MIN.SUB.SUBCOPY

 PUT MIN.SUB.SUBDEL

 PUT MIN.SUB.SUBINS

 PUT MIN.SUB.SUBPOS

*

STR1 STR "TEST STRING 1"

STR2 STR "TEST STRING 2"

SUB1 STR "-SUBTEST1-"

STR3 STR "TEST STRING 2"

SUB2 STR "STRING"

AppleIIAsmLib Reference Manual 346

v0.5.0

DISK 6: FILEIO

The FILEIO library contains macros and subroutines dedicated to

file input and output. For the most part, these use the standard

DOS 3.3 and Applesoft commands in order to keep compatibility

with most systems. These will not work without DOS.

It should be noted that any executables that use this library

should be BLOADED into memory and then run through the monitor,

rather than using BRUN. Alternately, the MAKEEXEC utility

included on the disk can be used to create an EXEC file that

automatically does this upon execution.

The FILEIO disk includes the following files:

• DEMO.FILEIO

• HOOKS.FILEIO

• MAC.FILEIO

• SUB.BINLOAD

• SUB.BINSAVE

• SUB.DISKRW

• SUB.FINPUT

• SUB.FPRINT

• SUB.FPSTR

AppleIIAsmLib Reference Manual 347

v0.5.0

HOOKS.FILEIO

The HOOKS.FILEIO file contains hooks related to reading and

writing to the disk. Many of these are unused by the library,

but are included for use by the programmer.

*

``````````````````````````````

* HOOKS.FILEIO *

* *

* THIS FILE CONTAINS MANY OF *

* THE HOOKS RELATED TO FILE *

* INPUT AND OUTPUT. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 21-SEP-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

STEP00 EQU $C080 ; DISK STEPPER PHASE 0 OFF

STEP01 EQU $C081 ; DISK STEPPER PHASE 0 ON

STEP10 EQU $C082 ; DISK STEPPER PHASE 1 OFF

STEP11 EQU $C083 ; DISK STEPPER PHASE 1 ON

STEP20 EQU $C084 ; DISK STEPPER PHASE 2 OFF

STEP21 EQU $C085 ; DISK STEPPER PHASE 2 ON

STEP30 EQU $C086 ; DISK STEPPER HAPSE 3 OFF

STEP31 EQU $C087 ; DISK STEPPER PHASE 3 ON

MOTON EQU $C088 ; DISK MAIN MOTOR OFF

MOTOFF EQU $C089 ; DISK MAIN MOTOR ON

DRV0EN EQU $C08A ; DISK ENABLE DRIVE 1

DRV1EN EQU $C08B ; DISK ENABLE DRIVE 2

Q6CLR EQU $C08C ; DISK Q6 CLEAR

Q6SET EQU $C08D ; DISK Q6 SET

Q7CLR EQU $C08E ; DISK Q7 CLEAR

Q7SET EQU $C08F ; DISK Q7 SET

CWRITE EQU $FECD ; WRITE TO CASSETTE TAPE

CREAD EQU $FEFD ; READ FROM CASSETTE TAPE

IOB EQU $B7E8 ; INPUT/OUTPUT AND CONTROL

; BLOCK TABLE

IOB_SLOT EQU $B7E9 ; SLOT NUMBER

IOB_DRIV EQU $B7EA ; DRIVE NUMBER

IOB_EVOL EQU $B7EB ; EXPECTED VOLUME NUMBER

AppleIIAsmLib Reference Manual 348

v0.5.0

IOB_TRAK EQU $B7EC ; DISK TRACK

IOB_SECT EQU $B7ED ; DISK SECTOR

IOB_DCTL EQU $B7EE ; LOW ORDER BYTE OF THE

; DEVICE CARACTERISTIC TBL

IOB_DCTH EQU $B7EF ; HIGH ORDER OF DCT

IOB_BUFL EQU $B7F0 ; LOW ORDER OF BUFFER

IOB_BUFH EQU $B7F1 ; HIGH

IOB_COMM EQU $B7F4 ; COMMAND CODE; READ/WRITE

IOB_ERR EQU $B7F5 ; ERROR CODE

IOB_AVOL EQU $B7F6 ; ACTUAL VOL NUMBER

IOB_PRES EQU $B7F7 ; PREVIOUS SLOT ACCESSED

IOB_PRED EQU $B7F8 ; PREVIOUS DRIVE ACCESSED

RWTS EQU $3D9 ; DOS RWTS ROUTINE

FCOUT EQU $FDED ; COUT SUBROUTINE

LANG EQU $AAB6 ; DOS LANGUAGE INDICATOR

CURLIN EQU $75

PROMPT EQU $33

FGET EQU $FD0C ; MONITOR GETKEY ROUTINE

FGETLN EQU $FD6F ; MON GETLN ROUTINE

DOSERR EQU $DE ; DOS ERROR LOC

AppleIIAsmLib Reference Manual 349

v0.5.0

MAC.FILEIO

The MAC.FILEIO library holds all of the macros related to disk

input and output. This currently includes:

• BSAVE

• BLOAD

• AMODE

• CMD

• FPRN

• FINP

• SLOT

• DRIVE

• TRACK

• SECT

• DSKR

• DSKW

• DBUFF

• DRWTS

``````````````````````````````

* FILEIO.MAC *

* *

* THIS IS A MACRO LIBRARY FOR *

* FILE INPUT AND OUTPUT, AS *

* WELL AS DISK OPERATIONS. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 21-SEP-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

* *

* SUBROUTINE FILES USED *

* *

* SUB.BINLOAD *

* SUB.BINSAVE *

* SUB.DISKRW *

* SUB.DOSCMD *

* SUB.FINPUT *

* SUB.FPRINT *

AppleIIAsmLib Reference Manual 350

v0.5.0

* SUB.FPSTR *

* *

* LIST OF MACROS *

* *

* BSAVE : BINARY SAVE *

* BLOAD : BINARY LOAD *

* AMODE : TURN ON APPLESOFT *

* CMD : EXECUTE DOS COMMAND *

* FPRN : PRINT TO FILE *

* FINP : INPUT LINE FROM FILE *

* SLOT : SET RWTS SLOT *

* DRIVE : SET RWTS DRIVE *

* TRACK : SET RWTS TRACK *

* SECT : SET RWTS SECTOR *

* DSKR : SET RWTS READ *

* DSKW : SET RWTS WRITE *

* DBUFF : SET BUFFER ADDRESS *

* DRWTS : CALL THE RWTS ROUTE *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

AppleIIAsmLib Reference Manual 351

v0.5.0

MAC.FILEIO >> BLOAD

The BLOAD macro works in the

same way as the BLOAD command in

DOS: it simply loads data from a

binary file into its appropriate

location in memory.

*

``````````````````````````````

* BLOAD (NATHAN RIGGS) *

* *

* LOAD INTO THE GIVEN ADDRESS *

* THE SPECIFIED BINARY FILE. *

* *

* PARAMETERS: *

* *

*]1 = COMMAND STRING OR PTR *

* *

* SAMPLE USAGE: *

* *

* BLOAD "TEST,A$300" *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

BLOAD MAC

 STY SCRATCH

 _MSTR]1;WPAR1

 JSR BINLOAD

 LDY SCRATCH

 <<<

 BLOAD (mac)

 Input:

]1 = string pointer

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 158+

 Size: 110 bytes

AppleIIAsmLib Reference Manual 352

v0.5.0

MAC.FILEIO >> BSAVE

The BSAVE macro saves a given

range of memory at a given

address. This works the same as

the DOS BSAVE command. The

address and length are sent as

part of the string, as such:

 BSAVE “file,A$6000,L256”

*

``````````````````````````````

* BSAVE (NATHAN RIGGS) *

* *

* SAVE THE GIVEN ADDRESS RANGE *

* TO THE SPECIFIED FILE NAME. *

* *

* PARAMETERS: *

* *

*]1 = ADDRESS OF CDM STR *

* *

* SAMPLE USAGE: *

* *

* BSAVE "TEST,A$300,L$100" *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

BSAVE MAC

 STY SCRATCH

 _MSTR]1;WPAR1

 JSR BINSAVE

 LDY SCRATCH

 <<<

 BSAVE (mac)

 Input:

]1 = string pointer

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 124+

 Size: 82 bytes

AppleIIAsmLib Reference Manual 353

v0.5.0

MAC.FILEIO >> AMODE

The AMODE macro “tricks” DOS

into thinking it is in Applesoft

mode. This is primarily used

with FILEIO operations because

they require DOS to run in non-

immediate mode.

*

``````````````````````````````

* AMODE (NATHAN RIGGS) *

* *

* FOOLS DOS INTO THINKING THAT *

* WE ARE IN INDIRECT MODE TO *

* ALLOW FOR TEXT FILE READ AND *

* WRITE OPERATIONS. *

* *

* SAMPLE USAGE: *

* *

* AMODE *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

AMODE MAC

 LDA #1

 STA $AAB6 ; DOS LANG FLAG

 STA $75+1 ; NOT IN DIRECT MODE

 STA $33 ; NOT IN DIRECT MODE

 <<<

 AMODE (mac)

 Input:

 none

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 8+

 Size: 9 bytes

AppleIIAsmLib Reference Manual 354

v0.5.0

MAC.FILEIO >> CMD

The CMD macro executes a DOS

command that is passed via

string.

*

``````````````````````````````

* CMD (NATHAN RIGGS) *

* *

* SIMPLY EXECUTES THE DOS CMD *

* AS IT IS PROVIDED IN THE *

* STRING PASSED AS PARAMETER 1 *

* *

* PARAMETERS: *

* *

*]1 = COMMAND STRING *

* *

* SAMPLE USAGE: *

* *

* CMD "CATALOG" *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

CMD MAC

 STY SCRATCH

 _MSTR]1;WPAR1

 JSR DOSCMD

 LDY SCRATCH

 <<<

 CMD (mac)

 Input:

]1 = string pointer

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 76+

 Size: 52 bytes

AppleIIAsmLib Reference Manual 355

v0.5.0

MAC.FILEIO >> FPRN

The FPRN macro outputs a null-

terminated string to the open

file.

*

``````````````````````````````

* FPRN (NATHAN RIGGS) *

* *

* PRINTS THE GIVEN STRING TO *

* THE FILE THAT IS OPEN FOR *

* WRITING. IF MEMORY ADDRESS *

* IS PASSED, THEN PRINT THE *

* STRING THAT IS AT THAT *

* LOCATION. *

* *

* PARAMETERS: *

* *

*]1 = EITHER A STRING OR *

* MEMLOC OF STRING *

* *

* SAMPLE USAGE: *

* *

* FPRN "TESTING" *

* FPRN $300 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

FPRN MAC

 STY SCRATCH

 IF ",]1

 JSR FPRINT

 ASC]1

 HEX 8D00

 FPRN (mac)

 Input:

]1 = string

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 75+

 Size: 69 bytes

AppleIIAsmLib Reference Manual 356

v0.5.0

 ELSE ; IF PARAM IS ADDR

 _ISLIT]1

 JSR FPSTR ; PRINT STRING

 FIN

 LDY SCRATCH

 <<<

AppleIIAsmLib Reference Manual 357

v0.5.0

MAC.FILEIO >> FSPRN

The FSPRN macro outputs the

contents of a string with a

preceding length byte to an open

file. Only the characters are

written to the file; the length

byte is not.

*

``````````````````````````````

* FSPRN (NATHAN RIGGS) *

* *

* PRINTS A STRING WITH A *

* PRECEDING LENGTH BYTE TO A *

* FILE. *

* *

* PARAMETERS: *

* *

*]1 = EITHER A STRING OR *

* MEMLOC OF STRING *

* *

* SAMPLE USAGE: *

* *

* FPRN "TESTING" *

* FPRN $300 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

FSPRN MAC

 STY SCRATCH

 _MLIT]1;WPAR1

 JSR FPSTR

 LDY SCRATCH

 <<<

 FSPRN (mac)

 Input:

]1 = string or address

 Output:

 .A = string length

 Destroys: AXYNVZCM

 Cycles: 70+

 Size: 25 bytes

AppleIIAsmLib Reference Manual 358

v0.5.0

MAC.FILEIO >> FINP

The FINP macro reads a line of

input from a text file (ended

with a carriage return), and

transfers it to RETURN. The

length byte is stored in RETLEN

and in .A.

*

``````````````````````````````

* FINP (NATHAN RIGGS) *

* *

* GETS A LINE OF TEXT FROM THE *

* FILE OPEN FOR READING AND *

* STORES IT AD THE ADDRRESS *

* SPECIFIED IN THE PARAMETERS. *

* *

* PARAMETERS: *

* *

* NONE, SAVE FOR OPEN FILE *

* *

* SAMPLE USAGE: *

* *

* FINP $300 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

FINP MAC

 STY SCRATCH

 JSR FINPUT

 LDY SCRATCH

 <<<

 FINP (mac)

 Input:

 none

 Output:

 .A = string length

 RETURN = string chars

 RETLEN = length byte

 Destroys: AXYNVZCM

 Cycles: 64+

 Size: 49 bytes

AppleIIAsmLib Reference Manual 359

v0.5.0

MAC.FILEIO >> SLOT

Change the slot for RWTS

routines. In terms of this

library, that refers primarily

to DSKRW.

*

``````````````````````````````

* SLOT (NATHAN RIGGS) *

* *

* CHANGES THE SLOT VALUE IN *

* THE IOB TABLE FOR THE RWTS *

* ROUTINE. JUST USES DOS IOB. *

* *

* PARAMETERS: *

* *

*]1 = SLOT NUMBER *

* *

* SAMPLE USAGE: *

* *

* SLOT #6 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

SLOT MAC

*

 LDA]1

 STA SCRATCH

 ASL SCRATCH

 ASL SCRATCH

 ASL SCRATCH

 ASL SCRATCH ; MUL BY 16

 LDA SCRATCH

 SLOT (mac)

 Input:

]1 = slot number

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 14+

 Size: 14 bytes

AppleIIAsmLib Reference Manual 360

v0.5.0

 STA IOB_SLOT

 <<<

AppleIIAsmLib Reference Manual 361

v0.5.0

MAC.FILEIO >> DRIVE

Change the drive for RWTS

routines. In terms of this

library, that refers primarily

to DSKRW.

*

``````````````````````````````

* DRIVE (NATHAN RIGGS) *

* *

* CHANGES THE DRIVE VALUE IN *

* THE IOB TABLE FOR THE RWTS *

* ROUTINE. JUST USES DOS IOB. *

* *

* PARAMETERS: *

* *

*]1 = DRIVE NUMBER *

* *

* SAMPLE USAGE: *

* *

* DRIVE #1 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

DRIVE MAC

*

 LDA]1

 STA IOB_DRIV

 <<<

 DRIVE (mac)

 Input:

]1 = drive number

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 6+

 Size: 5 bytes

AppleIIAsmLib Reference Manual 362

v0.5.0

MAC.FILEIO >> TRACK

Change the track for RWTS

routines. In terms of this

library, that refers primarily

to DSKRW.

*

``````````````````````````````

* TRACK (NATHAN RIGGS) *

* *

* CHANGES THE TRACK VALUE IN *

* THE IOB TABLE FOR THE RWTS *

* ROUTINE. JUST USES DOS IOB. *

* *

* PARAMETERS: *

* *

*]1 = TRACK NUMBER *

* *

* SAMPLE USAGE: *

* *

* TRACK #5 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

TRACK MAC

*

 LDA]1

 STA IOB_TRAK

 <<<

 TRACK (mac)

 Input:

]1 = track number

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 4+

 Size: 4 bytes

AppleIIAsmLib Reference Manual 363

v0.5.0

MAC.FILEIO >> SECT

Change the sector for RWTS

routines. In terms of this

library, that refers primarily

to DSKRW.

*

``````````````````````````````

* SECT (NATHAN RIGGS) *

* *

* CHANGES THE SECTOR VALUE IN *

* THE IOB TABLE FOR THE RWTS *

* ROUTINE. JUST USES DOS IOB. *

* *

* PARAMETERS: *

* *

*]1 = SECTOR NUMBER *

* *

* SAMPLE USAGE: *

* *

* SECT #3 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

SECT MAC

*

 LDA]1

 STA IOB_SECT

 <<<

 SECT (mac)

 Input:

]1 = sector number

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 4+

 Size: 4 bytes

AppleIIAsmLib Reference Manual 364

v0.5.0

MAC.FILEIO >> DSKR

Sets the DRTWS subroutine to

read mode.

*

``````````````````````````````

* DSKR (NATHAN RIGGS) *

* *

* CHANGES THE RWTS COMMAND TO *

* READ ($01). *

* *

* SAMPLE USAGE: *

* *

* SETDR *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

DSKR MAC

*

 LDA $01

 STA IOB_COMM

 <<<

 DSKR (mac)

 Input:

 none

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 5+

 Size: 5 bytes

AppleIIAsmLib Reference Manual 365

v0.5.0

MAC.FILEIO >> DSKW

Sets the DRWTS subroutine to

write mode.

*

``````````````````````````````

* DSKW (NATHAN RIGGS) *

* *

* CHANGES THE RWTS COMMAND TO *

* WRITE ($02). *

* *

* SAMPLE USAGE: *

* *

* SETDW *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

DSKW MAC

*

 LDA $02

 STA IOB_COMM

 <<<

 DSKW (mac)

 Input:

 none

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 4+

 Size: 5 bytes

AppleIIAsmLib Reference Manual 366

v0.5.0

MAC.FILEIO >> DBUFF

Set the disk buffer address.

*

``````````````````````````````

* DBUFF (NATHAN RIGGS) *

* *

* CHANGES THE BUFFER ADDRESS *

* FOR THE RWTS SUBROUTINE *

* *

* PARAMETERS: *

* *

*]1 = BUFFER ADDRESS *

* *

* SAMPLE USAGE: *

* *

* DBUFF $300 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

DBUFF MAC

*

 LDA #<]1

 STA IOB_BUFL

 LDA #>]1

 STA IOB_BUFH

 <<<

 DBUFF (mac)

 Input:

]1 = address

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 13+

 Size: 10 bytes

AppleIIAsmLib Reference Manual 367

v0.5.0

MAC.FILEIO >> DRWTS

The DRWTS macro either reads or

writes to the disk at the

sector, track, volume, slot and

drive that is set by the

preceding macros. If DSKR is

invoked, then DRWTS is set to

read mode; if DSKW is invoked,

then the macro writes to the

disk.

*

``````````````````````````````

* DRWTS (NATHAN RIGGS) *

* *

* RUNS THE RWTS ROUTINE AFTER *

* THE APPROPRIATE VARIABLES IN *

* THE IOB TABLE ARE SET. *

* *

* SAMPLE USAGE: *

* *

* DRWTS *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

DRWTS MAC

*

 STY SCRATCH

 JSR DISKRW

 LDY SCRATCH

 <<<

 DRWTS (mac)

 Input:

 none

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 45+

 Size: 38 bytes

AppleIIAsmLib Reference Manual 368

v0.5.0

SUB.BINLOAD >> BINLOAD

The BINLOAD subroutine loads a

binary file into memory. The

string passed as a parameter

should follow the exact same

conventions as is used in DOS.

``````````````````````````````

* BINLOAD (NATHAN RIGGS) *

* *

* SIMPLY BLOADS FILE IN MEMORY *

* AS SPECIFIED BY THE STRING *

* PASSED AS A PARAMETER. *

* *

* INPUT: *

* *

* WPAR1 = STRING ADDRESS PTR *

* *

* OUTPUT: *

* *

* NONE *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 124+ *

* SIZE: 82 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]SLEN EQU VARTAB

]ADDR EQU WPAR1

*

BINLOAD

 BINLOAD (sub)

 Input:

 WPAR1 = string address

 pointer

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 124+

 Size: 82 bytes

AppleIIAsmLib Reference Manual 369

v0.5.0

*

 LDA #1 ; TELL DOS TO ENTER APPLESOFT

 STA $AAB6 ; MODE; SWITCH DOS LANG FLAG

 STA $75+1 ; NOT IN DIRECT MODE

 STA $33 ; NOT IN DIRECT MODE

 LDA #$8D ; CARRIAGE RETURN

 JSR FCOUT ; SEND TO COUT

 LDA #$84 ; CTRL-D FOR DOS COMMAND

 JSR FCOUT ; SEND TO COUT

 LDA #$C2 ; B

 JSR FCOUT ; SEND TO COUT

 LDA #$CC ; L

 JSR FCOUT ; SEND TO COUT

 LDA #$CF ; O

 JSR FCOUT ; SEND TO COUT

 LDA #$C1 ; A

 JSR FCOUT ; SEND TO COUT

 LDA #$C4 ; D

 JSR FCOUT ; SEND TO COUT

 LDA #$A0 ; [SPACE]

 JSR FCOUT ; SEND TO COUT

 LDY #0 ; RESET .Y INDEX

 LDA (]ADDR),Y ; GET STRING LENGTH

 STA]SLEN ; STORE IN]SLEN

 LDY #1 ; SET INDEX TO FIRST CHAR

:LP

 LDA (]ADDR),Y ; GET CHAR

 JSR FCOUT ; SEND TO COUT

 INY ; INCREASE INDEX

 CPY]SLEN ; IF .Y < STRING LENGTH,

 BCC :LP ; CONTINUE LOOPING

 BEQ :LP ; IF =, LOOP

 LDA #$8D ; CARRIAGE RETURN

 JSR FCOUT ; SEND TO COUT

 RTS

AppleIIAsmLib Reference Manual 370

v0.5.0

SUB.BINSAVE >> BINSAVE

The BINSAVE subroutine retrieves

the data at a given memory

location and stores it on the

disk under the given filename.

The string passed should follow

the same format as BSAVE on the

command line, with the address

and length specified as DOS

parameters as so:

 “file,A$6000,L256”

``````````````````````````````

* BINSAVE (NATHAN RIGGS) *

* *

* SIMPLY DOES A BINARY SAVE *

* WITH THE COMMAND LINE PARAMS *

* SPECIFIED IN THE STRING AT *

* THE GIVEN ADDRESS. *

* *

* INPUT: *

* *

* WPAR1 = STRING ADDRESS PTR *

* *

* OUTPUT: *

* *

* NONE *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 124+ *

* SIZE: 82 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]SLEN EQU VARTAB

]ADDR EQU WPAR1

*

 BINSAVE (sub)

 Input:

 WPAR1 = string address

 pointer

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 124+

 Size: 82 bytes

AppleIIAsmLib Reference Manual 371

v0.5.0

BINSAVE

*

 LDA #1 ; SET APPLESOFT MODE

 STA $AAB6 ; 1ST, SET DOS LANG FLAG

 STA $75+1 ; NOT IN DIRECT MODE

 STA $33 ; NOT IN DIRECT MODE

 LDA #$8D ; CARRIAGE RETURN

 JSR FCOUT ; SEND TO COUT

 LDA #$84 ; CTRL-D FOR DOS COMMAND

 JSR FCOUT ; SEND TO COUT

 LDA #$C2 ; B

 JSR FCOUT ; SEND TO COUT

 LDA #$D3 ; S

 JSR FCOUT ; SEND TO COUT

 LDA #$C1 ; A

 JSR FCOUT ; SEND TO COUT

 LDA #$D6 ; V

 JSR FCOUT ; SEND TO COUT

 LDA #$C5 ; E

 JSR FCOUT ; SEND TO COUT

 LDA #$A0 ; [SPACE]

 JSR FCOUT ; SEND TO COUT

 LDY #0 ; RESET INDEX TO 0

 LDA (]ADDR),Y ; GET STRING LENGTH

 STA]SLEN ; STORE IN SLEN

 LDY #1 ; SET INDEX TO 1ST CHAR

:LP

 LDA (]ADDR),Y ; LOAD CHAR

 JSR FCOUT ; SEND TO COUT

 INY ; INCREASE INDEX

 CPY]SLEN ; IF .Y <= STRING LENGTH,

 BCC :LP ; THEN CONTINUE LOOPING

 BEQ :LP

 LDA #$8D ; ELSE LOAD CARRIAGE RETURN

 JSR FCOUT ; SEND TO COUT

 RTS

AppleIIAsmLib Reference Manual 372

v0.5.0

SUB.DISKRW >> DISKRW

The DISKRW subroutine initiates

either a read or a write to the

disk, depending on whether the

programmer has used the DSKR

macro to set read mode or DSKW

to set write mode. The slot,

drive, volume and sector to be

written to or read from are also

set by the appropriate macros.

If read mode is set by DSKR,

then DISKRW passes the byte read

via RETURN. If write mode is set

by DSKW, however, then the byte

to write to the disk is first

put into RETURN.

``````````````````````````````

* DISKRW (NATHAN RIGGS) *

* *

* GENERAL PURPOSE ROUTINE FOR *

* READING AND WRITING TO A *

* *

* INPUT: *

* *

* SLOT, DRIVE, VOLUME AND *

* SECTOR, AS WELL AS READ OR *

* WRITE FLAG, SHOULD BE SET *

* BEFORE CALLING SUBROUTINE *

* *

* RETURN = BYTE TO WRITE, IF *

* IN WRITE MODE *

* *

* OUTPUT: *

* *

* .A = ERROR CODE, IF ANY *

* RETURN = BYTE RETURNED, IF *

* IN READ MODE *

* RETLEN = 1 *

* *

* DESTROY: AXYNVBDIZCMS *

 DISKRW (sub)

 Input:

 See description

 Output:

 .A = error code

 RETURN = byte

 read/written

 RETLEN = 1

 Destroys: AXYNVZCM

 Cycles: 41+

 Size: 34 bytes

AppleIIAsmLib Reference Manual 373

v0.5.0

* ^^^^^ ^^^ *

* *

* CYCLES: 41+ *

* SIZE: 34 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

DISKRW

*

:CLEAR

 LDA #00 ; CLEAR EXPECTED

 STA IOB_EVOL ; VOLUME BYTE

 LDA #1 ; BUFFER IS ALWAYS

 STA RETLEN ; A SINGLE BYTE

 LDA #>RETURN ; PASS BUFFER TO RWTS, WHICH

 LDY #<RETURN ; IS THE MOMLOC WHERE THE READ

 JSR RWTS ; OR WRITE DATA IS PASSED; CALL RWTS

 LDA #0 ; CLEAR .A TO INDICATE NO ERRORS

 BCC :EXIT ; IF CARRY IS CLEAR, NO ERRORS

:ERR LDA IOB_ERR ; .A HOLDS ERROR CODE

:EXIT

 LDX #00 ; CLEAR THE SCRATCH LOCATION

 STX $48 ; USED BY RWTS

 RTS

AppleIIAsmLib Reference Manual 374

v0.5.0

SUB.DOSCMD >> DOSCMD

The DOSCMD subroutine simply

executes the DOS command

specified in the string passed.

``````````````````````````````

* DOSCMD (NATHAN RIGGS) *

* *

* EXECUTES A DOS COMMAND THAT *

* IS PASSED VIA A STRING ADDR *

* *

* INPUT: *

* *

* WPAR1 = STRING ADDRESS PTR *

* *

* OUTPUT: *

* *

* NONE *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 76+ *

* SIZE: 52 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]SLEN EQU VARTAB

]ADDR EQU WPAR1

*

DOSCMD

*

 DOSCMD (sub)

 Input:

 WPAR1 = string address

 pointer

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 76+

 Size: 52 bytes

AppleIIAsmLib Reference Manual 375

v0.5.0

 LDA #1 ; SET DOS TO APPLESOFT MODE

 STA $AAB6 ; BY SWITCHING DOS LANG FLAG

 STA $75+1 ; AND SETTING INDIRECT MODE

 STA $33 ; NOT DIRECT MODE

 LDA #$8D ; CARRIAGE RETURN

 JSR FCOUT ; SEND TO COUT

 LDA #$84 ; CTRL-D FOR DOS COMMAND

 JSR FCOUT ; SEND TO COUT

 LDY #0 ; RESET INDEX

 LDA (]ADDR),Y ; GET STRING LENGTH

 STA]SLEN ; HOLD IN]SLEN

 LDY #$01 ; SET INDEX TO FIRST CHARACTER

:LP

 LDA (]ADDR),Y ; LOAD CHARACTER

 JSR FCOUT ; SEND TOU COUT

 INY ; INCREASE INDEX

 CPY]SLEN ; IF .Y <= STRING LENGTH

 BCC :LP ; THEN KEEP LOOPING

 BEQ :LP

 LDA #$8D ; OTHERWISE, LOAD CARRIAGE RETURN

 JSR FCOUT ; AND SEND TO COUT

 RTS

AppleIIAsmLib Reference Manual 376

v0.5.0

SUB.FINPUT >> FINPUT

The FINPUT subroutine reads a

string from an opened text file

and stores it in RETLEN/RETURN.

``````````````````````````````

* FINPUT (NATHAN RIGGS) *

* *

* INPUTS A LINE FROM A TEXT *

* FILE AND STORES IT AS A *

* STRING IN RETLEN/RETURN. *

* *

* INPUT: *

* *

* OPEN FILE TO BE READ *

* *

* OUTPUT: *

* *

* .A = STRING LENGTH *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 54+ *

* SIZE: 41 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]SLEN EQU VARTAB ; STRING LENGTH

*

FINPUT

 FINPUT (sub)

 Input:

 none

 Output:

 .A = string length

 RETURN = string read

 RETLEN = length byte

 Destroys: AXYNVZCM

 Cycles: 54+

 Size: 41 bytes

AppleIIAsmLib Reference Manual 377

v0.5.0

*

 LDX #0 ; INIT LENGTH

 JSR FGETLN ; GET A LINE OF INPUT, ENDED BY $8D

 STX]SLEN ; STORE LENGTH IN]SLEN

 CPX #0 ; IF X = 0, NO STRING TO READ

 BEQ :EXIT ; THEREFORE, EXIT

:INP_CLR

 LDY #0 ; CLEAR OUTPUT INDEX

 LDA]SLEN ; STORE LENGTH BYTE

 STA RETLEN,Y ; PUT LENGTH AT START

:LP

 LDA $0200,Y ; READ KEYBOARD BUFFER

 INY ; INCREASE OUTPUT INDEX

 STA RETLEN,Y ; STORE CHARACTER IN RETURN

 CPY]SLEN ; IF .Y != STRING LENGTH

 BNE :LP ; KEEP LOOPING

:EXIT

 LDA]SLEN ; RETURN LENGTH IN .A

 RTS

AppleIIAsmLib Reference Manual 378

v0.5.0

SUB.FPRINT >> FPRINT

The FPRINT subroutine outputs to

the open file a null-terminated

ASC that follows the call to the

subroutine, as so:

 JSR FPRINT

 ASC “testing”,8D00

For outputting strings with

preceding length bytes, use the

FPSTR subroutine.

``````````````````````````````

* FPRINT (NATHAN RIGGS) *

* *

* PRINTS A NULL-TERMINATED *

* STRING TO A TEXT FILE. THIS *

* STRING SHOULD BE AN ASC THAT *

* FOLLOWS THE JSR TO THIS *

* SUBROUTINE. *

* *

* INPUT: *

* *

* AN ASC FOLLOWS THE CALL *

* TO THIS, FOLLOWED BY 00 *

* *

* OUTPUT: *

* *

* NONE *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^^ *

* *

* CYCLES: 63+ *

* SIZE: 37 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

 FPRINT (sub)

 Input:

 See description

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 63+

 Size: 37 bytes

AppleIIAsmLib Reference Manual 379

v0.5.0

FPRINT

*

 PLA ; GET RETURN ADDRESS LOW BYTE

 STA RETADR ; STORE IN RETURN ADDRESS

 PLA ; GET RETURN ADDRESS HIGH BYTE

 STA RETADR+1 ; STORE HIGH BYTE

 LDY #$01 ; POINT TO INSTRUCTION AFTER RETURN

ADDR

:LP

 LDA (RETADR),Y ; GET CHARACTER FROM STRING

 BEQ :DONE ; IF CHAR IS 00, EXIT LOOP

 JSR FCOUT ; SEND CHARACTER TO COUT

 INY ; INCREASE STRING INDEX

 BNE :LP ; LOOP IF INDEX != 0

:DONE

 CLC ; NOW RESTORE INSTRUCTION POINTER

 TYA ; MOVE INDEX TO .A FOR ADDING

 ADC RETADR ; ADD INDEX TO OLD ADDRESS

 STA RETADR ; STORE AS NEW ADDRESS

 LDA RETADR+1 ; DO THE SAME FOR THE HIGH BYTE

 ADC #$00 ; THEN PUSH HIGH BYTE

 PHA ; TO THE STACK

 LDA RETADR ; PUSH RETURN ADDRESS LOW BYTE

 PHA ; TO THE STACK

 RTS

AppleIIAsmLib Reference Manual 380

v0.5.0

SUB.FPSTR >> FPSTR

The FPSTR subroutine writes a

string with a preceding byte

length to a file. The byte

length itself is not written.

``````````````````````````````

* FPSTR (NATHAN RIGGS) *

* *

* PRINTS THE SPECIFIED STRING *

* AT GIVEN LOCATION TO THE *

* FILE OPEN AND SET TO BE *

* WRITTEN. *

* *

* INPUT: *

* *

* WPAR1 = STRING ADDRESS PTR *

* *

* OUTPUT: *

* *

* .A = STRING LENGTH *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 38+ *

* SIZE: 25 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]SLEN EQU VARTAB ; STRING LENGTH

]ADDR EQU WPAR1 ; STRING ADDRESS POINTER

*

 FPSTR (sub)

 Input:

 WPAR1 = string address

 pointer

 Output:

 .A = string length

 Destroys: AXYNVZCM

 Cycles: 38+

 Size: 25 bytes

AppleIIAsmLib Reference Manual 381

v0.5.0

FPSTR

*

 LDY #0 ; RESET INDEX

 LDA (]ADDR),Y ; GET STRING LENGTH

 STA]SLEN ; STORE IN]SLEN

:LP

 INY ; INCREASE INDEX

 LDA (]ADDR),Y ; GET CHARACTER

 JSR FCOUT ; STORE IN FILE

 CPY]SLEN ; IF .Y != STRING LENGTH

 BNE :LP ; THEN KEEP LOOPING

:EXIT

 TYA ; STRING LENGTH TO .A

 RTS

AppleIIAsmLib Reference Manual 382

v0.5.0

DEMO.FILEIO

This demo contains illustrations of how to use the macros in the

FILEIO library. These are not meant to be exhaustive

demonstrations.

*

``````````````````````````````

* DEMO.FILEIO *

* *

* A DEMO OF THE FILE INPUT AND *

* OUTPUT MACROS. RWTS ROUTINES *

* ARE NOT DEMONSTRATED. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 21-SEP-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

** ASSEMBLER DIRECTIVES

*

 CYC AVE

 EXP OFF

 TR ON

 DSK DEMO.FILEIO

 OBJ $BFE0

 ORG $6000

*

``````````````````````````````

* TOP INCLUDES (HOOKS,MACROS) *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

 PUT MIN.HEAD.REQUIRED

 USE MIN.MAC.REQUIRED

 USE MIN.MAC.FILEIO

 PUT MIN.HOOKS.FILEIO

*

``````````````````````````````

* PROGRAM MAIN BODY *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

AppleIIAsmLib Reference Manual 383

v0.5.0

* *

* NOTE: FOR THIS TO WORK *

* PROPERLY, THE DEMO HAS TO BE *

* BLOADED, THEN EXECUTED VIA *

* THE MONITOR (6000G). IF THIS *

* IS NOT DONE, YOU WILL GET A *

* "FILE NOT FOUND" ERROR WHEN *

* DOING FILE OPERATIONS. *

* *

* FOR YOUR OWN PROJECTS, A WAY *

* TO WORK AROUND THIS IS TO *

* USE AN EXEC FILE TO BLOAD *

* AND EXECUTE THE CODE. *

* *

*

 _PRN " ",8D8D8D8D8D

 _PRN "FILE INPUT/OUTPUT MACROS",8D

 _PRN "------------------------",8D8D

 _PRN "THE BSAVE MACRO SAVES THE GIVEN",8D

 _PRN "ADDRESS RANGE UNDER THE SPECIFIED",8D

 _PRN "BINARY FILE. THE ARGUMENT IS SIMPLY",8D

 _PRN "A STRING THAT WOULD MATCH THE ARGUMENTS",8D

 _PRN "OF A TYPICAL BSAVE STATEMENT IN DOS.",8D8D

 _PRN "BSAVE 'TEST,A$800,L$100' SAVES THE",8D

 _PRN "$100 BYTES LOCATED AT $800 IN THE FILE",8D

 _PRN "TEST.",8D8D

 _PRN "LET'S PUT SOMETHING INTO $300 TO",8D

 _PRN "TEST IT OUT.",8D8D

 LDY #0

LP

 TYA

 STA $800,Y

 INY

 CPY #$100

 BNE LP

 _WAIT

 DUMP #$800;#$100

 _WAIT

 _PRN " ",8D8D

 _PRN " BSAVE 'TEST,A$800,L$100'...."

 BSAVE "TEST,A$800,L$100"

 _PRN "DONE!",8D8D

 _PRN "NOW LET'S CLEAR $100 BYTES AT",8D

AppleIIAsmLib Reference Manual 384

v0.5.0

 _PRN "$800 BEFORE WE RELOAD IT WITH BLOAD.",8D8D

 LDY #0

LP2

 LDA #0

 STA $800,Y

 INY

 CPY #$100

 BNE LP2

 DUMP #$800;#$100

*

 _PRN " ",8D8D

 _PRN "NOW WE CAN BLOAD TEST TO GET $800",8D

 _PRN "BACK INTO THE STATE WE PUT IT.",8D8D

 _PRN "BLOAD 'TEST'...",8D

 _WAIT

 BLOAD "TEST"

 _PRN " ",8D8D

 _PRN "DONE!",8D8D

 DUMP #$0800;#$100

 _PRN " ",8D8D

 _WAIT

*

 _PRN "THE CMD MACRO SIMPLY EXECUTES A",8D

 _PRN "DOS COMMAND, ALONG WITH ANY ARGUMENTS",8D

 _PRN "PASSED TO IT. CMD 'CATALOG', FOR INSTANCE,",8D

 _PRN "RETURNS:",8D8D

 _WAIT

 CMD "CATALOG"

 _WAIT

*

** IF WE ARE TO READ OR WRITE FILES, WE HAVE TO FOOL

** THE COMPUTER TO THINK IT'S IN APPLESOFT MODE. THIS

** IS ACCOMPLISHED WITH THE AMODE MACRO. WITH BINSAVE

** AND BINLOAD, THIS IS ALREADY DONE, SO TECHNICALLY

** WE DON'T HAVE TO DO IT HERE. HOWEVER, THE CMD

** ROUTINE DOESN'T SET IT UP AUTOMATICALLY, SO BE SURE

** TO INCLUDE THIS BEFORE OPENING TEXT FILES.

*

 AMODE

*

 _PRN " ",8D8D8D

 _PRN "TYPICALLY, THE CMD MACRO IS ALSO",8D

 _PRN "USED FOR PREPARING TO READ OR WRITE",8D

 _PRN "TEXT FILES. HOWEVER, BEFORE THIS CAN",8D

 _PRN "BE ACCOMPLISHED, THE TMODE MACRO",8D

 _PRN "MUST BE RUN TO TRICK APPLESOFT INTO",8D

AppleIIAsmLib Reference Manual 385

v0.5.0

 _PRN "BELIEVING IT ISN'T IN IMMEDIATE MODE.",8D8D

 _PRN "TMODE HAS NO ARGUMENTS. THUS, THE",8D

 _PRN "FOLLOWING PREPARES US TO OPEN A TEXT",8D

 _PRN "FILE TO BE WRITTEN TO:",8D8D

 _PRN "AMODE",8D

 _PRN "CMD 'OPEN T.TEXTFILE'",8D

 _PRN "CMD 'WRITE T.TEXTFILE'",8D8D

 _WAIT

*

 _PRN "WE CAN NOW PRINT TO THIS FILE WITH",8D

 _PRN "THE FPRN MACRO. THIS MACRO EITHER",8D

 _PRN "PRINTS A GIVEN LINE OF TEXT TO THE FILE,",8D

 _PRN "FOLLOWED BY A RETURN ($8D), OR PRINTS",8D

 _PRN "THE CHARACTERS IN A STRING AT A GIVEN",8D

 _PRN "ADDRESS. IN THE LATTER CASE, THE LENGTH",8D

 _PRN "OF THE STRING IS NOT PRESERVED; ONLY",8D

 _PRN "THE ASCII IS.",8D8D

 _PRN "FPRN 'ALL IS WELL THAT ENDS WELL.'",8D

 _PRN "FPRN RETORT",8D8D

 CMD "OPEN T.TEXTFILE"

 CMD "WRITE T.TEXTFILE"

 FPRN "ALL IS WELL THAT ENDS WELL."

 FPRN #RETORT

 CMD "CLOSE T.TEXTFILE"

 _PRN " ",8D8D8D

 _PRN "PUTS THE LITERAL PHRASE AND A PHRASE",8D

 _PRN "STORED IN THE RETORT ADDRESS INTO",8D

 _PRN "THE FILE.",8D

 _WAIT

 _PRN " ",8D8D8D

 _PRN "THEN, LIKE ALWAYS, WE MUST CLOSE",8D

 _PRN "THE FILE VIA CMD:",8D8D

 _PRN "CMD 'CLOSE T.TEXTFILE'",8D8D8D

 _WAIT

 _PRN "FINALLY, TO READ THIS TEXT FILE",8D

 _PRN "WE SIMPLY NEED TO OPEN THE",8D

 _PRN "FILE FOR READING VIA THE CMD MACRO,",8D

 _PRN "THEN USE THE FINP MACRO TO READ A ",8D

 _PRN "LINE OF TEXT AND STORE IT IN",8D

 _PRN "MEMORY:",8D8D

 _PRN "CMD 'OPEN T.TEXTFILE'",8D

 _PRN "CMD 'READ T.TEXTFILE'",8D

 _PRN "FINP",8D

 _PRN "CMD 'CLOSE T.TEXTFILE'",8D8D

 CMD "OPEN T.TEXTFILE"

 CMD "READ T.TEXTFILE"

AppleIIAsmLib Reference Manual 386

v0.5.0

 FINP

 CMD "CLOSE T.TEXTFILE"

 _WAIT

 DUMP #RETURN;RETLEN

 _WAIT

*

 _PRN " ",8D8D

 _PRN "THE STRING IS NOW STORED IN",8D

 _PRN "[RETURN], WITH A PRECEDING LENGTH BYTE.",8D

 _PRN "THESE CAN BE PRINTED WITH THE SPRN MACRO",8D

 _PRN "FOUND IN THE STRINGS LIBRARY.",8D8D8D

 _WAIT

*

* *

* W A R N I N G *

* *

*

 _PRN "********************************",8D

 _PRN "********************************",8D8D

 _PRN " WARNING!!!",8D8D

 _PRN "********************************",8D

 _PRN "********************************",8D8D

 _PRN "AT THIS POINT, YOU WANT TO EJECT",8D

 _PRN "THE CURRENT DISK, AND PUT IN",8D

 _PRN "A DISK THAT YOU DON'T MIND ",8D

 _PRN "HAVING TO REFORMAT. ",8D8D

 _PRN "THE REST OF THE ROUTINES ARE",8D

 _PRN "LOW LEVEL DISK ACCESS PROCEDURES,",8D

 _PRN "AND CAN SERIOUSLY DAMAGE A DISK!",8D8D

 _PRN "<<< PRESS A KEY ONCE YOU'RE READY >>>",8D8D

 _WAIT

*

 _PRN "LOW-LEVEL DISK ACCESS IS DONE VIA",8D

 _PRN "THE STANDARD RWTS ROUTINE, WITH A",8D

 _PRN "FEW MACROS THROWN IN TO MAKE IT *FEEL*",8D

 _PRN "MORE SERIALIZED. THE FOLLOWING MACROS",8D

 _PRN "ALTER THE RWTS ROUTINE'S BEAHVIOR:",8D8D

 _PRN "SLOT : SETS THE RWTS SLOT",8D

 _PRN "DRIVE: SETS THE RWTS DRIVE",8D

 _PRN "TRACK: SETS THE TRACK TO BE WRITTEN/READ",8D

AppleIIAsmLib Reference Manual 387

v0.5.0

 _PRN "SECT : SETS THE SECTOR TO BE READ/WRITTEN",8D

 _PRN "SETDR: SET RWTS TO READ MODE",8D

 _PRN "SETDW: SET RWTS TO WRITE MODE",8D

 _PRN "DBUFF: SET THE READ/WRITE BUFFER ADDRESS",8D8D

 _WAIT

 _PRN "EACH OF THESE SETTINGS ARE INHERITED",8D

 _PRN "FROM THE PREVIOUS STATE; IF YOU ARE",8D

 _PRN "ALREADY USING SECTOR 6, DRIVE 1, FOR",8D

 _PRN "EXAMPLE, THEN YOU DON'T HAVE TO SET IT AGAIN",8D

 _PRN "UNLESS YOU WANT THOSE SETTINGS CHANGED.",8D

 _PRN "THIS LIBRARY ALSO USES THE SAME IOB",8D

 _PRN "TABLE AS THE OPERATING SYSTEM (DOS OR",8D

 _PRN "PRODOS) TO CARRY OVER ANY PREVIOUS

SETTINGS.",8D8D

 _WAIT

*

 _PRN "ONCE THE SETTINGS ARE AS DESIRED,",8D

 _PRN "YOU USE THE DRWTS MACRO TO CALL",8D

 _PRN "THE RWTS ROUTINE TO MAKE THE ",8D

 _PRN "APPROPRIATE READ OR WRITE CHANGE TO",8D

 _PRN "THE DISK.",8D8D

 _PRN "FOR THE SAKE OF PLAYING IT SAFE,",8D

 _PRN "WE WON'T BE DOING THAT HERE--YOU CAN",8D

 _PRN "EXPERIMENT ON YOUR OWN WITH THESE CALLS;",8D

 _PRN "THAT WAY IF SOMETHING BAD HAPPENS,",8D

 _PRN "IT'S ON YOU--NOT ME! :)",8D8D8D

 _WAIT

*

 JMP REENTRY

*

RETORT STR "IF YOU ARE RICH, ANYHOW..."

*

``````````````````````````````

* BOTTOM INCLUDES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

 PUT MIN.LIB.REQUIRED

*

** INDIVIDUAL SUBROUTINES

*

** FILEIO SUBROUTINES

*

 PUT MIN.SUB.BINLOAD

 PUT MIN.SUB.BINSAVE

 PUT MIN.SUB.DISKRW

 PUT MIN.SUB.DOSCMD

AppleIIAsmLib Reference Manual 388

v0.5.0

 PUT MIN.SUB.FINPUT

 PUT MIN.SUB.FPRINT

 PUT MIN.SUB.FPSTR

AppleIIAsmLib Reference Manual 389

v0.5.0

DISK 7: CONVERSION UTILITIES

This disk contains macros and subroutines dedicated to

converting strings with numerals into their actual numeric

values and converting numeric values into their string

equivalents. This comes in three flavors: integer, hexadecimal,

or binary.

This disk contains the following files:

• HOOKS.CONVERT

• MAC.CONVERT

• DEMO.CONVERT

• SUB.BINASC2HEX

• SUB.HEX2BINASC

• SUB.HEX2HEXASC

• SUB.HEX2INTASC

• SUB.HEXASX2HEX

• SUB.INTASC2HEX

AppleIIAsmLib Reference Manual 390

v0.5.0

HOOKS.CONVERT

The HOOKS.CONVERT file holds hooks related to string and numeral

conversion. So far, there are no hooks, but the file is still

included to keep consistent with the rest of the library.

Note that the NOP instruction is included because Merlin 8 Pro

will crash if a file is included without any instructions.

``````````````````````````````

* HOOKS.CONVERT *

* *

* HOOKS TO AID IN CONVERTING *

* STRINGS TO NUMBERS AND VICE *

* VERSA, AND ALSO IN BETWEEN. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 25-SEP-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* LICENSE: APACHE 2.0 *

* OS: DOS 3.3 *

* *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

 NOP ; OTHERWISE, MERLIN WILL CRASH

 ; DUE TO EMPTY FILE

AppleIIAsmLib Reference Manual 391

v0.5.0

MAC.CONVERT

This file contains all of the macros pertaining to string and

numeric conversion. They are the following:

• I2STR

• STR2I

• H2STR

• STR2H

• B2STR

• STR2B

``````````````````````````````

* MAC.CONVERT *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 25-SEP-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

* *

* SUBROUTINE FILES NEEDED *

* *

* SUB.BINASC2HEX *

* SUB.HEX2BINASC *

* SUB.HEX2HEXASC *

* SUB.HEX2INTASC *

* SUB.HEXASC2HEX *

* SUB.INTASC2HEX *

* *

* LIST OF MACROS *

* *

* I2STR: INTEGER TO STRING *

* STR2I: STRING TO INTEGER *

* H2STR: HEXADECIMAL TO STRING *

* STR2H: STRING TO HEXADECIMAL *

* B2STR: BINARY TO STRING *

* STR2B: STRING TO BINARY *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

AppleIIAsmLib Reference Manual 392

v0.5.0

MAC.CONVERT >> I2STR

The I2STR macro converts a

numeric value into a string

holding its integer

representation. This value can

be 8-bit or 16-bit, and the sign

of the value is preserved.

``````````````````````````````

* I2STR *

* *

* CONVERTS A 16BIT INTEGER TO *

* ITS STRING EQUIVALENT. *

* *

* PARAMETERS: *

* *

*]1 = VALUE TO CONVERT *

* *

* SAMPLE USAGE: *

* *

* I2STR #11111 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

I2STR MAC

 STY SCRATCH

 _MLIT]1;WPAR1

 JSR HEX2INTASC

 LDY SCRATCH

 <<<

 I2STR (mac)

 Input:

]1 = value to convert

 Output:

 .A = string length

 RETURN = string chars

 RETLEN = length byte

 Destroys: AXYNVZCM

 Cycles: 258+

 Size: 383 bytes

AppleIIAsmLib Reference Manual 393

v0.5.0

MAC.CONVERT >> STR2I

The STR2I macro converts a

string with an integer

representation of a value into

its actual value. The string may

contain a representation of an

8-bit or 16-bit signed integer,

and the real value is passed

back via .A (low byte) and .X

(high byte). The value is

additionally held in RETURN.

*

``````````````````````````````

* STR2I *

* *

* CONVERTS A STRING TO A 16BIT *

* NUMBER EQUIVALENT. *

* *

* PARAMETERS: *

* *

*]1 = STRING OR ITS ADDRESS *

* *

* SAMPLE USAGE: *

* *

* STR2I "1024" *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

STR2I MAC

 STY SCRATCH

 _MSTR]1;WPAR1

 JSR INTASC2HEX

 LDY SCRATCH

 <<<

 STR2I (mac)

 Input:

]1 = string or address

 Output:

 .A = value low byte

 .X = value high byte

 RETURN = value

 RETLEN = value length

 Destroys: AXYNVZCM

 Cycles: 298+

 Size: 227 bytes

AppleIIAsmLib Reference Manual 394

v0.5.0

MAC.CONVERT >> H2STR

The H2STR macro converts a

numeric value into a string

containing its hexadecimal

representation, passing back the

string vial RETLEN/RETURN. This

macro only handles 8-bit values,

meaning that the string length

byte will always be 2.

*

``````````````````````````````

* H2STR *

* *

* CONVERTS A HEX BYTE INTO AN *

* EQUIVALENT STRING IN HEX. *

* *

* PARAMETERS: *

* *

*]1 = HEX VALUE TO CONVERT *

* OR THE ADDRESS *

* *

* SAMPLE USAGE: *

* *

* H2STR #FF *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

H2STR MAC

 STY SCRATCH

 LDA]1

 JSR HEX2HEXASC

 LDY SCRATCH

 <<<

 H2STR (mac)

 Input:

]1 = hex value or address

 Output:

 RETURN = string

 RETLEN = 2

 Destroys: AXYNVZCM

 Cycles: 98+

 Size: 87 bytes

AppleIIAsmLib Reference Manual 395

v0.5.0

MAC.CONVERT >> STR2H

The STR2H macro converts a

string holding a hexadecimal

representation of an 8-bit

numeric value into its actual

value. This value is passed back

via .A and RETURN.

*

``````````````````````````````

* STR2H *

* *

* CONVERTS A HEX STRING TO ITS *

* EQUIVALENT HEX BYTE. *

* *

* PARAMETERS: *

* *

*]1 = STRING OR ITS ADDRESS *

* *

* SAMPLE USAGE: *

* *

* STR2H "FE" *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

STR2H MAC

 STY SCRATCH

 _MSTR]1;WPAR1

 JSR HEXASC2HEX

 LDY SCRATCH

 <<<

 STR2H (mac)

 Input:

]1 = string or address

 Output:

 .A = value returned

 RETURN = value returned

 RETLEN = 1

 Destroys: AXYNVZCM

 Cycles: 114+

 Size: 92 bytes

AppleIIAsmLib Reference Manual 396

v0.5.0

MAC.CONVERT >> B2STR

The B2STR macro converts an 8-

bit numeric value into a string

holding its binary

representation. The string is

returned via RETLEN/RETURN.

*

``````````````````````````````

* B2STR *

* *

* CONVERTS A HEX VALUE TO ITS *

* EQUIVALENT BINARY STRING. *

* *

* PARAMETERS: *

* *

*]1 = HEX VALUE OR ADDRESS *

* *

* SAMPLE USAGE: *

* *

* B2STR #$FE *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

B2STR MAC

 STY SCRATCH

 LDA]1

 STA BPAR1

 JSR HEX2BINASC

 LDY SCRATCH

 <<<

 B2STR (mac)

 Input:

]1 = hex value to convert

 Output:

 RETURN = string chars

 RETLEN = length byte

 Destroys: AXYNVZCM

 Cycles: 152+

 Size: 171 bytes

AppleIIAsmLib Reference Manual 397

v0.5.0

MAC.CONVERT >> STR2B

The STR2B macro converts a

string holding a binary

representation of an 8-bit value

into its corresponding numeric

value. This value is then passed

back via .A as well as in

RETURN.

*

``````````````````````````````

* STR2B *

* *

* CONVERTS A BINARY STRING TO *

* EQUIVALENT HEX VALUE. *

* *

* PARAMETERS: *

* *

*]1 = STRING OR ITS ADDRESS *

* *

* SAMPLE USAGE: *

* *

* STR2B "00110101" *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

STR2B MAC

 STY SCRATCH

 _MSTR]1;WPAR1

 JSR BINASC2HEX

 LDY SCRATCH

 <<<

 STR2B (mac)

 Input:

]1 = string or address

 Output:

 .A = converted value

 RETURN = converted value

 RETLEN = 1

 Destroys: AXYNVZCM

 Cycles: 432+

 Size: 351 bytes

AppleIIAsmLib Reference Manual 398

v0.5.0

SUB.BINASC2HEX >> BINASC2HEX

The BINASC2HEX subroutine

translates a string containing a

representation of eight bits

into its actual numerical byte

value. The value is passed back

via RETURN and .A as well.

``````````````````````````````

* BINASC2HEX (NATHAN RIGGS) *

* *

* CONVERTS A STRING HOLDING *

* 8 CHARACTERS OF 0S AND 1S *

* THAT SIGNIFY A BYTE INTO THE *

* APPROPRIATE HEX VALUE. *

* *

* INPUT: *

* *

* WPAR1 = STRING ADDRESS PTR *

* *

* OUTPUT: *

* *

* .A = HEXADECIMAL VALUE *

* RETURN = HEX VALUE *

* RETLEN = 1 (BYTE LENGTH) *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 400+ *

* SIZE: 320 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

 BINASC2HEX (sub)

 Input:

 WPAR1 = string address

 Output:

 .A = hexadecimal value

 RETURN = hex value

 RETLEN = 1

 Destroys: AXYNVZCM

 Cycles: 400+

 Size: 320 bytes

AppleIIAsmLib Reference Manual 399

v0.5.0

*

]HIGH EQU VARTAB

]LOW EQU VARTAB+2

]NIB EQU VARTAB+4

]STR EQU WPAR1

*

BINASC2HEX

*

 JSR :TESTNIB ; FIRST CHECK HIGH NIBBLE

 LDA]NIB ; (1ST 4 'BITS' IN THE STRING)

 STA]HIGH ; AND STORE HEX IN]HIGH

 LDA]STR ; ADD 4 TO THE STRING ADDRESS

 CLC ; TO GET THE LOW NIBBLE

 ADC #4 ; STRING ADDRESS

 STA]STR

 LDA]STR+1 ; MAKE SURE TO ADJUST

 ADC #0 ; THE HIGH BYTE

 STA]STR+1

 JSR :TESTNIB ; TEST THE LOW NIBBLE OF THE STRING

 LDA]NIB

 STA]LOW ; AND STORE THE LOW NIBBLE HEX

*

 LDA #1 ; STORE BYTE LENGTH

 STA RETLEN ; IN RETLEN

 LDA]HIGH ; LOAD HIGH NIBBLE AND

 ORA]LOW ; EXCLUSIVE-OR IT WITH LOW NIBBLE

 STA RETURN ; TO GET COMPLETE BYTE

 JMP :EXIT

*

** THE :TESTNIB SUBROUTINE TRANSLATES

** A BINARY NIBBLE STRING REPRESENTATION INTO

** ITS EQUIVALENT HEXADECIMAL CODE

*

:TESTNIB

 LDY #0 ; START AT FIRST BINARY DIGIT

 LDA (]STR),Y ; GET EITHER A 0 OR A 1 CHARACTER

 CMP #'0' ; IF = 0

 BEQ :_07 ; THEN THE NIBBLE IS BETWEEN 0 AND 7

 JMP :_8F ; ELSE IT IS BETWEEN 8 AND F

:_07

 LDY #1 ; CHECK SECOND STRING DIGIT

 LDA (]STR),Y ; AGAIN, GET 0 OR 1

 CMP #'0' ; IF = 0

 BEQ :_03 ; THEN NIBBLE BETWEEN 0 AND 3

 JMP :_47 ; ELSE IT IS BETWEEN 4 AND 7

:_03

AppleIIAsmLib Reference Manual 400

v0.5.0

 LDY #2 ; THIRD DIGIT OF NIBBLE

 LDA (]STR),Y ; GET 0 OR 1 FROM STRING

 CMP #'0' ; IF = 0,

 BEQ :_01 ; NIBBLE IS EITHER 0 OR 1

 JMP :_23 ; ELSE EITHER 2 OR 3

:_01

 LDY #3 ; LAST BIT OF NIBBLE STRING

 LDA (]STR),Y ; GET EITHER 0 OR 1

 CMP #'0' ; IF IT IS 0,

 BEQ :_00 ; FIRST NIBBLE IS 0

 LDA #1 ; ELSE IT IS 1

 STA]NIB ; STORE NIBBLE

 JMP :EXIT

:_00 LDA #0 ; NIBBLE IS 0000

 STA]NIB

 JMP :EXIT

*

:_23 LDY #3 ; READ 4TH BIT IN NIBBLE

 LDA (]STR),Y

 CMP #'0' ; IF = "0",

 BEQ :_02 ; THEN THE FIRST NIBBLE IS 2

 LDA #3 ; ELSE IT IS 3

 STA]NIB

 JMP :EXIT

:_02 LDA #$2 ; NIBBLE IS 2

 STA]NIB

 JMP :EXIT

:_47

 LDY #2 ; READ 3RD BIT FROM STRING

 LDA (]STR),Y

 CMP #'0' ; IF = "0",

 BEQ :_45 ; THEN THE 1ST NIBBLE IS 4 OR 5

 JMP :_67 ; ELSE IT IS 6 OR 7

:_45

 LDY #3 ; CHECK 4TH BIT OF BINARY STRING

 LDA (]STR),Y

 CMP #'0' ; IF = "0",

 BEQ :_4 ; THEN FIRST NIB IS 4

 LDA #$5 ; ELSE IT IS 5

 STA]NIB

 JMP :EXIT

:_4 LDA #$4 ; NIBBLE = 4

 STA]NIB

 JMP :EXIT

:_67

 LDY #3 ; CHECK 4TH BIT IN STRING

AppleIIAsmLib Reference Manual 401

v0.5.0

 LDA (]STR),Y

 CMP #'0' ; IF = "0"

 BEQ :_6 ; THEN THE FIRST NIB IS 6

 LDA #$7 ; ELSE IT IS 7

 STA]NIB

 JMP :EXIT

:_6 LDA #$6 ; NIBBLE = 6

 STA]NIB

 JMP :EXIT

*

:_8F ; CHECK VALUE BETWEEN 8 AND F

 LDY #1 ; CHECK SECOND BIT

 LDA (]STR),Y

 CMP #'0' ; IF = "0",

 BEQ :_8B ; THEN NIBBLE IS BETWEEN 8 AND B

 JMP :_CF ; OTHERWISE BETWEEN C AND F

:_8B ; CHECK VALUES 8-B

 LDY #2 ; CHECK 3RD BIT

 LDA (]STR),Y

 CMP #'0' ; IF = "0",

 BEQ :_89 ; NIBBLE IS EITHER 8 OR 9

 JMP :_AB ; ELSE IT IS BETWEEN A AND B

:_89 ; TEST WHETHER 8 OR 9

 LDY #3 ; CHECK 4TH BIT

 LDA (]STR),Y

 CMP #'0' IF = "0",

 BEQ :_8 THEN NIBBLE IS 8

 LDA #9 ; ELSE, IS 9

 STA]NIB

 JMP :EXIT

:_8 LDA #$8 ; NIBBLE = 8

 STA]NIB

 JMP :EXIT

:_AB ; NIBBLE IS EITHER A OR B

 LDY #3 ; CHECK 4TH BIT

 LDA (]STR),Y

 CMP #'0' ; IF = "0"

 BEQ :_A ; THEN NIBBLE IS A

 LDA #$B ; OTHERWISE, IT'S B

 STA]NIB

 JMP :EXIT

:_A LDA #$A ; NIBBLE IS A

 STA]NIB

 JMP :EXIT

:_CF ; NIBBLE IS BETWEEN C AND F

 LDY #2 ; CHECK 3RD BIT

AppleIIAsmLib Reference Manual 402

v0.5.0

 LDA (]STR),Y

 CMP #'0' ; IF = "0",

 BEQ :_CD ; THEN IT IS EITHER C AND D

 JMP :_EF ; OTHERWISE, BETWEEN E AND F

:_CD ; NIBBLE IS EITHER C OR D

 LDY #3 ; CHECK 4TH BIT

 LDA (]STR),Y

 CMP #'0' ; IF IT IS "0",

 BEQ :_C ; THEN NIBBLE IS C

 LDA #$D ; OTHERWISE, IT'S D

 STA]NIB

 JMP :EXIT

:_C LDA #$C ; NIBBLE IS C

 STA]NIB

 JMP :EXIT

:_EF ; NIBBLE IS EITHER E OR F

 LDY #3 ; CHECK 4TH BIT

 LDA (]STR),Y

 CMP #'0' ; IF IT IS "0",

 BEQ :_E ; THEN NIBBLE IS E

 LDA #$F ; OTHERWISE, F

 STA]NIB

 JMP :EXIT

:_E LDA #$E ; SET TO E

 STA]NIB

:EXIT

 RTS

AppleIIAsmLib Reference Manual 403

v0.5.0

SUB.HEX2BINASC >> HEX2BINASC

The HEX2BINASC subroutine

converts a single byte numeric

value into a string carrying the

value’s binary representation.

``````````````````````````````

* HEX2BINASC (NATHAN RIGGS) *

* *

* INPUT: *

* *

* BPAR1 = HEX BYTE TO CONVERT *

* *

* OUTPUT: *

* *

* NONE *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 134+ *

* SIZE: 159 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]BINTAB ASC "0000" ; 0

 ASC "0001" ; 1

 ASC "0010" ; 2

 ASC "0011" ; 3

 ASC "0100" ; 4

 ASC "0101" ; 5

 ASC "0110" ; 6

 ASC "0111" ; 7

 HEX2BINASC (sub)

 Input:

 BPAR1 = hexadecimal byte

 Output:

 RETURN = hex string

 RETLEN = 8

 Destroys: AXYNVZCM

 Cycles: 134+

 Size: 159 bytes

AppleIIAsmLib Reference Manual 404

v0.5.0

 ASC "1000" ; 8

 ASC "1001" ; 9

 ASC "1010" ; A

 ASC "1011" ; B

 ASC "1100" ; C

 ASC "1101" ; D

 ASC "1110" ; E

 ASC "1111" ; F

*

]LEFT EQU VARTAB ; LEFT NIBBLE

]RIGHT EQU VARTAB+2 ; RIGHT NIBBLE

]HBYTE EQU BPAR1 ; HEX BYTE

*

HEX2BINASC

*

 LDA]HBYTE

 AND #$F0 ; FIRST, MASK THE RIGHT NIBBLE

 LSR ; SHIFT RIGHT

 LSR ; SHIFT RIGHT

 LSR ; SHIFT RIGHT

 LSR ; SHIFT RIGHT

 STA]LEFT ; STORE AS LEFT NIBBLE

 LDA]HBYTE

 AND #$0F ; NOW MASK LEFT NIBBLE

 STA]RIGHT ; STORE AS RIGHT NIBBLE

*

** GET LEFT FROM LOOKUP TABLE

*

 ASL]LEFT ; MULTIPLY]LEFT NIBBLE

 ASL]LEFT ; BY FOUR

 LDX]LEFT ; TO GET LOOKUP TABLE OFFSET

 LDA]BINTAB,X ; TRANSFER APPROPRIATE

 STA RETURN ; PART OF THE TABLE TO RETURN

 LDA]BINTAB,X+1

 STA RETURN+1

 LDA]BINTAB,X+2

 STA RETURN+2

 LDA]BINTAB,X+3

 STA RETURN+3

*

** NOW GET RIGHT

*

 ASL]RIGHT ; MULTIPLY]RIGHT BY 4

 ASL]RIGHT ; TO GET LOOKUP TABLE OFFSET

 LDX]RIGHT

 LDA]BINTAB,X ; AND TRANSFER APPROPRIATE

AppleIIAsmLib Reference Manual 405

v0.5.0

 STA RETURN+4 ; STRING TO RETURN AFTER

 LDA]BINTAB,X+1 ; THE PREVIOUS NIBBLE

 STA RETURN+5

 LDA]BINTAB,X+2

 STA RETURN+6

 LDA]BINTAB,X+3

 STA RETURN+7

*

 LDA #8 ; LENGTH IN .A AND RETLEN

 STA RETLEN

 RTS

AppleIIAsmLib Reference Manual 406

v0.5.0

SUB.HEX2HEXASC >> HEX2HEXASC

The HEX2HEXASC subroutine

converts a single byte numeric

value into its string equivalent

in hexadecimal representation.

``````````````````````````````

* HEX2HEXASC (NATHAN RIGGS) *

* *

* INPUT: *

* *

* .A = HEX TO CONVERT *

* *

* OUTPUT: *

* *

* RETURN = HEX STRING *

* RETLEN = 2 *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 80+ *

* SIZE: 77 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]LEFT EQU VARTAB ; LEFT NIBBLE

]RIGHT EQU VARTAB+2 ; RIGHT NIBBLE

]HBYTE EQU VARTAB+4 ; HEX BYTE TO CONVERT

]HEXTAB ASC "0123456789ABCDEF" ; HEX LOOKUP TABLE

*

HEX2HEXASC

 HEX2HEXASC (sub)

 Input:

 .A = hexadecimal value

 Output:

 RETURN = hex string

 RETLEN = 2

 Destroys: AXYNVZCM

 Cycles: 80+

 Size: 77 bytes

AppleIIAsmLib Reference Manual 407

v0.5.0

*

 STA]HBYTE ; STORE HEX PASSED VIA .A

 AND #$F0 ; MASK RIGHT

 LSR

 LSR

 LSR

 LSR

 STA]LEFT ; STORE LEFT NIBBLE

 LDA]HBYTE

 AND #$0F ; MASK LEFT

 STA]RIGHT ; STORE RIGHT NIBBLE

 LDX]LEFT ; GET THE LEFT CHARACTER

 LDA]HEXTAB,X ; FROM LOOKUP TABLE

 STA]LEFT

 LDX]RIGHT ; GET THE RIGHT CHARACTER

 LDA]HEXTAB,X ; FROM LOOKUP TABLE

 STA]RIGHT

 LDA]LEFT ; STORE LEFT IN RETURN

 STA RETURN

 LDA]RIGHT ; STORE RIGHT IN NEXT BYTE

 STA RETURN+1

 LDA #2 ; LENGTH IN RETLEN AND .A

 STA RETLEN

 RTS

AppleIIAsmLib Reference Manual 408

v0.5.0

SUB.HEX2INTASC >> HEX2INTASC

The HEX2INTASC subroutine

converts an 8-bit or 16-bit

value into its string

equivalent, using decimal

notation. Note that if the value

is negative, the string will be

prepended with a “-“ character.

``````````````````````````````

* HEX2INTASC (NATHAN RIGGS) *

* *

* CONVERT A SIGNED HEXADECIMAL *

* VALUE TO AN INTEGER STRING. *

* *

* INPUT: *

* *

* WPAR1 = HEX TO CONVERT *

* *

* OUTPUT: *

* *

* .A = STRING LENGTH *

* RETURN = INTEGER CHARACTERS *

* RETLEN = LENGTH BYTE *

* *

* DESTROYS: AXYNVBDIZCMS *

* ^^^^ ^^^ *

* *

* CYCLES: 226+ *

* SIZE: 352 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]NGFLAG EQU VARTAB ; NEGATIVE FLAG

 HEX2INTASC (sub)

 Input:

 WPAR1 = 16-bit value

 Output:

 .A = string length

 RETURN = integer chars

 RETURN = string length

 Destroys: AXYNVZCM

 Cycles: 226+

 Size: 352 bytes

AppleIIAsmLib Reference Manual 409

v0.5.0

]VALSTR EQU WPAR1 ; HEXADECIMAL TO CONVERT

]MOD10 EQU VARTAB+2 ; VALUE MODULUS 10

*

HEX2INTASC

*

 LDA]VALSTR+1 ; STORE VALUE HIGH BYTE

 STA]NGFLAG ; IN THE NEGATIVE FLAG

 BPL :GETBP ; IF VALUE IS POSITIVE, BRANCH

 LDA #0 ; ELSE SUBTRACT LOW BYTE

 SEC

 SBC]VALSTR

 STA]VALSTR ; STORE AS NEW LOW BYTE

 LDA #0 ; ADJUST HIGH BYTE

 SBC]VALSTR+1

 STA]VALSTR+1

:GETBP

 LDA #0 ; SET BUFFER TO EMPTY

 LDY #0

 STA RETLEN,Y ; BUFFER(0) = 0

*

:CNVERT ; CONVERT VALUE TO STRING

 LDA #0 ; RESET MODULUS

 STA]MOD10

 STA]MOD10+1

 LDX #16

 CLC ; CLEAR CARRY

:DVLOOP

 ROL]VALSTR ; SHIFT CARRY INTO DIVBIT 0

 ROL]VALSTR+1 ; WHICH WILL BE THE QUOTIENT

 ROL]MOD10 ; + SHIFT DIV AT SAME TIME

 ROL]MOD10+1

 SEC ; SET CARRY

 LDA]MOD10 ; SUBTRACT #10 (DECIMAL) FROM

 SBC #10 ; MODULUS 10

 TAY ; SAVE LOW BYTE IN .Y

 LDA]MOD10+1 ; ADJUST HIGHBYTE

 SBC #0 ; SUBTRACT CARRY

 BCC :DECCNT ; IF DIVIDEND < DIVISOR, DECREASE

COUNTER

 STY]MOD10 ; ELSE STORE RESULT IN MODULUS

 STA]MOD10+1 ; NEXT BIT OF QUOTIENT IS A 1,

 ; DIVIDEND = DIVIDEND - DIVISOR

:DECCNT

 DEX ; DECREASE .X COUNTER

 BNE :DVLOOP ; IF NOT 0, CONTINUE DIVIDING

AppleIIAsmLib Reference Manual 410

v0.5.0

 ROL]VALSTR ; ELSE, SHIFT IN LAST CARRY FOR

QUOTIENT

 ROL]VALSTR+1

:CONCH

 LDA]MOD10

 CLC ; CLEAR CARRY

 ADC #$B0 ; ADD '0' CHARACTER TO VALUE

 ; TO GET ACTUAL ASCII CHARACTER

 JSR :CONCAT ; CONCATENATE TO STRING

*

** IF VALUE <> 0 THEN CONTINUE

*

 LDA]VALSTR ; IF VALUE STILL NOT 0,

 ORA]VALSTR+1 ; OR HIGH BIT, THEN KEEP DIVIDING

 BNE :CNVERT ;

*

:EXIT

 LDA]NGFLAG ; IF NEGATIVE FLAG IS SET

 BPL :POS ; TO ZERO, THEN NO SIGN NEEDED

 LDA #173 ; ELSE PREPEND THE STRING

 JSR :CONCAT ; WITH A MINUS SIGN

*

:POS ; VALUE IS POSITIVE

 RTS ; RETLEN

*

:CONCAT ; STRING CONCATENATION SUBROUTINE

 PHA ; SAVE CHAR ON STACK

*

** MOVE BUFFER RIGHT ONE CHAR

*

 LDY #0 ; RESET INDEX

 LDA RETLEN,Y ; GET CURRENT STRING LENGTH

 TAY ; CURRENT LENGTH IS NOW THE INDEX

 BEQ :EXITMR ; IF LENGTH = 0, EXIT CONCATENATION

*

:MVELP

 LDA RETLEN,Y ; GET NEXT CHARACTER

 INY ; INCREASE INDEX

 STA RETLEN,Y ; STORE IT

 DEY ; DECREASE INDEX BY 2

 DEY

 BNE :MVELP ; LOOP UNTIL INDEX IS 0

:EXITMR

 PLA ; GET CHAR BACK FROM STACK

 LDY #1

 STA RETLEN,Y ; STORE THE CHAR AS FIRST CHARACTER

AppleIIAsmLib Reference Manual 411

v0.5.0

 LDY #0 ; RESET INDEX

 LDA RETLEN,Y ; GET LENGTH BYTE

 CLC ; CLEAR CARRY

 ADC #1 ; INC LENGTH BY ONE

 STA RETLEN,Y ; UPDATE LENGTH

*

 LDA RETLEN

 RTS

AppleIIAsmLib Reference Manual 412

v0.5.0

SUB.HEXASC2HEX >> HEXASC2HEX

The HEX2HEXASC subroutine

converts a 2-byte string of a

number in hexadecimal format to

its numeric equivalent. This

value is passed back via .A and

RETURN.

``````````````````````````````

* HEXASC2HEX *

* *

* INPUT: *

* *

* WPAR1 = HEX STRING ADDRESS *

* *

* OUTPUT: *

* *

* .A = HEX BYTE VALUE *

* RETURN = HEX BYTE VALUE *

* RETLEN = 1 *

* *

* DESTROYS: AXYNVBDIZCMS *

* ^^^^ ^^^ *

* *

* CYCLES: 82+ *

* SIZE: 61 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]HI EQU VARTAB ; HIGH BYTE

]LO EQU VARTAB+2 ; LOW BYTE

]STR EQU WPAR1 ; ADDR OF STRING TO CONVERT

*

 HEXASC2HEX (sub)

 Input:

 WPAR1 = string address

 Output:

 .A = hex value

 RETURN = hex value

 RETLEN = 1

 Destroys: AXYNVZCM

 Cycles: 82+

 Size: 61 bytes

AppleIIAsmLib Reference Manual 413

v0.5.0

HEXASC2HEX

 LDY #1 ; GET FIRST HEX CHARACTER

 LDA (]STR),Y

 STA]HI ; STORE IN HIBYTE

 INY ; INCREASE INDEX

 LDA (]STR),Y ; TO GET SECOND HEX CHARACTER

 STA]LO ; AND STORE THAT IN LOW BYTE

*

 SEC ; SET CARRY

 SBC #'0' ; SUBTRACT '0' CHAR FROM]LO CHAR

 CMP #10 ; ASCII NUMERALS OFFSET

 BCC :CONT ; IF NUMERAL, CONTINUE

 SBC #7 ; OTHERWISE SUBTRACT LETTER OFFSET

:CONT

 STA]LO ; STORE VALUE INTO LOW BYTE

 LDA]HI ; NO WORK ON HIGH BYTE

 SEC ; SET CARRY

 SBC #'0' ; SUBTRACT '0' ASCII

 CMP #10 ; IS NUMBER?

 BCC :C2 ; THEN DONE

 SBC #7 ; OTHERWISE LETTER OFFSET

:C2

 STA]HI ; STORE HIGH BYTE VALUE

 ASL ; CLEAR LOW BYTE OF]HI

 ASL

 ASL

 ASL

 ORA]LO ; OR OPERATION TO INSERT

 ; LOW BYTE INTO RESULT

 LDY #1 ; SET LENGTH OF RETURN

 STY RETLEN

 STA RETURN ; PASS BACK VIA RETURN AND .A

 RTS

AppleIIAsmLib Reference Manual 414

v0.5.0

SUB.INTASC2HEX >> INTASC2HEX

The INTASC2HEX subroutine

converts a string of numbers

representing an integer value

into its equivalent value, which

is returned in .A (low byte) and

.X (high byte) as well as in

RETURN. The string must be no

larger than a 16-bit integer,

and the sign is preserved.

``````````````````````````````

* INTASC2HEX (NATHAN RIGGS) *

* *

* INPUT: *

* *

* WPAR1 = STRING ADDRESS *

* *

* OUTPUT: *

* *

* .A = HEX VALUE LOW BYTE *

* .X = HEX VALUE HIGH BYTE *

* RETURN = HEX VALUE *

* RETLEN = 2 *

* *

* DESTROYS: AXYNVBDIZCMS *

* ^^^^ ^^^ *

* *

* CYCLES: 266+ *

* SIZE: 196 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]NACCUM EQU VARTAB

]SIGN EQU VARTAB+4

 INTASC2HEX (sub)

 Input:

 WPAR1 = string address

 Output:

 .A = hex value low byte

 .X = hex val high byte

 RETURN = hex value

 RETLEN = 2

 Destroys: AXYNVZCM

 Cycles: 266+

 Size: 196 bytes

AppleIIAsmLib Reference Manual 415

v0.5.0

]NINDEX EQU VARTAB+6

]STR EQU WPAR1

*

INTASC2HEX

*

 LDY #0 ; INIT INDEX

 LDA (]STR),Y ; GET STRING LENGTH

 TAX ; TRANSFER TO .X

 LDA #1 ; SET NINDEX TO 1

 STA]NINDEX ;

 LDA #0 ; INIT]NACCUM LOW, HIGH

 STA]NACCUM ; ACCUM = 0

 STA]NACCUM+1

 STA]SIGN ; INIT SIGN TO 0 (POSITIVE)

 TXA ; TRANSFER .X BACK TO .A

 BNE :INIT1 ; IF .A != 0, CONTINUE INIT

 JMP :EREXIT ; ELSE, EXIT WITH ERROR--NO STRING

:INIT1

 LDY]NINDEX ; INITIALLY, SET TO 1

 LDA (]STR),Y ; LOAD FIRST CHARACTER

 CMP #173 ; IF .A != "-"

 BNE :PLUS ; THEN NUMBER IS POSITIVE

 LDA #$0FF ; ELSE SET FLAG TO NEGATIVE

 STA]SIGN

 INC]NINDEX ; INCREASE INDEX

 DEX ; DECREMENT LENGTH COUNT

 BEQ :EREXIT ; EXIT WITH ERROR IF .X = 0

 JMP :CNVERT

:PLUS

 CMP #'+'

 BNE :CHKDIG ; START CONVERSION IF 1ST

 ; CHARACTER IS NOT A +

 INC]NINDEX ; INCREASE NEW INDEX

 DEX ; DEC COUNT; IGNORE + SIGN

 BEQ :EREXIT ; ERROR EXIT IF ONLY

 ; + IN THE BUFFER

:CNVERT

 LDY]NINDEX ; GET NEW INDEX

 LDA (]STR),Y ; GET NEXT CHARACTER

:CHKDIG ; CHECK DIGIT

 CMP #$B0 ; "0"

 BMI :EREXIT ; ERROR IF NOT A NUMERAL

 CMP #$BA ; '9'+1; TECHNICALLY :

 BPL :EREXIT ; ERR IF > 9 (NOT NUMERAL)

 PHA ; PUSH DIGIT TO STACK

*

AppleIIAsmLib Reference Manual 416

v0.5.0

** VALID DECIMAL DIGIT SO

** ACCUM = ACCUM * 10

** = ACCUM * (8+2)

** = (ACCUM * 8) + (ACCUM * 2)

*

 ASL]NACCUM

 ROL]NACCUM+1 ; TIMES 2

 LDA]NACCUM

 LDY]NACCUM+1 ; SAVE ACCUM * 2

 ASL]NACCUM

 ROL]NACCUM+1

 ASL]NACCUM

 ROL]NACCUM+1 ; TIMES 8

 CLC

 ADC]NACCUM ; SUM WITH * 2

 STA]NACCUM

 TYA

 ADC]NACCUM+1

 STA]NACCUM+1 ; ACCUM=ACCUM * 10

*

 PLA ; GET THE DIGIT FROM STACK

 SEC ; SET CARRY

 SBC #$B0 ; SUBTRACT ASCII '0'

 CLC ; CLEAR CARRY

 ADC]NACCUM ; ADD TO ACCUMULATION

 STA]NACCUM ; STORE IN ACCUMULATION

 LDA #0 ; NOW ADJUST HIGH BYTE

 ADC]NACCUM+1

 STA]NACCUM+1

 INC]NINDEX ;INC TO NEXT CHARACTER

 DEX ; DECREMENT .X COUNTER

 BNE :CNVERT ; IF .X != 0, CONTINUE CONVERSION

 LDA]SIGN ; ELSE LOAD SIGN FLAG

 BPL :OKEXIT ; IF POSITIVE, EXIT WITHOUT ERROR

 LDA #0 ; ELSE SET THE VALUE TO NEGATIVE

 SEC ; SET CARRY

 SBC]NACCUM ; 0 -]NACCUM

 STA]NACCUM ; STORE AS]NACCUM

 LDA #0 ; ADJUST HIGHBYTE

 SBC]NACCUM+1

 STA]NACCUM+1

*

:OKEXIT

 CLC ; CLEAR CARRY TO SIGNIFY NO ERRORS

 BCC :EXIT

:EREXIT

AppleIIAsmLib Reference Manual 417

v0.5.0

 SEC ; SET CARRY TO INIDICATE ERROR

:EXIT

 LDA #2 ; BYTE LENGTH IS 2

 STA RETLEN

 LDX]NACCUM+1 ; LOAD HIGH BYTE INTO .X

 LDA]NACCUM ; AND LOW BYTE INTO .A

 STA RETURN ; ALSO STORE RESULT IN RETURN

 STX RETURN+1

 RTS

AppleIIAsmLib Reference Manual 418

v0.5.0

DEMO.CONVERT

This demo shows how to use the conversion macros. Note that this

is by no means exhaustive; it is meant to quickly illustrate how

to you the macros only.

*

``````````````````````````````

* DEMO.CONVERT *

* *

* A DEMO OF THE CONVERSION *

* MACROS. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 25-SEP-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

** ASSEMBLER DIRECTIVES

*

 CYC AVE

 EXP OFF

 TR ON

 DSK DEMO.CONVERT

 OBJ $BFE0

 ORG $6000

*

``````````````````````````````

* TOP INCLUDES (PUTS, MACROS) *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

 PUT MIN.HEAD.REQUIRED

 USE MIN.MAC.REQUIRED

 USE MIN.MAC.CONVERT

 PUT MIN.HOOKS.CONVERT

*

``````````````````````````````

* PROGRAM MAIN BODY *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]HOME EQU $FC58

AppleIIAsmLib Reference Manual 419

v0.5.0

]XCOUT EQU $FDF0

*

 JSR]HOME

 _PRN "CONVERSION LIBRARY",8D

 _PRN "==================",8D8D

 _PRN "THIS DEMO SHOWCASES HOW TO USE",8D

 _PRN "THE MACROS IN THE CONVERSION LIBRARY.",8D8D

 _PRN "THESE MACROS ARE USED FOR CONVERTING",8D

 _PRN "NUMBERS INTO STRINGS AND VICE VERSA",8D

 _PRN "IN THREE NUMBERING SYSTEMS: ",8D

 _PRN "DECIMAL, HEXADECIMAL, AND BINARY.",8D8D

 _WAIT

*

 JSR]HOME

 _PRN "INTEGERS AND STRINGS",8D

 _PRN "====================",8D8D

 _PRN "TO CONVERT BETWEEN NUMERALS",8D

 _PRN "AND THEIR INTEGER-BASED EQUIVALENTS.",8D

 _PRN "TO CONVERT FROM A NUMBER TO AN INTEGER",8D

 _PRN "STRING, YOU WOULD USE THE I2STR MACRO,",8D

 _PRN "WHICH STANDS FOR 'INTEGER TO STRING.'",8D

 _PRN "TO CONVERT AN INTEGER STRING TO ITS",8D

 _PRN "NUMERICAL 16-BIT EQUIVALENT, YOU WOULD",8D

 _PRN "USE THE STR2I MACRO--WHICH OF COURSE",8D

 _PRN "STANDS FOR 'STRING TO INTEGER.",8D8D

 _PRN "LET'S TEST THESE TO SEE HOW THEY WORK.",8D

 _WAIT

 JSR]HOME

 _PRN "IN CONVERTING AN INTEGER TO A STRING,",8D

 _PRN "YOU WOULD USE THE I2STR MACRO AS SUCH:",8D8D

 _PRN " I2STR #5309",8D8D

 _PRN "WHICH WILL PRODUCE THE FOLLOWING STRING:",8D8D

 _WAIT

 I2STR #5309

 LDA RETURN

 JSR]XCOUT

 LDA RETURN+1

 JSR]XCOUT

 LDA RETURN+2

 JSR]XCOUT

 LDA RETURN+3

 JSR]XCOUT

 _WAIT

*

 JSR]HOME

 _PRN "THE STR2I MACRO DOES THE OPPOSITE:",8D

AppleIIAsmLib Reference Manual 420

v0.5.0

 _PRN "IT TAKES AN INTEGER STRING AND",8D

 _PRN "CONVERTS IT TO A NUMERIC VALUE. THUS:",8D8D

 _PRN " STR2I '255'",8D

 _PRN " DUMP #RETURN;#2",8D8D

 _PRN "WILL RETURN:",8D8D

 STR2I "255"

 _WAIT

 DUMP #RETURN;#2

 _WAIT

 JSR]HOME

 _PRN "HEXADECIMAL TO STRING",8D

 _PRN "=====================",8D8D

 _PRN "TO CONVERT A HEX VALUE TO A",8D

 _PRN "HEX STRING AND VICE VERSA, YOU",8D

 _PRN "WOULD USE THE H2STR AND STR2H MACROS.",8D8D

 _PRN "THE H2STR MACRO CONVERTS A HEX BYTE",8D

 _PRN "TO ITS STRING EQUIVALENT, AS SUCH:",8D8D

 _PRN " H2STR #$FF",8D

 _PRN " LDA RETURN",8D

 _PRN " JSR]XCOUT",8D8D

 _PRN "RETURNS:",8D8D

 _WAIT

 H2STR #$FF

 LDA RETURN

 JSR]XCOUT

 LDA RETURN+1

 JSR]XCOUT

 _WAIT

 _PRN " ",8D8D

 _PRN "TO TURN A HEX STRING BACK",8D

 _PRN "INTO ITS NUMERIC VALUE, YOU WOULD",8D

 _PRN "THE STR2H MACRO AS SUCH:",8D8D

 _PRN " STR2H 'FF'",8D

 _PRN " DUMP #RETURN;#1",8D8D

 _PRN "WHICH RETURNS:",8D8D

 _WAIT

 STR2H "FF"

 DUMP #RETURN;#1

 _WAIT

*

 JSR]HOME

 _PRN "BINARY STRING CONVERSION",8D

 _PRN "========================",8D8D

 _PRN "LASTLY, WE HAVE MACROS FOR THE",8D

 _PRN "CONVERSION OF BINARY STRINGS TO THEIR",8D

 _PRN "NUMERIC EQUIVELENT AND VICE VERSA:",8D

AppleIIAsmLib Reference Manual 421

v0.5.0

 _PRN "STR2B AND B2STR.",8D8D

 _WAIT

 _PRN "STR2B TAKES A STRING OF ZEROS AND",8D

 _PRN "ONES AND CONVERTS THAT INTO ITS",8D

 _PRN "NUMERIC VALUE, AS SUCH:",8D8D

 _PRN " STR2B '00110011'",8D

 _PRN " DUMP #RETURN;#1",8D8D

 _PRN "WHICH RETURNS:",8D8D

 _WAIT

 STR2B "00110011"

 DUMP #RETURN;#1

 _WAIT

 _PRN "TO CONVERT A NUMERIC VALUE TO",8D

 _PRN "A BINARY STRING, USE THE B2STR",8D

 _PRN "MACRO AS SUCH:",8D8D

 _PRN " B2STR #$FF",8D8D

 _PRN "WHICH RETURNS THE STRING:",8D8D

 _WAIT

 B2STR #$FF

 LDA RETURN

 JSR]XCOUT

 LDA RETURN+1

 JSR]XCOUT

 LDA RETURN+2

 JSR]XCOUT

 LDA RETURN+3

 JSR]XCOUT

 LDA RETURN+4

 JSR]XCOUT

 LDA RETURN+5

 JSR]XCOUT

 LDA RETURN+6

 JSR]XCOUT

 LDA RETURN+7

 JSR]XCOUT

 _WAIT

 JSR]HOME

 _PRN "FIN.",8D8D8D

*

 JMP REENTRY

*

``````````````````````````````

* BOTTOM INCLUDES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

** BOTTOM INCLUDES

AppleIIAsmLib Reference Manual 422

v0.5.0

*

 PUT MIN.LIB.REQUIRED

*

** INDIVIDUAL SUBROUTINE INCLUDES

*

** STRING SUBROUTINES

*

 PUT MIN.SUB.HEX2INTASC

 PUT MIN.SUB.INTASC2HEX

 PUT MIN.SUB.HEX2BINASC

 PUT MIN.SUB.BINASC2HEX

 PUT MIN.SUB.HEX2HEXASC

 PUT MIN.SUB.HEXASC2HEX

*

AppleIIAsmLib Reference Manual 423

v0.5.0

Disk 8: LORES GRAPHICS

The low resolution graphics diskette is dedicated to macros and

subroutines that manipulate low resolution graphics in full-

screen and mixed mode. Many of these subroutine mirror those

found in the STDIO library, as they also will in the HIRES

graphics mode.

The disk contains the following files:

• HOOKS.LORES

• DEMO.LORES

• MAC.LORES

• SUB.LRBLINE

• SUB.LRCHAR

• SUB.LRCIRCLE

• SUB.LRGETPIX

• SUB.LRGFCLR

• SUB.LRGPCLR

• SUB.LRPLOT

• SUB.LRHLINE

• SUB.LRVLINE

AppleIIAsmLib Reference Manual 424

v0.5.0

HOOKS.LORES

The LORES hooks file contains all of the hooks pertaining to low

resolution graphics mode a well as a coned plotting subroutine

for the entire library to use.

``````````````````````````````

* HOOKS.LORES *

* *

* THIS FILE INCLUDES HOODS AND *

* A FEW SUBROUTINES AND TABLES *

* USED BY THE REST OF THE LOW *

* RESOLUTION SUBROUTINES. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 01-OCT-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* LICENSE: APACHE 2.0 *

* OS: DOS 3.3 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

TEXTOFF EQU $C050 ; TURN ON GRAPHICS MODE

TEXTON EQU $C051 ; TURN ON TEXT MODE

MIXEDOFF EQU $C052 ; SET FULLSCREEN MODE FOR GRAPHICS

MIXEDON EQU $C053 ; SET MIXED MODE FOR GRAPHICS

LORES EQU $C056 ; SOFT SWITCH FOR USING LORES GRAPHICS

HIRES EQU $C057 ; SOFT SWITCH TO SPECIFY HIRES

GRAPHICS

VPG1 EQU $C054 ; SET THE VIEWING PAGE TO PAGE 1

VPG2 EQU $C055 ; SET THE VIEWING PAGE TO PAGE 2

LRGBCALC EQU $F847 ; FOR CALCULATING LORES COORDINATES

GBASLO EQU $26 ; LOW BYTE OF A PIXEL ADDRESS

GBASHI EQU $27 ; HIGHT BYTE OF PIXEL ADDRESS

*

]BLACK EQU $00 ; LORES COLOR BLACK

]MAGENTA EQU $01 ; LORES COLOR MAGENTA

]DBLUE EQU $02 ; LORES DARK BLUE

]PURPLE EQU $03 ; LORES COLOR PURPLE

]DGREEN EQU $04 ; LORES COLOR DARK GREEN

]GREY1 EQU $05 ; LORES COLOR FIRST GREY SHADE

]MBLUE EQU $06 ; LORES COLOR MEDIUM BLUE

]LBLUE EQU $07 ; LORES COLOR LIGHT BLUE

AppleIIAsmLib Reference Manual 425

v0.5.0

]BROWN EQU $08 ; LORES COLOR BROWN

]ORANGE EQU $09 ; LORES COLOR ORANGE

]GREY2 EQU $0A ; LORES COLORE GREY SHADE 2

]PINK EQU $0B ; LORES COLOR PINK

MGREEN EQU $0C ; LORES COLOR MEDIUM GREEN

]YELLOW EQU $0D ; LORES COLOR YELLOW

]AQUA EQU $0E ; LORES COLOR AQUAMARINE

]WHITE EQU $0F ; LORES COLOR WHITE

*

*

** THE LOCPLOT SUBROUTINE IS IN THE HOOKS FILE

** BECAUSE IT IS USED, IN SOME CAPACITY, BY THE

** REST OF THE LORES LIBRARY.

*

 JMP]EOF

*

]LOCCOL DS 1 ; LOCAL PLOT COLOR

]MASK DS 2 ; MASK FOR ISOLATING NIBBLE

]COLMASK DS 2 ; COLOR MASK

]X DS 1 ; X COORDINATE FOR PLOT

]Y DS 1 ; Y COORDINATE FOR PLOT

]PAGEOFF DS 1 ; PAGE OFFSET

*

LOCPLOT

*

 STY]Y ; Y POSITION PASSED IN .Y

 STX]X ; X POSITION PASSED IN .X

 STA]LOCCOL ; COLOR PASSED IN .A

 LDA]LOCCOL ; TAKE THE COLOR SENT

 ASL ; AND MOVE IT LEFT 4 BITS

 ASL ; TO THE HIGH BYTE

 ASL

 ASL

 CLC ; CLEAR CARRY

 ADC]LOCCOL ; NOW ADD THE LOW BYTE BACK, MEANING

 STA]LOCCOL ; THAT THE COLOR WILL BE REPEATING

NIBBLES

 LDA LWP ; LOAD THE WORKING PAGE FLAG

 CMP #2 ; IF THE WORKING PAGE IS NOT PAGE 2,

 BNE :PG1 ; THEN ASSUME IT'S PAGE 1.

 LDA #4 ; ELSE, SET OFFSET FOR PAGE 2

 STA]PAGEOFF ; STORE IN THE PAGE OFFEST

 JMP :CNT ; SKIP TO CONTINUE ROUTINE

:PG1

 LDA #0 ; OTHERWISE, IT'S PAGE ONE

 STA]PAGEOFF ; SO THERE IS NO PAGE OFFSET

AppleIIAsmLib Reference Manual 426

v0.5.0

:CNT

 LDA #0

 LDY #0

 LDX #0

 LDA]Y ; GET Y COORDINATE

 LSR ; SHIFT BOTTOM BIT TO CARRY

 ; BUT WHY?

 BCC :EVEN ; IF CARRY = 0, THEN ROW IS EVEN

 LDX #$F0 ; OTHERWISE, IT IS ODD; SO MASK

 ; THE LEFT NIBBLE

 BCS :LPLOT ; IF CARRY IS SET, BRANCH TO PLOTTING

:EVEN

 LDX #$0F ; EVEN, SO MASK LOW BYTE

:LPLOT

 STX]MASK ; STORE THE EVEN OR ODD MASK

 ASL ; SHIFT CARRY BACK INTO BYTE

 TAY ; HOLD VALUE INTO .Y

 LDA LROFF,Y ; GET LORES MEMORY ADDRESS

 CLC ; CLEAR THE CARRY

 ADC]X ; ADD THE X COORDINATE

 STA GBASLO ; STORE LOW BYTE FOR GBASCALC

 INY ; INCREASE Y OFFSET

 LDA LROFF,Y ; GET LORESS MEMORY ADDRESS

 ADC]PAGEOFF ; ADJUST FOR PAGE AND CARRY HIGH

 STA GBASHI ; STORE HIGH BYTE FOR GBASCALC

 LDY #0

 LDA]MASK ; RELOAD THE MASK

 EOR #$FF ; EXCLUSIVE OR THE MASK

 AND (GBASLO),Y ; AND THE LOW FOR GBAS

 STA]COLMASK ; STORE THE COLOR MASK

 LDA]LOCCOL ; LOAD THE COLOR

 AND]MASK ; AND THE MASK

 ORA]COLMASK ; OR WITH THE COLOR MASK

 STA (GBASLO),Y ; STORE INTO GBAS LOW BYTE

 RTS

*

*

LWP DS 1,1 ; BYTE FOR DETERMINING WORKING PAGE

*

** THE FOLLOWING TABLE HELPS WITH FASTER PLOTTING TO THE

** LOW RESOLUTION SCREEN.

*

LROFF DW $400,$480,$500,$580,$600,$680,$700,$780

 DW $428,$4A8,$528,$5A8,$628,$6A8,$728,$7A8

 DW $450,$4D0,$550,$5D0,$650,$6D0,$750,$7D0

*

AppleIIAsmLib Reference Manual 427

v0.5.0

*

]EOF

AppleIIAsmLib Reference Manual 428

v0.5.0

MAC.LORES

The MAC.LORES file holds all of the macros related to low-

resolution graphics, as well as a mirror subroutine of the plot

function for the rest of the library to use.

The following macros are define here:

• LWORKPG

• LVIEWPG

• LRGF

• LRGP

• LPCLR

• LFCLE

• LPOT

• LLINE

• LCIRC

• LHLIN

• LVLIN

• LRGET

• LCHAR

``````````````````````````````

* MAC.LORES *

* *

* THIS IS A MACRO LIBRARY FOR *

* LOW RESOLUTION GRAPHICS. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 01-OCT-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

* *

* SUBROUTINE FILES NEEDED *

* *

* SUB.LRBLINE *

* SUB.LRCHAR *

* SUB.LRCIRCLE *

* SUB.LRGETPIX *

* SUB.LRGFCLR *

AppleIIAsmLib Reference Manual 429

v0.5.0

* SUB.LRGPCLR *

* SUB.LRHLINE *

* SUB.LRPLOT *

* SUB.LRVLINE *

* *

* LIST OF MACROS *

* *

* LWORKPG : SET DRAWING PAGE *

* LVIEWPG : SET VIEWING PAGE *

* LRGF : INIT FULL SCREEN *

* LRGP : INIT PART SCREEN *

* LFCLR : CLEAR FULL SCREEN *

* LPCLR : CLEAR MIXED SCREEN *

* LPLOT : PLT TO SCREEN *

* LLINE : DIAGONAL LINE *

* LCIRC : LORES CIRCLE *

* LVLIN : LORES VERT LINE *

* LHLIN : LORES HORIZ LINE *

* LRGET : GET COLOR OF PIXEL *

* LCHAR : OUTPUT LORES TEXT *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

MAC.LORES

AppleIIAsmLib Reference Manual 430

v0.5.0

MAC.LORES >> LWORKPG

The LWORKPG macro tells the

computer which page to be

reading and writing to for low

resolution graphics (and text as

well, technically). Note that

this does not automatically work

when run from the Merlin disk,

because merlin itself uses page

2 of lores/text and page 2 of

hires graphics.

``````````````````````````````

* LWORKPG *

* *

* SET THE WORKING PAGE TO *

* EITHER PAGE 1 OR PAGE 2. *

* THIS MEANS THAT ALL COMMANDS *

* IN THE LORES LIBRARY WILL *

* PLOT TO THIS PAGE, NO MATTER *

* WHICH PAGE IS BEING VIEWD. *

* *

* PARAMETERS: *

* *

*]1 = PAGE NUMBER *

* *

* SAMPLE USAGE: *

* *

* LWORKPG #1 *

* *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

LWORKPG MAC

 LDA]1 ; LOAD PAGE NUMBER

 CMP #2 ; IF IT IS NOT PAGE 2,

 BNE]__P1 ; THEN ASSUME PAGE 1

 LDA #2 ; ELSE SET WORKING PAGE

 STA LWP ; TO PAGE 2

 LWORKPG (mac)

 Input:

]1 = page to work with,

 either 1 or 2.

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 19+

 Size: 26 bytes

AppleIIAsmLib Reference Manual 431

v0.5.0

 JMP]EXIT

]__P1

 LDA #1 ; SET WORKING PAGE TO PAGE 1

 STA LWP

]EXIT

 <<<

AppleIIAsmLib Reference Manual 432

v0.5.0

MAC.LORES >> LVIEWPG

The LVIEWPG macro indicates

which graphics page should be

shown at a time.

*

``````````````````````````````

* LVIEWPG *

* *

* SET THE VIEWING PAGE FOR LOW *

* RSEOLUTION GRAPHICS. *

* *

* PARAMETERS: *

* *

*]1 = PAGE NUMBER *

* *

* SAMPLE USAGE: *

* *

* LVIEWPG #1 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

LVIEWPG MAC

 LDA]1 ; GET PAGE NUMBER PASSED

 CMP #2 ; IF IT ISN'T 2, THEN

 BNE]P1 ; ASSUME VIEWING PAGE 2

 BIT VPG2 ; SET VIEWING PAGE TO PAGE 2

 JMP]EXIT

 LVIEWPG (mac)

 Input:

]1 = The lores graphics

 page that should be

 displayed on the

 screen. This allows

 you to show one frame

 while working on the

 next.

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 20+

 Size: 21 bytes

AppleIIAsmLib Reference Manual 433

v0.5.0

]P1

 BIT VPG1 ; SET VIEW PAGE TO PAGE 1

]EXIT

AppleIIAsmLib Reference Manual 434

v0.5.0

MAC.LORES >> LRGF

The LRGF macro stands for “Low

Resolution Graphics Full

Screen,” which is pretty self-

explanatory. When invoked, the

instruction sets up full screen

mode for lores graphics.

*

``````````````````````````````

* LRGF *

* *

* SET LOW-RESOLUTION MODE WITH *

* FULL-SCREEN 40X48 RESOLUTION *

* *

* PARAMETERS: *

* *

* NONE *

* *

* SAMPLE USAGE: *

* *

* LRGF *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

LRGF MAC

 BIT LORES

 BIT MIXEDOFF

 BIT TEXTOFF ; GRAPHICS SOFT SWITCH

 <<<

 LRGF (mac)

 Input:

 none

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 9+

 Size: 6 bytes

AppleIIAsmLib Reference Manual 435

v0.5.0

MAC.LORES >> LRGP

The LRGP macro sets up low

resolution mode with room for

four lines of text at the bottom

of the screen.

*

``````````````````````````````

* LRGP *

* *

* SETS THE GRAPHICS MODE TO *

* LORES WITH FOR BOTTOM LINES *

* OF TEXT. *

* *

* PARAMETERS: *

* *

* NONE *

* *

* SAMPLE USAGE: *

* *

* LRGP *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

LRGP MAC

 BIT LORES

 BIT MIXEDON

 BIT TEXTOFF ; GRAPHICS SOFT SWITCH

 <<<

 LRGP (mac)

 Input:

 none

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 12+

 Size: 9 bytes

AppleIIAsmLib Reference Manual 436

v0.5.0

MAC.LORES >> LFCLR

The LFCLR subroutine simply

fills the screen with a

specified color.

*

``````````````````````````````

* LFCLR *

* *

* CLEAR THE LOW RESOLUTION *

* SCREEN IN FULL SCREEN MODE *

* WITH A GIVEN COLOR. *

* *

* PARAMETERS: *

* *

*]1 = FILL COLOR *

* *

* SAMPLE USAGE: *

* *

* LFCLR #15 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

LFCLR MAC

 STY SCRATCH

 LDA]1

 JSR LRGFCLR

 LDY SCRATCH

 <<<

 LFCLR (mac)

 Input:

]1 = screen fill color

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 152+

 Size: 308 bytes

AppleIIAsmLib Reference Manual 437

v0.5.0

MAC.LORES >> LPCLR

Clears the graphical portion of

a partial low resolution screen.

Note that the last 4 lines

composed of text are untouched.

*

``````````````````````````````

* LPCLR *

* *

* CLEAR A PARTIAL LORES SCREEN *

* WITH A GIVEN COLOR. *

* *

* PARAMETERS: *

* *

*]1 = FILL COLOR *

* *

* SAMPLE USAGE: *

* *

* LPCLR #15 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

LPCLR MAC

 STY SCRATCH

 LDA]1

 JSR LRGPCLR

 LDY SCRATCH

 <<<

 LPCLR (mac)

 Input:

]1 = color to fill

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 74+

 Size: 75 bytes

AppleIIAsmLib Reference Manual 438

v0.5.0

MAC.LORES >> LPLOT

Plots a single pixel to the

screen in the given color at

X,Y. Note that an almost exact

copy of this routine exists in

the header fie.

*

``````````````````````````````

* LPLOT *

* *

* PLOT A PIXEL TO THE LORES *

* SCREEN IN THE GIVEN COLOR AT *

* THE GIVEN COORDINATES. *

* *

* PARAMETERS: *

* *

*]1 = X COORDINATE *

*]2 = Y COORDINATE *

*]3 = COLOR *

* *

* SAMPLE USAGE: *

* *

* LPLOT #10;#10;#]WHITE *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

LPLOT MAC

 STY SCRATCH

 LDX]1

 LDY]2

 LDA]3

 JSR LRPLOT

 LDY SCRATCH

 <<<

 LPLOT (mac)

 Input:

]1 = X position

]2 = Y Position

]3 = color

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 295+

 Size: 125 bytes

AppleIIAsmLib Reference Manual 439

v0.5.0

MAC.LORES >> LLINE

A subroutine that draw a line in

low resolution from x1,y1 to y2

in the given color.

*

``````````````````````````````

* LLINE *

* *

* CREATES A DIAGONAL LINE IN *

* LORES GRAPHICS MODE VIA THE *

* BRESSANHAM LINE ALGORITHM. *

* *

* PARAMETERS: *

* *

*]1 = X ORIGIN *

*]2 = X DESTINATION *

*]3 = Y ORIGIN *

*]4 = Y DESTINATION *

*]5 = COLOR *

* *

* SAMPLE USAGE: *

* *

* LLINE #1;#1;#10;#12;#5 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

LLINE MAC

 STY SCRATCH

 LDA]1

 LLINE (mac)

 Input:

]1 = x origin

]2 = x destination

]3 = y origin

]4 = y destination

]5 = color

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 210+

 Size: 299 bytes

AppleIIAsmLib Reference Manual 440

v0.5.0

 STA WPAR1

 LDA]2

 STA WPAR1+1

 LDA]3

 STA WPAR2

 LDA]4

 STA WPAR2+1

 LDA]5

 STA BPAR1

 JSR LRBLINE

 LDY SCRATCH

 <<<

AppleIIAsmLib Reference Manual 441

v0.5.0

MAC.LORES >> LCIRC

The LCIRC macro creates a circle

at the given venter coordinates

x,y with a radius and a given

color. Note that because the

screen is wider than it is high,

circles will sometimes look more

like ovals.

*

``````````````````````````````

* LCIRC *

* *

* CREATE A CIRCLE IN LORES *

* GRAPHICS MODE AT THE CENTER *

* COORDINATES AND RADIUS GIVEN *

* AS WELL AS THE COLOR. BASED *

* ON BRESSENHAM'S CIRCLE ALGO. *

* *

* PARAMETERS: *

* *

*]1 = CENTER X POSITION *

*]2 = CENTER Y POSITION *

*]3 = CIRCLE RADIUS *

*]4 = COLOR *

* *

* SAMPLE USAGE: *

* *

* LCIRC #19;#19;#10;#5 *

* *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

LCIRC MAC

 STY SCRATCH

 LDA]1

 STA WPAR1

 LDA]2

 STA WPAR2

 LDA]3

 LCIRC (mac)

 Input:

]1 = center x

]2 = center y

]3 = circle radius

]4 = color

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 711+

 Size: 536 bytes

AppleIIAsmLib Reference Manual 442

v0.5.0

 STA WPAR3

 LDA]4

 STA BPAR2

 JSR LRCIRCLE

 LDY SCRATCH

 <<<

AppleIIAsmLib Reference Manual 443

v0.5.0

MAC.LORES >> LVLIN

*

``````````````````````````````

* LVLIN *

* *

* CREATE A LORES VERTICAL LINE *

* FROM A Y ORIGIN TO DEST IN *

* THE GIVEN COLOR. *

* *

* PARAMETERS: *

* *

*]1 = Y ORIGIN *

*]2 = Y DESTINATION *

*]3 = X COORDINATE *

*]4 = COLOR *

* *

* SAMPLE USAGE: *

* *

* LVLIN #0;#10;#19;#6 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

LVLIN MAC

 STY SCRATCH

 LDA]1

 STA WPAR1

 LDA]2

 STA WPAR1+1

 LVLIN (mac)

 Input:

]1 = Y origin

]2 = Y Destination

]3 = X coordinate

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 262+

 Size: 96 bytes

AppleIIAsmLib Reference Manual 444

v0.5.0

 LDA]3

 STA BPAR1

 LDA]4

 STA BPAR2

 JSR LRVLINE

 LDY SCRATCH

 <<<

AppleIIAsmLib Reference Manual 445

v0.5.0

MAC.LORES >> LHLIN

*

``````````````````````````````

* LHLIN *

* *

* CREATE A HORIZONTAL LINE IN *

* LORES MODE FROMA GIVEN X *

* ORIGIN TO DESTINATION AT A *

* Y COORDINATE, IN GIVEN COLOR *

* *

* PARAMETERS: *

* *

*]1 = X ORIGIN *

*]2 = X DESTINATION *

*]3 = Y COORDINATE *

*]4 = COLOR *

* *

* SAMPLE USAGE: *

* *

* LHLIN #3;#20;#5;#10 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

LHLIN MAC

 STY SCRATCH

 LDA]1

 STA WPAR1

 LDA]2

 STA WPAR1+1

 LDA]3

 LHLIN (mac)

 Input:

]1 = x origin

]2 = x destination

]3 = y coordinate

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 262+

 Size: 276 bytes

AppleIIAsmLib Reference Manual 446

v0.5.0

 STA BPAR1

 LDA]4

 STA BPAR2

 JSR LRHLINE

 LDY SCRATCH

 <<<

AppleIIAsmLib Reference Manual 447

v0.5.0

MAC.LORES >> LRGET

The LRGET subroutine retrieves

the set color from a given pixel

at the specified x,y coordinate.

*

``````````````````````````````

* LRGET *

* *

* GET THE COLOR OF THE LORES *

* PIXEL AT THE GIVEN COORDS. *

* *

* PARAMETERS: *

* *

*]1 = X COORDINATE *

*]2 = Y COORDINATE *

* *

* SAMPLE USAGE: *

* *

* LRGET #10;#20 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

LRGET MAC

 STY SCRATCH

 LDA]1

 STA BPAR1

 LDA]2

 STA BPAR2

 JSR LRGETPIX

 LDY SCRATCH

 <<<

 LRGET (sub)

 Input:

]1 = x coordinate

]2 = y coordinate

 Output:

 Destroys: AXYNVZCM

 Cycles: 209+

 Size: 258 bytes

AppleIIAsmLib Reference Manual 448

v0.5.0

MAC.LORES >> LCHAR

The LCHAR macro prints a

character in low-resolution mode

at the specified x,y

coordinates. Note that the size

of there letter is 4x5, making

some characters a little awkward

but also ensuring that the same

number of letters can fit both

horizontally and vertically on

the screen.

*

``````````````````````````````

* LCHAR *

* *

* PRINT A LORES CHARACTER TO *

* LORES SCREEN AT A GIVE COLOR *

* AT THE GIVEN COORDINATES. *

* *

* PARAMETERS: *

* *

*]1 = X COORDINATE *

*]2 = Y COORDINATE *

*]3 = ADDRESS OF 3-BYTE CHAR *

*]4 = CHARACTER COLOR *

* *

* SAMPLE USAGE: *

* *

* LCHAR #5;#5;LR_A;#15 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

LCHAR MAC

 STY SCRATCH

 LDA]1

 STA BPAR1

 LCHAR (mac)

 Input:

]1 = x coordinate

]2 = y coordinate

]3 = address of binary

 character

]4 = text color

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 202+

 Size: 506 bytes

AppleIIAsmLib Reference Manual 449

v0.5.0

 LDA]2

 STA BPAR2

 LDA #>]3

 STA WPAR1+1

 LDA #<]3

 STA WPAR1

 LDA]4

 STA BPAR3

 JSR LRCHAR

 LDY SCRATCH

 <<<

AppleIIAsmLib Reference Manual 450

v0.5.0

SUB.LRBLINE >> LRBLINE

The LRBLINE subroutine draws a

line from x1,y1 to x2,y2 in low

resolution using Bressenham’s

line algorithm.

``````````````````````````````

* LRBLINE (NATHAN RIGGS) *

* *

* THIS SUBROUTINE USES THE *

* BRESSENHAM LINE ALGORITHM TO *

* DRAW A DIAGONAL LINE FROM *

* PONT X1,Y1 TO X2,Y2 IN THE *

* SPECIFIED COLOR. *

* *

* INPUT: *

* *

* WPAR1 = X START POSITION *

* WPAR1+1 = Y START POSITION *

* WPAR2 = X ENDING POINT *

* WPAR2+1 = Y ENDING POINT *

* BPAR1 = COLOR OF LINE *

* *

* OUTPUT: *

* *

* NONE *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

 LRBLINE (sub)

 Input:

 WPAR1 = x origin

 WPAR1+1 = y origin

 WPAR2 = x destination

 WPAR2+1 = y destination

 BPAR1 = color of line

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 210+

 Size: 244 bytes

AppleIIAsmLib Reference Manual 451

v0.5.0

* CYCLES: 210+ *

* SIZE: 244 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]X1 EQU WPAR1 ; STARTING X POINT

]Y1 EQU WPAR1+1 ; STARTING Y POINT

]X2 EQU WPAR2 ; ENDING X POINT

]Y2 EQU WPAR2+1 ; ENDING Y POINT

]COLOR EQU BPAR1 ; COLOR OF LINE

*

]DX EQU VARTAB+9 ; CHANGE IN X

]DY EQU VARTAB+10 ; CHANGE IN Y

]SX EQU VARTAB+11 ; X + OR - STEPPER

]SY EQU VARTAB+12 ; Y + OR - STEPPER

]ERR EQU VARTAB+13 ; ERROR QUOTIENT

]ERR2 EQU VARTAB+14 ; BACKUP ERROR

*

LRBLINE

*

** CHECK IF Y STEP IS POSITIVE OR NEGATIVE

*

 LDX #$FF ; .X = -1

 LDA]Y1 ; GET Y1 - Y2

 SEC ; RESET CARRY

 SBC]Y2

 BPL :YSTORE ; IF POSITIVE, SKIP TO STORE

 LDX #1 ; .X = +1

 EOR #$FF ; NEG ACCUMULATOR

 CLC

 ADC #1

:YSTORE

 STA]DY ; STORE CHANGE IN Y

 STX]SY ; STORE + OR - Y STEPPER

*

** NOW CHECK POSITIVE OR NEGATIVE X STEP

*

 LDX #$FF ; .X = -1

 LDA]X1 ; GET X1 - X2

 SEC ; RESET CARRY

 SBC]X2 ; SUBTRACT X2

 BPL :XSTORE ; IF POSITIVE, SKIP TO X STORE

 LDX #1 ; .X = +1

 EOR #$FF ; NEGATIVE ACCUMULATOR

 CLC

 ADC #1

:XSTORE

AppleIIAsmLib Reference Manual 452

v0.5.0

 STA]DX ; STORE CHANGE IN X

 STX]SX ; STORE + OR - X STEPPER

*

** IF CHANGE IN X IS GREATER THAN CHANGE IN Y,

** THEN INITIAL ERROR IS THE CHANGE IN X; ELSE,

** INITIAL ERROR IS THE CHANGE IN Y

*

 CMP]DY ; DX IS ALREADY IN .A

 BEQ :SKIP ; IF EQUAL, US CHANGE IN Y

 BPL :SKIP2 ; IF GREATER THAN, USE CHANGE IN X

:SKIP

 LDA]DY ; GET CHANGE IN Y

 EOR #$FF ; NEGATE

 CLC

 ADC #1

:SKIP2

 STA]ERR ; STORE EITHER DX OR DY IN ERR

 ASL]DX ; DX = DX * 2

 ASL]DY ; DY = DY * 2

*

** NOW LOOP THROUGH EACH POINT ON LINE

*

:LP

*

** PLOT PIXEL FIRST

*

 LDA]COLOR ; .A = COLOR TO PASS

 LDY]Y1 ; .Y = Y POS TO PASS

 LDX]X1 ; .X = X POS TO PASS

 JSR LOCPLOT ; JUMP TO SHARED PLOTTING ROUTINE

*

** NOW CHECK IF X1 = X2, Y = Y2

*

 LDA]X1 ; IF X1 != X2 THEN

 CMP]X2 ; KEEP LOOPING

 BNE :KEEPGO

 LDA]Y1 ; ELSE, CHECK IF Y1 = Y2

 CMP]Y2

 BEQ :EXIT ; IF EQUAL, EXIT; ELSE, LOOP

:KEEPGO

 LDA]ERR ; LOAD ERR AND BACKUP

 STA]ERR2 ; FOR LATER COMPARISON

 CLC ; CLEAR CARRY

 ADC]DX ; ADD CHANGE IN X

 BMI :SKIPX ; IF RESULT IS -, SKIP

 BEQ :SKIPX ; TO CHANGING Y POS

AppleIIAsmLib Reference Manual 453

v0.5.0

 LDA]ERR ; RELOAD ERR

 SEC ; SET CARRY

 SBC]DY ; SUBTRACT CHANGE IN Y

 STA]ERR ; STORE ERROR

 LDA]X1 ; LOAD CURRENT X POSITION

 CLC ; CLEAR CARRY

 ADC]SX ; INCREASE OR DECREASE BY 1

 STA]X1 ; STORE NEW X POSITION

:SKIPX

 LDA]ERR2 ; LOAD EARLIER ERR

 CMP]DY ; IF ERR - CHANGE IN Y IS +

 BPL :SKIPY ; SKIP CHANGING Y POS

 LDA]ERR ; RELOAD ERR

 CLC ; CLEAR CARRY

 ADC]DX ; ADD CHANGE IN X

 STA]ERR ; STORE NEW ERR

 LDA]Y1 ; LOAD Y POSITION

 CLC ; CLEAR CARRY

 ADC]SY ; INCREASE OR DECREASE YPOS BY 1

 STA]Y1 ; STORE NEW Y POSITION

:SKIPY

 JMP :LP ; LOOP LINE DRAWING

:EXIT

 RTS

AppleIIAsmLib Reference Manual 454

v0.5.0

SUB.LRCHAR >> LRCHAR

The LRCHAR subroutine outputs a

letter or number to the low

resolutions screen. These

characters have a 5x6 dimension

so that the same number of

characters fit on each row and

column.

It should be noted that except

for a few characters, like a

comma, the 5th column and 6th row

Are usually left blank.

``````````````````````````````

* LRCHAR (NATHAN RIGGS) *

* *

* THIS SUBROUTINE PLACES A *

* LORES CHARACTER AT A GIVEN *

* POSITION AND COLOR. ALL OF *

* THE CHARACTERS ARE 4*6 IN *

* ORDER TO ALLOW EIGHT LETTERS *

* BOTH HORIZONTALLY AND ALSO *

* VERTICALLY. *

* *

* INPUT: *

* *

* BPAR1 = X POSITION OF CHAR *

* BPAR2 = Y POSITION OF CHAR *

* WPAR1 = ADDRESS OF CHAR DEF *

* *

* OUTPUT: *

* *

* NONE *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 202+ *

* SIZE: 466 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

 LRCHAR (sub)

 Input:

 BPAR1 = x position

 BPAR2 = y position

 WPAR3 = character address

 Output:

 Character to lores screen

 Destroys: AXYNVZCM

 Cycles: 202+

 Size: 466 bytes

AppleIIAsmLib Reference Manual 455

v0.5.0

*

]ORGX EQU BPAR1 ; X POSITION OF CHAR

]ORGY EQU BPAR2 ; Y POSITION OF CHAR

]CADDR EQU WPAR1 ; ADDRESS OF 3-BYTE CHAR DEFINITION

]CBYTE1 EQU VARTAB ; COPY OF 1ST BYTE

]CBYTE2 EQU VARTAB+1 ; COPY OF SECOND

]CBYTE3 EQU VARTAB+2 ; COPY OF THIRD

]X EQU ADDR1 ; PLOTTING X POSITION

]Y EQU ADDR2 ; PLOTTING Y POSITION

]CNT EQU VARTAB+5 ; COUNTER

]COLOR EQU BPAR3 ; CHARACTER COLOR

]TMPBYTE EQU VARTAB+11 ; WORKING BYTE TO READ

]OFFSET EQU VARTAB+12 ; CHARACTER BYTE OFFSET

]NIBBLE EQU VARTAB+13 ; FLAG TO INDICATE 1ST OR 2ND NIBBLE

*

LRCHAR

*

 LDA #0 ; RESET NIBBLE AND OFFSET

 STA]NIBBLE

 STA]OFFSET

*

 LDA]ORGX ; COPY ORGX TO X TO START

 STA]X ; PLOTTING CHAR FROM LEFT TOP

 LDA]ORGY ; DO THE SAME WITH ORGY AND Y

 STA]Y

 LDA]X

 LDY #0 ; RESET BYTE INDEX

 LDA (]CADDR),Y ; GET APPROPRIATE BYTE

 STA]CBYTE1 ; STORE IN DEDICATED VAR

 INY ; NOW DO SECOND BYTE

 LDA (]CADDR),Y

 STA]CBYTE2

 INY ; AND THE THIRD

 LDA (]CADDR),Y

 STA]CBYTE3

*

 LDA #0 ; RESET COUNTER

 STA]CNT ; FOR BITS

:PRELOOP

 LDY]OFFSET ; GET CHAR BYTE OFFSET

 LDA]CBYTE1,Y ; LOAD APPROPRIATE BYTE

 STA]TMPBYTE ; STORE IN WORKING EMORY

:LP1

 SEC ; SET CARRY

 LDA]TMPBYTE ; LOAD WORKING BYTE

 ASL ; SHIFT LEFT BYTE INTO CARRY

AppleIIAsmLib Reference Manual 456

v0.5.0

 STA]TMPBYTE ; STORE NEW WORKING BYTE

 BCC :NOPLOT ; IF CARRY HOLDS A 0, DON'T PLOT

 LDA]COLOR ; OTHERWISE, PLOT

 LDY]Y

 LDX]X

 JSR LOCPLOT

:NOPLOT

 INC]X ; INCREASE X COUNTER, WHETHER PLOTTED

 LDA]CNT ; OR NOT

 CMP #3 ; IF # OF BITS = 4, THEN

 BEQ :NEXTLP ; WE'RE DONE WITH THIS NIBBLE

 INC]CNT ; INCREASE THE BIT COUNTER

 JMP :LP1 ; LOOP AGAIN UNTIL NIBBLE DONE

:NEXTLP

*

 INC]NIBBLE ; NOW INCREASE TO 2ND NIBBLE

 INC]Y ; INCREASE Y PLOT POSITION, SINCE

 LDA #0 ; EACH LINE IS 4 BITS LONG

 STA]CNT ; RESET COUNTER

 LDA]ORGX ; RESET X POSITION

 STA]X

 LDA]NIBBLE ; CHECK IF NIBBLE 2 IS DONE

 CMP #2 ; AND IF SO,

 BEQ :NEXTLP2 ; GET OUT OF ANOTHER LOOP

 JMP :LP1 ; OTHERWISE, KEEP LOOPING FOR 2ND

NIBBLE

:NEXTLP2

 INC]OFFSET ; NOT INCREASE CHARACTER BYTE OFFSET

 LDA #0 ; RESET NIBBLE TO FIRST NIBBLE

 STA]NIBBLE

 LDA]ORGX ; RESET X POSITION

 STA]X

 LDA #0 ; RESET THE BIT COUNTER

 STA]CNT

 LDA]OFFSET ; IF OFFSET IS MORE THAN 2,

 CMP #3 ; THEN WE'RE DONE WITH THIS LOOP

 BEQ :NEXT3 ; OTHERWISE START ALL OVER FOR NEXT

BYTE

 JMP :PRELOOP

*

:NEXT3

 RTS

*

** WHAT FOLLOWS ARE THE BINARY REPRESENTATIONS OF EACH

** CHARACTER AVAILABLE.

*

AppleIIAsmLib Reference Manual 457

v0.5.0

LR_A DFB %01101001 ; ".XX."

 ; "X..X"

 DFB %11111001 ; "XXXX"

 ; "X..X"

 DFB %10010000 ; "X..X"

 ; "...."

LR_B

 DFB %11101001 ; "XXX."

 ; "X..X"

 DFB %11101001 ; "XXX."

 ; "X..X"

 DFB %11100000 ; "XXX."

 ; "...."

LR_C

 DFB %11111000 ; "XXXX"

 ; "X..."

 DFB %10001000 ; "X..."

 ; "X..."

 DFB %11110000 ; "XXXX"

 ; "...."

LR_D

 DFB %11101001 ; "XXX."

 ; "X..X"

 DFB %10011001 ; "X..X"

 ; "X..X"

 DFB %11100000 ; "XXX."

 ; "...."

LR_E

 DFB %11111000 ; "XXXX"

 ; "X..."

 DFB %11101000 ; "XXX."

 ; "X..."

 DFB %11110000 ; "XXXX"

 ; "...."

LR_F

 DFB %11111000 ; "XXXX"

 ; "X..."

 DFB %11101000 ; "XXX."

 ; "X..."

 DFB %10000000 ; "X..."

 ; "...."

LR_G

 DFB %11111000 ; "XXXX"

 ; "X..."

 DFB %10111001 ; "X.XX"

 ; "X..X"

AppleIIAsmLib Reference Manual 458

v0.5.0

 DFB %11110000 ; "XXXX"

 ; "...."

LR_H

 DFB %10011001 ; "X..X"

 ; "X..X"

 DFB %11111001 ; "XXXX"

 ; "X..X"

 DFB %10010000 ; "X..X"

 ; "...."

LR_I

 DFB %11110110 ; "XXXX"

 ; ".XX."

 DFB %01100110 ; ".XX."

 ; ".XX."

 DFB %11110000 ; "XXXX"

 ; "...."

LR_J

 DFB %00010001 ; "...X"

 ; "...X"

 DFB %00011001 ; "...X"

 ; "X..X"

 DFB %01100000 ; ".XX."

 ; "...."

LR_K

 DFB %10011010 ; "X..X"

 ; "X.X."

 DFB %11001010 ; "XX.."

 ; "X.X."

 DFB %10010000 ; "X..X"

 ; "...."

LR_L

 DFB %10001000 ; "X..."

 ; "X..."

 DFB %10001000 ; "X..."

 ; "X..."

 DFB %11110000 ; "XXXX"

 ; "...."

LR_M

 DFB %10111101 ; "X.XX"

 ; "XX.X"

 DFB %11011001 ; "XX.X"

 ; "X..X"

 DFB %10010000 ; "X..X"

 ; "...."

LR_N

 DFB %10011101 ; "X..X"

AppleIIAsmLib Reference Manual 459

v0.5.0

 ; "XX.X"

 DFB %11011011 ; "XX.X"

 ; "X.XX"

 DFB %10010000 ; "X..X"

 ; "...."

LR_O

 DFB %01101001 ; ".XX."

 ; "X..X"

 DFB %10011001 ; "X..X"

 ; "X..X"

 DFB %01100000 ; ".XX."

 ; "...."

LR_P

 DFB %11101001 ; "XXX."

 ; "X..X"

 DFB %11101000 ; "XXX."

 ; "X..."

 DFB %10000000 ; "X..."

 ; "...."

LR_Q

 DFB %01101001 ; ".XX."

 ; "X..X"

 DFB %10011011 ; "X..X"

 ; "X.XX"

 DFB %01100001 ; ".XX."

 ; "...X"

LR_R

 DFB %11101001 ; "XXX."

 ; "X..X"

 DFB %11101010 ; "XXX."

 ; "X.X."

 DFB %10010000 ; "X..X"

 ; "...."

LR_S

 DFB %01111000 ; ".XXX"

 ; "X..."

 DFB %01100001 ; ".XX."

 ; "...X"

 DFB %11100000 ; "XXX."

 ; "...."

LR_T

 DFB %11110110 ; "XXXX"

 ; ".XX."

 DFB %01100110 ; ".XX."

 ; ".XX."

 DFB %01100000 ; ".XX."

AppleIIAsmLib Reference Manual 460

v0.5.0

 ; "...."

LR_U

 DFB %10011001 ; "X..X"

 ; "X..X"

 DFB %10011001 ; "X..X"

 ; "X..X"

 DFB %11110000 ; "XXXX"

 ; "...."

LR_V

 DFB %10011001 ; "X..X"

 ; "X..X"

 DFB %10101010 ; "X.X."

 ; "X.X."

 DFB %01000000 ; ".X.."

 ; "...."

LR_W

 DFB %10011001 ; "X..X"

 ; "X..X"

 DFB %10111011 ; "XX.X"

 ; "XX.X"

 DFB %11010000 ; "X.XX"

 ; "...."

LR_X

 DFB %10011001 ; "X..X"

 ; "X..X"

 DFB %01101001 ; ".XX."

 ; "X..X"

 DFB %10010000 ; "X..X"

LR_Y

 DFB %10011001 ; "X..X"

 ; "X..X"

 DFB %01100110 ; ".XX."

 ; ".XX."

 DFB %01100000 ; ".XX."

 ; "...."

LR_Z

 DFB %11110001 ; "XXXX"

 ; "...X"

 DFB %01101000 ; "..X."

 ; ".X.."

 DFB %11110000 ; "XXXX"

 ; "...."

LR_0

 DFB %11111001 ; "XXXX"

 ; "X..X"

 DFB %10011001 ; "X..X"

AppleIIAsmLib Reference Manual 461

v0.5.0

 ; "X..X"

 DFB %11110000 ; "XXXX"

 ; "...."

LR_1

 DFB %01100110 ; ".XX."

 ; ".XX."

 DFB %01100110 ; ".XX."

 ; ".XX."

 DFB %01100000 ; ".XX."

 ; "...."

LR_2

 DFB %01101001 ; ".XX."

 ; "X..X"

 DFB %00100100 ; "..X."

 ; ".X.."

 DFB %11110000 ; "XXXX"

 ; "...."

LR_3

 DFB %11100001 ; "XXX."

 ; "...X"

 DFB %01100001 ; ".XX."

 ; "...X"

 DFB %11100000 ; "XXX."

 ; "...."

LR_4

 DFB %10011001 ; "X..X"

 ; "X..X"

 DFB %11110001 ; "XXXX"

 ; "...X"

 DFB %00010000 ; "...X"

 ; "...."

LR_5

 DFB %11111000 ; "XXXX"

 ; "X..."

 DFB %11110001 ; "XXXX"

 ; "...X"

 DFB %11110000 ; "XXXX"

 ; "...."

LR_6

 DFB %01101000 ; ".XX."

 ; "X..."

 DFB %11101001 ; "XXX."

 ; "X..X"

 DFB %11110000 ; "XXXX"

 ; "...."

LR_7

AppleIIAsmLib Reference Manual 462

v0.5.0

 DFB %11110001 ; "XXXX"

 ; "...X"

 DFB %00100100 ; "..X."

 ; ".X.."

 DFB %10000000 ; "X..."

 ; "...."

LR_8

 DFB %01101001 ; ".XX."

 ; "X..X"

 DFB %01101001 ; ".XX."

 ; "X..X"

 DFB %01100000 ; ".XX."

 ; "...."

LR_9

 DFB %01111001 ; ".XXX"

 ; "X..X"

 DFB %01110001 ; ".XXX"

 ; "...X"

 DFB %00010000 ; "...X"

 ; "...."

LR_EXC

 DFB %01100110 ; ".XX."

 ; ".XX."

 DFB %01100000 ; ".XX."

 ; "...."

 DFB %01100000 ; ".XX."

 ; "...."

LR_QUEST

 DFB %01101001 ; ".XX."

 ; "X..X"

 DFB %00100000 ; "..X."

 ; "...."

 DFB %00100000 ; "..X."

 ; "...."

LR_PRD

 DFB %00000000 ; "...."

 ; "...."

 DFB %00001100 ; "...."

 ; "XX.."

 DFB %11000000 ; "XX.."

 ; "...."

LR_CMA

 DFB %00000000 ; "...."

 ; "...."

 DFB %00000100 ; "...."

 ; ".X.."

AppleIIAsmLib Reference Manual 463

v0.5.0

 DFB %01001000 ; ".X.."

 ; "X..."

LR_APOST

 DFB %00010001 ; "...X"

 ; "...X"

 DFB %00100000 ; "..X."

 ; "...."

 DFB %00000000 ; "...."

 ; "...."

LR_QUOT

 DFB %10101010 ; "X.X."

 ; "X.X."

 DFB %00000000 ; "...."

 ; "...."

 DFB %00000000 ; "...."

 ; "...."

LR_COLON

 DFB %00000100 ; "...."

 ; ".X.."

 DFB %00000100 ; "...."

 ; ".X.."

 DFB %00000000 ; "...."

 ; "...."

LR_SEMI

 DFB %00000100 ; "...."

 ; ".X.."

 DFB %00000100 ; "...."

 ; ".X.."

 DFB %10000000 ; "X..."

 ; "...."

LR_MINUS

 DFB %00000000 ; "...."

 ; "...."

 DFB %11111111 ; "XXXX"

 ; "XXXX"

 DFB %00000000 ; "...."

 ; "...."

LR_PLUS

 DFB %00000110 ; "...."

 ; ".XX."

 DFB %11111111 ; "XXXX"

 ; "XXXX"

 DFB %01100000 ; ".XX."

 ; "...."

LR_EQUAL

 DFB %00001111 ; "...."

AppleIIAsmLib Reference Manual 464

v0.5.0

 ; "XXXX"

 DFB %00001111 ; "...."

 ; "XXXX"

 DFB %00000000 ; "...."

 ; "...."

LR_CHECKER1

 DFB %10100101 ; "X.X."

 ; ".X.X"

 DFB %10100101 ; "X.X."

 ; ".X.X"

 DFB %10100000 ; "X.X."

 ; "...."

LR_CHECKER2

 DFB %01011010 ; ".X.X"

 ; "X.X."

 DFB %01011010 ; ".X.X"

 ; "X.X."

 DFB %01010000 ; ".X.X"

 ; "...."

LR_UP

 DFB %00100111 ; "..X."

 ; ".XXX"

 DFB %00000010 ; "...."

 ; "..X."

 DFB %01110000 ; ".XXX"

 ; "...."

LR_DOWN

 DFB %01110010 ; ".XXX"

 ; "..X."

 DFB %00000111 ; "...."

 ; ".XXX"

 DFB %00100000 ; "..X."

 ; "...."

LR_LEFT

 DFB %00010011 ; "...X"

 ; "..XX"

 DFB %01110011 ; ".XXX"

 ; "..XX"

 DFB %00010000 ; "...X"

 ; "...."

LR_RIGHT

 DFB %10001100 ; "X..."

 ; "XX.."

 DFB %11101100 ; "XXX."

 ; "XX.."

 DFB %10000000 ; "X..."

AppleIIAsmLib Reference Manual 465

v0.5.0

 ; "...."

LR_FSLASH

 DFB %00010010 ; "...X"

 ; "..X."

 DFB %01001000 ; ".X.."

 ; "X..."

 DFB %10000000 ; "X..."

LR_BSLASH

 DFB %10000100 ; "X..."

 ; ".X.."

 DFB %00100001 ; "..X."

 ; "...X"

 DFB %00010000 ; "...X"

 ; "...."

LR_LPAR

 DFB %00010010 ; "...X"

 ; "..X."

 DFB %01000100 ; ".X.."

 ; ".X.."

 DFB %00100001 ; "..X."

 ; "...X"

LR_RPAR

 DFB %10000100 ; "X..."

 ; ".X.."

 DFB %00100010 ; "..X."

 ; "..X."

 DFB %01001000 ; ".X.."

 ; "X..."

LR_BLOCK

 DFB %11111111 ; "XXXX"

 ; "XXXX"

 DFB %11111111 ; "XXXX"

 ; "XXXX"

 DFB %11110000 ; "XXXX"

 ; "...."

LR_GOOMBA

 DFB %01101001 ; ".XX."

 ; "X..X"

 DFB %11110110 ; "XXXX"

 ; ".XX."

 DFB %11110000 ; "XXX."

 ; "...."

LR_PERCENT

 DFB %10010001 ; "X..X

 ; "...X"

 DFB %00100100 ; "..X."

AppleIIAsmLib Reference Manual 466

v0.5.0

 ; ".X.."

 DFB %10010000 ; "X..X"

 ; "...."

LR_BULLET

 DFB %00000110 ; "...."

 ; ".XX."

 DFB %01100000 ; ".XX."

 ; "....

 DFB %00000000 ; "...."

 ; "...."

LR_OFACE

 DFB %10010000 ; "X..X"

 ; "...."

 DFB %11111001 ; "XXXX"

 ; "X..X"

 DFB %11110000 ; "XXXX"

 ; "...."

LR_HFACE

 DFB %10010000 ; "X..X"

 ; "...."

 DFB %10011001 ; "X..X"

 ; "X..X"

 DFB %11110000 ; "XXXX"

 ; "...."

LR_SFACE

 DFB %10011001 ; "X..X"

 ; "X..X"

 DFB %00001111 ; "...."

 ; "XXXX"

 DFB %10010000 ; "X..X"

 ; "...."

AppleIIAsmLib Reference Manual 467

v0.5.0

SUB.LRCIRCLE >> LRCIRC

The LCIRC subroutine creates a

circle in low resolution mode at

the given x,y center and given

color. Note that because the

aspect ratio of Apple II

resolutions is far from 1:1,

circles often look like ovals.

``````````````````````````````

* LRCIRCLE (NATHAN RIGGS) *

* *

* THIS SUBROUTINE DRAWS A *

* CIRCLE ON THE CURRENT WORK *

* PAGE AT THE GIVEN COORDINATE *

* AND COLOR. *

* *

* INPUT: *

* *

* WPAR1 = CIRCLE X CENTER *

* WPAR2 = CIRCLE Y CENTER *

* WPAR3 = CIRCLE RADIUS *

* BPAR1 = CIRCLE COLOR *

* *

* OUTPUT: *

* *

* NONE *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 711+ *

 LCIRC (sub)

 Input:

 WPAR1 = x center

 WPAR2 = y center

 WPAR3 = circle radius

 BPAR1 = circle color

 Output:

 Outputs lores circle

 Destroys: AXYNVZCM

 Cycles: 711+

 Size: 501 bytes

AppleIIAsmLib Reference Manual 468

v0.5.0

* SIZE: 501 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]XC EQU WPAR1 ; CIRCLE X CENTER

]YC EQU WPAR2 ; CIRCLE Y CENTER

]R EQU WPAR3 ; RADIUS

]COLOR EQU BPAR2 ; COLOR

*

]YY EQU VARTAB+5 ; WORKING Y POSITION

]XX EQU VARTAB+7 ; WORKING X POSITION

]DX EQU VARTAB+9 ; CHANGE IN X

]DY EQU VARTAB+11 ; CHANGE IN Y

]ERR EQU VARTAB+13 ; ERROR POSSIBILITY

]DIAM EQU VARTAB+15 ; CIRCLE DIAMETER

]XT EQU VARTAB+17 ; NEGATIVE OF X

]YT EQU VARTAB+19 ; NEGATIVE OF Y

*

LRCIRCLE

*

** FIRST, INITIALIZE VARIABLES

*

 LDA #0 ; CLEAR YPOS

 STA]YY

 LDA]R ; LOAD RADIUS

 STA]XX ; X = RADIUS

 STA]ERR ; ERROR = RADIUS

 ASL ; R * 2

 STA]DIAM ; STORE DIAMETER

*

** NOW DRAW FIRST PART OF CIRCLE

*

** CALCULATE -X AND -Y

*

 LDA]XX ; GET XPOS

 EOR #$FF ; NEGATE

 CLC

 ADC #1

 STA]XT ; STORE NEGATED IN XT

 LDA]YY ; GET YPOS

 EOR #$FF ; NEGATE

 CLC

 ADC #1

 STA]YT ; STORE NEGATED IN YT

*

** PLOT XC+X,YC

*

AppleIIAsmLib Reference Manual 469

v0.5.0

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 CLC ; CLEAR CARRY

 ADC]XX ; ADD CURRENT XPOS

 TAX

 TAY ; TRANSER TO .Y

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 TAY

 LDA]COLOR

 JSR LOCPLOT

*

** PLOT XC-X,YC

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 CLC ; CLEAR CARRY

 ADC]XT ; ADD NEGATED CURRENT XPOS

 TAX

 TAY ; AND .Y

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 TAY

 LDA]COLOR

 JSR LOCPLOT

*

** PLOT XC,YC+X

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 TAY ; TRANSFER TO .Y

 TAX ; AND .X

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 CLC ; CLEAR CARRY

 ADC]XX ; ADD CURRENT XPOS

 TAY

 LDA]COLOR

 JSR LOCPLOT

*

** PLOT XC,YC-X

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 TAY ; TRANSFER TO .Y

 TAX ; AND .X

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 CLC ; CLEAR CARRY

 ADC]XT ; ADD NEGATED CURRENT XPOS

 TAY

 LDA]COLOR

 JSR LOCPLOT

*

AppleIIAsmLib Reference Manual 470

v0.5.0

** NOW LOOP UNTIL CIRCLE IS FINISHED

*

:LOOP

*

** CHECK IF CIRCLE FINISHED

*

 LDA]YY ; IF Y > X

 CMP]XX

 BCC :LPCONT ; CONTINUE LOOPING

 JMP :EXIT ; OTHERWISE, CIRCLE DONE

:LPCONT

:STEPY ; STEP THE Y POSITION

 LDA]YY ; LOAD YPOS

 ASL ; MULTIPLY BY 2

*CLC

 ADC #1 ; ADD +1

 STA]DY ; STORE CHANGE OF Y

 INC]YY ; INCREASE YPOS

 LDA]DY ; NEGATE

 EOR #$FF

 CLC

 ADC #1

 ADC]ERR ; ADD ERR

 STA]ERR ; ERR = ERR - DY

 BPL :PLOT ; IF ERR IS +, SKIP TO PLOT

:STEPX

 LDA]XX ; LOAD XPOS

 ASL ; MULTIPLY BY 2

 EOR #$FF ; NEGATE

 CLC

 ADC #1

 ADC #1 ; (X*2) + 1

 STA]DX ; STORE CHANGE OF X

 DEC]XX ; DECREASE YPOS

 LDA]DX ; NEGATE

 EOR #$FF

 CLC

 ADC #1

 ADC]ERR ; ADD ERR

 STA]ERR ; ERR = ERR - DX

*

:PLOT

*

** NOW CALCULATE -X AND -Y

*

 LDA]XX

AppleIIAsmLib Reference Manual 471

v0.5.0

 EOR #$FF ; NEGATE

 CLC

 ADC #1

 STA]XT

 LDA]YY

 EOR #$FF ; NEGATE

 CLC

 ADC #1

 STA]YT

*

** NOW PLOT CIRCLE OCTANTS

*

** PLOT XC+X,YC+Y

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 CLC ; CLEAR CARRY

 ADC]XX ; ADD CURRENT XPOS

 TAY ; TRANSFER TO .Y

 TAX ; AND .X

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 CLC ; CLEAR CARRY

 ADC]YY ; ADD CURRENT YPOS

 TAY

 LDA]COLOR

 JSR LOCPLOT

*

** PLOT XC-X,YC+Y

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 CLC ; CLEAR CARRY

 ADC]XT ; ADD NEGATED CURRENT XPOS

 TAY ; TRANSFER TO .Y

 TAX ; AND TO .X

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 CLC ; CLEAR CARRY

 ADC]YY ; ADD CURRENT YPOS

 TAY

 LDA]COLOR

 JSR LOCPLOT

*

** PLOT XC-X,YC-Y

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 CLC ; CLEAR CARRY

 ADC]XT ; ADD NEGATED CURRENT XPOS

 TAY ; TRANSFER TO .Y

AppleIIAsmLib Reference Manual 472

v0.5.0

 TAX ; AND .X

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 CLC ; CLEAR CARRY

 ADC]YT ; ADD NEGATED CURRENT YPOS

 TAY

 LDA]COLOR

 JSR LOCPLOT

*

** PLOT XC+X,YC-Y

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 CLC ; CLEAR CARRY

 ADC]XX ; ADD CURRENT XPOS

 TAY ; TRANSFER TO .Y

 TAX ; AND .X

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 CLC ; CLEAR CARRY

 ADC]YT ; ADD NEGATE CURRENT YPOS

 TAY

 LDA]COLOR

 JSR LOCPLOT

*

** PLOT XC+Y,YC+X

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 CLC ; CLEAR CARRY

 ADC]YY ; ADD CURRENT YPOS

 TAX ; TRANSFER TO .X

 TAY ; AND .Y

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 CLC ; CLEAR CARRY

 ADC]XX ; ADD CURRENT XPOS

 TAY

 LDA]COLOR

 JSR LOCPLOT

*

** PLOT XC-Y,YC+X

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 CLC ; CLEAR CARRY

 ADC]YT ; ADD NEGATED CURRENT YPOS

 TAX ; TRANSFER TO .X

 TAY ; AND .Y

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 CLC ; CLEAR CARRY

 ADC]XX ; ADD CURRENT XPOS

AppleIIAsmLib Reference Manual 473

v0.5.0

 TAY

 LDA]COLOR

 JSR LOCPLOT

*

** PLOT XC-Y,YC-X

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 CLC ; CLEAR CARRY

 ADC]YT ; ADD NEGATED CURRENT YPOS

 TAX ; TRANSFER TO .X

 TAY ; AND .Y

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 CLC ; CLEAR CARRY

 ADC]XT ; ADD NEGATED CURRENT XPOS

 TAY

 LDA]COLOR

 JSR LOCPLOT

*

** PLOT XC+Y,YC-X

*

 LDA]XC ; LOAD CIRCLE CENTER XPOS

 CLC ; CLEAR CARRY

 ADC]YY ; ADD CURRENT YPOS

 TAY ; TRANSFER TO .Y

 TAX ; AND .X

 LDA]YC ; LOAD CIRCLE CENTER YPOS

 CLC

 ADC]XT ; ADD NEGATED CURRENT XPOS

 TAY

 LDA]COLOR

 JSR LOCPLOT

 JMP :LOOP

:EXIT

 RTS

AppleIIAsmLib Reference Manual 474

v0.5.0

SUB.LRGETPIX >> LRGETPIX

The LRGETPIX subroutine returns

the color code of a pixel at the

given x,y coordinates. If that

row is even, the code is

returned via the high-byte of

the returned byte; if odd, the

code is returned via the low

byte.

``````````````````````````````

* LRGETPIX (NATHAN RIGGS) *

* *

* THIS SUBROUTINE RETURNS THE *

* COLOR CODE OF A GIVEN LORES *

* PIXEL AT THE X,Y COORDINATE. *

* NOTE THAT IF THE ROW IS EVEN *

* THE THE COLOR CODE IS PASSED *

* BACK VIA THE HIGH BYTE, AND *

* IF THE ROW IS ODD THEN THE *

* COLOR CODE IS PASSED IN THE *

* LOW BYTE. THE UNUSED BYTE *

* FOR EACH WILL ALWAYS BE 0. *

* *

* INPUT: *

* *

* BPAR1 = X COORDINATE *

* BPAR2 = Y COORDINATE *

* *

* OUTPUT: *

* *

* .A = COLOR CODE OF PIXEL *

* RETURN = COLOR CODE *

* RETLEN = 1 *

 LRGETPIX (sub)

 Input:

 BPAR1 = x coordinate

 BPAR2 = y coordinate

 Output:

 .A = color code of pixel

 RETURN = color code

 RETLEN =1

 Destroys: AXYNVZCM

 Cycles: 209+

 Size: 234 bytes

AppleIIAsmLib Reference Manual 475

v0.5.0

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 209+ *

* SIZE: 234 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]HALFX EQU VARTAB ; X COORD / 2 FOR GBASCALC

]FULLX EQU VARTAB+1 ; ORIGINAL X COORD

]FULLY EQU VARTAB+2 ; ORIGINAL Y COORD

]MASK EQU VARTAB+3 ; MASK FOR DETERMINING COLOR CODE

]FULLCHAR EQU VARTAB+4 ; THE FULL CHAR A POS HALFX,Y

*

LRGETPIX

*

 LDY BPAR1 ; LOAD X POSITION

 STY]FULLX

 TYA ; TRANSFER T .A

 ASL ; SHIFT LEFT TO DIVIDE IN HALF

 STA]HALFX ; STORE AS HALFX

 LDA BPAR2 ; GET Y POSITION

 STA]FULLY

 LDY]HALFX ; LOAD HALF-X POSITION

 LDA]FULLY ; LOAD Y POSITION

 JSR LRGBCALC ; GET CHARACTER AT COORDINATES

 LDA (GBASLO),Y ; GET FULL CHARACTER FROM SCREEN ADDR

 STA]FULLCHAR ; AND STORE IN FULLCHAR

 LDA]FULLX ; LOAD THE LORES FULL X COORDINATE

 LSR ; SHIFT LEAST BYTE INTO CARRY

 BCC :EVEN ; IF THAT BYTE IS 0, THEN GOTO EVEN

 LDX #$F0 ; OTHERWISE, IT'S ODD; MASK

APPROPRIATELY

 BCS :EXIT ; JUMP TO EXIT

:EVEN

 LDX #$0F ; MASK COLOR RETURNED APPROPIRATELY

:EXIT

 STX]MASK ; STORE THE MASK TO]MASK

 LDA]FULLCHAR ; LOAD FULL CHARACTER

 AND]MASK ; MASK APPROPRIATE NIBBLE

 STA RETURN ; STRE NEW BYTE IN RETURN

 LDA #1

 STA RETLEN

 LDA RETURN ; ALSO RETURN NEW COLOR BYTE IN .A

AppleIIAsmLib Reference Manual 476

v0.5.0

AppleIIAsmLib Reference Manual 477

v0.5.0

SUB.LRGFCLR >> LRGFCLR

The LRGFCLR subroutine fills the

screen with the specified color

in full-screen mode.

``````````````````````````````

* LRGFCLR (NATHAN RIGGS) *

* *

* FILLS THE LORES SCREEN WITH *

* THE SPECIFIED COLOR. *

* *

* INPUT: *

* *

* .A = BACKGROUND COLOR *

* *

* OUTPUT: *

* *

* NONE *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 135 *

* SIZE: 308 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]C EQU VARTAB ; TEMPORARY COLOR STORAGE

*

LRGFCLR

 STA]C ; STORE COLOR

 ASL ; SHIFT LOW BYTE OF COLOR

 ASL ; INTO THE HIGH BYTE, SINCE

 ASL ; THE HIGH BYTE IS ALWAYS 0

 LRGFCLR (sub)

 Input:

 .A = fill color

 Output:

 Fills the screen

 Destroys: AXYNVZCM

 Cycles: 135+

 Size: 308 bytes

AppleIIAsmLib Reference Manual 478

v0.5.0

 ASL

 CLC ; CLEAR CARRY

 ADC]C ; NOW ADD LOW BYTE TO THE NEW HIGH

 STA]C ; SO THAT IT IS A REPEATING NIBBLE

 LDY #$78 ; BYTE LENGTH FOR EACH LINE

 ; THIS ALLOWS FOR FILLING EVERY PIXEL

 LDX LWP ; CHECK WHICH PAGE TO CLEAR

 CPX #2 ; IS IT PAGE 2?

 BEQ :P2 ; IF SO, CLEAR PAGE 2

 ; PTHERWISE, ASSUME PAGE 1

:LP1

 STA $400,Y ; PLOT FIRST SECTION

 STA $480,Y ; PLOT SECOND

 STA $500,Y ; THIRD

 STA $580,Y ; FOURTH

 STA $600,Y ; FIFTH

 STA $680,Y ; SIXTH

 STA $700,Y ; SEVENTH

 STA $780,Y ; EIGHTH

 DEY ; DECREASE OFFSET COUNTER

 BPL :LP1 ; IF NOT NEGATIVE, KEEP LOOPING

 JMP :EXIT

:P2

 LDA]C

 LDY #$78

:LP2

 STA $800,Y ; PLOT FIRST SECTION

 STA $880,Y ; PLOT SECOND

 STA $900,Y ; THIRD

 STA $980,Y ; FOURTH

 STA $0A00,Y ; FIFTH

 STA $0A80,Y ; SIXTH

 STA $0B00,Y ; SEVENTH

 STA $0B80,Y ; EIGHTH

 DEY ; DECREASE OFFSET COUNTER

 BPL :LP2 ; IF NOT NEGATIVE, KEEP LOOPING

:EXIT

 RTS

AppleIIAsmLib Reference Manual 479

v0.5.0

SUB.LRGPCLR >> LRGPCLR

The LRGPLCR clears a mixed-mode

low resolution screen to a given

fill color.

``````````````````````````````

* LRGPCLR (NATHAN RIGGS) *

* *

* FILLS THE LORES SCREEN WITH *

* THE SPECIFIED COLOR. *

* *

* INPUT: *

* *

* .A = BACKGROUND COLOR *

* *

* OUTPUT: *

* *

* NONE *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 74 *

* SIZE: 49 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]C EQU VARTAB ; TEMPORARY COLOR STORAGE

*

LRGPCLR

 STA]C ; STORE COLOR

 ASL ; SHIFT LOW BYTE OF COLOR

 ASL ; INTO THE HIGH BYTE, SINCE

 ASL ; THE HIGH BYTE IS ALWAYS 0

 ASL

 LRGPCLR (sub)

 Input:

 .A = background color

 Output:

 Fill mixed screen

 Destroys: AXYNVZCM

 Cycles: 74+

 Size: 79 bytes

AppleIIAsmLib Reference Manual 480

v0.5.0

 CLC ; CLEAR CARRY

 ADC]C ; NOW ADD LOW BYTE TO THE NEW HIGH

 STA]C ; SO THAT IT IS A REPEATING NIBBLE

 LDY #$78 ; BYTE LENGTH FOR EACH LINE

 ; THIS ALLOWS FOR FILLING EVERY PIXEL

*

 LDX LWP ; CHECK WHICH PAGE TO CLEAR

 CPX #2 ; IS IT PAGE 2?

 BEQ :P2 ; IF SO, CLEAR PAGE 2

 ; PTHERWISE, ASSUME PAGE 1

:LP1

 STA $400,Y ; PLOT FIRST SECTION

 STA $480,Y ; PLOT SECOND

 STA $500,Y ; THIRD

 STA $580,Y ; FOURTH

 CPY #80

 BPL :NDB

 STA $600,Y ; FIFTH

 STA $680,Y ; SIXTH

 STA $700,Y ; SEVENTH

 STA $780,Y ; EIGHTH

:NDB

 DEY ; DECREASE OFFSET COUNTER

 BPL :LP1 ; IF NOT NEGATIVE, KEEP LOOPING

 JMP :EXIT

*

:P2

*_PRN "PAGE 2"

 LDA]C

 LDY #$78

:LP2

 STA $800,Y ; PLOT FIRST SECTION

 STA $880,Y ; PLOT SECOND

 STA $900,Y ; THIRD

 STA $980,Y ; FOURTH

 CPY #80

 BPL :NDB2

 STA $0A00,Y ; FIFTH

 STA $0A80,Y ; SIXTH

 STA $0B00,Y ; SEVENTH

 STA $0B80,Y ; EIGHTH

:NDB2

 DEY ; DECREASE OFFSET COUNTER

 BPL :LP2 ; IF NOT NEGATIVE, KEEP LOOPING

:EXIT

 RTS

AppleIIAsmLib Reference Manual 481

v0.5.0

SUB.LRHLINE >> LRHLINE

The LRHLINE subroutine creates a

horizontal line in low

resolution from x1 to x2 at the

given y location.

``````````````````````````````

* LRHLINE (NATHAN RIGGS) *

* *

* CREATES a HORIZONTAL LINE IN *

* LOW RESOLUTION MODE FROM AN *

* X ORIGIN TO X DESTINATION AT *

* A CONSTANT Y POSITION IN THE *

* GIVEN COLOR. *

* *

* INPUT: *

* *

* WPAR1 = X ORIGIN *

* WPAR1+1 = X DESTINATION *

* BPAR1 = Y POSITION *

* BPAR2 = COLOR *

* *

* OUTPUT: *

* *

* NONE *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 262+ *

* SIZE: 234 BYTES *

 LRHLINE (sub)

 Input:

 WPAR1 = x origin

 WPAR1+1 = x destination

 BPAR1 = y position

 BPAR2 = color

 Output:

 A horizontal lores line

 Destroys: AXYNVZCM

 Cycles: 262+

 Size: 234 bytes

AppleIIAsmLib Reference Manual 482

v0.5.0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]X1 EQU WPAR1 ; X COORD SOURCE

]X2 EQU WPAR1+1 ; X COORD DESTINATION

]Y1 EQU BPAR1 ; STATIC Y POSITION

]COLOR EQU BPAR2 ; LINE COLOR

]X EQU VARTAB ; WORKING X VALUE

]Y EQU VARTAB+1 ; WORKING Y VALUE

*

LRHLINE

*

 LDA]Y1 ; LOAD Y COORDINATE

 STA]Y ; TRANSFER TO WORKING VARIABLE

 LDY]X1 ; LOAD X ORIGIN COORDINATE

 STY]X ; STORE IN WORKING VARIABLE

:LOOP

 LDA]COLOR ; LOAD THE PLOTTING COLOR

 LDX]X ; GET CURRENT X COORDINATE

 LDY]Y ; GET CURRENT Y COORDINATE

 JSR LOCPLOT ; CALL PLOTTING ROUTINE

 INC]X ; INCREASE CURRENT X COORDINATE

 LDY]X ; LOAD FOR COMPARISON

 CPY]X2 ; IF LESS THAN X DESTINATION

 BNE :LOOP ; REPEAT UNTIL DONE

:EXIT

 RTS

AppleIIAsmLib Reference Manual 483

v0.5.0

SUB.LRPLOT >> LRPLOT

The LRPLOT subroutine plots a

pixel at the given x,y

coordinates at the given color.

``````````````````````````````

* LRPLOT (NATHAN RIGGS) *

* *

* PLOTS A LOEW RESOLUTION *

* PIXEL AT THE CIVEN COLOR AND *

* COORDINATES. *

* *

* INPUT: *

* *

* BPAR1 = COLOR *

* BPAR2 = X COORDINATE *

* BPAR3 = Y COORDINATE *

* *

* OUTPUT: *

* *

* NONE *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 295+ *

* SIZE: 102 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

*

]COLOR EQU BPAR1 ; PLOT COLOR

 LRPLOT (sub)

 Input:

 BPAR1 = color

 BPAR2 = x coordinate

 BPAR3 = y coordinate

 Output:

 none

 Destroys: AXYNVZCM

 Cycles: 295+

 Size: 102 bytes

AppleIIAsmLib Reference Manual 484

v0.5.0

]X EQU BPAR2 ; X COORDINATE

]Y EQU BPAR3 ; Y COORDINATE

]MASK EQU VARTAB ; MASK FOR ISOLATING NIBBLE

]COLMASK EQU VARTAB+2 ; COLOR MASK

]PAGEOFF EQU VARTAB+4 ; PAGE OFFSET

*

LRPLOT

*

 STY]Y ; Y POSITION PASSED IN .Y

 STX]X ; X POSITION PASSED IN .X

 STA]COLOR ; COLOR PASSED IN .A

 LDA]COLOR ; TAKE THE COLOR SENT

 ASL ; AND MOVE IT LEFT 4 BITS

 ASL ; TO THE HIGH BYTE

 ASL

 ASL

 CLC ; CLEAR CARRY

 ADC]COLOR ; NOW ADD THE LOW BYTE BACK, MEANING

 STA]COLOR ; THAT THE COLOR WILL BE REPEATING

NIBBLES

 LDA LWP ; NOW TEST WHICH PAGE IS THE WORKING

 CMP #2 ; PAGE; IF NOT #2, THEN ASSUME PAGE 1

 BNE :PG1

 LDA #4 ; ADD TO BASE TO PLOT TO PAGE 2

 STA]PAGEOFF ; STORE AS PAGE OFFSET

 JMP :CNT

:PG1

 LDA #0 ; PAGE 1 HAS NO OFFEST, SO JUST 0

 STA]PAGEOFF

:CNT

 LDA]Y ; GET Y COORDINATE

 LSR ; SHIFT BOTTOM BIT TO CARRY

 ; BUT WHY?

 BCC :EVEN ; IF CARRY = 0, THEN ROW IS EVEN

 LDX #$F0 ; OTHERWISE, IT IS ODD; SO MASK

 ; THE LEFT NIBBLE

 BCS :PLOT ; IF CARRY IS SET, BRANCH TO PLOTTING

:EVEN

 LDX #$0F ; EVEN, SO MASK LOW BYTE

:PLOT

 STX]MASK ; STORE THE EVEN OR ODD MASK

 ASL ; SHIFT CARRY BACK INTO BYTE

 TAY ; HOLD VALUE INTO .Y

 LDA LROFF,Y ; GET LORES MEMORY ADDRESS

 CLC ; CLEAR THE CARRY

 ADC]X ; ADD THE X COORDINATE

AppleIIAsmLib Reference Manual 485

v0.5.0

 STA GBASLO ; STORE LOW BYTE FOR GBASCALC

 INY ; INCREASE Y OFFSET

 LDA LROFF,Y ; GET LORESS MEMORY ADDRESS

 ADC]PAGEOFF ; ADJUST FOR PAGE AND CARRY HIGH

 STA GBASHI ; STORE HIGH BYTE FOR GBASCALC

 LDY #0

 LDA]MASK ; RELOAD THE MASK

 EOR #$FF ; EXCLUSIVE OR THE MASK

 AND (GBASLO),Y ; AND THE LOW FOR GBAS

 STA]COLMASK ; STORE THE COLOR MASK

 LDA]COLOR ; LOAD THE COLOR

 AND]MASK ; AND THE MASK

 ORA]COLMASK ; OR WITH THE COLOR MASK

 STA (GBASLO),Y ; STORE INTO GBAS LOW BYTE

 RTS

AppleIIAsmLib Reference Manual 486

v0.5.0

SUB.LRVLINE >> LRVLINE

The LRVLINE subroutine creates a

vertical line in low resolution

mode from y origin to a y

destination at a given color and

x position.

``````````````````````````````

* LRVLINE (NATHAN RIGGS) *

* *

* PLOT A VERTICAL LINE IN LOW *

* RESOLUTION GRAPHICS MODE. *

* *

* INPUT: *

* *

* WPAR1 = Y COORDINATE ORIGIN *

* WPAR1+1 = Y DESTINATION *

* BPAR1 = X POSITION *

* BPAR2 = COLOR TO PLOT *

* *

* OUTPUT: *

* *

* NONE *

* *

* DESTROY: AXYNVBDIZCMS *

* ^^^^^ ^^^ *

* *

* CYCLES: 52+ *

* SIZE: 87 BYTES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

]Y1 EQU WPAR1 ; Y COORDINATE ORIGIN

 LRVLINE (sub)

 Input:

 WPAR1 = y origin

 WPAR2+1 = y destination

 BPAR1 = x position

 BPAR2 = color

 Output:

 Vertical lores line

 Destroys: AXYNVZCM

 Cycles: 52+

 Size: 87 bytes

AppleIIAsmLib Reference Manual 487

v0.5.0

]Y2 EQU WPAR1+1 ; Y COORDINATE DESTINATION

]X1 EQU BPAR1 ; X COORDINATE

]COLOR EQU BPAR2 ; COLOR OF LINE

]X EQU VARTAB+6 ; WORKING XPOS

]Y EQU VARTAB+8 ; WORKING YPOS

*

LRVLINE

*

 LDA]X1 ; LOAD ROW

 STA]X ; AND STORE IN WORKING VARIABLE

 LDY]Y1 ; LOAD Y START POS

 STY]Y ; STORING IN WORKING Y VAR

:LOOP

 LDA]COLOR ; LOAD COLOR

 LDX]X ; LOAD X INTO .X

 LDY]Y ; LOAD Y INTO .Y

 JSR LOCPLOT ; GOSUB PLOTTING SUBROUTINE

 INC]Y ; INCREASE Y INDEX

 LDY]Y ; LOAD Y FOR COMPARISON

 CPY]Y2 ; IF Y < Y2

 BNE :LOOP ; LOOP; ELSE, CONTINUE

:EXIT

 RTS

AppleIIAsmLib Reference Manual 488

v0.5.0

The DEMO.LORES file shows how each macro is used in order to

generate and manipulate low resolution graphics on scree

DEMO.LORES

*

``````````````````````````````

* DEMO.LORES *

* *

* A DEMO OF THE MACROS AND *

* SUBROUTINES FOR USING LORES *

* GRAPHICS. *

* *

* AUTHOR: NATHAN RIGGS *

* CONTACT: NATHAN.RIGGS@ *

* OUTLOOK.COM *

* *

* DATE: 03-OCT-2019 *

* ASSEMBLER: MERLIN 8 PRO *

* OS: DOS 3.3 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

** ASSEMBLER DIRECTIVES

*

 CYC AVE

 EXP OFF

 TR ON

 DSK DEMO.LORES

 OBJ $BFE0

 ORG $6000

*

``````````````````````````````

* TOP INCLUDES (PUTS, MACROS) *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

 PUT MIN.HEAD.REQUIRED

 USE MIN.MAC.REQUIRED

 USE MIN.MAC.LORES

 PUT MIN.HOOKS.LORES

*

``````````````````````````````

 _PRN "PLOTTING MACROS",8D

 _PRN "===============",8D8D

* PROGRAM MAIN BODY *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

AppleIIAsmLib Reference Manual 489

v0.5.0

]COLOR EQU VARTAB+16

]HOME EQU $FC58

*

 JSR]HOME

 _PRN "LOW RESOLUTION GRAPHICS LIBRARY",8D

 _PRN "===============================",8D8D

 _PRN "THIS DEMO ILLUSTRATES HOW TO USE",8D

 _PRN "THE MACROS DEDICATED TO CREATING",8D

 _PRN "LORES GRAPHICS. THESE LACROS LARGELY",8D

 _PRN "CONSIST OF THE MOST MASIC FUCNTIONS",8D

 _PRN "NECESSARY TO BUILD MORE COMPLE ROUTINES,",8D

 _PRN "SUCH AS ANIMATION, SPRITES, AND SO ON.",8D8D

 _PRN "CURRENTLY, THE MACROS AVAILABLE ARE:",8D8D

 _WAIT

 _PRN " - LVIEWPG: SET VIEWING PAGE",8D

 _PRN " - LWORKPG: SET WORKING (PLOTTING) PAGE",8D

 _PRN " - LRGF: INIT LORES FULL SCREEN MODE",8D

 _PRN " - LRGP: INIT LORES MIXED MODE",8D

 _PRN " - LFCLR: CLEAR FULL SCREEN MODE TO COLOR",8D

 _PRN " - LPCLR: CLEAR MIXED MODE TO COLOR",8D

 _PRN " - LPLOT: PLOT A COLORED PIXEL AT X,Y",8D

 _PRN " - LLINE: PRINT A LINE FROM X1,Y1 TO X2,Y2",8D

 _PRN " - LCIRC: CREATE A CIRCLE WITH A GIVEN

RADIUS",8D

 _PRN " - LVLIN: PLOT VERTICAL LINE",8D

 _PRN " - LHLIN: PLOT HORIZONTAL LINE",8D

 _PRN " - LRGET: GET COLOR OF PIXEL AT X,Y",8D

 _PRN " - LCHAR: PRINT A LORES CHARACTER AT X,Y",8D

 _WAIT

*

 JSR]HOME

 _PRN "SETTING THE WORKING AND VIEWING PAGE",8D

 _PRN "====================================",8D8D

 _PRN "THE 'WORKING PAGE' IS THE VIDEO MEMORY",8D

 _PRN "PAGE THAT GETS PLOTTED TO FROM EACH",8D

 _PRN "MACRO, WHEREAS THE 'VIEWING PAGE' IS THE",8D

 _PRN "PAGE THAT IS CURRENTLY DISPLAYED ON SCREEN.",8D

 _PRN "THIS SETUP IS USEFUL FOR WHAT IS KNOWN AS",8D

 _PRN "PAGE-FLIPPING: ALTERING THE OFFSCREEN PAGE ",8D

 _PRN "WHILE THE OTHER PAGE IS BEING VIEWED, THEN",8D

 _PRN "FLIPPING THE VIEWING PAGE FOR QUICK

SWITCHING",8D

 _PRN "AND ANIMATION.",8D8D

 _WAIT

 _PRN "TO SET THE WORKING PAGE, USE THE LWORKPG

MACRO.",8D

AppleIIAsmLib Reference Manual 490

v0.5.0

 _PRN "TO SET THE VIEW PAGE, USE THE LVIEWP MACRO.",8D

 _PRN "THESE WORK AS SUCH:",8D8D

 _PRN " LWORKPG #2 ",8D

 _PRN " LVIEWPG #1",8D8D

 _WAIT

 _PRN "*** HOWEVER ***, THERE IS A MINOR CAVEAT

HERE:",8D

 _PRN "IF YOU'RE RUNNING A MERLIN DISK, PAGE 2 IS

NOT",8D

 _PRN "AVAILABLE TO USE, AS MERLIN USES IT FOR DATA

STORAGE.",8D

 _PRN "ANY DEMO THAT TRIES TO USE PAGE 2 ON A

MERLIN",8D

 _PRN "DISK WILL GET ERRORS OR STRANGE BEHAVIORS.",8D

 _PRN "THUS, THIS DEMO WILL ONLY UTILIZE PAGE 1.",8D8D

 _WAIT

 JSR]HOME

 _PRN "INITIALIZING LORES GRAPHICS MODE",8D

 _PRN "================================",8D8D

 _PRN "TO BEGIN USING LOW RESOLUTION GRAPHINCS,"8D

 _PRN "YOU MUST FIRST DECIDE WHETHER TO USE FULL",8D

 _PRN "SCREEN MODE, WITH A RESOLUTION OF 40X48

PIXELS,",8D

 _PRN "OR MIXED MODE, WITH HAS A 40X40 RESOLUTION",8D

 _PRN "WITH AN ADDITIONAL FOUR BOTTOM LINES FOR",8D

 _PRN "DISPLAYING TEXT.",8D8D

 _WAIT

 _PRN "TO INITIALIZE FULL SCREEN MODE, USE THE ",8D

 _PRN "LRFGR MACRO (NO PARAMTERS). TO USE MIXED

MODE,",8D

 _PRN "UTILIZE THE LRPGR MACRO.",8D8D

 _WAIT

 _PRN "LASTLY, THERE'S A MATTER OF CLEARING THE SCREEN

IN",8D

 _PRN "EACH MODE. THIS IS ACCOMPLISHED WITH THE LRFCLR

",8D

 _PRN "MACRO FOR FULL-SCREEN MODE AND WITH THE

LRPCLR",8D

 _PRN "FOR MIXED GRAPHICS MODE. THESE BOTH USE A ",8D

 _PRN "PARAMETER THAT DETERMINES THE BACKGROUND COLOR

",8D

 _PRN "USED TO FILL THE SCREEN, AS SUCH:",8D8D

 _PRN " LRFCLR #]BLACK",8D8D

 _WAIT

 _PRN "FOR THIS DEMO, WE'LL EXCLUSIVELY USE FULL",8D

AppleIIAsmLib Reference Manual 491

v0.5.0

 _PRN "SCREEN MODE. LET'S TEST CLEARING THE SCREEN

WITH",8D

 _PRN "ALL 16 COLORS BEFORE MOVING ONL PRESS A KEY",8D

 _PRN "TO CONTINUE TO THE NEXT SCREEN."

 _WAIT

 LWORKPG #1 ; SET WORKING PAGE AND

 LVIEWPG #1 ; TO PAGE 1. PAGE 2 WILL NOT WORK

 LRGF ; WITH MERLIN LOADED; THEN, INIT

 LDY #$FF ; LORES GRAPHICS FULL SCREEN MODE

 STY]COLOR ; MAC COLOR - 1

:LP1

 INC]COLOR ; INCREASE THE COLOR

 LFCLR]COLOR ; CLEAR FULL SCREEN WITH COLOR

SELECTED

 _WAIT ; WAIT UNTIL KEYPRESS

 LDA]COLOR ; LOAD COLOR AGAIN

 CMP #$F ; IF IT'S $F (15), THEN

 BNE :LP1 ; WE ARE DONE DEMOING SCREEN FILLS

*

 BIT TEXTON

 JSR]HOME

 _PRN "THE NEXT COMMAND FOR LOW RESOLUTION",8D

 _PRN "GRAPHICS IS THE MACRO LPLOT, WHICH ",8D

 _PRN "SIMPLY PLOTS A PIXEL AT THE GIVEN X,Y",8D

 _PRN "COORDINATE IN THE SPECIFIED COLOR.",8D8D

 _WAIT

 _PRN "FURTHER, JUST LIKE APPLESOFT BASIC, WE",8D

 _PRN "HAVE MACROS FOR CREATING HORIZONTAL",8D

 _PRN "AND VERTICAL LINES QUICKLY. THESE",8D

 _PRN "ARE CALLED LHLIN AND LVLIN, RESPECTIVELY,",8D

 _PRN "AND ACCEPT AN X OR Y STARTING POINT,",8D

 _PRN "AN X OR Y ENDPOINT, AN X OR Y LINE",8D

 _PRN "POSITION (WHICH DOES NOT CHANGE), AND THE",8D

 _PRN "SPECIFIED COLOR.",8D8D

 _WAIT

 JSR]HOME

 _PRN "BEYOND THESE ROUTINES THAT CAN BE FOUND",8D

 _PRN "IN APPLESOFT BASIC, THERE ARE TWO MORE",8D

 _PRN "PLOTTING MACROS WORTH NOTING: LLINE AND",8D

 _PRN "LCIRC.",8D8D

 _WAIT

 _PRN "LLINE CREATES A DIAGONAL LINE FROM ONE",8D

 _PRN "ORIGIN X,Y COORDINATE TO A DESTINATION",8D

 _PRN "X,Y COORDINATE IN A GIVEN COLOR. THIS",8D

 _PRN "USES BRESSENHAM'S LINE ALGORITHM, WHICH",8D

 _PRN "IS ONE OF THE FASTEST ALGORITHMS THAT",8D

AppleIIAsmLib Reference Manual 492

v0.5.0

 _PRN "CAN BE USED FOR LINES ON 8-BIT SYSTEMS.",8D8D

 _WAIT

 _PRN "THE OTHER MACRO, LCIRC, ALSO USES AN",8D

 _PRN "ALGORITHM DEVELOPED BY BRESSENHAM, EXCEPT",8D

 _PRN "THIS TIME TO CREATE CIRCLES. PLEASE TAKE",8D

 _PRN "A MOMENT OF SILENCE TO THANK THIS",8D

 _PRN "BRILLIANT MAN, AND THEN PRESS RETURN...",8D

 _WAIT

 JSR]HOME

 _PRN "ALL RIGHT!",8D8D

 _PRN "WE SHOULD PROBABLY TEST THESE NOW. FIRST,",8D

 _PRN "LET'S HAVE A LOOK AT THE LISTING THAT",8D

 _PRN "WILL BE IMPLEMENTED. AFTER READING THROUGH",8D

 _PRN "IT, PRESS A KEY TO SEE IT IN ACTION. NOTE",8D

 _PRN "THAT YOU WILL HAVE TO PRESS A KEY AFTER",8D

 _PRN "EACH MACRO IS SHOWCASED.",8D8D

 _WAIT

 _PRN " LPLOT #10;#10;#]MAGENTA",8D

 _PRN " LPOT #11;#11;#]PINK",8D

 _PRN " _WAIT",8D

 _PRN " LHLIN #15;#30;#2;#]PURPLE",8D

 _PRN " _WAIT",8D

 _PRN " LVLIN #2;#17;#30;#]YELLOW",8D

 _PRN " _WAIT",8D

 _PRN " LLINE #1;#1;#20;#30;#]ORANGE",8D

 _PRN " _WAIT",8D

 _PRN " LCIRC #10;#10;#10;#]LBLUE",8D

 _PRN " _WAIT",8D

 _WAIT

*

 LRGF

 LFCLR #]WHITE

 LPLOT #10;#10;#]MAGENTA ; PLOT MAGENTA PIXEL AT 10,10

 LPLOT #11;#11;#]PINK ; PLOT PINK PIXEL AT 11,11

 _WAIT ; WAIT UP

*

 LHLIN #15;#30;#2;#]PURPLE ; NOW DRAW A HORIZONTAL

 _WAIT ; LINE FROM X1 TO X2 AT Y

*

 LVLIN #2;#17;#30;#]YELLOW ; NOW CREATE A YELLOW

VERTICAL LINE

 _WAIT

 LLINE #1;#1;#20;#30;#]ORANGE ; NOW PLOT ORGANGE

DIAGONAL

 _WAIT ; line from X1,Y2 to X2,Y2

*

AppleIIAsmLib Reference Manual 493

v0.5.0

 LCIRC #10;#10;#10;#]LBLUE ; NOW DRAW A LIGHT BLUE

CIRCLE

 _WAIT

*

** THE ABOVE HAS FINISHED THE MOST BASIC PLOTTING MECHANISMS

** IN THE LORES LIBRARY.

*

 LRGET #38;#38 ; NOW GET THE COLOR OF A GIVE PIXEL

 BIT TEXTON

 JSR]HOME

 _PRN "AN ADDITIONAL MACR THAT COMES IN",8D

 _PRN "HANDY IS THE LRGET MACRO, WHICH",8D

 _PRN "RETURNS THE COLOR OF A PIXEL AT",8D

 _PRN "THE GIVEN X,Y COORDINATE.",8D8D

 _PRN "CURRENTLY, THIS MACRO HAS A QUIRK THAT",8D

 _PRN "NEEDS TO BE CONSIDERED: WHEN OR NOT",8D

 _PRN "THE Y COORDINATE IS EVEN OR ODD WILL",8D

 _PRN "DETERMINE WHETHER THE COLOR IS RETURNED",8D

 _PRN "IN THE LOW BYTE OR HIGH BYTE OF ",8D

 _PRN "THE BYTE RETURNED BY THE MACRO. ",8D8D

 _PRN "IF THE Y COORDINATE IS EVEN, THEN THE ",8D

 _PRN "COLOR WILL BE RETURNED IN THE HIGH",8D

 _PRN "BYTE; IF ODD, THEN THE COLOR IS ",8D

 _PRN "RETURNED IN THE LOW BYTE. FUTURE ",8D

 _PRN "REVISIONS OF THIS MACRO WILL FIX THE",8D

 _PRN "QUIRK FOR GOOD.",8D8D

 _WAIT

 _PRN "THUS, THE INSTRUCTION 'LRGET #38;#38; FROM",8D

 _PRN "THE PREVIOUS SCREEN WOULD RETURN '0F'.",8D

 _WAIT

 DUMP #RETURN;#1 ; THE ROW IS EVEN, AND IN THE LOW BYTE

 _WAIT ; IF ROW IS ODD

*

** THE FOLLOWING LINES PLOT ALL OF THE LORES CHARACTERS IN

** THE SET INCLUDED IN THE LIBRARY, TOTALLING 64. NOTE THAT

** THESE ARE 4X5 IN SIZE SO AS TO ALLOW FOR 8 CHARACTER WITH

** SPACES IN BETWEEN THEM TO FIT BOTH HORIZONTALLY AND

** VERTICALLY ON THE 40*48 LORES FULL SCREEN. ALSO NOTE THAT

** EACH CHARACTER IS THREE BYTES LONG, RELYING ON BIT VALUES

** TO DETERMINE IF PRAT OF A CHARACTER SHOULD BE PLOTTED.

*

 JSR]HOME

 _PRN "LOW RESOLUTION TEXT CHARACTERS",8D

 _PRN "==============================",8D

 _PRN "ONE LAST FEATURE OF THE LORES",8D

 _PRN "GRAPHICS LIBRARY IS THE LCHAR MACRO,",8D

AppleIIAsmLib Reference Manual 494

v0.5.0

 _PRN "WHICH PRINTS A CUSTOM LORES FONT",8D

 _PRN "CHARACTER THAT IS 4 PIXELS WIDE AND",8D

 _PRN "6 PIXELS HIGH (THE LAST LINE IS",8D

 _PRN "USUALLY BLANK) TO ALLOW FOR 8 LETTERS",8D

 _PRN "TO FIT ON THE SCREEN BOTH ",8D

 _PRN "HORIZONTALLY AND VERTICALLY.",8D8D

 _WAIT

 _PRN "THESE CHARACTERS ARE THREE BYTES EACH,",8D

 _PRN "AND THEIR SHAPES ARE STORED IN BINARY",8D

 _PRN "TO SAVE SPACE. THE MACRO WORKS AS SUCH:",8D8D

 _PRN " LCHAR #15;#6;LR_A;#]DBLUE",8D8D

 _PRN "WHICH WOULD PRINT AN 'A' CHARACTER AT",8D

 _PRN "THE COORDINATES 15,16 IN DARK BLUE.",8D8D

 _WAIT

 _PRN "LET'S NOW SEE THIS IN ACTION, FOR EACH",8D

 _PRN "DEFAULT CHARACTER. IT SHOULD BE NOTED THAT",8D

 _PRN "YOU CAN ALSO ADD YOUR OWN EXTENDED",8D

 _PRN "CHARACTERS, AS LONG AS YOU FOLLOW THE ",8D

 _PRN "SAME 3-BYTE FORMAT.",8D8D

 _WAIT

*

 LRGF ; GO BACK TO FULL SCREEN LORES

GRAPHICS

 LFCLR #]WHITE ; CLEAR THE BACKGROUND TO WHITE

 LCHAR #0;#0;LR_A;#0

 LCHAR #5;#0;LR_B;#1

 LCHAR #10;#0;LR_C;#2

 LCHAR #15;#0;LR_D;#3

 LCHAR #20;#0;LR_E;#4

 LCHAR #25;#0;LR_F;#5

 LCHAR #30;#0;LR_G;#6

 LCHAR #35;#0;LR_H;#7

 LCHAR #0;#6;LR_I;#8

 LCHAR #5;#6;LR_J;#9

 LCHAR #10;#6;LR_K;#10

 LCHAR #15;#6;LR_L;#11

 LCHAR #20;#6;LR_M;#12

 LCHAR #25;#6;LR_N;#13

 LCHAR #30;#6;LR_O;#14

 LCHAR #35;#6;LR_P;#0

 LCHAR #0;#12;LR_Q;#1

 LCHAR #5;#12;LR_R;#2

 LCHAR #10;#12;LR_S;#3

 LCHAR #15;#12;LR_T;#4

 LCHAR #20;#12;LR_U;#5

 LCHAR #25;#12;LR_V;#6

AppleIIAsmLib Reference Manual 495

v0.5.0

 LCHAR #30;#12;LR_W;#7

 LCHAR #35;#12;LR_X;#8

 LCHAR #0;#18;LR_Y;#9

 LCHAR #5;#18;LR_Z;#10

 LCHAR #10;#18;LR_0;#11

 LCHAR #15;#18;LR_1;#12

 LCHAR #20;#18;LR_2;#13

 LCHAR #25;#18;LR_3;#14

 LCHAR #30;#18;LR_4;#0

 LCHAR #35;#18;LR_5;#1

 LCHAR #0;#24;LR_6;#2

 LCHAR #5;#24;LR_7;#3

 LCHAR #10;#24;LR_8;#4

 LCHAR #15;#24;LR_9;#5

 LCHAR #20;#24;LR_EXC;#6

 LCHAR #25;#24;LR_QUEST;#7

 LCHAR #30;#24;LR_PRD;#8

 LCHAR #35;#24;LR_CMA;#9

 LCHAR #0;#30;LR_APOST;#10

 LCHAR #5;#30;LR_QUOT;#11

 LCHAR #10;#30;LR_COLON;#12

 LCHAR #15;#30;LR_SEMI;#13

 LCHAR #20;#30;LR_MINUS;#14

 LCHAR #25;#30;LR_PLUS;#0

 LCHAR #30;#30;LR_EQUAL;#1

 LCHAR #35;#30;LR_CHECKER1;#2

 LCHAR #0;#36;LR_CHECKER2;#3

 LCHAR #5;#36;LR_UP;#4

 LCHAR #10;#36;LR_DOWN;#5

 LCHAR #15;#36;LR_LEFT;#6

 LCHAR #20;#36;LR_RIGHT;#7

 LCHAR #25;#36;LR_FSLASH;#8

 LCHAR #30;#36;LR_BSLASH;#9

 LCHAR #35;#36;LR_LPAR;#10

 LCHAR #0;#42;LR_RPAR;#11

 LCHAR #5;#42;LR_BLOCK;#12

 LCHAR #10;#42;LR_GOOMBA;#13

 LCHAR #15;#42;LR_PERCENT;#14

 LCHAR #20;#42;LR_BULLET;#0

 LCHAR #25;#42;LR_OFACE;#1

 LCHAR #30;#42;LR_HFACE;#2

 LCHAR #35;#42;LR_SFACE;#3

 _WAIT

*

** LASTLY,WE HVE A MORE COMPLICATED DEMO SHOING MOST OF

** THE REST OF THE ROUTINES WORKING IN UNISON. THIS IS NOT

AppleIIAsmLib Reference Manual 496

v0.5.0

** MEANT TO BE IMPRESSIVE OR EVEN SPEEDY; IT SIMPLY SHOWS WHAT

** CAN BE ACCOMPLISHED WITH VERY LITTLE OVERHEAD.

*

** TO EXIT THE DEMO, YOU WILL HAVE TO ISSUE A CONTROL-BREAK, AS

** THE END OF THE DEMO IS N INFINITE LOOP.

*

*

 BIT TEXTON

 JSR]HOME

 _PRN "FINALLY, JUST FOR FUN, LET'S USE",8D

 _PRN "SOME OF THESE MACROS TO CREATE",8D

 _PRN "A SIMPLE ANIMATED SCREEN. NOTE THAT",8D

 _PRN "WHILE THESE LORES MACROS ARE PERFECTLY",8D

 _PRN "APPROPRIATE FOR MOST USES, THEY WOULD NEED",8D

 _PRN "A LOT OF REWORKING TO COMPARE TO A",8D

 _PRN "DEMOSCENE PROGRAM. FOR MOST GAMES AND

DRAWING",8D

 _PRN "UTILITIES, HOWEVER, THESE SHOULD WORK

FINE.",8D8D

 _WAIT

 _PRN "WHEN YOU ARE DONE WATCHING THE SHORT DEMO,",8D

 _PRN "USE CTRL-BREAK TO END THE PROGRAM.",8D

 _WAIT

 LRGF

 LFCLR #]BLACK

 LDA #1

 STA]CC1

:RELOOP

 LVLIN #0;#47;]HH;]CC1

 INC]HH

 INC]CC1

 LDY]HH

 CPY #39

 BNE :CONTLP0

 LDA #0

 STA]HH

*

:CONTLP0

 LCHAR #10;#37;LR_K;#0

 LCHAR #15;#38;LR_I;#0

 LCHAR #20;#39;LR_L;#0

 LCHAR #25;#40;LR_L;#0

 INC]CC1

 LDY]CC1

 CPY #15

 BNE :CONTLP

AppleIIAsmLib Reference Manual 497

v0.5.0

 LDY #1

 STY]CC1

:CONTLP

 LDA #1

 STA]CC

 STA]RR

:LPC

 LCIRC #19;#19;]RR;]CC

 INC]RR

 INC]CC

 LDY]RR

 CPY #15

 BEQ :QLPC

 JMP :LPC

:QLPC

 LDA #1

 STA]CC

:LPC2

 LCIRC #19;#19;]RR;]CC

 DEC]RR

 INC]CC

 LDY]RR

 CPY #1

 BNE :LPC2

 JMP :RELOOP

*

 _WAIT

 LDA TEXTON

 JMP $3D0

*

``````````````````````````````

* BOTTOM INCLUDES *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

** BOTTOM INCLUDES

*

 PUT MIN.LIB.REQUIRED

*

** INDIVIDUAL SUBROUTINE INCLUDES

*

 PUT MIN.SUB.LRGFCLR

 PUT MIN.SUB.LRGPCLR

 PUT MIN.SUB.LRPLOT

 PUT MIN.SUB.LRHLINE

 PUT MIN.SUB.LRVLINE

 PUT MIN.SUB.LRBLINE

AppleIIAsmLib Reference Manual 498

v0.5.0

 PUT MIN.SUB.LRCIRCLE

 PUT MIN.SUB.LRGETPIX

 PUT MIN.SUB.LRCHAR

*

]RR DS 1

]CC DS 1

]HH DS 1

]CC1 DS 1

