AppleIIAsm-Collection/source/d3_arrays/T.SUB.AGET162.ASM
2021-06-05 21:40:51 -04:00

173 lines
7.0 KiB
NASM

*
*``````````````````````````````*
* AGET162 (NATHAN RIGGS) *
* *
* GET A VALUE FROM AN ELEMENT *
* IN A 2-DIMENSIONAL, 16-BIT *
* ARRAY. *
* *
*------------------------------*
* MULTIPLICATION CODE ADAPTED *
* FROM WHITE FLAME'S WORK ON *
* CODEBASE64. LICENSE MAY VARY *
*------------------------------*
* *
* INPUT: *
* *
* ZPW1 = ARRAY ADDRESS *
* ZPW2 = 1ST DIM INDEX *
* ZPW3 = 2ND DIM INDEX *
* *
* DESTROY: NZCIDV *
* ^^^ ^ *
* *
* CYCLES: 382+ *
* SIZE: 224 BYTES *
*,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,*
*
]ADDR EQU ZPW1 ; ARRAY ADDRESS
]XIDX EQU ZPW2 ; FIRST DIMENSION LENGTH
]YIDX EQU ZPW3 ; SECOND DIMENSION LENGTH
*
]ESIZE EQU ZPW4 ; ELEMENT LENGTH
]MCAND EQU ZPW5 ; MULTIPLICAND
]MLIER EQU VARTAB+12 ; MULTIPLIER
]PROD EQU VARTAB ; PRODUCT
]PBAK EQU VARTAB+4 ; ^BACKUP
]XLEN EQU VARTAB+8 ; X-DIM LENGTH
]YLEN EQU VARTAB+10 ; Y-DIM LENGTH
*
AGET162
LDY #4 ; {2C2B} READ BYTE 4 FROM HEADER
LDA (]ADDR),Y ; {6C2B} TO GET ELEMENT SIZE
STA ]ESIZE ; {3C2B}
LDY #0 ; {2C2B} READ BYTE 0 FROM HEADER
LDA (]ADDR),Y ; {6C2B} TO GET X-DIM LENGTH LOBYTE
STA ]XLEN ; {3C2B}
LDY #1 ; {2C2B} READ BYTE 1 FROM HEADER
LDA (]ADDR),Y ; {6C2B} TO GET X-DIM LENGTH HIBYTE
STA ]XLEN+1 ; {3C2B}
LDY #2 ; {2C2B} READ BYTE 2 FROM HEADER
LDA (]ADDR),Y ; {6C2B} TO GET Y-DIM LENGTH LOBYTE
STA ]YLEN ; {3C2B}
LDY #3 ; {2C2B} READ BYTE 3 OF HEADER
LDA (]ADDR),Y ; {6C2B} TO GET Y-DIM LENGTH HIBYTE
STA ]YLEN+1 ; {3C2B}
LDY #0 ; {2C2B} RESET BYTE INDEX
*
** MULTIPLY Y-INDEX BY Y-LENGTH
*
LDA ]YIDX ; {3C2B} PUT Y-INDEX INTO
STA ]MLIER ; {3C2B} MULTIPLIER
LDA ]YIDX+1 ; {3C2B} ALSO HIBYTE
STA ]MLIER+1 ; {3C2B}
LDA ]YLEN ; {3C2B} PUT Y-DIM LENGTH LOBYTE
STA ]MCAND ; {3C2B} INTO MULTIPLICAND
LDA ]YLEN+1 ; {3C2B} ALSO HIBYTE
STA ]MCAND+1 ; {3C2B}
LDA #00 ; {2C2B} RESET
STA ]PROD ; {3C2B} PRODUCT BYTES
STA ]PROD+1 ; {3C2B}
STA ]PROD+2 ; {3C2B}
STA ]PROD+3 ; {3C2B}
LDX #$10 ; {2C2B} LOAD #16 INTO X REGISTER
:SHIFT_R
LSR ]MLIER+1 ; {6C2B} DIVIDE MULTIPLIER BY 2
ROR ]MLIER ; {6C2B} ADJUST HIBYTE
BCC :ROT_R ; {3C2B} IF 0 PUT IN CARRY, ROTATE MORE
LDA ]PROD+2 ; {3C2B} LOAD PRODUCT 3RD BYTE
CLC ; {2C1B} CLEAR CARRY
ADC ]MCAND ; {4C3B} ADD MULTIPLICAND
STA ]PROD+2 ; {3C2B} STORE IN PRODUCT 3RD
LDA ]PROD+3 ; {3C2B} LOAD PRODUCT HIBYTE
ADC ]MCAND+1 ; {4C3B} ADD MULTIPLICAN HIBYTE
:ROT_R
ROR ; {6C2B} ROTATE .A RIGHT
STA ]PROD+3 ; {3C2B} STORE IN PRODUCT HIBYTE
ROR ]PROD+2 ; {6C2B} ROTATE 3RD BYTE
ROR ]PROD+1 ; {6C2B} ROTATE 2ND BYTE
ROR ]PROD ; {6C2B} ROTATE LOBYTE
DEX ; {2C1B} DECREASE X COUNTER
BNE :SHIFT_R ; {3C2B} IF NOT ZERO, SHIFT AGAIN
*
** NOW MULTIPLY XIDX BY ELEMENT SIZE
*
LDA ]PROD ; {3C2B} BACKUP PREVIOUS PRODUCT
STA ]PBAK ; {3C2B} 1ST AND 2ND BYTES; THE
LDA ]PROD+1 ; {3C2B} 3RD AND 4TH ARE NOT USED
STA ]PBAK+1 ; {3C2B}
LDA ]XIDX ; {3C2B} LOAD X-INDEX LOBYTE
STA ]MLIER ; {3C2B} AND STORE IN MULTIPLIER
LDA ]XIDX+1 ; {3C2B} LOAD HIBYTE AND STORE
STA ]MLIER+1 ; {3C2B}
LDA ]ESIZE ; {3C2B} LOAD ELEMENT SIZE AND
STA ]MCAND ; {3C2B} STORE LOBYTE IN MULTIPLICAND
LDA #0 ; {2C2B} CLEAR MULTIPLICAND HIBYTE
STA ]MCAND+1 ; {3C2B}
*
STA ]PROD ; {3C2B} CLEAR ALL PRODUCT BYTES
STA ]PROD+1 ; {3C2B}
STA ]PROD+2 ; {3C2B}
STA ]PROD+3 ; {3C2B}
LDX #$10 ; {2C2B} LOAD #16 IN COUNTER
:SHIFTR LSR ]MLIER+1 ; {6C2B} DIVIDE MULTIPLIER HIBYTE BY 2
ROR ]MLIER ; {6C2B} ADJUST LOBYTE
BCC :ROTR ; {3C2B} IF 0 PUT IN CARRY, ROTATE
LDA ]PROD+2 ; {3C2B} LOAD PRODUCT 3RD BYTE
CLC ; {2C1B} CLEAR CARRY
ADC ]MCAND ; {4C3B} ADD MULTIPLICAND LOBYTE
STA ]PROD+2 ; {3C2B} STORE PRODUCT 3RD BYTE
LDA ]PROD+3 ; {3C2B} LOAD PRODUCT HIBYTE
ADC ]MCAND+1 ; {4C3B} ADD MULTIPLICAND HIBYTE
:ROTR
ROR ; {6C2B} ROTATE .A RIGHT
STA ]PROD+3 ; {3C2B} STORE IN PRODUCT HIBYTE
ROR ]PROD+2 ; {6C2B} ROTATE PRODUCT 3RD BYTE
ROR ]PROD+1 ; {6C2B} ROTATE 2ND BYTE
ROR ]PROD ; {6C2B} ROTATE LOBYTE
DEX ; {2C1B} DECREMENT X COUNTER
BNE :SHIFTR ; {3C2B} IF != 0, SHIFT AGAIN
*
** NOW ADD X * ESIZE TO RUNNING PRODUCT
*
CLC ; {2C1B} CLEAR CARRY
LDA ]PROD ; {3C2B} ADD PREVIOUS PRODUCT
ADC ]PBAK ; {4C3B} LOBYTE TO CURRENT
STA ]PROD ; {3C2B} AND STORE IN PRODUCT
LDA ]PROD+1 ; {3C2B} DO THE SAME WITH HIBYTES
ADC ]PBAK+1 ; {4C3B}
STA ]PROD+1 ; {3C2B}
CLC ; {2C1B} CLEAR CARRY
LDA ]PROD ; {3C2B} ADD 5 BYTES TO PRODUCT
ADC #5 ; {4C3B} TO ACCOUNT FOR ARRAY HEADER
STA ]PROD ; {3C2B}
LDA ]PROD+1 ; {3C2B}
ADC #0 ; {2C2B} ADJUST HIBYTE
STA ]PROD+1 ; {3C2B}
*
** NOW ADD BASE ADDRESS OF ARRAY TO GET
** THE ADDRESS OF THE INDEX VALUE
*
CLC ; {2C1B} CLEAR CARRY
LDA ]PROD ; {3C2B} ADD PRODUCT TO ARRAY
ADC ]ADDR ; {4C3B} ADDRESS, LOBYTES
STA ZPW6 ; {3C2B} STORE IN ZERO PAGE
LDA ]PROD+1 ; {3C2B} DO THE SAME WITH HIBYTES
ADC ]ADDR+1 ; {4C3B}
STA ZPW6+1 ; {3C2B}
LDY #0 ; {2C2B} RESET BYTE INDEX
*
** COPY FROM SRC ADDR TO DEST ADDR
*
:CLP
LDA (ZPW6),Y ; {6C2B} LOAD BYTE FROM ELEMENT
STA RETURN,Y ; {5C3B} AND STORE IN RETURN
INY ; {2C1B} INCREMENT BYTE COUNTER
CPY ]ESIZE ; {4C3B} IF != ELEMENT LENGTH,
BNE :CLP ; {3C2B} CONTINUE LOOPING
LDA ]ESIZE ; {3C2B} .A = ELEMENT SIZE
STA RETLEN ; {3C2B} ALSO IN RETLEN
LDY ZPW6+1 ; {3C2B} .Y = ELEMENT ADDRESS HIBYTE
LDX ZPW6 ; {3C2B} .X = ELEMENT ADDRESS LOBYTE
RTS ; {6C1B}