AppleSAWS/src/binaryfile/disassembler.cxx

381 lines
11 KiB
C++

#include "opcodes.h"
#include "disassembler.h"
#include "role_asm_opcode.h"
#include "role_asm_operand.h"
#include "util.h"
#include <QByteArray>
#include <QDebug>
#include <QList>
#include <math.h>
Disassembler::Disassembler(AttributedMemory &mem)
{
m_mem = &mem;
m_memusagemap.clearData();
}
QList<DisassembledItem> Disassembler::disassemble(quint16 from, quint16 to,
QList<quint16> entryPoints,
bool processRecursively) {
m_from = from;
m_to = to;
QList<DisassembledItem> retval;
MemoryUsageMap memUse;
bool stopping = false;
quint16 next = from;
while (entryPoints.count())
{
next = entryPoints.takeFirst();
m_stack.push(next);
}
while (!stopping)
{
DisassembledItem item;
bool ok = false;
if (next >= from && next <= to) //TODO: Remove this to not limit disassembly to program range
ok = disassembleOp(next,item,&memUse);
if (ok)
{
retval.append(item);
quint16 flow = item.nextFlowAddress();
qDebug() << uint16ToHex(next) << uint16ToHex(flow);
if (item.isBranch())
{
qDebug() << "Is Branch";
m_stack.push(item.targetAddress());
}
if (item.isJsr() && !item.canNotFollow())
{
if (item.targetAddress() <= to && item.targetAddress() >= from) //TODO: Remove this to not limit disassembly to program range
{
if (m_stack.push(item.targetAddress()))
{
qDebug() << "Appending" << uint16ToHex(item.targetAddress()) << "to jump table";
}
else
{
qDebug() << "Not adding" << uint16ToHex(item.targetAddress()) << "to jump table";
}
}
}
if (next <= to) //TODO: Remove this to not limit disassembly to program range
{
next = flow;
stopping = item.stopsProcessing();
}
else stopping = true;
}
else
{
stopping = true; // already processed this address
}
if (next >= to) stopping = true;
}
m_memusagemap.merge(memUse);
if (processRecursively)
while (!m_stack.isEmpty())
{
quint16 num = m_stack.pop();
if (!m_memusagemap[num].testFlag(Operation))
{
if (num >= from && num <= to) // TODO: remove this to not limit disassembly to program range
{
qDebug() << "Calling recursively to"<<uint16ToHex(num);
retval.append(disassemble(from,to,QList<quint16>() << num,false));
qDebug() << "Return from recursive call.";
}
}
}
std::sort(retval.begin(),retval.end());
if (processRecursively)
{
m_jumplines = m_jlm.buildJumpLines();
qDebug() << "Num Channels: " << m_jlm.getNumJumpLineChannels();
}
return retval;
}
bool Disassembler::disassembleOp(quint16 address, DisassembledItem &retval, MemoryUsageMap *memuse)
{
if (memuse)
{
if ((*memuse)[address].testFlag(Operation)) return false;
}
quint8 opcode = m_mem->at(address);
retval.setOpcode(opcode);
if (!m_mem->hasRoleAt(address,RoleAsmOpcode::RoleID))
{
auto opRole = new RoleAsmOpcode();
if (!m_mem->setRoleAt(address,opRole))
{
qWarning("Cannot set role %s at address %s for opcode %s",
qPrintable(opRole->name()),
qPrintable(uint16ToHex(address)),
qPrintable(uint8ToHex(opcode)));
delete opRole;
}
}
if (OpCodes::isIndirectJump(opcode)) // Indirect jumps
{
m_jlm.addJump(address,address,IsUnknownJump,m_from,m_to);
retval.setCanNotFollow(true);
}
QString disassemblyLine;
QString hexValueString;
QByteArray hexValues;
hexValues.append(opcode);
// Prepare Op Code arguments
auto numArgs = OpCodes::numArgs(opcode);
for (int idx = 1; idx < numArgs+1; idx++) {
qDebug() << "Opcode at " << uint16ToHex(idx + address);
auto oprndRole = new RoleAsmOperand();
if (numArgs == 1)
{
oprndRole->setOperandType(RoleAsmOperand::Type::Byte);
}
else {
if (idx == 1)
{
oprndRole->setOperandType(RoleAsmOperand::Type::WordLo);
}
else // idx == 2
{
oprndRole->setOperandType(RoleAsmOperand::Type::WordHi);
}
}
if (!m_mem->setRoleAt(address+idx,oprndRole))
{
qWarning(">> Cannot set role %s at address %s",
qPrintable(oprndRole->name()),
qPrintable(uint16ToHex(address)));
delete oprndRole;
}
quint8 val = m_mem->at(address+idx);
hexValues.append(val);
}
if (memuse)
{
(*memuse)[address].setFlag(Operation);
for (int idx = 1; idx < OpCodes::numArgs(opcode)+1; idx++)
{
(*memuse)[address+idx].setFlag(OperationArg);
}
}
quint16 argval = 0;
if (numArgs == 1)
{
argval = (quint8) hexValues[1];
}
else if (numArgs == 2)
{
argval = makeWord(hexValues[1],hexValues[2]);
}
for (int idx = 0; idx < hexValues.length(); idx++) {
hexValueString.append(QString("%1 ").arg(uint8ToHex(hexValues[idx])));
}
retval.setNextContiguousAddress(address+1+numArgs);
retval.setNextFlowAddress(address+1+numArgs);
QString mnemonic = OpCodes::mnemonic(opcode);
// Disassemble instruction
switch (OpCodes::addressMode(opcode)) {
case AM_InvalidOp: {
disassemblyLine = OpCodes::mnemonic(opcode);
retval.setIsInvalidOp(true);
break;
}
case AM_Absolute:{
disassemblyLine = QString("%1 _ARG16_").arg(mnemonic);
retval.setRawArgument(argval);
break;
}
case AM_AbsoluteIndexedIndirect:{
disassemblyLine = QString("%1 (_ARG16_,x)").arg(mnemonic);
retval.setRawArgument(argval);
break;
}
case AM_AbsoluteIndexedWithX:{
disassemblyLine = QString("%1 _ARG16_,x").arg(mnemonic);
retval.setRawArgument(argval);
break;
}
case AM_AbsoluteIndexedWithY:{
disassemblyLine = QString("%1 _ARG16_,y").arg(mnemonic);
retval.setRawArgument(argval);
break;
}
case AM_AbsoluteIndirect:{
disassemblyLine = QString("%1 (_ARG16_)").arg(mnemonic);
retval.setRawArgument(argval);
break;
}
case AM_Immediate:{
disassemblyLine = QString("%1 #%2").arg(mnemonic).arg((quint8) hexValues[1],2,16,QChar('0')).toUpper();
retval.setRawArgument(argval);
break;
}
case AM_Implied:{
disassemblyLine = mnemonic;
break;
}
case AM_Accumulator:{
disassemblyLine = mnemonic;
break;
}
case AM_ProgramCounterRelative:{
qint8 offset = (qint8) hexValues[1];
quint16 offsetAddress = address+2+offset;
retval.setTargetAddress(offsetAddress);
if (opcode == 0x80) // BRA
m_jlm.addJump(address,offsetAddress,IsBRA,m_from,m_to);
else
m_jlm.addJump(address,offsetAddress,IsBranch,m_from,m_to);
disassemblyLine = QString("%1 _ARG16_ {%2%3}").arg(mnemonic)
.arg((offset<0)?"-":"+")
.arg(abs(offset));
retval.setRawArgument(offsetAddress);
break;
}
case AM_ZeroPage:{
disassemblyLine = QString("%1 _ARG8_").arg(mnemonic);
retval.setRawArgument(argval);
break;
}
case AM_ZeroPageIndirectIndexedWithY:{
disassemblyLine = QString("%1 (_ARG8_),Y").arg(mnemonic);
retval.setRawArgument(argval);
break;
}
case AM_ZeroPageIndexedIndirect:{
disassemblyLine = QString("%1 (_ARG8_,x)").arg(mnemonic);
retval.setRawArgument(argval);
break;
}
case AM_ZeroPageIndexedWithX:{
disassemblyLine = QString("%1 _ARG8_,x").arg(mnemonic);
retval.setRawArgument(argval);
break;
}
case AM_ZeroPageIndexedWithY:{
disassemblyLine = QString("%1 _ARG8_,y").arg(mnemonic);
retval.setRawArgument(argval);
break;
}
case AM_ZeroPageIndirect:{
disassemblyLine = QString("%1 (_ARG8_)").arg(mnemonic);
retval.setRawArgument(argval);
break;
}
default:{
disassemblyLine = mnemonic;
retval.setIsInvalidOp(true);
qDebug() << "Unhandled Address Mode: " << mnemonic;
break;
}
}
if (opcode == 0x20 || opcode == 0x4c) // JSR / JMP
{
retval.setTargetAddress(makeWord(hexValues[1],hexValues[2]));
if (opcode == 0x4c) // JMP
{
qDebug() << "JMP: Adding flow address "
<< uint16ToHex(makeWord(hexValues[1],hexValues[2])) << "to jump table";
m_jlm.addJump(address,argval,IsJMP,m_from,m_to);
m_stack.push(argval);
retval.setCanNotFollow(true);
}
else // JSR
{
m_jlm.addJump(address,argval,IsJSR,m_from,m_to);
}
}
retval.setAddress(address);
retval.setDisassembledString(disassemblyLine.toUpper());
retval.setHexString(hexValueString.trimmed().toUpper().leftJustified(12,' '));
retval.setHexValues(hexValues);
return true;
}
void Disassembler::setUnknownToData(quint16 from, quint16 to)
{
for (int idx = from; idx <= to; idx++)
{
if (m_memusagemap[idx].testFlag(Unknown))
{
m_memusagemap[idx].setFlag(Data);
}
}
}
//DisassembledItem::DisassembledItem(AssyInstruction instr) {
// m_canNotFollow = false;
// setInstruction(instr);
//}
DisassembledItem::DisassembledItem(quint8 opcode) {
m_canNotFollow = false;
m_opcode = opcode;
}
QString DisassembledItem::disassembledString() {
QString retval = rawDisassembledString();
if (hasArg()) {
if (retval.contains("_ARG16_")) {
retval.replace("_ARG16_","$"+arg16Str());
} else if (retval.contains("_ARG8_")) {
retval.replace("_ARG8_","$"+arg8Str());
}
}
return retval;
}
void DisassembledItem::init() {
m_address = m_target_address = 0;
m_nextContiguousAddress = 0;
m_nextFlowAddress = 0;
m_unknown_ta = true;
m_raw_arg = 0;
m_has_arg = false;
m_canNotFollow = false;
m_isInvalidOp = false;
}