
~1.33 /= FORTH OlmEflSlClNS
t FORTH llTEREST GROUP Volume Ill

I%d,(EA 94070
Number 5

f
Price: $2.=O

I

lflSlUE

Functional Programming and Forth
137 Harvey Glass

Forth and Artificial Linguistics
138 Raymond Weisling

146 Technotes

A Forth Assembler for The 6502
143 William F. Ragsdale

A Technical Tutorial:
Table Lookup Examples

151 Henry Laxen

The Game of Reverse
152 M. Burton

The 31 Game
154 Tony Lewis

Simulated Tektronics
4010 Graphics with Forth

156 Timothy Huang

A Video Version of Master Mind

I
158 David Butler

Transfer of Forth Screens by Modem
162 Guy T. Grotke

EDrrOR1s COLUMN

Published by F O P ~ ~ Ihterest Group

Volume 111 No. 5

Publisher
Editor

Editorial Review Board

Bi l l Ragsdale
Dave Boulton
K im Harris
John James
Dave Kilbridge
Henry Laxen
George Maverick
Bob Smith
John Bumgarner

Roy C. Martens
C. J. Street

FORTH DIMENSIONS solicits editorial material, comments
and letters. No responsibility is assumed for accuracy of material
submitted. ALL MATERIAL PUBLISHED BY THE FORTH
INTEREST GROUP IS IN THE PUBLIC DOMAIN. Information in
FORTH DIMENSIONS may be reproduced with credit given to the
author and the Forth Interest Group.

Subscription to FORTH DIMENSIONS is free with membership
in the Forth Interest Group at $15.00 per year ($27.00 foreign
air). For membership, change of address and/or to submit
material, the address is:

Forth Interest Group
P.O. Box 1105
San Carlos, CA 94070

HISTORICAL PERSPECTIVE

FORTH was created by Mr. Charles H. Moore i n 1969 at the
National Radio Astronomy Observatory, Charlottesville, VA. It
was created out of dissatisfaction with available programming
tools, especially for observatory automation.

Mr. Moore and several associates formed FORTH, Inc. i n 1973
fo the purpose of licensing and support of the FORTH Operating
System and Programming Language, and to supply application
programming to meet customers' unique requirements.

The Forth Interest Group is centered in Northern California.
Our membership is over 2,400 worldwide. It was formed in 1978
by FORTH programmers to encourage use of the language by the
interchange of ideas through seminars and publications.

1981 is behind us and as I look back, I am pleased to see how
much has been accomplished for FORTH, FIG and FORTH
DIMENSIONS.

I really appreciate a l l the help and support I have received
from our readers. I have not done everything right and some of
the best help has been your disagreement. Intelligent, construc-
t ive criticism is as welcome as earned praise.

1982 wil l be a year of continued growth. You can look
forward to continuing responsiveness. I t is my plan to contact
every FIG chapter by telephone at least quarterly to get feedback
and encourage reader contributions.

FORTH DIMENSIONS wi l l also be awarding AUTHOR'S
CERTIFICATES for outstanding articles that contribute to the
growth and understanding of the language. While we are not yet
i n a position to give you cash for your contributions, we at least
wi l l give you credit.

Starting in this issue wil l be a policy of putting in tutorial
articles designed to help our entry level readers. This, however,
wi l l not be done at the expense of our more seasoned FIGGERS
who wil l find an expanded base of challenging articles and
applications.

In closing, I want to say that the writer's ki ts have finally
come o f f the presses and I wi l l be glad to send one to anyone who
wants to contribute. Please send in applications and utilities,
philosophy, questions and problems -- in the final analysis,
FORTH DIMENSIONS is what you make it.

C. J. Street

PUBLISHER'S COLUMN

1981 has been a great year for FORTH, the FORTH Interest
Group and for me, personally. FORTH has spread around the
world and is being used on thousands of computer and
microprocessor-based products. It is being taught extensively i n
schools, companies and by FORTH programmers. FIG has just
completed i ts most successful national convention with almost
500 attendees, over 20 exhibitors and multiple sessions. (Thanks
to Bob Reiling, Conference Chairman and Gary Feterbach,
Program Chairman.) The FORML conference was well attended
and the Proceedings are now available--see order form.

My deepest thanks to the FORTH community for "THE
FIGGY", Man of Year Award. I t was a fantastic thr i l l and a
surprise. I stand in good company.

Roy C. Martens

Page 134 FORTH DIMENSIONS 11115

DEA- CHU--

Dear Fig:

I have developed a process-simulation
program that occupies very l i t t le memory
space and yet has many of the capabilities
of commercial simulation packages.

I have been heavily involved in rnodel-
ing and simulation of automated manufac-
turing systems for over six years. My
ultimate objective for this work is to
develop a microprocessor-based simulation
capability which incorporates process
control structures far beyond those of
currently available languages. However,
the relatively extensive modeling power of
the current code would seem to offer in-
teresting market potential in i ts own
right.

I f you can provide information on
marketing such a product, please contact
me by mail or by phone (home (317) 447-
9206, office (317) 749-2946).

Joseph Talavage, Ph.D.
3907 Prange Dr.
Lafayette, IN 47905

Hope printing your letter helps.--ed.

Dear Fig:

I am puzzled as to why I have not seen
mention in your New Products announce-
ments of fuIIFORTH+ for PET, available
also, I believe for Apple. It is published by
IDPC, Co., PO Box 11594, Bethlehem
Pike, Colmar, PA 18915 at $65. It is
advertised as "A full-featured FORTH
with extensions conforming to Forth
Interest Group standards. Includes as-
sembler, string processing capabilities,
disk virtual memory, multiple dimensioned
arrays, floating point and integer pro-
cessing." Surely, fuIIFORTH+ is worth a
mention, if not a comprehensive review!

Francis T. Chambers
ROCK HOUSE
Ballyoroy, Westport
Co. Mayo, Ireland

Thank you for your interest. This was
reviewed i n Vol. III, #3.--ed.

Dear Fig:

This is our response to Chuck's
(Moore's) cute letter.

Arthur Goldberg
Spencer SooHoo
CEDARS SINAI MEDICAL CTR.
9700 Beverly Blvd.
Los Angeles, CA 90048

WE CHA------ YOU TO CON---- THE
CON-- OF THI- CON------ LET---. WE
CLA-- THA- THE CON---- OF A WOR- IN
COM--- ENG ---- CON -------- CON --------
- TO OUR ABI--- TO DEC----- IT FRO-
THR-- LET---- AND THE LEN---.

HOW----, IN COM----- PRO----- THE
CON---- IS LES- CON------ (COM-----,
WOR-- CAN BE SWA---- WIT---- CHA----
- THE SEM ------). CON --------- IT CON--
------ CON----- ---- LES- HEL- IN IDE -----
--- THE DEF ------ OF A WOR-. IN FAC-
, AS THI- LET--- DEM--------- , T M - -
LET---- AND A LEN--- CAN LET----
EVE- A CAR--- REA--- OF COM---
ENG----.

(TRANSLATION)

Dear Chuck:

WE CHALLENGE YOU TO CONSIDER
THE CONTENTS OF THIS CONFUSING
LETTER. WE CLAIM THAT THE
CONTEXT OF A WORD IN COMMON
ENGLISH CONTRIBUTES CONSIDER-
ABLY TO OUR ABILITY TO DECIPHER
IT FROM THREE LETTERS AND THE
LENGTH.

HOWEVER, I N COMPUTER PRO-
GRAMS THE CONTEXT IS LESS
CONFINING (COMMONLY, WORDS CAN
BE SWAPPED WITHOUT CHANGING THE
SEMANTICS). CONSEQUENTLY IT
CONTRIBUTES CONSIDERABLY LESS
HELP IN IDENTIFYING THE DEFINITION
OF A WORD. IN FACT, AS THIS LETTER
DEMONSTRATES, THREE LETTERS AND
A LENGTH CAN LETDOWN EVEN A
CAREFUL READER OF COMMON
ENGLISH.

SINCERELY YOURS,
ARTHUR GOLDBERG
SPENCER SOOHOO

Your letter and i ts "translationtt certainly
make the point2--ed.

Dear Fig:

Right now I am trying to put together
a local Danish FIG, and I would therefore
like you to update me with the names and
addresses of the Danish FIG members and
possible make a note in FORTH
DIMENSIONS about my intentions.

As the communication lines are rather
long and since our magazine is only bi-
monthly, please inform me on your next
deadline as soon as possible.

Niels Oesten
Brostyk~eveh 189
OK-265Ci Mvidovre
Denmark

Thanks Niels. Good iuck an esiah!ishing a
local Danish FIG Group, Ar~yone inter-
estcd, pleasf? cor:La?t Niels 8s listed
above. Regarding deadlines: Copy must
be in our hands 6 weelts prior to pubi-
ication, i.e., 4/15 is the deadline for
May!Jnne edition, etc.--ed.

Dear Fiq:

I jest wanted to write to tel l you how
much I enjoy FORTH DIMENSIONS. Every
issue has several things of interest to me,
and I appreciate your work in seeing that
it gets done (often a thankless task). Here
in New Hampshire, Rirb Moore of SNAC
(Southern New-.FJa:npshire Apple Czrps) is
doing most of' the work in implementing
and refining a version of fig-FORTH for
the Apple 11. We have taker; as much as
possible from page :era so that we can use
the many subroutines available from the
Applesoft ROM. I have been working with
oirr version for some time now and am
o'oing a high-resolution graphics game
using FORTH and Applesoft hi-res
routines.

Gregg Wi!liarns
BYTE Publications
PO Box 372
Hancock, Ni-l 03449

Thanks Gregg. Glad you enjoy and
appreciate our efforts.--ed.

Dear Fig:

Regarding the 8080 Renovation Pro-
ject's requests for bug fixes, I would like
to counter with a request that they pro-
vide a status report in FORTH DIMEN-
SIONS that includes those bugs already
reported alonq with any solutions proposed
or implemented. It would also be of inter-
est to find out what the goals are for the
8080 Renovation Project and how local
FIG chapters can help.

There is what I consider a bug in that
She message routine uses an absolute value
of screen 4 and 5 for getting error mes-
sage information. This is fine where offset
is zero but when an offset other than zero
is used and the disk has other information
on absolute screens 4 and 5, things don't
look too good.

Robert I. Demrow
P. 0. Box 158 BluSta
Andover, MA 01810

Thanks for the inpot. Your request has

--
FORTH DIMENSIONS In15 Page 135

been forwarded to the 8080 Renovat ion
Project people as we l l as p r in ted here.

Dear Fig:

A f t e r receiv ing m y insta l lat ion guide, I
spent a week keying i n the requisite sev-
enty- f ive pages o f 6502 assembler code.
Now, I am a conf i rmed figger. I have
wr i t ten my own 6502 F O R T H assembler, a
small wordprocessor (w i t h which I a m
wr i t ing this let ter) , and an APPLE I1
graphics u t i l i t y resembling LOGO. I l i ke
FORTH!

Bob Wiseman
118 St. Andrews D r i ve
Cincinnati, O H 45245

Your last name says i t all! How about
some art ic les f o r FD-publication?--ed.

Dear Fig:

I am spreading the F O R T H gospel here
i n Taiwan. I have w r i t t en about 20 lec-
tures and numerous demonstrations t o var-
ious universit ies and inst i tut ions i n th is
area and have generated qui te a b i t o f
local interest.

F rom ground zero, I can now count
about 10 F O R T H systems instal led al -
ready. Many o f them, f r o m the F I G In-
stal lat ion Manual and source l ist ing, I
brought w i t h me.

A n in fo rmal F O R T H discussion group
has already been formed, and our last
meet ing on October 25th a t t rac ted 20 en-
thusiasts. I a m having fun too!

My home phone i n Taipei i s 393-1554.
I f any o f you happen to be heading th is
way, be sure t o l e t me know.

Dr. Chen-hanson Ting
Nat ional Yang Ming Medical

College
Taipei, Taiwan, 112 R.O.C.
(02) 031-2301

Glad t o hear you are doing so well. We a l l
miss you here.--ed.

Dear Fig:

I want to extend m y apologies t o you,
your readers and the F O R T H Interest
Group. I sent in an announcement about
FORTH ROMS fo r the TRS-80, MOD I sev-
e ra l rnonths ago. IJnfortunately, c i r -
cumstances beyond my cont ro l now fo rce
me to revise the i r avahi labi l i ty schedule.
I w i l l spare everyone fu r ther embarrass-
ment by wai t ing t o send i n another an-
nouncement un t i l I have the f i rs t chip set
i n hand.

Ma r t i n Schaaf
P. 0. Box 1001
Da ly C i ty , C A 94017

Thanks f o r the update, Mart in. This points
up why we have our pol icy o f no t announc-
ing unreleased products.--ed.

Dear Fig:

I n the packet o f mater ia ls I got when I
joined F I G was a copy o f F O R T H DIMEN-
SIONS, Volume 111, /I1 w i t h a product re-
v iew o f Timin-FORTH. The rev iew in te r -
ested me i n two respects. One was the
benchmark tests tha t it contaived; the
other were the comments on the al leged
lack o f super ior i ty o f the Z-80 compared
t o the 8080.

Those benchmarks gave me a chance t o
compare my machine w i t h m y version o f
FORTH--the results o f which surprised me
since m y machine only runs a t 2 mhz and
the machine used i n the rev iew runs a t 6
mhz. I expected my machine would take
three t imes longer b u t i n a l l tests, it ran
comparable or even faster. It would seem
m y implementat ion is faster fo r involved
ar i thmet ic owerations.

The editors o f F O R T H DIMENSIONS
are right, I believe, i n being wary o f
t im ing benchmarks fo r it is easy t o draw
inval id conclusions f r o m them. In fact ,
the edi tors themselves drew the wrong
conclusions!

The tests do no t show the Z-80 runs
benchmarks slower than the 8080--the Z-
80 was used f o r both tests. The cor rec t
conclusion is t ha t some F O R T H implemen-
tations are more e f f i c i en t than others and
t ha t some versions on the marke t are te r -
r ib ly slow.

I arn sure you ge t a f lood o f le t te rs fo l -
lowing a benchmark; bu t I just had t o
w r i t e to say t ha t the speed o f F O R T H is
no t necessarily just a funct ion o f pro-
cessor speed as you have o f ten claimed.

Eve re t t Ca r t e r
Harvard Univers i ty
Oivision o f Appl ied Sciences
Cambridge, M A 02138

Thank you f o r your we l l thought out con-
tribution.--ed.

Dear Fiq:

A comment about your publ icat ion
FORTH DIMEr\JSIONS. The in fo rmat ion is
cer ta in ly useful (especially the ap-
pl ications), however, much o f the mater ia l
assumes a complete understanding o f
FOKTI i 'S inner workings. I don't real ly
understand how the compi ler works and
what a l l those c ryp t ic words (CFA, PFA,

SMUDGE, IMMEDIATE, etc.) do, bu t I
would l i ke t o learn. I am sure there are
others out there l i ke me, so how about
some t u to r i a l ar t ic les on some o f these
FORTH-uiiiqus features.

Thomas Kastner
7918 207th St. SE
Snohomish, WA 98290

Entry- level t u t o r i a l a r t i c les are an area I
have been exploring f o r the past year.
Check th is issue and you w i l l f i nd the f i r s t
i n a series o f ar t ic les contr ibuted by
Henry Laxen o f L A X E N A N D HARRIS,
INC., a f i r m tha t specializes i n F O R T H
instruction.--ed.

Dear Fig:

I don't doubt F O R T H would be more
useful i f m y machine had a l l o f the fea-
tures described i n "An Open Response"
(Volume 11, 86) bu t consider what I have
gained wi thout them:

1. A n understanding o f how F O R T H
works.

2. A demonstration tha t a workable sub-
set o f F O R T H can be implemented on
a very smal l system.

3. Hours o f enjoyment and appreciation
o f FORTH's virtues.

4. A useable language faster and be t t e r
than Tiny Basic and more convenient
than machine language.

5. The ab i l i t y t o insta i l and interact ively
test a larger version o f F O R T H when I
expand my machine.

I fee l the a r t i c le does users o f
smal l systems a disservice. Instead o f
discouraging users o f smal l systems,
F IG should encourage development o f
standardized subsets f o r use on smal l
machines.

Roger L. Cole
395 E l m Park Avenue
Elmhurst, IL 60126

F O R T H DIMENSIONS publishes ar t ic les t o
encourage cornmunications, thought and
growth o f the F O R T H world. Fa r f r o m
discouraging users o f smal l systems, the
F I G leadership is composed almost exclu-
sively o f members w i t h smal l systems.
F I G has been a leader i n encouraqing the
development and use o f F O R T H on srnall
systems. In fact , i t is probably safe t o say
tha t i f there were no FIG, there would be
no FORTH, f o r smal l users today. Most o f
the vendors and systerns now i n use have
been derived f r o m F IG l ist ings provided a t
cost. The source data f o r these listinqs,
FOFiML research, st.andards, etc., which
so many take f o r qranted, have been de-
r i ved f r o m the labor and cash contr ibu-

- -.

Page 136 FORTIH DIMENSIONS 11115

tions o f volunteers serving without reim-
bursement. The FORTH DIMENSIONS
editorial staff supports FIG efforts to
keep FORTH intact and resist the temp-
tat ion to obtain mere popularity and i n the
process, fa i l i n their mission t o provide
and support the finest software concepts
and tools available today. This has not
been an easy task (and a l l too often, a
thankless one) but it is hoped that i f
others wi l l least t r y t o understand, the
efforts and contributions o f these volun-
teers wi l l continue to benefit us all.--ed.

Dear Fig:

Congratulations to a l l the people who
produce FORTH DIMENSIONS on i ts qual-
i t y and improvement. Please send me a
writer's k i t so I can make some of my ap-
plications presentahle for publication.

Bob Royce
Box 57 Michiana
New Buffalo, M I 49117

Your k i t is on the way! Anyone else?

Dear Fig:

Glen Haydon's nice article i n FORTH
DIMENSIONS 11112, page 47 talks about an
algorithm he would l ike t o have t o
determine the Julian day. With the
background that FORTH has i n astronomy,
I'm sure there must be several, but this is
the nicest I know. It comes f rom the U. S.
Naval Observatory via an article i n the
Astrophysical Journal Supplement Series,
Vol. 41 No. 3 Nov. 1979 pp 391-2.

0 (JULIAN DATE)
1 : J D >R SWAP
2 D U P 9 + 1 2 / R + 7 + 4 / M I N U S
3 O V E R 9 - 7 / R + 1 0 0 / 1 + 3 " 4 / -
4 SWAP 275 9 */ + -'

5 t S-> D 1.721029 Dt
6 3 6 7 R > M I D + ;

Example: 3 20 1982 JD D.
2445049 OK

I f you are only concerned wi th dates
between 3/1/1900 and 2/28/2000, then you
can omit l ine 3 entirely.

On another subject, there is another
correction I noticed i n the dump of the
fig-FORTH 6502 Assembly Source - a t
location OC32, 80 1 A should be D7 06.

Peter B. Dunckel
52 Seventh Avenue
San Francisco, C A 94118

Really slick! But the algorithm would be
hard to explain to most people.--ed.

FUNCTIONAL PROGRAMMING AND
FORTH

Harvey Glass
University of South Florida

College o f Engineering
Department o f Computer Science

Tampa, F L 33620

The distinguished computer scientist.
John Backus, i n his 1977 Turing Award
lecture (1) describes the shortcomings o f
conventional programming languages and
suggests a new approach to programming
in a style described as functional pro-
gramming (FP). We wi l l summarize the
faults that Backus finds i n conventional
languages, br ief ly describe the functional
programming style, and lastly show that
FORTH meets the spirit o f this style of
programming.

Conventional Languages

An underlying prohlem o f conventional
programming languages is that they tend
to be high level descriptions of the Von
Neumann computer. The assignment
statement is the principal construct of
these languages. A program becomes a
series o f these assignment statements,
each of which requires the modification o f
a single cell. We may think of the Von
Neumann computer as a set of storage
cells, a separate processor, and a channel
connecting the two. If assignment state-
ments imi ta te the store operation, then
branch statements imitate jump and test
while variables imitate storage cells. The
high level languages provide sophisticated
constructs to directly model the under-
lying Von Neumann design. Conventional
languages i n the "word a t a time" f low
described above require large data trans-
fers through this small channel connecting
main storage and the CPU. Backus calls
this the Von Neumann bottleneck. It is
not merely a physical bottleneck but,
more importantly, it is a bottleneck to our
thinking about computer languages.
Backus refers to i t as an "intellectual
bottleneck." He ctiaracterizes conven-
tional languages as both fat and weak
since increases in the size and complexity
o f these languages have provided only
small increases in power. The typical pro-
gramming language requires a large fixed
set o f constructs, is inflexible, and is not
extensible. The problem has been eased
by approaches such as top-down design and
structured programming, but these have
not provided a solution to the underlying
diff iculty. Backus suggests that we need a
new way o f thinking about computing. He
describes a new style which he calls func-
t ional programming.

Functional Proqramminq

This new style of programming has the
following characteristics:

- A function (program) is constructed
f rom a set of previously defined

functions using a set o f functional
forms that combine these existing
functions t o form new ones.

- The most fundamental functional
form is called composition. I f the
composition operator is denoted by
o, then i n Backus' notation "fog" is
the function where g is f i rst applied
and then f.

- The functions incorporate no data
and do not name their conventions
nor substitution rules.

- A function is hierarchical; i.e., bu i l t
f rom simpler functions.

Backus points out that, "FP (Functional
Programming) systems are so minimal that
some readers may find it d i f f icu l t to view
them as proqramming languages." We
have a set of predefined functions in a
l ibrary (dictionary) and rnay define new
functions i n terms of these predefined
functions.

Functional forms are constructs de-
noting functions which take functions as
parameters. For example, the construct
"if-else-then", and the construct "do
while" are functional forms. As indicated
above, composition is also a functional
form.

FORTH o f course has predefined con-
structs which serve as the functional
forms o f F P systems. I n fact, FORTH
provides facil i t ies for adding new func-
t ional forms. An example would be a
"case" construct to provide a more flex-
ible and clear decision structure than that
of a set of nested "if-else-thenrV's. The
capability of language to add new func-
tional forms is not inherent i n F P
systems. Backus defines a language with
this capability as a formal functional pro-
gramming (FFP) language.

An Example of Functional P r o q r a m m i n ~
The Factor ial Function

An example of a program wri t ten i n
the style of functional programming is as
follows:

-
def ! ! ~ e q O + 1;" o [id ,!!subl], where

the notation o, -, and [1 denote func-
t ional forms. As we have seen, o denotes
composition. The notation [fl,f 1 denotes
construction where [fl,f2 1 ap$ied to an
argument x yields the sequence <f (x),-
f2(x)> . The notation p +f;g applied t o an
argument x indicates that the value p(x) is
to be examined and if p(x) is true the ex-
pression yields f(x) else it yields g(x).

Other definitions use> in the above
are:

eqO applied to x yields a value true if x
is 0, and yields false otherwise.
-
1 is the l i te ra l value 1 and yields the

FORTH DIMENSIONS 11115 Page 137

value 1, regardless of t h e argument.

* is t h e multiplication operator , and
applied t o a sequence <x,y> yields x*y.

id is the identi ty operator . id applied
t o x yields x.

sub1 applied t o an argument x yields x-
1.

larly among those in te res ted in innovative
approaches t o computer archi tectures. I t
is this author's content ion t h a t FORTH is
a functional programming language which
closely resembles t h e approach suggested
by John Backus in his defini t ive paper. I t
will b e interest ing t o s e e if, a s a resul t of
this paper, languages which have a t t r i -
butes similar t o FORTH begin t o appear in
academic circles.

Following the logic of the above func-
tion we see t h a t !! applied t o an a rgument
n yields 1 if n is zero. If n is not z e r o we
genera te n*(n-l)!

Clearly then for n s this is a definition
of t h e fac tor ia l function. In FORTH (if
the language were recursive) we would
write:

* The author has recently implemented
such an opera tor in FORTH.

** The way t h a t l i t e ra l s a r e handled can
be viewed as merely a quest ion of im-
plementat ion and eff iciency.

. I1 . .,
DUP O= IF l+

ELSE DUP 1 - !! *
THEN ;

The syntaxes of the two examples a r e
different. The composition rule is applied
r ight to l e f t in t h e f i r s t example and l e f t
to r ight in FORTH. The rules f o r dropping
arguments a r e different. Construct ion is
not used in FORTH.* Tha t t h e rules of
syntax a r e different should not be sur-
prising. The operat ions were defined by
different people a t different t imes. What
is most important is t h a t on close exami-
nation i t is apparent t h a t the s tyle is es-
sentially t h e same. We have "words"
which denote functions which a r e eval-
uated following very similar rules.

FORTH a s a Lanquage with Charac-
t e r i s t i cs of Functional Proqramming

Consider the FORTH (outer) inter-
preter . Literally all t h a t t h e in te rpre te r
recognizes a r e functions; or t o be precise,
words t h a t denote functions.** The fund-
amenta l combining form is composition
where in FORTH "fog" would b e expressed
a s g f. Functions need not incorporate
da ta , do not name the i r arguments , and
require no substitution rules fo r parameter
passing. There are no assignment s t a t e -
ments and a new function is built f rom
simpler previously defined functions. I t is
this s ty le of programminq in FORTH--so
different than t h a t of conventional lang-
uages--that provides a power and flex-
ibility t h a t has sparked t h e enthusiasm of
so many of us.

Surnrnary

This very short summary of the a r t i c le
by John Backus does not begin to do
justice to e i ther the scope or depth of the
paper.

The "new" type of programming has
generated considerahle in te res t within the
computing cornrnunity and most part icu-

References

1. J. Oackus, "Can Programming be
Liberated f rom t h e Von Neumann
Style?" CACM, Vol. 21, No. 8, August
1978, p. 613.

FORTH AND ARTIFICIAL UNGUISTICS

Raymond Weisling
Surakarta , Jawa Tengah

Republik Indonesia

There has not been much said about
t h e linguistic na ture of computer
languages, principally because so few of
them permi t t h e development of syntax
s t ruc tures t h a t apporach human language,
and hence fos te r linguistic observation.
FORTH and i ts o ther threaded-code rela-
t ives allow f o r such s t ruc tures t o b e
developed, principally because of the
larger body of words t h a t arise f rom i t s
extensibi l i ty and hierarchal funct ion of
operators.

The point I wish t o address here is t h e
syn tac t ica l l imitat ions of the language we
a r e building, an ar t i f icial language based
in par t on a human language (English) t h a t
is widely used wherever technology has
developed. But there is a fundamental
weakness in th i s English which I think we
must be aware of, since i t runs counter t o
t h e philosophy of FORTH. This is t h e syn-
tax-sensitivity of word forms, especially
nouns and verbs, which in English a r e
commonly spelled and pronounced exact ly
t h e same. We rely on t h e s t ruc ture (word-
order , part ly) t o distinguish these often
unrelated words.

A few examples a r e in order. Consider
t h e possible function of these FORTH
words, both with respec t t o their cur ren t
use (some a re nouns while o thers a r e
verbs), bu t also in their opposite hypothet-
ical use: RlJFFER , FENCE , I<EY ,
LIMIT , LOOP , SPACE , TYPE , etc.
Others which a prograrnmer might wish t o
use in developing applicat ions might
include: OFFSET , SPAN , INSERT ,

FILE , CATALOG , OUTPUT . Since t h e
act ion of these words is not known f rom
the word itself, b u t only f rom e i ther pre-
vious agreement or syntax, and since syn-
t ax sensitivity is not a common par t o f
FORTH (i.e., where a syn tac t ica l fo rm
does not a l t e r t h e way in which a word is
compiled), some degree of confusion can
resul t .

Furthermore, use of a word in only one
form rules o u t i t s use in another form, ex-
c e p t where i t can reside in a different vo-
cabulary. Thus words like KEY , LOOP ,
BLANK , and TYPE (all FORTH verbs)
cannot funct ion a s nouns despi te our
t empta t ion t o use them t h a t way for the i r
inherent (English language-based) clarity.
The same is t rue of some of the FORTH
nouns like BLOCK , BUFFER , STATE ,
1-IMIT , and BASE .

Thus i t is not possible t o know t h e
nature of t h e word f rom i ts name alone.
Would prefixes for verbs unnecessarily
c l u t t e r t h e language? Would some prefix
or suffix t o d i f fe ren t ia te constants f rom
variables be useful? Or should we leave i t
alone. The TO and FROM words help clar-
ify things but a re not without problems,
whereas ! and @ a r e perfect ly uniform in
function. Could a FORTH-like language
b e built t h a t allows the word-type to be-
come par t of the header , with the com-
piler choosing which form of the same-
named word t o use based on i t s syn tac t ica l
position, like nouns (variables, constants ,
arrays) being objects of TO and FROM ?
Or does this push us back into the horrible
mess of ar t i f icial syntax forms such a s
algebraic notation (something we a r e per-
haps proud to have departed from)?

I offer no solution per se. I only wish
to point out a weakness t h a t we all should
be sensitive t o when we assign names to
our words. Since FORTH is still in evo-
lution, this is ye t another aspec t to con-
sider when standards a r e defined, I wish
t o disclairn any implication t h a t I a m a
linguist of any sort o ther than Armchair
Linguist. My sensitivity t o this is a resul t
of living in a different c r ~ l t u r e where I a m
learning a human language t h a t p e r ~ n i t s
f a r g rea te r fluidity of s t ruc ture due t o t h e
inherent differences in nouns and verbs,
shown hy a well codified system of pre-
f ixes and suff ixes (m ~ r ~ h e r n o l o g i c a l dif-
ferent iators) . Those here who learn
Enqlish s truggle with the s t ruc tura l dif-
ferent iat ion of all t h e par t s of speech
while our rnorpherne different iators a r e
used for relatively useless things like verb
conjugation, plurality, cases, arid tenses
(which a re all essentially absent in this
par t of the world). As technology spreads,
an ar t i f icial language f o r man-machine
manipulation (a two way s t ree t) should be
more universally based, a t least with re-
spec t to linguistic modelirrg. As FORTH is
already in use in many par t s of t h e world,
the channel for feedback is already open.

Page 138 FORTH DIMENSIONS 11115

FORTH STANDARDS CORNER
Rober t L. Smith

fig-FORTH). Fi rst , we define a digit: Con t ro l and Da ta Acquisition". IEEE
Journal o f Quantum Electronics, Vol
QE-17 No. 9. New York, New
Y ork: IEEE, September, 1981. More Words on WORD

A d ig i t is any one o f a set o f ASCIl
characters which represent numeric values
i n the range f r o m 0 t o base-1. Fo r bases
greater than decimal 10, the set o f char-
acters is 0 ... 9 A B C ... where the as-
cending ASCII sequence is used f o r A and
above.

I n m y last column, I discussed WORD.
I neglected to rnention an impor tan t topic
re la t ing t o the i~np lementa t ions o f WORD
which may inf luence transportabil i ty.
Pr io r t o the 79-Standard, the execution o f
WORD caused the str inq f r o m the inpu t
medium to be moved to the dict ionary
area, star t ing a t HERE w i t h the character
count. Sorne implementers would be
tempted to define the 79-Standard WORD
f r o m the older WORD i n a manner some-
what l ike this:

----.- . Towards More Usable
Systems: - The LSRAD Report.
(Large Systems Requirements f o r
Appl icat ion Development). Chicago:
Share, Inc., 1979.

------ . IEEE Standard 583-1975.
New York: IEEE, 1975. Next, we add to the or ig inal def in i t ion o f

number as follows:
------ . 1977 Laboratory fo r Laser
Energetics Annual Report.
Rochester. NY: Laboratorv f o r number
Laser Energetics, 1978.

: WORD WORD HERE ; A number is represented i n the input
st ream as a word composed o f a sequence
o f one or more digits w i t h a leading ASCII
minus (-) i f the number is negative and a
t ra i l ing ASCII dot (.) i f the value is t o be
considered double precision.

Moore, Charles. "Forth: A New
Way t o Program Minicoimputers"
.Journal o f Astronomy and Astro-
physics Supplement 15. New York:
AAAS, September, 1974.

Other implementers would probably pu t
the str ing elsewhere. Now suppose t ha t
the user wished to reverse the character
st r ing and emplace the modi f ied str ing i n
the dict ionary. The resul t f r o m the fo r -
mer irnplementer's system w i l l no t be as
expected, and w i l l not result i n "equiva-
len t execution" on the la te r implementer's
systern. A s imi lar but much less serious
problem occurs w i t h PAD. P A D is
conventionally o f fse t f r om HERE by a
f ixed amount (68 bytes i n fig-FORTH).
There are a t least three d i f fe ren t solu-
tions:

I recommend tha t implementers a l low
the above fo rmat , and tha t authors o f
transportable programs adhere t o the
same format. I n any case, when the Stan-
dards Team meets again, they should cer-
ta in ly c l a r i f y th is area.

Moore, Charles. "Forth, The Past
Ten Yea rs , and the Nex t Two
Weeks". Fo r t h Dinlensions. Vol. 16
San Carlos, CA: F o r t h Interest
Group, 1979.

Rather, El izabeth and Charles
Moore. "The FORTH Approach t o
Operating Systems". A C M '76 Pro-
ceedings. New York: ACM,
October, 1976.

Under the Spreading FIG-TREE

As many o f you are aware, there is a
Computer Conference Tree (now nick-
named the FIG-TREE) which contains
i tems o f interest to the F O R T H com-
munity. I would l i ke to encourage a l l
persons interested i n the 79-Standard t o
read and contr ibute t o the branch o f the
FIG-TREE cal led 79-STANDARD. A l l you
need is a terminal (110 or 300 baud), a
modem, and a telephone. The number is
(415) 538-3580. See back issues o f F O R T H
DIMENSIONS f o r fur ther informat ion, or
just ca l l up and send a few carriage
returns un t i l the system responds.

(1) Implementatioris which place the
str ing a t HERE could be con-
sidered non-standard, and the
problem goes away.

Ri tchie, D. M. and K. Thompson.
"The U N I X Time-sharing System".
The Be l l System Technical Journal.
Vol. 57 No. 6 Par t 2. New Provi-
dence, NJ: A.T. and T., July-August,
1978.

(2) A c la r i f i ca t ion could be added to
the Standard indicat ing ei ther t ha t
the str ing w i l l always be a t HERE,
or t ha t it may be a t HERE.

Ri tchie, D. M., e t al. "The C Pro-
gramming Language". The Be l l Sys-
t e m Technical Journal. Vo l 57 No. 6
Par t 2. New Providence, NJ: A.T.
and T., July-August, 1978.

(3) The problem could be forced upon
users by requir ing tha t the char-
acters f r o m WORD be stored i n a
user-defined area pr io r to the i r
movement t o the f ina l destination.

L e t Me Number the w a ~ Change: FDIII/4, pg. 118, para 3 to:
The TO concept y a s developed by
Dr. Paul Barthold i as an al ternat ive
t o constants and variables.

In many areas the 79-Standard defines
l im i t s and formats i n pa in fu l detail. There
is an important area i n which very l i t t l e is
said, namely the fo rmat for single and
double precision numbers i n the inpu t
stream. I n the section "interpreter, tex t "
it is c lear tha t "numbers" are al lowed i n
the input t e x t st ream and may ei ther be
compiled or placed on the parameter
stack. A def in i t ion o f the fo rmat o f a
number should include a t a min imum the
dist inct ion between double and single pre-
cision, the sign o f the number, and the set
o f al lowed characters f r om which the
number is constructed. I n keeping w i t h
the spir i t o f the rest o f the Standard, I
would l ike to propose a f ew def in i t ions
which should be fa i r l y easy t o implement
and which appear to be compat ib le w i t h
most current implementations (including

CORRECTIONS

Add to: F D III/4, pg. 102 the fol lowing:

REFERENCES

1. Forsley, Lawrence P. The Beta
Laser Cont ro l System. A ta lk given
a t the Laboratorv f o r Laser Eneraet-
i cs on March 9, i 977 and on 3ulf16,
1977 a t the Wilson Synchrotron,
Cornel l University.

EDITOR'S NOTE:

Peter aengtson o f DATATRONIC AB i n
Stockholm, Sweden sent us a copy o f the
September, 1981 edi t ion o f Electronics
And Comput inq Monthly. Feature a r t i c le
was FORTH, "The Language o f the Eight-
ies" i n which F IG is mentioned prominent-
ly. More conf i rmat ion we are a l l r id ing
the crest!

2. Forslev. Lawrence P. "Forth Mu l t i -
tasking' in URTH". The Best o f the
Computer Faires Volume x. San
Francisco: 1979.

3. Boles, J. A., Pessel, D. and L. P.
Forsley. "Omega Automated Laser

FORTH DIMENSIONS 11115 Page 139

TECHNOTES, BUGS AND FIXES

1 have three questions about FORTH:

QI I Itnow of two CP/M FORTHs that have
their own way of dealing with the BIOS
and BDOS and as a result cannot read each
other's screens. What I'm leading to is
this: CP/M and fig-FORTH are both sup-
posed to be machine independent systems
but cannot read each other's source code
files. CP/M figgers ought t o get together
on this one.

A. Differences between disk organizations
are sector skewing and location. It is easy
to add definitions to a FORTH which uses
BIOS so it can read other organizations; it
is not possible the other direction.

2. When selecting a new drive, you need
to do a COLD start or you'll remain on the
last drive--this is only true i f you are
accessing the same screen number. I f you
ieave an empty line between two defini-
tions on the screen, a LOAD w i l l stop
loading at the empty line. Are these
FORTH conventions I haven't heard about
yet or are they peculiar to my Timin
FORTH?

A. Both of these are bugs--demand fixes
from Timin.

3. Somehow(?), I've been leaving a l o t of
control characters behind when using the
editor. They don't show up on a screen l ist
but they sure ruin any attempt a t loading
the screen. I am not sure if this is a
common problem but I have enclosed a
short routine to replace control charaters
with spaces for anyone else who has this
problem.

SCREEN: 95
(HUNT FOR CONTROL CHARACTERS)
: HUNT (SCREEN l/ ---)

BLOCK
1024 0 DO DUP C@ DUP 32 <

IF CR . I1+ " 64 + EMIT
.'I : I 1 DUP U. ELSE DROP

ENDIF 1+ LOOP DROP ;
: FIXSCREEN (SCREEN 1/ ---)

BLOCK
1024 0 DO DUP C@ 32 < IF

DUP 32 SWAP C! ENDIF
1+ LOOP DROP ;

(ACTUALLY HUNT AND FIXSCREEN
ARE QUITE SIMILAR, HUNT JUST

SHOWS UP ANY GUILLTY CHARACTERS
AND F IXSCREEN REPLACES THEM)

A. Don't know. May be an editor bug or
the way you are using it. I f you add a line
with #P followed immediately by a car-
riage return i n the f ig editor, a nul l is
introduced into the l ine which stops com-
piling. (editor f ix should be supplied)

THAT MYSTERIOUS fig-FORTH
AMNESIA

Many fig-FORTH users have probably
noticed the curious p h @ n ~ m e n ~ i l I refer to
as "amnesia" i n their computers, and those
who understand the method of the fig--
FORTH dictionary search, no doubt under-
stand it as well. It is an amusing, often
perplexing, but usually useful property
peculiar to fig-FORTH dictionaries.

Because names in fig-FORTH may
have variable length, the distance between
the start of the name and the l ink to the
next name in the dictionary is also vari-
able. aecause the width (number of char-
acters saved) is also allowed to be less
than the actual number of characters i n
the name, one cannot rely on the count to
provide the address of the link-field, given
the address o f the name-field. This is why
the fig-FORTH compiler automatically
sets the most significant b i t of the f i rs t
character and the last character i n every
name. By this device, one can scan a
name forward or backward by looking for
this bit.

I n a dictionary search, the address in
the l ink-field is followed to the beginning
of the name-field o f the previous word. I f
it is not a match to the key you are look-
ing for, we scan forward in memory unt i l
the most significant b i t tells us we have
found the l ink-field to the next word.
When a dictionary l ink is "broken" by clob-
bering RAM, an erroneous address is fol-
lowed, and the system is said to "crash".

However, i n fig-FORTH, the system
does not always "die1'. In many cases, i t is
merely "wounded", displaying a strange
kind of amnesia in which it has no recol-
lection o f recent definitions, hut remem-
bers with clar i ty i t s "childhood". What
happens is this: the broken link sends the
dictionary search o f f to a totally random
part o f memory (i f you do not have 64K, it
may address RAM where there are no
boards!). Since it is not IikeQ to find a
match at this address, it scans forward for
the most significant b i t that marks the
end of the "name". The odds are that i t
w i l l eventually f ind one, mistake the next
two bytes for a link, and follow another
wild address somewhere else.

Now, depending on how much of your
mernory is f i l led with dictionary, and de-
pending on what is i n your unused RAM,
the odds are not bad that after bouncing
aimlessly around for awhile, the search
may land in the middle of a valid name.
One does not expect a match to compare
with the middle of a name, but the search
then scans for the most significant bit,
finds a valid link, and gets back into the
dictionary. What the "amnesia" has ac-
tually forgotten, then, is everything be-
tween the broken link and the point where
the search re-enters the dictionary.

I f your used R A M is large i n compar-
ison t o FORTH, you are l ikely to find most
o f FORTH st i l l available as a kind of crip-
pled monitor to help you find out what
went wrong without re-booting the systeni
(which destroys the damage). Further-
more, since you now know the cause of
this illness, you can exploit it to your ad-
vantage. Simply modify your boot-up
RAM-check routine so that it leaves a
pattern i n your unused RAM, such that no
matter how it is viewed, it w i l l appear t o
be an address somewhere i n the middle o f
a name-field, somewhere near the top o f
your basic FORTH and utilities. You wi l l
now find, to your delight, that when you
"crash", you usually have your most
powerful tools s t i l l a t your disposal.

Users of FORTH, Inc. Micro-FORTH
are not l ikely to observe this phenomenon.
Because names are always exactly four
characters long, the l ink f ie ld does not
have to be scanned for; instead, it is found
by simple arithmetic. In order to re-enter
the dictionary, one must land by chance on
the exact beginning o f a name-field.
Much more l ikely than this, is that the
search wi l l enter a loop in which it goes
again to an address it has already visited,
and get caught forever. Remember that
the addresses found are by no means ran-
dom. A l l you have to do is cover the most
common ones.

Steve Munson
3071 E. 7 t h Street, 814
Buena Park, CA 90621

TRANSIENT DEFINITIONS

These ut i l i i tes allow you to have tem-
porary definition (such as compiler
words: CASE, OF ENDOF, ENDCASE,
GODO, etc.) i n the dictionary during
compilation and then remove them after
compilation. The word TRANSIENT
moves the dictionary pointer to the
"transient area'' which must be above the
end of the current dictionary. The tem-
porery definitions are then compiled into
this area. Next, the word PERMANENT
restores the dictionary to its norrna!
location. Now the application program is
compiled and the temporary definitions
are rernoved with the word DISPOSE.
DISPOSE wi l l take a few seconds because
i t goes through every link (includinq vo-
cabulary links) and palches thern to bypass
a l l words above the dictionary pointer.

NOTE: These words are wri t ten in
MicroMotionls FORTH-79 but some
nun-79-Standard words are used. The
non-Standard words have the fig-
FORTH definitions.

Phil ip Wasson

Page 140 FORTH DIMENSIONS-

MORE WORDS ABOUT WORD

Rober t 13. Villwock
Microsystems, Inc.

in analyzing or proposinq changes t o
any Standard definition, i t is very impor-
t a n t to concent ra te on the detai ls of t h e
needed function and t o avoid any precon-
ceived notion of internal implementat ion
details, unless, of course, ckge two a r e in-
separable. If this is not done, we can
severely and unnecessarily constrain
fu ture implementors Frorn doing their bes t
possible job, or, worse yei:, find them a-
voiding t h e Standard ent irely,

A good case in point is the word
WORD. Since most FORT;-1 irnplementors
have favored using the "free space" above
t h e dictionary to s to re tokens e x t r a c t e d
by WORD, and fur ther siin-e their exper-
ience seems to be cen te red around small
t o medium sized appilcation programs, i t
is taci t ly assumed t h a t this f r e e space is
arbi trar i ly large. In addition to storing
tokens a t HERE, PAD is usually also de-
fined to f loat above the dictionary in this
"unbounded" f r e e space. Therefore,
whether WORD handles tokens o f length
128, 256 or even 1024 bytes is innocerrtly
discussed with the idea t h a t the only issue
involved is t h e length descriptor preceding
the string!

However, whether this token buffer
and PAD float above HERE or a r e fixed
location buffers or some different scheme
is devised, they consume real rnernory and
a r e not really "free space". To i l lustrate ,
suppose we assume the traditional imple-
mentat ion for a moment and use HERE a s
the s t a r t of t h e token buffer used by
WORD. The PAD is then usually f loa ted
a t a location equal t o HERE plus some
constant. if WORD must handle tokens a s
long as 255 bytes, then PAD must be
f loated a t least 256 bytes above HERE t o
prevent token ex t rac t ion from corrupting
the con ten ts of PAD. The 79-STANDARD
requires t h a t PAD be able t o hold a t l eas t
64 bytes, so now we're a t HERE + 320
bytes.

If one is compiling a larqe application
program, the dictionary will grow until
eventually HERE + 320 hi ts the peg
(whether i t is a fixed boundary or t h e
PSTACK bottom or whatever). When i t
does, no more compilation can take place
(even though there is a t least 320 by tes of
unused dictionary lef t) without violating
t h e Standard. If you perinit fu r ther com-
pilation, the s ize of PAD begins t o drop
below the minimum 64, which is not al-
lowed. Even if you s t a r t automatical ly
reducing the PAD of fse t so t h a t i t remains
fixed in size, the token buffer begins
shrinking and can no longer sat isfy the 256
byte s tr ing requirement.

I'm trying t o i l lustrate t h a t "free
space" is only "free" a s long a s all of

menlory isn't rreedrtl, When memory fills,
these " f ree space" buffers p reven t code
f rom being conlpiled into their space. The
floating buffer concept seems t o obscure
this face more than i f t h e token buffer and
the PAD were given fixed, dedicated a r e a s
of menrory.

If the token buffer must handle 1024
byte strings, t h e situation is even worse.
We then have to s top cornpiling when t h e
dictionary has over 1K bytes of space
left! Since most of the t ime the tokens
ex t rac ted by WORD a r e very shor t (31
charac te rs or less), we pay a dear price t o
be able to handle Lhe occasional long
string, given t h a t WORD rnust handle it,
and WORD is defined as a t present.

If you discard tile notion t h a t a more
or less unbounded "free space'' exists
somewhere in memory, the approach to
WORD'S definitior-i t akes on a new face t .
At Mic~*osysterns, we have developed
several large applications using FORTH,
which resul ted in t a rge t cornpiled code in
the range of 32K Lo 481< bytes, exclusive
of the dictionary headers and the FORTH
operat ing sysem software. When appli-
cat ions become t h a t large, there isn't even
room to hold all the names in memory a t
one t i n e (even if constrained to 3 char-
a c t e r s and length), l e t alone room t o burn
for large "free space" buffers! Our im-
plementat i which is cal led
proFORTHm, handles this problem by
rneans of multiple dict ionaries and
ROMiRAM segment control with select ive
symbol purging. Names a re classified a s
to their needed l i fet imes during com-
pilation. When the names are no longer
needed, they a r e purged and their memory
space is reclaimed. This allows much of
the memory devoted t o dictionary headers
to be reused many t imes during com-
pilation, thereby enabling very large ap-
plications t o be compiied.

The foregoing is not a commercial fo r
proFORTH, but ra ther is intended t o illus-
t r a t e t h a t the scope of usage to which
FORTH can be applied is very broad. In a
s i tuat ion where you have multiple diction-
ar ies and a re fighting for every byte of
memory available, thinking in t e rms of
storing unbounded tokens a t HERE and
floating PADS of arbi trary length becomes
very incongruous. Admittedly, I've des-
cribed a somewhat ex t reme situation, bu t
i t is not a s ra re a s you may think. Micro-
processor applications a re get t ing more
ambit ious every day and sooner or l a t e r
you will have a crowded memory
condition. I think FORTH should be able
t o handle these s i tuat ions gracefully,
without having t o deviate from t h e
Standard.

When defining WORD, then, one ob-
ject ive should be to enable users t o
e x t r a c t arbi trar i ly long tokens f rom the
t e x t s t ream but not fo rce t h e implementor
t o provide an arbi trar i ly long memory

buffer to accomplish it. While this inay
sound a l i t t le like trying to "have your
cake arid e a t it too", a ra ther simple
factoring of WORD r a n easiiy accomplish
it. To i l lustrate my point, suppose we
devise a more basic \VOP,D called (WORD)
and define i t a s follows:

where ENCILOSE is defined a s in t h e FIG
glossary and -ROT is equivalent to ROT
ROT.

This new (WORD) e x t r a c t s the next
token from the t e x t s t ream, delimited by
c, and leaves i ts address and length on the
stack.. Actualiy, the token is merely l e f t
in the input buffer (keyboard or disk) and a
pointer t o i t is given. Thus, no additional
or temporary buffer is needed. The user
may now do anything he (she) wants with
the s tr ing, including niovinq it to HERE if
desired (and if i t will fit).

For example, if you want to compile
t h e token as a "dot-quote" string, a defini-
tion such a s WORD, can be used.

: WORD, (r --)

(WORD) IIFRE O\ITH If ;$Ll.OT SwkP OVER ?!

COUN'I' ('P;OVE ;

If you want a blank-filled line put in
PAD, the following could be used:

: TEXT (c --) I'AD ('/I. I + 6 L A U R S

(liORL)) C/L >!IN P:li) C! Phi>

COUNI CC:OYI ;

For t h e routine compiler / interpreter
job of extract ing small (31 charac te rs or
less) tokens from the t e x t s t ream, the fol-
lowing could be used:

where WBFR is a "small" word buffer
limited to WDSZ + 2. Note t h a t excep t
possibly for the self-imposed size limi-
tation*, the last definition sat isf ies t h e
79-STANDARD definition of WORD.

If you will carefully examine these
constructs , you can quickly discover tha t
given (WORD) as the elementary fo rm, t h e
user can e x t r a c t tokens of any size, put
them wherever he wants, and format them
with or without the trailing del imiter , or
f o r t h a t mat te r , t h e leading count byte (or
1 6 bi t word if you prefer:. In other words,
t h e user ought to be able to do essentially
anything tha t he may desire, bu t , the im-
plementor need not provide any special,
temporary buffers or arbi trary s ize just to

FORTH DIMENSIONS I1115 Page 141

satisfy the Standard.

Using (WORD) as the fundamental
token ex t rac to r al lows implementors t o
compi le dot quote strings, fo r example,
wi thout the need f o r any t ransi t ional bu f -
fers (see WORD,). On the other hand, i f
dot quote str ings are acquired by the
present f o rm o f WORD i n the Standard,
then the token bu f fe r must be a t least as
large as the longest dot quote string,
which is presently specif ied t o be 127
characters.

One migh t argue t ha t i f the bu f f e r is
a t HERE, there is no penal ty since t ha t is
where the str ing must go anyway, and i f it
won't f i t it can't be compiled. However,
this l ine o f reasoning is again l im i t ed by a
parochial v iew t ha t a l l F O R T H implemen-
tations must be alike. I f a system l i ke
p roFORTH is being used, the ta rge t defin-
i t i on body can optionally be compiled " in
place" separate f r o m the dict ionary
header. There may be room fo r the str ing
i n the ta rge t segment o f memory bu t no t
enough i n the dict ionary.

In conclusion, l e t m e say t ha t i f there
is suf f ic ient memory, the user may
declare a l l the buf fers he wants, bu t we
should not require t ha t these buf fers be
preal located by the implementor i n order
t o satisfy the Standard. Therefore, I sub-
m i t tha t m y def in i t ion o f (WORD) is a
more fundamentally valuable func t ion
than WORD (as current ly defined i n the
79-STANDARD,) f r o m which a l l others
can be bu i l t wi thout burning sometimes
precious memory space. There are al-
ready enough buf fers and such required
(d i rect ly or indi rect ly) by the Standard.
Let's not a rb i t ra r i l y insist on more by ac-
c ident ly defining words i n such a way as t o
force an implementor t o provide them.

* I emphasize "possibly" because for tun-
ate ly the Standard is not exp l i c i t as t o t he
length o f tokens tha t must 'be handled by
WORD.

CORRECTION TO FEDIT

Sorry you had t rouble w i t h FEDIT. The
l is t ing was retyped a t F IG and several
typos creeped in. They are:

1. SCR 64 L ine 10: compi le should be
COMPILE

2. SCR 65 L ine 23: l + / M O D should be 1+
16 /MOD

3. SCR 67 L ine 48: B /BUD should be
B/BUF

4. SCR 67 L ine 49: :e should be : .E
5. SCR 67 L i ne 50: + A L I N should be

+AL IN

You are per fec t l y r i g h t tha t source
t ex t should be loadable. I talked t o some

o f the people a t F I G about th is and they
were acutely aware o f the problem b u t
they are simply no t set up t o d i rec t l y
reproduce l ist ings i n t o F D a t the present
t ime. They do the best job they can w i t h
the resources available t o them, and they
work darn hard a t it. I can't f au l t them.

REPL is a pseudonym f o r the F ig -
F O R T H l ine edi tor definit ion, R . I used
the pseudonym because FEDIT was the
f i r s t program I wrote i n F O R T H and I
real ly wasn't fami l ia r enough w i t h Vocab-
ularies t o comfortably use a word t ha t was
already used i n the F O R T H vocabulary.

L e t me know how it works f o r you. If
you would l i ke a machine produced l ist ing,
I could run one f o r you f r o m m y cur ren t
version.

Edgar H. Fey, 3r.
18 Calendar Cour t
L a Grange, IL 60525

A HELPFUL UTILITY

Here's a short F O R T H word o f great
u t i l i t y tha t I use heavi ly i n my screens. I
hope you l ike it. I t s name is CVD, which
stands f o r "convert t o decimal".

D E C I M A L
: C V D

BASE @ SWAP
OVER /MOD
R O T /MOD
10 * +
10 * +

I l ike to work i n hexidecimal, bu t o f ten
make mistakes when using the words
LOAD, LIST, and many o f the F O R T H
screen edi tor words because I 'm th inking
i n decimal when the system's i n hex. I f I
do the fol lowing:

: LIST C V D LIST ;

then 130 LIST l is ts screen 130 whether I 'm
i n decimal or hex. It also works for any
other base, as long as t ha t base accepts
the number.

As t o how it works, a l i t t l e work w i l l
show tha t C V D spli ts a three-dig i t number
in to i t s respective d ig i ts (IE, 130 becomes
1, 3, and 0) and reassembles the dig i ts i n t o
the number tha t is, i n decimal, the same
as the keys pressed by the user.

Gregg Wil l iams
BYTE Publications
PO Box 372
Hancock, N H 03449

CALL FOR PAPERS

1982 Rochester F O R T H Conference
on

Da ta Bases and Process Cont ro l

May 17 through May 21, 1982

Univers i ty o f Rochester
Rochester, New York

The second annual Rochester F O R T H
Conference w i l l be held i n May, and w i l l
be hosted by the Univers i ty o f Rochester's
Laboratory f o r Laser Energetics. This
year's topics complement and extend the
work described a t the 1981 F O R M L Con-
ference and the previous Rochester Con-
ference. We believe tha t the areas of
data bases and process cont ro l can be
uniquely deal t w i t h using FORTH.

There is a ca l l f o r papers on the fo l -
lowing topics:

1. Data Bases, including, bu t no t l im -
i t ed to: hierarchical, network and
re lat ional models; sc ient i f ic use;
process control; and commerc ia l
systems.

2. Process Control, including, bu t no t
l im i t ed to: mult i tasking, meta-
compilation, data acquisit ion and
real t ime systems; video games.

3. Related concepts of:
implementation, speed/space
tradeoffs; user interactions; de-
signer tools; and graphics.

Papers w i l l be handled i n e i ther oral
sessions or poster sessions, although oral
papers w i l l be refereed i n accordance w i t h
conference direction, paper qual i ty and
topic. Please submit a 200 word abstract
by March 15, 1982. The ora l papers dead-
l ine is Ap r i l 15, 1982, and the poster
papers deadline is May 1, 1982. Send ab-
stracts and papers t o the conference
chairman, Lawrence Forsley, by those
dates. Please keep papers to a max imum
o f 10 pr inted pages. I f this res t r i c t ion
causes a serious problem, contact us.

Fo r more informat ion, please contac t
the conference chairman at:

Lawrence P. Forsley
Laboratory f o r Laser Energetics
Univers i ty o f Rochester
250 East R iver Road
Rochester, New York 14623

Page 142 F O R T H DIMENSIONS III/5

A FORTH ASSEMBLER
FOR THE 6502

by Williarri F. Raqsdale

INTRODUCTION

This a r t i c le should fu r ther polar ize the
at t i tudes o f those outside the growing
community o f F O R T H users. Some w i l l be
fascinated by a label-less, macro-
assembler whose source code is only 96
l ines long! Others w i l l be repel led by
reverse Polish syntax and the absence o f
labels.

The author irnmodestly c la ims tha t th is
is the best F O R T H assembler ever d ist r i -
buted. It is the only such assembler tha t
detects a l l errors i n op-code generation
and condi t ional structuring. It is released
to the public domain as a defense mechan-
ism. Three good 6502 assemblers were
submit ted t o the F O R T H Interest Group
bu t each had some lack. Rather than
merge and ed i t f o r publication, I chose t o
publish mine w i t h a l l the submit ted fea-
tures plus several more.

Imagine having an assembler i n 1300
bytes o f object code with:

1. User macros (l i ke IF, UNTIL,) de-
f inable a t any t ime.

2. L i t e ra l values expressed i n any
numeric base, a l terable a t any
t ime.

3. Expressions using any resident
computat ion capabil i ty.

4. Nested cont ro l s t ructures w i thout
labels, w i t h error control.

5. Assembler source i t se l f i n a por t -
able h igh leve l language.

OVERVIEW

Fo r t h is provided w i t h a machine lang-
uage assembler to create execution pro-
cedures tha t would be t ime inef f ic ient , i f
w r i t t en as colon-definitions. It is intended
t ha t "code" be w r i t t en s imi lar ly to high
level, f o r c la r i t y o f expression. Functions
may be wr i t ten f i rs t i n high-level, tested,
and then re-coded in to assembly, w i t h a
min imum o f restructuring.

THE ASSEMBLY PROCESS

Code assembly just consists o f in te r -
pret ing w i th the ASSEMBLER vocabulary
as CONTEXT. Thus, each word i n the in-
pu t stream w i l l be matched according t he
Fo r t h p rac t i ce o f searching CONTEXT
f i rs t then CURRENT.

ASSEMBLER (now CONTEXT)
F O R T H (chained t o ASSEMBLER)
user's (CURRENT i f one exits)
F O R T H (chained t o user" vocab)
t r y f o r l i t e ra l number
else, do error abor t

The above sequence is the usual act ion
o f Forth's t ex t interpreter , which remains
i n con t ro l during assembly.

Dur ing assembly o f CODE definitions,
F o r t h continues interpretat ion o f each
word encountered i n the input st ream (not
i n the compi le mode). These assembler
words specify operands, address modes,
and op-codes. A t the conclusion o f the
CODE def in i t ion a f ina l error check veri-
f ies cor rec t complet ion by "unsmudging"
the definit ion's name, t o rnake it available
f o r d ict ionary searches.

RUN-TIME, ASSEMBLY-TIME

One must be care fu l t o understand a t
what t i m e a part icular word def in i t ion
executes. Dur ing assembly, each as-
sembler word interpreted executes. I t s
funct ion a t tha t instant is called 'assemb-
l ing' o r 'assembly-time'. This funct ion
may involve op-code generation, address
calculation, mode selection, etc.

The la te r execution o f the generated
code is cal led 'run-time'. This d ist inct ion
is part iculary impor tan t w i t h the condi-
tionals. A t assembly t ime each such word
(i.e., IF, UNTIL, BEGIN, etc.) i t se l f 'runs'
t o produce machine code which w i l l l a te r
execute a t what is labeled 'run-t ime' when
i t s named code de f in i t ion is used.

A N EXAMPLE

As a p rac t i ca l example, here's a simple
ca l l t o the system monitor, via the N M I
address vector (using the B R K opcode).

CODE M O N (ex i t t o mon i to r)
BRK, NEXT JMP, END-CODE

The word CODE is f i r s t encountered,
and executed by Forth. CODE builds the
fo l lowing name "MON" i n t o a dict iorlary
header and calls ASSEMBLER as the
CONTEXT vocabularly.

The "(" is nex t found i n F O R T H and
executed t o skip t i1 ")". This method skips
over comments. Note tha t the name a f t e r
CODE and the 'I)'' a f t e r "(" must be on the
same t e x t line.

OP-CODES

BRK, is nex t found i n the assembler as
the op-code. When BRK, executes, it as-
sembles the by te value 00 in to the dic-
t ionary as the op-code f o r "break t o moni-
t o r v ia "NMI".

Many assembler words narnes end i n
",". The signif icance o f th is is:

1. The comma shows the conclusion
o f a logical g roup i~ ig t ha t would be
one l ine of classical assembly
source code.

2. "," compiles in to the dict ionary;
thus a comma impl ies the point a t
which code is generated.

3. The "," distinguishes op-codes
f r om possible hex numbers A D C
and ADD.

N E X T

F o r t h executes your word definit ions
under con t ro l o f the address interpreter ,
named NEXT. This short code rout ine
moves execution f r o m one definit ion, t o
the next. A t the end o f your code defini-
tion, you must re tu rn cont ro l t o NEXT or
else t o code which returns t o NEXT.

RETURN O F CONTROL

Most 6502 systems can resume execu-
t ion a f t e r a break, since the mon i to r saves
the C P U register contents. Therefore, we
must re tu rn con t ro l t o Fo r t h a f t e r a
re tu rn f r om the monitor. NEXT is a con-
stant t ha t specif ies the machine address
o f Forth's address interpreter (say
$0242). Here i t is the operand fo r JMP,.
As JMP, executes, it assembles a machine
code jump t o the address o f N E X T f r o m
the assembly t ime stack value.

SECURITY

Numerous tests are made w i th in the
assembler f o r user errors:

1. A l l parameters used i n CODE
definit ions must be removed.

2. Condit ionals must be properly
nested and paired.

3. Address modes and operands must
be al lowable f o r the op-codes

These tests are accomplished by
checking the stack posit ion (in CSP) a t the
creat ion o f the def in i t ion name and
comparing it w i t h the posit ion a t END-
CODE. ILegality of address modes and
operands is insured by lneans o f a h i t mask
associated w i t h each operand.

Remember tha t i f an error occurs
during assembly, END-CODE never exe-
cutes. The result is tha t the "smudged"
condi t ion of the def in i t ion name remains
i n the "smudged" condi t ion and w i l l not be
found during dict ionary searches.

The user should be aware t ha t one
error no t trapped is referencing a defini-
t ion i n the wrong vocabl!lary:

i.e., O= o f ASSEMBLER when you want
0= o f F O R T H

F O R T H DIMENSIONS III/5 Page 143

(Editor's note: the l isting assumes that
the figFORTH error messages are already
available in the system, as follows:

EXAMPLES
Here are examples of For th vs. con-

ventional assembler. Note that the oper-
and comes first, followed by any mode
modifier, 2nd then the op-code
mnemonic. This makes best use of the
stack a t assembly time. Also, each as-
sembler word is set o f f by blanks, as is
required for a l l For th source text.

BOT LDA, L D A (0,X)
BOT 1+ ORA, ORA (1,X)
SEC ORA, ORA (2,X)
5EC l+ ORA, ORB (3 3) ?CSP i 9 2 ~ ~ ~ the @PFCrr message "DEFI-

NITION NOT FINISHED" if the stack
position differs f rom the value saved in
the user variable CSP, which is set a t the
creation of teh definition name.

To obtain the 14-th byte on the stack:
BOT 13 + LDA,

RETURN STACK
?PAIRS issues the error message

"CONDITIONALS NOT IMPAIRED1' i f i t s
two arguments do not match.

.A ROL, ROL A
1 11 LDY, L D Y Ill

DATA ,X STA, STA DATA,X
DATA ,Y CMP, CMP DATA,Y

6 X) ADC, ADC (06,X)
POINT)Y STA, STA (POINT),Y

VECTOR) JMP, JMP (VECTOR)

The For th Return Stack is located in
the 6502 machine stack i n Page 1. It
starts at $OlFE and builds downward. No
lower bound is set or checked as Page 1
has sufficient capacity for a l l (non--
recursive) applications.

3 ERROR prints the error message
"HAS INCORRECT ADDRESS MODE".)

SUMMARY
The object code of our example is: (.A distinguishes f rom hex number OA) By 6502 convention the CPU's register

points to the next free byte below the bot-
tom o f the Return Stack. The byte order
follows the convention of low significance
byte a t the lower address.

CODE MON
link f ie ld
code field
BRK
JMP NEXT

The words DATA and VECTOR specify
machine addresses. In the case of "6)X
ADC," the operand memory address $0006
was given directly. This is occasionally
done i f the usage of a value doesn't justify
devoting the dictionary space to a symbol-
ic value.

Return stack values may be obtained
by: PLA, PLA, which wi l l pul l the low
byte, then the high byte f rom the return
stack. To operate on aribitrary bytes, the
method is:

OP-CODES, revisited

The bulk of the assembler consists of
dictionary entries for each op-code. The
6502 one mode op-codes are:

6502 CONVENTIONS
1) save X in XSAVE

Stack Addressing
BRK, CLC, CLD, CLI, CLV,
DEX, DEY, INX, INY, NOP,
PHA, PHP, PLA, PLP, RTI,
RTS, SEC, SED, SEI, TAX,
TAY, TSX, TXS, TXA, TYA,

2) execute TSX, to bring the S
register to X. The data stack is located in z-page,

usually addressed by "Z-PAGE,X1'. The
stack starts near $009E and grows down-
ward. The X index register is the data
stack pointer. Thus, incrementing X by
two removes a data stack value; decre-
menting X twice makes room for one new
data stack value.

3) use RP) to address the lowest
byte o f the return stack. Offset
the value to address higher
bytes. (Address mode is
automatically set to ,X.)

When any of these are executed, the
corresponding op-code byte is assembled
into the dictionary.

4) Restore X f rom XSAVE.
The multi-mode op-codes are: Sixteen b i t values are placed on the

stack according to the 6502 convention;
the low byte is a t low memory, with the
high byte following. This allows "indexed,
indirect X" directly o f f a stack value.

As an example, this definit ion non-
destructively tests that the second i t em
on the return stack (also the machine
stack) is zero.

ADC, AND, CMP, EOR, LDA,
ORA, SBC, STA, ASL, DEC,
INC, LSR, ROL, ROR, STX,
CPX, CPY, LDX, LDY, STY,
JSR, JMP, BIT, CODE IS-IT (zero ?)

XSAVE STX, TSX, (setup for
return stack)
RP) 2+ LDA, RP) 3 + ORA,
(or 2nd item's two bytes
together)

O= IF, INY, THEN, (i f zeru, burnp
Y to one)

TYA, PHA, XSAVE LDX, (save
low byte, rstore data stack)
PUSH JMP, END-CODE (push
boolean)

The bottom and second stack values
are referenced often enough that the sup-
port words BOT and SEC are included.
Using

These usually take an operand, which
must already be on the stack. An address
mode may also be specified. I f none is
given, the op-code uses z-page or absolute
addressing. The address rnodes are deter-
mined by:

ROT LDA, assembles L D A (0,X) and
SEC ADC, assembles ADC (2,X)

BOT leaves 0 on the stack and sets the
address mode to ,X. SEC leaves 2 on the
stack also setting the address mode to ,X.

Symbol Mode Operand

none
8 bi ts only
z-page or
absolute
z-page or
absolute
z-page only
z-page only
absolute only
z-page or
absolute

.A accumulator
1 immediate

,X indexed X
Here is a pictor ial representation of

the stack i n z-page. Return Stack

second
lo byte i t em

bottom
lo byte i t em bot high

bot low <==X offset
above $0000

,Y indexed Y

X) indexed indirect X
)Y indirect indexed Y

) indirect
none memory

Here is an examples of code to "or" to
the accumulator four bytes on the stack:

Page 144 FORTH DIMENSIONS 11115

FORTH REGISTERS

Several For th registers are available
only a t the assembly level and have been
given names that return their memory ad-
dresses. These are:

IP address o f the Interpretive
Pointer, specifying the next For th
address which w i l l be interpreted
by NEXT.

W address o f the pointer to the code
field of the dictionary definit ion
just interpreted by NEXT. W-1
contains $6C7 the op-code for in-
direct jump. Therefore, jumping
to W-1 wi!l indirectly jump via W
t o the machine code for the def-
inition.

UP User Pointer containing ad-
dress of the base of the user
area.

J a dt.ility area in 2-page f rom
N - 1 thru N+7.

CPU Registers

When For th execution leaves NEXT to
execute a CODE definition, the following
conventions apply:

1. The Y index register is zero. It
may be freely used.

2. The X index register defines the
low byte o f the bottom data stack
i t em relative to machine address
$0000.

3. The CPU stack pointer S points
one byte below the low byte of the
bottom return stack item. Exe-
cuting PLA, w i l l pul l this byte t o
the accumulator.

4. The accumulator may be freely
used.

5. The processor is i n the binary
mode and must be returned in that
mode.

XSAVE

XSAVE is a byte buffer i n z-page, for
temporary storage of the X register.
Typical usage, wi th a cal l which wi l l
change X, is:

CODE DEMO
XSAVE STX, USER'S JSR,
(which w i l l change X)
XSAVE LDX, NEXT JMP,
END-CODE

N Area

When absolute memory registers are
required, use the IN Area1 i n the base
page. These registers may be used as

pointers for indexedtindirect addressing or
for temporary values. As an example of
use, see CMOVE i n the system source
code.

The assembler word N returns the
base address (cjsually $0001). The N Area
spans 9 bytes, f rom N-1 thru Nd. Con-
ventionail?, N-1 holds one byte and N,
N+2, N+4, N+6 are pairs which may hold
16-bit values. See SETUP fo r help on
moving values to the N Area.

It is very important t o note that many
For th procedures use N. Thus, N may only
be used within a single code definition.
Never expect that a value wi l l remain
there, outside a single definition!

CODE DEMO HEX
6 # ILDA, N 1 - STA,

(setup a counter)

BEGIN, 3C101 BIT,
(t ickle a port)

N 1 - DEC,
(decrement the counter)

O= UNTIL, NEXT JMP, END-CODE
(!oop till negative)

SETUP

Of ten we wish t o move stack values t o
the N area. The sub-routine SETUP has
been provided for this purpose. Upon en-
tering SETUP the accumuiator specifies
the quantity o f 16-bit stack values t o be
moved to the N area. That is, A may
be 1, 2, 3, or 4 only:

3 !! LDA, SETUP JSR,

stack before N after stack after
H high H
G-low bot--> G-
F F

CONTROL FLOW

For th discards the usual convention of
sssembler labels. Instead, two replace-
ments are used. First, each For th defini-
t ion name is permanently included i n the
dictionary. This allows procedures t o be
located and executed by name at any t ime
as wel l as be compiled within other defini-
tions.

Secondly, within a code definition,
execution f low is controlled by Label-less
branching according to "structured pro-
gramming". This method is identical t o
the form used in colon-definitions. Branch
calculations are done a t assembly t ime by
temporary stack values placed by the con-

t ro l words:

BEGIN, UNTIL, IF, ELSE,
THEN:

Here again, the assembler words end
wi th a comma, to indicate that code is
being produced and to clearly differen-
t iate f rom the high-level form.

One rnajor difference occurs! High-
level f low is controiled by run-time
boolean values on the data stack. As-
sembly f low is instead controlled by pro-
cessor status bits. The programmer must
indicate which status b i t to test, just be-
fore a conditional branching word (IF,
and UNTIL,).

Examples are:

PORT LDA, 0- IF, <a> TIiEN,
(read port, i f equal to zero do <a>)

PORT 1-DA, 0- NOT IF, <a> THEN,
(read port, i f not equal to zero
do <a>)

The conditional specifiers for 6502 are:

CS test carry set C = l i n
processor

status
0< byte less than zero N = l
O= equal t o zero Z=1
CS NOT test carry clear C =O
0 <NOT test positive N=O
O= NOT test not equal zero Z=0

The overflow status b i t is so rarely
used, that it is not included. If it is
desired, compi!e:

ASSEMBLER DEFINITIONS HEX
50 CONSTANT VS (test overflow
set)

CONDITIONAL LOOPING

A conditional loop is formed at as-
sembler level by placing the portion to be
repeated between BEGIN, and UNTIL,:

6 # LDA, N STA,
(define loop counter i n N)

BEGIN, PORT DEC,
(repeated action)

N DEC, O= UNTIL,
(N reaches zero]

First, the byte a t address N is loaded
with the value 6. The beginning of the
loop is marked (at assembly time) by
BEGIN,. Memory a t PORT is decrement-
ed, then the loop counter i n N is decre-
mented. O f course, the CPU updates i t s
status register as N is decremented.
Finally, a test for Z=1 is made; i f N hasn't
reached zero, execution returns to
BEGIN,. When N reaches zero (after exe-
cuting PORT DEC, 6 times) execution
continues ahead after UNTIL,. Note that

FORTH DIMENSIONS III/5 Page 145

BEGIN, generates no machine code, but is
only an assembly t ime locator.

Paths of execution may be chosen at
assembly in a similar fashion and done in
colon-definitions. In this case, the branch
is chosen based on a processor status con-
dition code.

PORT LDA, O= IF, (for zero set)
THEN, (continuing code)

In this example, the accumulator is
loaded from PORT. The zero status is
tested i f set (Z=l). If so, the code (for
zero set) is executed. Whether the zero
status is set or not, execution wi l l resume
at THEN,.

The conditional branching also allows a
specific action for the false case. Here
we see the addition of the ELSE, part.

PORT LDA, O= IF, < for zero set>
ELSE, <for zero clear>
THEN, <continuing code>

The test of PORT wi l l select one of
two execution paths, before resuming
execution after THEN,. The next
example increments N based on b i t D7 of
a port:

PORT LDA, (fetch one byte)
O< IF, N DEC, (if D7=1, decrement

N
ELSE, N INC, (i f D7=O, increment

N
THEN, (continue ahead)

CONDITIONAL NESTING

Conditionals may be nested, according
t o the conventions o f structured pro-
gramming. That is, each conditional se-
quence begun (IF, BEGIN,) must be ter-
minated (THEN, UNTIL,) before the next
earlier conditional is terminated. An
ELSE, must pair with the immediately
preceding IF,.

BEGIN, < code always executed>
CS IF, <code i f carry set)

ELSE, <code i f carry clear>
THEN,

O= NOT UNTIL, (loop till condition
flag is non-zero)

<code that continues onward>

Next is an error that the assembler
security wi l l reveal.

BEGIN, PORT LDA,
0- IF, BOT INC,

O= UNTIL, ENDIF,

The UNTIL, w i l l not cornplete the
pending BEGIN, since the immediately
preceding IF, is not completed. An error
trap wi l l occur a t UNTIL, saying "condi-
tionals not paired".

RETURN OF CONTROL, revisited

When concluding a code definition,
several rommon stack manipulations often
are needed. These functions are already
in the nucleus, so we may share their use
just by knowing their return points. Each
of these returns control to NEXT.

POP POPTWO remove one 16-bit stack
values.

POPTWO remove two 16-bit stack
values.

PUSH add two bytes to the data
stack.

PUT wri te two bytes to the
data stack, over the
present bottom of the
stack.

Our next example complements a byte
i n memory. The bytes' address is on the
stack when INVERT is executed.

CODE INVERT (a memory byte) HEX
BOT X) LDA, (fetch byte addressed

by stack)
F F i1 EOR, (complement accumu-

lator)
BOT X) STA, (replace i n memory)
POP JMP, END-CODE (discard

pointer f rom stack,
return to NEXT)

A new stack value may result f rom a
code definition. We could program placing
it on the stack by:

CODE ONE (put 1 on the stack)
DEX, DEX, (make room on the

data stack)
1 # LDA, BOT STA, (store low byte)
BOT 1.+ STY, (h i byte stored from Y

since = zero)
NEXT JMP, END-CODE

A simpler version could use PUSH:

CODE ONE
1 I1 LDA, PHA, (push low byte to
machine stack)
TYA, PUSH JMP, (high byte to
accumulator, push to data stack)
END-CODE

The convention for PUSH and PUT is:
1. push the low byte onto the

machine stack.
2. leave the high byte i n the

accumuIator.
3. jump to PUSH or PUT.

PUSH w i l l place the two bytes as the
new bottom o f the data stack. PUT wi l l
over-write the present bottom of the
stack with the two bytes. Failure to push
exactly one byte on the machine stack w i l l
disrupt execution upon usage!

FOOLING SECURITY

Occasionally we wish t o generate
unstructured code. To accomplish this, we
can control the assembly t ime security
checks, to our purpose. First, we must
note the parameters uti l ized by the
control structures a t assembly time. The
notation below is taken from the as-
sembler glossary. The --- indicates as-
sembly t ime execution, and separate input
stack values f rom the output stack values
o f the words execution.

BEGIN, ==> --- addrB 1
UNTIL, ==> addrB 1 cc ---

IF, ==> cc --- addrI 2
ELSE, ==> addrI 2 --- addrE 2
THEN, ==> addrI 2 ---

or addrE 2 ---

The address values indicate the
machine location of the corresponding
'B'EGIN, 'I'F, or 'E'LSE,. cc represents the
condition code to select the processor
status b i t referenced. The digi t 1 or 2 is
tested for conditional pairing.

The general method of security control
is to drop o f f the check digit and manipu-
late the addresses at assembly time. The
security against errors is less, but the pro-
grammer is usually paying intense atten-
t ion to detail during this effort.

To generate the equivalent of the high
level:

BEGIN <a> WHILE REPEAT

we wri te in assembly:

BEGIN, DROP (the check digit
1, leaving addrB)

<a>
CS IF, (leaves addrl and digit

2)
< b>

ROT (bring addrB to bottom)
JMP, (to addrB of BEGIN,)

ENDIF, (co~nplete false for-
ward branch from IF,)

It is essential to wri te the assembly
time stack on paper, and run through the
assembly steps, to be sure that the check
digits are dropped and re-inserted a t the
correct points and addresses are correctly
available.

ASSEMBLER GLOSSARY

11 Specify 'immediate' addressing
mode for the next op-code gener-
ated.

)Y Specify 'indirect indexed Y' ad-
dressinq mode for the next op-
code generated.

Page 146 F?%RTHDIM~K%oNS-

Specify 'indexed X' addressing
mode for the next op-code gener-
ated.

,Y Specify 'indexed Y' addressing
mode for the next op-code gener-
ated.

.A Specify accumulator addressing
mode for the next op-code yener-
ated.

0 < --- cc (assembling)
Specify that the immediately fol-
lowing conditional w i l l branch
based on the processor status b i t
being negative (Z=l), i.e., less
than zero. The flag cc is l e f t a t
assembly time; there is no run--
time effect on the stack.

O = --- cc (assembling)
Specify that the immediately fol-
lowing conditional w i l l branch
based on the processor status b i t
being equal to zero (Z=l) . The
flag cc is l e f t at assembly tirne;
there is no run-time ef fec t on the
stack.

;CODE Used to conclude a colon-defini-
t ion i n the form:

<name>. . . ;CODE
<assembly code> END-CODE

Stop compilation and terminate a
new defining word <name> . Set
the CONTEXT vocabulary to AS-
SEMBLER, assembling to machine
code the following nmenonics. An
existing defining word must exist
i n name prior to ;CODE.

When <name> later executes i n
the form:

<name> <namex>
the definit ion <namex> wi l l be
created wi th i ts execution proced-
ure given by the machine code fol-
lowing <name> . That is, when
<namex> is executed, the address
interpreter jumps to the code fol-
lowing ;CODE in <name> .

ASSEMBLER i n FORTH
Make ASSEMBLER the CON-
TEXT vocabulary. It wi l l be
searched f i rst when the input
stream in interpreted.

BEGIN, --- addr 1 (assembling) --- (run-time)
Occurs i n a CODE definit ion i n
the form:

BEGJN, . . . cc UNTIL,
A t run-time, BEGIN, marks the
start o f an assembly sequence re-
peatedly executed. It serves as
the return point for the corres-
ponding UNTIL,. When reaching
UNTIL, a branch to BEGIN, wi l l
occur if the processor status b i t
given by cc is false; otherwise

execution continues ahead.

A t assembly time, BEGIN, leaves
the dictionary pointer address
addr and the value 1 for Iater
testing o f conditionary pairing by
UNTIL,.

BOT --- n (assembling)
Used during code assembly i n the
f orm:

BOT LDA, or BOT 1+ X) STA,

Addresses the bottom of the data
stack (containing the low byte) by
selecting the ,X mode and leaving
n=O, a t assembly time. This value
of n may be modified to another
byte offset into the data stack.
Must be followed by a multi-mode
op-code rnnelnonic.

CODE A defining word used in the form:

CODE <name>. . . . END-CODE

to create a dictionary entry for
<name> i n the CURRENT vocabu-
lary. Name's code f ie ld contains
the address of i ts parameter
field. When <name> is later
executed, the machine code in this
parameter f ield wi l l execute.
The CONTEXT vocabulary is
made ASEMBLER, to make
available the op-code mnelnonics.

CPU n --- (compiling assembler)
An assembler defining word used
to crate assembler mnemonics
that have only one addressing
mode:

EA CPU NOP,

CPU creates the work NOP, wi th
i ts op-code EA as a parameter.
When NOP, later executes, i t
assembles €A as a one byte op-
code.

CS --- cc (assembling)
Specify that the immediately fol-
lowing conditional w i l l branch
based on the processor carry is set
(C=l). The flag cc is l e f t a t as-
sembly time; there is no run-time
ef fec t on the stack.

ELSE, --- (run-time)
addr l 2 --- addr2 2

(assembling)
Occurs within a code definit ion i n
the form:

cc IF, <true part> ELSE,
<false part> THEN,

A t run-time, i f the condition code
specified by cc is false, execu-
t ion wi l l skip to the machine code
following ELSE,. A t assembly
t ime ELSE, assembles a forward
jump t o just af ter THEN, and re-

solves a pei l~l inq forward branch
f rom IF. The values 2 are used for
error checkinq o f conditional pair-
ing.

END-CODE
An error check word marking the
end of a CODE definition. Suc-
cessful execution to and including
EZID-CODE wi l l unsmudge the
most recent CLJRRENT vocabu-
lary definition, making it available
for execution. END-CODE also
exits the ASSEMBLER rnakiny
CONTEXT the same as
CURRENT. This word previously
was named C;

IF, CC - - - addr 2 (assembly
tirne)

- - - addr 2 (assernbly-
time)

Occurs withir7 a code definition i n
the form:

cc IF, <true part> ELSE,
false part THEN,

A t ndn time, IF, branches based on
the condition code cc, (0< or O=
or CS). If the specified processor
status is true, execution continues
ahead, otherwise branching occurs
to just af ter ELSE, (or THEN,
when ELSE, is not present). A t
ELSE, execution resumes at the
corresponding THEN,.

When assembling, IF, creates an
unresolved forward branch based
on the condition code cc, and
leaves addr and 2 for resolution
of the branch by the corresponding
ELSE, or THEN,. Conditionals
may be nested.

INDEX --- addr (assembling)
An array used within the assem-
bler, which holds b i t patterns of
allowable addressing modes.

IP --- addr (assembling)
Used in a code definition in the
forrn:

IP STA, or IP)Y LDA,

A constant which leaves at as-
sembly t ime the address of the
pointer to the next FORTH exe-
cution address in a colon-defini-
t ion to be interpreted.

A t run-time, NEXT moves IP
ahead within a colon-definition.
Therefore, IP points just after the
execution address being inter-
preted. I f an in-line data struc-
ture has been compiled (i.e., a
character strins', indexing ahead
by IP can access this data:

I P STA, or IP)Y LDA,

FORTH DIMENSIONS III/5 Page 147

loads the third by te ahead in t h e
colon-definition being interpreted.

POPTWO
- - - addr (assembling)

n l n2 - - - (run-time)
A cons tan t which leaves (during
assembly) t h e machine address of
t h e re tu rn point which, a t run--
t ime , will pop two 16-bit values
f rom t h e d a t a s tack and continue
interpretat ion.

UNTIL, --- (run-time)
addr 1 cc --- (assembling)

Occurs in a CODE definition in
t h e form: M/CPU n l n2 --- (compiling assembler)

An assembler defining word used
t o c r e a t e assembler mnemonics
t h a t have multiple address modes:

BEGIN, . . . c c UNTIL,

At run-time, UNTIL, controls t h e
conditional branching back t o
BEGIN,. If t h e processor s t a t u s
b i t specif ied by c c is false, exe-
cut ion re tu rns t o BEGIN,; o ther -
wise execution continues ahead.

1C6E 60 M/CU ADC,

M/CPU c r e a t e s t h e word ADC,
with two parameters . When
ADC, l a t e r execu tes , i t uses
these parameters , along with
s tack values and t h e con ten ts of
MODE t o ca lcu la te and assemble
t h e c o r r e c t op-code and operand.

PUSH --- addr (assembling)
--- (run-time)

A cons tan t which ieaves (during
assembly) t h e machine address of
t h e re tu rn point which, a t run--
t ime , will add t h e accumulator (a s
high-byte) and t h e bo t tom
machine s tack byte (as low-byte)
t o t h e d a t a s tack.

At assembly t ime , UNTIL, as-
sembles a conditional re la t ive
branch t o addr based on t h e condi-
tion code cc. The number 1 is
used f o r e r ror checking. MEM Used within the assembler t o s e t

MODE t o t h e defaul t value f o r
d i rec t memory addressing, z-page. PUT - - - addr (assembling)

n l - - - n2 (run-time)
A cons tan t which leaves (during
assembly) t h e machine address of
t h e re tu rn point which, a t run--
t ime , will wr i te t h e accumulator
(as high-byte) and t h e bo t tom
machine s tack byte (a s low-byte)
over t h e existing d a t a s tack 16-bi t
value (nl) .

--- addr (assembling)
Used in a code definition in t h e
form: MODE --- addr

A variable used within t h e
assembler, which holds a f lag
indicating t h e addressing mode of
t h e op-code being generated.

U P LDA, o r U P)Y STA,

A cons tan t leaving a t assembly
t i m e t h e address of t h e pointer t o
t h e base of t h e user area. i.e., N --- addr (assembling)

Used in a code definition in t h e
form: HEX 12 f LDY, UP)Y LDA,

RP) --- (assembly-time)
Used in a code definition in the
form:

N 1 - STA, or N 2+)Y
ADC,

load t h e low byte of t h e sixth user
variable, DP.

W --- addr (assembling)
Used in a code definition in t h e
form:

A cons tan t which leaves the ad-
dress of a 9 byte workspace in z-
page. Within a single code defini-
tion, f r e e use may be made over
t h e range N-1 th ru N+7. See
SETUP.

RP) LDA, or RP) 3+ STA,

Address t h e bo t tom byte of t h e
re tu rn s tack (containing t h e low
byte) by select ing t h e ,X mode and
leaving n=$101. n may be modi-
fied t o another by te offset . Be-
fo re operat ing on t h e re tu rn s tack
t h e X register must be saved in
XSAVE and TSX, be executed; be-
f o r e returning t o NEXT, t h e X
reg is te r must be restored.

W 1+ STA, o r W 1 - JMP, o r
W)Y ADC,

NEXT --- addr (assembling)
A constant which leaves t h e
machine address of the F o r t h ad-
dress interpreter . All code defini-
tions must return execution t o
NEXT, or code t h a t re tu rns t o
NEXT (i.e., PUSH, PUT, POP,
POPTWO).

A cons tan t which leaves a t as-
sembly t i m e t h e address of t h e
pointer t o the code field (exe-
cut ion address) of t h e For th dic-
tionary word being executed. In-
dexing relat ive t o \N can yield
any by te in t h e definition's
parameter field. i.e.,

SEC --- n (assembling)
Identical to BOT, excep t t h a t
n=2. Addresses t h e low byte of
the second 16-bit d a t a s tack value
(third by te on t h e d a t a stack).

NOT c c l --- c c l (assembly-time)
When assembling, reverse t h e con-
dition code for t h e following con-
ditional. For example:

2 /I LDY, W)Y LDA,

f e t c h e s t h e f i r s t byte of t h e
parameter field. THEN, - - - (run-time)

addr 2 - - - (assembly-time)
Occurs in a code definition in t h e
form:

O = NOT IF, < t r u e part> THEN, X) Specify 'indexed indirect X' ad-
dressing mode for t h e nex t op-
code generated. will branch based on 'not equal t o

zero'. c c IF, < t r u e part> ELSE,
<false part> THEN, XSAVE --- addr (assemblinq)

Used in a code definition in t h e
form:

P O P - - - addr (assembling)
n - - - (run-time) At run-t ime THEN, marks t h e

conclusion of a conditional s truc-
ture. Execution of e i ther the t rue
par t or false par t resumes fol-
lowinq THEN,. When assembling
addr and 2 a r e used t o resolve t h e
pending forward branch to THEN,.

A constant which leaves (during
assembly) the machine address of
the re tu rn point which, a t run-
t ime, will pop a 16-bit value from
the da ta s tack and continue inter-
pretat ion.

XSAVE STX, o r XSAVE LDX,

A cons tan t which leaves t h e ad-
dress a t assembly t ime of a t em-
porary buffer fo r saving the X
register. Since t h e X register in-
dexes t o t h e d a t a s tack in z-page,
it must b e saved and restored
when used f o r o ther purposes.

Page 148 FORTH DIMENSIONS III/5

FORTH Assembler for 6502 by W. F . Ragsdale July I , 1980

SCR # 81
0 (FORTH-65 ASSEMBLER WFR-79JUN03)

1 HEX
2 VOCABULARY ASSEMBLER IMMEDIATE ASSEMBLER DEFINITIONS
3
4 (REGISTER ASSIGNMENT SPECIFIC TO 1MPLEMENTATION)
5 EO CONSTANT XSAVE DC CONSTANT W DE CONSTANT UP
6 D9 CONSTANT IP Dl CONSTANT N
7
8 (NUCLEUS LOCATIONS ARE IMPLEMENTATION SPECIFIC)
9 ' (DO) OE + CONSTANT POP
lo' (DO) OC + CONSTANT POPTWO
11 ' LIT 13 + CONSTANT PUT
12 ' LIT 11 + CONSTANT PUSH
13 ' LIT 18 + CONSTANT NEXT
14 ' EXECUTE NFA 11 - CONSTANT SETUP
15
SCR # 82

0 (ASSEMBLER, CONT. WFR-780CT03)
1 0 VARIABLE INDEX -2 ALLOT
2 0909 , 1505 , 0115 , 8011 , 8009 , IDOD , 8019 , 8080 ,
3 0080 , 1404 , 8014 , 8080 , 8080 , lC0C , 801C , 2C80 ,
4
5 2 VARIABLE MODE
6 : .A O M O D E ! ; : $ l M O D E ! ; : MEM 2 MODE ! ;
7 : ,X 3 M O D E ! ; : ,Y 4 MODE ! ; : X) 5 M O D E ! ;
8 :)Y 6 M O D E ! ; : F M O D E ! ;
9
10 : BOT tx 0 5 (ADDRESS THE BOTTOM OF THE STACK *)
11 : SEC ,x 2 ; (ADDRESS SECOND ITEM ON STACK *)
12 : RP) ,X 101 ; (ADDRESS BOTTOM OF RETURN STACK *)
13
14
15

SCR # 83
0 (UPMODE, CPU WFR-780CT23)
1
2 : UPMODE IF MODE @ 8 AND 0= IF 8 MOUE + I THEN THEN
3 1 MODE @ OF AND -DUP IF 0 DO DUP + LOOP THEN
4 OVER 1+ @ AND O= ;
5
6 : CPU <BUILDS C, DOES> C@ C, MEM ;
7 00 CPU BRK, 18 CPU CLC, D8 CPU CLD, 58 CPU CLI,
8 B8 CPU CLV, CA CPU DEX, 88 CPU DEY, E8 CPU INX,
9 C8 CPU INY, EA CPU NOP, 48 CPU PHA, 08 CPU PHP,
10 68 CPU PLA, 28 CPU PLP, 40 CPU RTI, 60 CPU RTS,
11 38 CPU SEC, F8 CPU SED, 78 CPU SEI, AA CPU TAX,
12 A8 CPU TAY, BA CPU TSX, 8A CPU TXA, 9A CTU TXS,
13 98 CPU TYA,
14
15

FORTH DIMENSIONS 11115 Page 149

SCR # 84
o (MICPU, MULTI-MODE OP-CODES

M/CPU <BUILDS C,
DUP 1+ @ 80 AND
FPOO AND UPMQDE
3 ERROR THEN
INDEX + C@ + C,
OF AND 7 < IF

1C6E 60 M/CPU ADC,
1C6E 40 M/CPU EOR,
1C6E EO M/CPU SBC,
OCOC C1 M/CPU DEC,
ODOD 21 MICPU ROL,
0486 EO M/CPU CPX,
OC8E A0 M/CPU LDY,
8480 40 M/CPU JMP,

, DOES>
IF 10 MODE +! THEN OVER

UPMODE I3 MEM CR LATEST ID.
C@ MODE C@

MODE C@ 7 AND IF MODE C@
C, ELSE , THEN THEN MEM ;

1C6E 20 M/CPU AND, 1C6E CO M/CPU CMP,
1C6E A0 M/CPU LDA, 1CSE 00 M/CPU ORA,
1C6C 80 M/CPU STA, ODOD 01 M/CPU ASL,
OCOC EI M/CPU INC, ODOD 41 M/CPU LSR.
ODOD 61 M/CPU ROR, 0414 81 M/CPU STX,
0486 CO M/CPU CPY, 1496 A2 M/CPU LDX,
048C 80 M/CPU STY, 0480 14 M/CPU JSR,
0484 20 M/CPU BIT,

SCR # 85
0 (ASSEMBLER CONDITIONALS WFR-79MAR26)
1 : BEGIN, HERE 1 ; IMMEDIATE
2 : UNTIL, ?EXEC >R 1 ?PAIRS R> C, HERE 1+ - C, ; IMHEDIATE
3 : IF, C, HERE 0 C. 2 ; IMMEDIATE
4 : THEN, ?EXEC 2 ?PAIRS HERE OVER C@
5 IF SWAP ! ELSE OVER 1+ - SWAP C! THEN ; IMMEDIATE
6 : ELSE, 2 ?PAIRS HERE 1+ 1 JMP,
7 SWAP HERE OVER 1+ - SWAP C! 2 - IMMEDIATE
B : NOT 20 + ; (R E V E K ~ E ASSEMBLY TEST)
9 90 CONSTANT CS (ASSEMBLE TEST FOR CARRY SET)
10 DO CONSTANT O= (ASSEMBLER TEST FOR EQUAL ZERO)
11 10 CONSTANT O< (ASSEMBLE TEST FOR LESS THAN ZERO)
12 90 CONSTANT >= (ASSEMBLE TEST FOR GREATER OR EQUAL ZERO)
13 (>= IS ONLY CORRECT AFTER SUB, OR CMP,)
14
15

SCR # 86
O (USE OF ASSEMBLER WFR-79APR28)
1 : END-CODE (END OF CODE DEFINITION *)
2 CURRENT @ CONTEXT ! ?EXEC ?CSP SMUDGE ; IMMEDIATE
3
4 FORTH DEFINITIONS DECIMAL
5 : CODE (CREATE WORD AT ASSEMBLY CODE LEVEL *)
6 ?EXEC CREATZ [COMPILE] ASSEMBLER
7 ASSEMBLER MEM !CSP ; IMMED IATE
8
9 (LOCK ASSEMBLER INTO SYSTEM)

10 * ASSEMBLER CFA ' ;CODE 8 + ! (OVER-WRITE SMUDGE)
11 LATEST 12 +ORIGIN ! (TOP NFA)
12 HERE 28 +ORIGIN ! (FENCE)
13 HERE 30 +ORIGIN ! (DP)
14 ' ASSEMBLER 6 + 32 +ORIGIN ! (VOC-LINK)
15 HERE FENCE !

Page 150
--

FORTH DIMENSIONS 11115

APPLICATIONS

A TECHMCAL TUTORIAL:
TABLE LOOKUP EXAMPLES

Henry Laxen
Laxen and Harris, Inc.

One of the problems with FORTH, as
wi th every r ich language, is that given an
idea, there are many ways o f expressing
it. Some are more eloquent than others,
but it takes practice and experience to
create the poetry and avoid the n~undane.

This art ic le is wr i t ten to i l lustrate 4
di f ferent ways o f implementing a simple
Table Lookup operation. The goal is the
following: we want to create a FORTt-I
word, named DAYS/MONTH which be-
haves as follows: Given an index on the
stack which is the month number, such as
1 for January and 12 for December, we
want to return the number of days i n that
month, i n a normal year. Thus i f we exe-
cute 6 DAYS/MONTH it should return 30,
which is the number of days i n the month
June. I wi l l use the Starting FORTH dia-
lec t in this paper, not fig-FORTH, so i f
you try to type in the examples, they
probably won't work unless you are running
a system that behaves as described i n
Starting FORTH (or the 79-Standard).

Our f irst atternpt at solving this prob-
lem uses the FORT14 word VARIABLE.
The code is as fo!lows:

VARIABLE 'DAYSIMONTH 22 ALLOT

31 'DAYS/MONTIi I

28 'DAYSIMONTH 2 + !
31tDAYS/MONTH 4 + !
301DAYS/MONTH 6 + !
3 1 'DAYS/MONTH 8 + !
30 'DAYS/MONTH 10 + !
31tDAYS/MONTH 12 + !
3 1 'DAYS/MONTH 14 + !
301DAYS/MONTH 16 + !
3 1 'DAYS/MONTH 18 + !
30 'DAYSIMONTH 20 + !
31 'DAYS/MONTH 22 + !
: DAYS/MONTH (INDEX --- VALUE)

1- 2* 'DAYSIMONTH * @ ;

There is nothing significant about the '
(apostrophe), I only prefaced the VARI-
ABLE name with it because I want t o use
the word DAYS/MONTH later. Now, what
happened is that VARIABLE allocated 2
bytes i n the dictionary for the value o f
DAYSIMONTH. The 22 ALLOT then allo-
cated another 22 bytes, for a total of 24
bytes, or 2*12 cells. We next proceeded
to in i t ia l ize the values that were allocated
by explicit ly calculating the offsets and
storing i n the appropriate location.
Finally, we defined DAYS/MONTH as a
colon definit ion which performs arith-
met ic on the index, adds it to the start of
the table, and fetches the result.

Now, let's look a t another way o f doing

this that requires less typing and is also
more general. We wi l l f i rst define a word
called TABLE which wi l l a id us i n the cre-
ation o f tables l ike the one above. What
we w i l l do is f i rs t place the in i t ia l values
o f the TABLE on the stack, together w i th
the number of the in i t ia l values. Then, we
wi l l define TARLE to copy these into the
dictionary. Here is how it works:

: TABLE (N n Nn-1 ... N l n ---I
O D O , LOOP ;

CREATE 'DAYS/MONTH
3 1 30 31 30 3 1 31 30 3 1 30 3 1 28

3 1 12 TARLE

Now this is considerably Iess typing than
the f i rs t way o f doing it, but notice that I
had to reverse the order of the days per
month since that is the way stacks be-
have. I used CREATE instead of VARI-
ABLE because it does not allocate any
space for the in i t ia l value, but otherwise
behaves just l ike VARIABLE. The access
word DAYS/MONTH is identical to before.

I am st i l l not satisfied, however, so
let's t r y it yet another way. Instead o f
defining TABLE to add values to the dic-
tionary with , (comma) why not just use ,
directly'?

CREATE 'DAYS/MONTH
3 1 , 2 8 , 3 1 , 3 0 , 3 1 , 3 0 ,

3 1 , 3 1 , 3 0 , 3 1 , 3 0 , 3 1 ,

: DAYSIMONTH (INDEX --- VALUE)
1- 24 'DAYSIMONTH + Q ;

Now we are getting somewhere!! I f we
simply use the FORTH word , (comma) to
add the value t o the dictionary, see how
simple and readable it becomes. The
values are just typed i n and separated by
commas!! Is it possible to improve even on
this? Funny you should ask. There is a
quality that can be abstracted f rom the
definit ion of DAYSIMONTH, namely that
of table lookup. Wouldn't it be nice i f we
didn't need to create that extra name
'DAYS/MONTH simply so we could access
it later i n our : definition, Well, that is
where our f r iend CREATE D O E 9 comes
in.

Instead of defining a particular in-
stance o f a TABLE, we w i l l create a new
Defining Word called TABLE, which acts
as follows. It creates a new entry i n the
dictionary which when executed, uses the
value that was placed on the stack as an
index in to i tsel f and returns the contents
o f that location. It would be coded as fol-
lows:

: TABLE
CREATE ()
DOES> ', INDEX --- VALUE)

SWAP 1- 2* + @ ;

Now we have truly generalized the
problem and solve it i n an elegant way.
We have defined a new data type, called
TABLE, which is capable of defining new
words. Par t of the definit ion of TABLE
was specifying the run-time behavior of
the word being defined. This is the code
following the DOES>. We then use the ,
(comma) technique discovered above to
init ial ize the table. Note that
DAYSIMONTH is now just a special case
of TARLE, and is i n fac t defined by the
new defining word TABLE.

The above examples i l lustrate the im-
mense diversity available in FOR.TH.
There is no obvious r ight or wrong, and the
simplest and usually most general solution
to a given problem must be discovered,
usually by t r ia l and error. FORTH's big-
gest virtue, i n my opinion, is that it makes
the t r ia l and error process extremely ef-
ficient, and therefore, allows people t o
experiment and discover the best solution
for themselves.

HELP WANTED

Programmers needeed to produce new
polyFORTH systems and applications.
Two to three years extensive FORTH
experience working with mini lmicro
computers and peripherals.

Contact: Patr ic ia Jones

FORTH, INC.
2309 Paci f ic Coast Highway
Hermosa Beach, C A 90254
(213) 372-8493

fig-FORTH NOVA GROUP

Mr. Francis Saint, 2218 Lulu, Wichita,
KS 67211, (316) 261-6280 (days) has
formed a FIG Group to trade information
and assistance between fig-FORTH NOVA
usel's.

Pub. Comment: Hope to see a new,
clean listing. How about some other
specific groups!

FORTH DIMENSIONS 11115 Page 151

THE GAME OF REVERSE
M. Burton

REVERSE is a number game writ ten in
FORTH, primarily a s an exercise in array
manipulation. The abject of REVERSE is
to arrange a list of numbers (1 through 9)
in ascending numerical order from le f t to
right. Moves a re made by reversing a sub-
se t of the list (from the left). For
example, if the cur ren t list is

and four numbers a r e reversed, the list
will be

then if five numbers a r e reversed, the
game is won.

To leave a game tha t is in progress,
simply reverse zero numbers.

REVERSE Glossary

SEED --
The number seed for the pseudorandom
number generator. SEED is initialized
a s the REVERSE words a re compiled,
by hitting any key on the console.

MOVES --
Keeps track of the number of moves
made in a REVERSE game. If more
than fifteen moves a r e made to win,
you haven't go t the hang of the game.

RND range -- random.number
The pseudorandom number generator ,
courtesy of FORTH DIMENSIONS.
RND generates random.number in the
range 0 through range-1. RND is used
to scramble the number list.

DIM n --
A defining word used in the form

n DIM xxxx
Produces an n i l length word array
named xxxx, with elements 0 through
n. For the REVERSE application,
element 0 is not used.

Y / N -- flag
Solicits an input string from the con-
sole, then checks the first character of
the string for an tippercase or lower-

.-
Page 152

228
The Game of Reverse [SEED, MOVES, RND, DIM, Y / N l 101281-WPB)

VARIABLE SEED (Seed for random number generator 1
VARIABLE NOVES (Number of reverses so far 1
CR ." Please depress any key:" f Fertilize the seed 1

KEY SEED I

RND (Random number generator range -- rnd#)
SEED @ 259 3 + 32767 AND DUP SEED 1 32767 * / ;

DIM (Reserve an integer word array n --)

<BUILDS 1+ 2 + ALLOT
DOES> ;

Y/N (Get a Y or N response -- flag 1
PAD 80 EXPECT PAD CI CR CR 95 AND 89 = ; -->

SCR # 229
0 (The Game of Reverse [Game instructi~nnl 101281-HPB 1
1
2 : INSTRUCT CR CR 18 SPACES ." The Game of REVERSE"
3 CR CR ." Would you like instructions? " Y/N
4 IF . " The object of the game is to arrange a random list"
5 CR ." of nine numbers into ascending numerical order in"
6 CR ." as few moves as possible by reversing a subset of"
7 CR . " the list. For example, given the random lint," CR
8 CR." 5 2 4 8 7 3 9 1 6 " C R
9 CR ." reversing a subset of 4 would yield the list," CR
10 CR . " 8 4 2 5 7 3 9 1 6 " C R
11 CR ." To quit the game, simply reverse 0." CR CR
12 THEN ;
13
14 -->
15

SCW # 230
0 (The Game of Reverse [ARRAY operations1
1
2 9 DIM ARRAY (Reserve a ten word array 1
3
4 : AQ (Fetch an array word index -- array.value 1
5 2 * ARRAY 4 @ ;
6
7 : A ! (Store an array word array.value\index -- 1
0 2 ARRAY + I ;
9
10 : AINIT (Initialize ARRAY - - 1
11 10 1 DO I DUP A l LOOP ;
12
13 : A. (Print ARRAY --)

14 CR . " The list is now..."
15 CR 6 SPACES 10 1 DO I A@ 3 .R LOOP ; -->

fig-FORTH Version 1.15 H. Burton

FORTH DIMENSIONS III/5

SCR # 231
0 (T h e Gmme of R e v e r s e [ARRAY operations. c o n t . 1
1
2 : ASCRAMBLE (M i x up the array values
3 1 9 W I RND 1 + (C a l c u l a t e K)

4 I A l (G e t ARRAY111 value 1
5 OVER A@ 4 ~ e t A R R A Y ~ K I value)

6 I A1 (S t o r e A R R A Y t K l i n A R R A Y t I l)

7 SUAP A1 -1 (Store A R R A Y t I I i n ARRAYtKI 1
8 +LOOP ;
9

10 : G E T I N (G e t mount t o reverse -- n I
11 BEGIN CR . " R e v e r s e h o w m a n y ? "
12 PAD 00 EXPECT PAD l 48 -
13 DUP O< OVER 9 > OR DUP
14 I F CR ." O n l y 0 through 9 is alloued. " THEN 01
15 U N T I L CR ; -->

SCR # 232
0 t T h e G a p e o f R e v e r s e [ARRAY operations, c o n t . 1 1 0 0 7 8 1 - H P B
1
2 : AREVERSE (R e v e r s e a subset o f ARRAY n -- 1
3 DUP 2 / I + 1 (Loop l i m i t s are 1 t o t n / 2 1 + 1)

4 W D U P I - 1+ (C a l c u l a t e i n d e x n - I + l)
5 DUP A l SWAP (G e t ARRAYIn- I+11
6 I A e (G e t ARRAYCII 1
7 SUAP A1 (Store ARRAYCII i n ARRAYCn-I+11 1
8 I A 1 (Store A R R A Y t n - I + 1 1 i n A R R A Y t I l 1
9 LOOP DROP ;

10
11 : ACHECK (C h e c k for ascending seq. -- f l ag 1
12 1 1 0 1 D O
13 I DUP A l = AND
14 LOOP ;
15 -->

SCR + 233
0 (T h e G a m e o f R e v e r s e [REVERSE d e f i n i t i o n 1
1
2 : REVERSE (P l a y t h e g a m e 1
3 INSTRUCT A I N I T
4 B E G I N
5 ASCRAMBLE 0 MOVES I
6 BEGIN

case 'Y'. !f a 'Y' is present, the flag
) returned is true. For any other char-

acter, the flag is false.

INSTRUCT --
Prints the name of the game and then
asks i f instructions are required. If
yes, instructions are displayed.

ARRAY --
A ten word array that contains the
number l ist that REVERSE works oq.
Element zero o f the l ist is not used.

A@ index -- array.value
Fetches the index array.value o f
ARRAY and leaves it on the data
stack.

AI array.value index --
) Stores array.value into the index ele-

ment of ARRAY.

AINIT --
Init ial izes ARRAY wi th the numbers 1
through nine i n game winning order.

A. --
Displays ARRAY in an understandable
format.

ASCRAMBLE --
Using RND, scrambles the numbers i n
ARRAY fo r a new REVERSE game.

GETIN -- n
Solicits the number o f elements o f the
l ist to reverse. I f any character other
than 0 through 9 is entered, GETIN

1 prints "Only 0 through 9 is allowed.",
and solicits another number.

AREVERSE n --
Reverses the nth length subset of
ARRAY, starting from element 1.

A. G E T I N DUP O= ACHECK -- flag
I F 1 E L S E Checks ARRAY for proper ascending

AREVERSE 1 MOVES + I ACHECK numerical order. If ARRAY is i n the
THEN proper order, ACHECK returns a true

U N T I L flag.
A. CR . " Y o u m a d e " MOVES l . . " reversals. " CR
CR ." C a r e t o piay again? " Y/N O= REVERSE --

U N T I L The game definition. Uses al l pre-
CR . " T h a n k s f o r p l a y i n g REVERSE. . . " CR CR ; ;S viously defined words to play the qame

f i g - F O R T H V e r s i o n 1.15

o k

M. Burton

FORTH DIMENSIONS I1115 Page 153

THE 31 GAME
Written by Tony Lewis 11/81

The "31 Game" is an at tempt t o use
FORTH fundamentals t o produce an enter-
taining result. The object is t o entice you
in to anlyzing both the game i ts lef and the
methods used to produce it. The game
buffs might wish t o know that I have been
an avid "player" (not gambler!) f o r over 30
years and have made extensive pract ical
studies of various games. Any phone
communication is welcome. I am two
years behind i n my wr i t ten corres-
pondence; so sending me let ters which
require replies w i l l prove futile. The pro-
gram is my f i rs t e f f o r t i n FORTH. How-
ever, I have had extensive experience with
six di f ferent main frame assemblers plus a
l i t t l e COBOL o f the late 60's vintage.
Any constructive suggestions on general
style and technique are welcome, bu t I am
not really interested i n being told that I
couid have shaved 100 microseconds from
my run t ime or saved f i f teen bytes of
memory. I n fact, there are indeed extran-
eous "Cr's" which were included to get
good hard copy, also.

This program was wri t ten in micro-
mot ion (c) FORTH-79 Version 1.2 t o be
run on a 48K *Apple 11.

Therefore, the fol lowing words are
non-standard but included i n the micro-
motion FORTH.

Home - position the cursor t o the
upper l e f t corner of the CRT and clear the
CRT to blanks.

CV and C H are used t o position the
input cursor anywhwere on the tex t win-
dow per Ex. 4 CV 10 CH moves the cursor
to the 4th (pun) row 10th column o f
screen.

SETINV, SETFLASH, and SETNORM
set flags i n the Apple output subroutines
which respectively cause a l l subsequent
characters t o be displayed on the tex t
screen inverse, flashing and normal mode
without af fect ing charcters already dis-
played.

I n closing, I wish to thank B i l l Ragsdale
for his gracious support and I especially
acknowledge the incredibly patient treat-
ment I received f rom Phi l Wasson o f
Micromotion as he neatly led me through
my FORTH init iation.

Tony Lewis
100 Mariner Green Dr.
Corte Madera, C A 94925
(415) 724-1481
(415) 924-4216 (late hours)

*Apple is a registered trademark of Apple
Computer, Inc.

SCR#51
: HClWTll31 HEME (3 1 GAME-TONY LEWIS) . "

1;1 GAME BY TONY LEWIS
~ 7 , ., :, I S PLAYED WITH A DECK OF 24 CARDS

CONTAININING ONLY THE ACES THkU SIXES.
EACH OF TWO PLAYERS ALTERNATELt DRAWS
i :ARD5 FROM ?HE: DECK. ONE CARD AT A TIME.
A RUNNING TOTAL I S KEPT OF THE COMBINED"

sun OF THE CARDS DRAWN. THE P L ~ Y E R WHO
Clf iRIVtS Cj? THE: SUM OF 31 EXHC'TLY WINS.
I F NEITHER PLAYER CAW MAKE 31 EXACTLY.
THEN THE PLKVER WHO MUST 6 0 OVER 31
LOSES! THE GAME MAY APPEAH TOO EASY. BUT
I T I S DECEPTIVE. WHEN CUR I F 7 1 YOU HAVE"

WON THREE GAMES. TRY TO BEAT THE PROGRAM
FUR 'THE B I G BET' BY TVPiNG I N 'B '
R k i 'Ht f i 'THAh Y rJR I N ' WHEN 'NEW GAME?'
COMES UP. THE ' B I G BET ' I S A TWO GAME
SERIES. YOli GO F I R S T I N GAME 1 AND
8ECl.iND . IN GAME 2. YOU MAY BE SURPRISED!"
Cii Cli CR . " HIT ' HNY KEY TO b E 5 I N "

KEY' DROP HOME 6 CV : -- >

SCH1152
i WO!iDS OF WlSijOM 2.1 BY TONY LEWIS)
c THE >ANSWERr' PAGE I S NEXT. I T DOESN'T
REOLJIRE ANY S K I L L TO FIGURE ULJT WHAT THE

CONSTANTS HEALLY ARE' THEY ARE ENCODED
SO THAT YOU CAN ENTER ANIJ COMPILE THE
GAME WITHOUl DISCDVERlNG I l S PRINCIPLE.
REMEMBER. THE PURPOSE OF T H I S PROJECT
WfiS TCL BE.T YOLI TO F I R S T EXANINE THE GAME
B Y PLAYING IT, THEN FIGURE OLJT HOW TO
APPROACH THE PWOBLEM OF PROGRAMMINI3 I T .
AND F INALLY GO BACK AND COMPARE YOUR
METHODS TO MINE. THE GAME 15 AMUSINCi
AND I S A L I T T L E KNOWN CINCH BAR BET. I F
YOU TAKE THE T IME TO ENTER I T ONTO YOUR
FORTH DISC. YOU SHOLJLD HAVE FUN BOTH
ANALYZING I T AND THEN ENTERTeINING CCR
HUSTLING3 FRIENDS AND FAMILV WITH I T .
OF CUURSE WHEN PLAYING AT H BAR YOU MUST
USE A REAL DECI-. OF CARDS AS I T WOULD
PFIOBABL.Y TEND TO DISCDIJRAGE WABERING I F
YOU SHOULD BRING YOUR 'MICRO' WlYH YOU.)
-- .>

l iCt?#53.
L ENCCJDEI) CONBTANTS 31 BY TONY LEWIS)
! Mult: 1HESE CDNSTANTS AXE USED ONLY
TO i:ONCEAL 'THE 5OLUTION OF THE GAME.
NO-r r o wnk E THE ClJIj? NG HAW T O FCII-I.OW !)

6:) CONST/INT K 1
i n !:.ON!;TANT KZ
i : ~ i:Ohl; 1 ANT t:'7
O l;rJN5TANT K4

: C~HOWIJEC:~ '?SUM I:R C:R
. . " THt- l ~ i C t . NOW i:liNr'(-1JIU5, "
7 1 nil I (P.II:IT J ' ') L*

"ECC + C 3 (DUCk' u DU) DUP
.I 1: i + 1 i.t3 ljlj 2 . LI:IIJP
ti 1 5E DfiOP
-rHt N

LDOP 12 CH . " THE RI!NWIWG TCI'TfaL 1 5 " CAfinSUM d . :
: ElkDF'L AY
i F1.08 BHD PLAY1 i? CR CR
. " El,?,lj IYPE-- I N " GI4OWDEC.i SIJM :

.. .

5CFtk55
r L IT IL iTY WORDS CilluT. 3 1 BY TONY L E W I s i

: Ui.DfiTEi>ECI<StiM t 1. TI3 tr NOW GN STACK)
DUF ii UUP D E C ~ + ~3 UUP (Cirw LEFT?)

I F 1- (UPDATE. DECK) SWAP UECk + C!
[:ANDSLIM 1G3 + Ci:FiDSIJM C ! i WEbl 'JLJM)

:! ! CAf i i~- IN.~- i j i ' l i2 FLAG)
EI.SE DFiOF' irKUP UFtOP 111

TrlEF! :
. -.

SL.Rt;!l;!i
. ;";all<! 1 lqkl kOfil)C< 9 1 BY TONY LCWISj
: TL.nYtfirlCiVE CR L:R

. " 'T':PE I N 1:AFID I .- 6 " KEY CFI
4Y - (FRCJh A S C I I r DGP DUP DUP
i i'HECr.; Vc?Lti) Er4TRvi .. , ...

I F [;&HD I -. t ')j
I F UPCATEUECtiSiifi SWAP

t!UNE. . " YClluR CHRD WAS A " . DLlP
I:,=. (I:; CARL, IN T H ~ I)Si:r:"J
I!- DROP i FLAG BAD PLAY) O

CR CR . ' CARD PIUT I M DEClr:"
' SHUl.IDECV.SlJM

'i-hEhI
ELSE DKOP DROP Bi+DrLAY
THEN

til.SE DRGP DROP DRUF' BADPLAY
THEN ;
..

si:.+:tlf;7
i h / > l i . ? ~ l l v t W!i~FtfiS C.Rkr. 31 BY lUlrlY ILEWIS)
:. PI ;CARI)

. - C k C:h
:F < CnECC i 5 T r . . e v SWITICH)

:': RAlNDOI': 1.t DlJr I ;PDATEDECl.BLlM Dt::OP
t:t.<k l k l 1'1lJt. ~.4k:ii!;iJ~t i,;.iJ .t

k:2 t - 1 NI:;lj - [)LIP
LJFfiATEDFTYSrJll
i.i= (I FLAG t:)lu 'JALlU CHOICEI
I F l>F:rJf:, 1 !A 8;) l ~P1.~ ia i 'E I~~Ct .~~ .LJ l " l

1F
E:.SE DROF ? !!PkjATEDECk.SI!M
H I I (FL&i&-::CeKU. YiJ NU UhrlF')

rti:.. !4
I t ~ r r j . '' INy; lk3l. +a r : :; " . %,-iGdI,Fi~t.'i~.! ,I-I

Page 154 FORTH DIMENSIONS 11115

SCR#bSI
t N(4JNLlkE WOFtl)S i:iir-rl . 3 1 BY TONY l.EWIL,
: MYRI i j I 5 tT l CR CR

K 1 ,)UP i-&USUII C.i! + b.2' - Ptcl MOD -
i I L I ' L T E I ; ~ :3L,M 1 !=

: MYitl i i I5I i 1.2 C l i CR
I F DU@ UPDATFbELk.;Un DROP
=St k l CARDSUM C;r k2 - t.1 NOD - DUP

I.II'IJRTEDECI:SUM i l =

11: DtiOF' k 4 !)UP ILIPDCIl-EDECk.5UH DROP
T t.ltiN

'THEN ." M i PL.Ay I s " . SHOWDECKSUM Z :
--

:_.Ltifth I
r MAIN1 .TIIF WOt<bS CDNI'. 5 1 b r IIJNV. LEWIS,
: AJCiUlil 1

ICIUKiliiRLI
SC'D I N

1 F c TRUE FHi:lM N r B I R B E l l t
51 I;RF~DSUN i.d

IF v ~ r u w l l \ ~ I I :;El- LDi lP EA1. I)
I:I.SF 7 1 CAKUbLIPI 12.5 -

[f - ' < l ~ ~ I l c15;t: j

k.1 ,i'liAt<1.<4i?l> <:I

i l l t !,I
1111-N

tr!.:;E (t i t 1 iJf.:N IFKurl 'i'i?iJRi.iaFilJ)
". 1 CAF:LE~LlI~ ~..d

h:;t<+b,62
; I4A I IYL l l l i MDRDS L~ilr-IT. 3 1 B Y TONY LEWI:?)
: BlL2i l t l ; l

i M:BIL.tlE-11:
BEG I N

If . 31 t.nRf)SLJM lC3 =
IF' .,C,,lL- " " ust 1
t:L5E UL~LJRCC~~D , I

I HE IU
+:I :;+, , I l ~ f~ \F i l J !~ l . l l ~ i.,J

I F,' >, l.Il.11. rJ!,k: 1
f:l-dF 1 , (NI I I 151.) PIVHILjLIE T.2 i l

THE I\I
THEN

UW1 I L ;
-- .>

SCK#63
! MAINLI1.IE WORDS C:JNT. 2 1 BY TONY LEWIS)

: BlCjBE7 5 HI3ME
WE1 C:lJlli; -lu "13 1(: h E T ' . TI-iE F:INF'IL PHAhk. OF

.rt.ifi ':,I L,,-+PIL. 1wi.1 C,;>I~IL.:; WI:L,L. I ~ E ~~"L.~~YE~I , ,~ '
CH .." YOU WILL. I;U FIFrS'l' X W BFIME ONE AND
1 W 1L.I.. b i l F 1 R : X I N 6-;%ME: TWO. 1301:1D L.LJCk. "

H l (ribF-I 1
ZR CH
." I-I1 T At47 k-EY HND I WILL BEGIN GAME 2.''

CR FEY DROP NEdG&hE
561'PL.A8H . " B l l i b t l i%ME 2 1hE F INALE"
1.R C;R SIL~~IPILIRM

R l [.it<[. 12
i l i
&>ELL. I>.[D ' iuLi tii4VE Ttii: LORRECIT ANALY5167

i F SO. iHEN SEE I t ri3U CAN t IDUHE OLIT"
i.f%
LUHO WINS ~ I T H A i S i CARD LIF OFIE OR TWO.
I T 7 S A TOUGH CUMBINHTORIAL PROBLEM!'"
1 i SET F I N q L E X I T I N M U l N 3 l i : -->

SW#64
(!-'Lev THE RAHE OF 31 BY TONY LEWIS)
: MAINZ1 i LLJt i iC SHELL> i l C;AMESWLJN '

BEGIN CH i R
" NEW GAME- "

. " 'IYr'E Y IJR PJ L1R Nil316 hE ' I) . "
C:F: I.:R t.:'EY l ~ i i i - I E I i CIiE[:C: Fi3R N l
I FAL.SE ILEHVtfS 7 8 ON STACK FUR ' U N T I L ')

1 F NEWGAIIF 66 = i B)
I F GAMESWLIEI i:3 2 .:-

I F BIGBET
ELSE HOME z3 ." YijU HAVE WON "

GAMESWUN C 3 DUP . ." GUME" 1 =
I F ." ."
ELSE ." S."
THEN CFi . " YtjLJ MUST WIN 3 DAMES 1-17 " . " I-'L.ibY ' 8 1 1 9 BE'I':'."

1 I-iEN
El SE NORI'IALJI
THEN

THt N
U N T I L :

: 316CiME HOWT031 CC)DECOkS 9 A I N 3 1 ;

NEW C;FIME.7 TYPE Y OH N OR R (B I G H E T i .

DO YUlJ WPtN'l' I- IhS'1' PLAY :.' I YPE Y DH N.

THE DECE NOW CONTAINS
i l l 1
2 &.. :-.
7 -. 7 ., .2 .. 5
4 4 4 4
L., C
i .i ,.I

h l, (- h I l i k l~L. lNl~~l . lU l~ laT{\l... 15; :'

TYPE I N CAR11 1 -- 6
YOUR CARD WAS A 3

'THE DECK NOh CONTAINS
1 1 1 1
2 1 2
3 -1. :.
4 4 ' 3 4
5 :> y

h b r3 C, TtiF RIJWNlI\IC7 TO1 A I . I S 5

1'HE DECK NClW CilN'IAIWlj
1 1 1 1
2 2 2
? - -
;. .> 1.

4 4 4 4
5 5 5
6 b : : h THE RUNNlNB TOTAL IS if!

1 liE DECI::' hl6llu I:LJN'I'&~WS
i i 1
2 2 2
3 ? 3
4 4 4 4
5 5 5
6 6 6 THE RUNNING TOTAL I S 17

TYPE I N CARD i - 6
YOUR CARD WAS A 3

THE DECt. WUU CONiA I r lS
1 1 1
1: 2
: J
u 4 4

'T HE DECIC NDW CON'YA I NS
1 1 : I
2 2 2
3 3 3
4 4 4 4
5 5 5
h b h I H E RUNNING TOTAL I S is

LAXEN AND HARRIS, INC.
24301 Southland Drive
Hayward, C A 94545
(415) 887-2894

Introductory classes
Process control
Applications programming
Systems level programming

'THE I>ECt.:' NCJW CCJIUATNS
i 1 l
2 2 2
3 ''
4 4 4 4
5 5 5
h 6 a THE RUNNING TOTAL IS 20

-
-I :.,
:, fr C, I t l l l~iLll<l41 IL) l ' f ? l 1:i .!,:

Y 01.1 1.08E. GET1 El:? LLLjLr. luII X r 1 I r l t .

IUiW OCIME ' I ':PE 'I LJF: rN I"IF[R ~ R l l i BET) .
~ O l l HAVE wOti O GkME5.
YnU MU5T k1?4 ;. ti&MES 113 PLt iY ' B I G BET'.

I4EW GAhk - 7 I P E I ill? N OR B (8 1 s BEIT).

r If.

FORTH CLASSES

GREG STEVENSON
Anaheim, C A
(714) 523-4202

Introductory classes

KNOWARE INSTITUTE OF TECH-
NOLOGY
Box 8222
Stanford, C A 94305
(408) 338-2720 , - - Introductory classes

Graphics classes

INNER ACCESS CORPORATION
Belmont, C A
(415) 591-8295

Introductory classes

FORTH, INC.
2309 Pacific Coast Highway
Herrnosa Beach, C A 9-0254.
(213) 372-8493

Introductory classes
Advanced classes

FORTH DIMENSIONS III/5 Page 155

SIMULATED TWTROMCS
4010 GRAPMCS

WITH FORTH
by Timothy Huang

Portland, OR 97211

In this article, I am going t o te l l a true
story. For those people wh think FORTH
is a religion, they might just consider this
t o be my testimony.

Last November, I had access t o a very
l i t t l e known, but wel l bui l t microcomputer
-- M X 96412 by Columbia Data Products,
Inc. of Maryland. This l i t t l e machine has
two Z-80A CPUs. One is for the Host and
the other for terminal. There are 64 K o f
R A M in the Host, and 32 K o f the Ter-
minal R A M is dedicated to the 512 x 256
b i t mapped graphics. It also includes a 9"
CRT, 2 double density drives, keyboard, 4
serial ports, and 4 parallel ports. I ts al l i n
one piece. It boots up with whatever
operating system is on the disk after
powered up and the carriage return key
has been pressed. Beautiful isn't i t ?

However, there is a big problem, as
wi th most microcomputer companies, the
instruction manuals are terrible. And I
mean terrible! L e t me just give you one
examle: "For this information, please see
figure -'I, only t o find there was no such
figure and no page number.

Graphics are one of the most impor-
tant features wi th this machine. 512 x
256 b i t mapped graphic is the best that
can be expected under the pr ice al-
lowance. There are quite a few well known
microcomputers on the market claiming
High Resolution Graphics. But those High
Resolution ones are just l ike a big blob
compared with the individual pixel that b i t
mapped. So, I have a nice machine wi th
a l l the fancy graphic capabilities, but
lacking the key to open it. Anxiety
mounts up quickly.

I have a friend who's an excellent
8080/280 assembly programmer. He irn-
plemented UCSD Pascal for a microcorn-
puter. Naturally, since he was the f i rs t
one, it seemed logical to seek his help.
With a poorly wri t ten conlputer manual

S.:reen II :P
D L V i d e o contrcls i o r i o i i : r ~ s ; . i I<X364 TLkL

; F3hTi: 3Ei?INITiOWS 2;ZIKZL
; C O T S X f (z ,f - - - i

C MAX 2 3 fi;K 3; WAi '
O XAX 7 ? HI:: 3 3 -
i S CXIT EW;? EEiT .

: hOXE iS EEZT ; ,LR--~;CEO :I E3:T :

a : cin CLR-VIDEO HOME . . CLEARSZREEN CLR
3

;C UW-C : O ENIT . 2?-l :: SMlT . ,T-L $ E i q l i "

:1 27-C i Z E X I T , EEL: 7 EMIT .
3 1 ' *
i l . CLXEDS 23 EMIT . . . LiE,Q1 2; LXiT .
1 4 CLaLINE 2 1 EMIT ,
: c s 4

S c z e e n t i t
d : J r r p h l c P a c k a g e - :

m.,. .I 1; ::!39,3Q j

#, u ,. :, -L >' 2 J V A j ? . l A B L Z X 3 VAR:AEL; Y 3 ' $ A R I A E L L L 3 V A H ' " ' - ' "

2 2 'JARLAEL; X: 0 V A R I A B L E V:
1
: E S C 2 7 t 1 . 1 1 ~ ;'r ; 2 EM:.^ . S C 2: LI<:'i ' vri:l;r . .

. .
3S 3: EM:T I h l p h a) , C A N 2 : CX:T ! n ~ s - ~ ; ~ i ~ ;)

7 LX 2 5 f M i 7 L c l e a r < i d e a ntiuory) .
VH:TC Z S C 9 7 EKl? . : S L A C K ESZ 1 2 7 EX:: .

?

i i'
* . 6 .

1 I
L"

i L;

; 5

S c r e e n :: :Z
2 ; S L a p h i c P a c k a g e - a

1 (* - Lot ''
., 3 1 0 2 3 I W C s.5 /:?Cfi .

; X G ~ ~ J (Lo%, HAX -)
(r 3 2 + EH:T 6 4 + EX:?

. YCEK (L o Y r H i Y - >
3 2 - EMIT .! ' . Y t t X l T ,

i O PRC-GUT C HJU- >
: i VECTOp. :'CE]: '$C,-," .L.,. L <.U,.d 2""" ,

: '
i C PAGE 1: , n t e r (i i p t , ~ , r o s ; t c : c i i >
. , . t E Y L T T
' J

S c i e e r . # i J
2 i G r a p h ~ c r a c k a q e

2 I K l T
y A C E G 9 ;Z i M . 1 ' 6 :MI: 3 2 ?%:1 t,5 .,I?;, .

4

5 f:.SEAW
, ivi: ,

e 3RAL1 c & y --- >
J2p Y : ZGh; X t S A P FRE-3lJT

: 3

: i GZO'JE ; a y --- .
1: r, 5 DB.:Y .
. - .-
, >

2 . c - "

-
Page 156 FORTH DIMENSIONS 11115

S c r e e n # 1 4
0 (Graphic P a c k a g e - 4

2 . RURAW (R e l a t i v e DRAW)

3 Y @ + SWAP X @ t S W A P
(I

5 . RHOVE 1 R e l a t i v e KOVE i

6 GS RDRAb' ,
7
U A C U R S O R (. ~ l p l i , . c u r s o i r y - - - i

Y C5 ORAL US

; 0

1 1 : S C R O L L C1N ER . " p r e s s FUKC 5 Less '

1 Z
i 3 L I N E - E R A S E
i 4 B L A C K I B i [? : ' S L C - ~ ~ L T ' I ,
I f

S c r e e n C 15
3 : Graphic P a c k a g e - 5 -- .

l Llii

2 : ;N:TO
3 INIT ROT L t CUP 7 : LVI) Y n . " ' & ; l W . . t '

4 : SOIJARE i : x y - - -)
5 IIITO X E' L &' + 3L'F 1: . Y :+ iiRAV
L @ .; 8 L ,? + .": Y u t Y . DRXGI
7 x % L a - > U P :: ' Y e
IJ x 3 Y e e s - n a p . D R A ~

:o E R A S E S G t i { : >. --- ;
1 i I N I T O x o L @ i 1 ! L ; ~ ; L - C Z A ~ L

7
I * Y @ L I t :) I L::iL-E!:ASi;
1 3 X P L I - i: ! L i X t - C n A Z l :
; 4 .? &, @ - -* . 7 . 3 - , . .+2-ERA3E . r
4 "

d i r e e n # i 6
a G r a p h i c r: .ckigc

D R A W (we a t least knew that the graphic part
simulates Tektronics 40101, he spent a
whole week just t ry ing to draw one mere
square along the edges ef the ZRT. Seem-
ingly it would be an easy job, but even so
it never came near to what he would have
liked. Later on, I spent a couple o f weeks
twiddling w i th Microsof: BASIC compiler
and it also produced lousy results.

A t the same time, I received my 8080
fig-FORTH listing. So, I typed the whole
60 K o f assembly l isting wi th the lousiest
tex t editor (i.e., ED. COM). It was a mon-
umental job. Nevertheless, I had the fig-
FORTH up and running.

By now, I was very desperate to get it
going. Equipped wi th the FORTH power
and the poor manual, I set for th to t r y the
graphics again. Again, I sought help f rom
a friend who works for Tektronics and is
experienced wi th FORTH. With FORTH,
the whole task turned into a very simple
job, compared to the previous attempts we
had with the assembly and BASIC. Thus,
now I am steadfast i n my belief i n
FORTH.

Screen 10 and 11 sets up the variables
and the Columbia Mx96* hardware depen-
dent words. The X-coordinate starts at
the lower l e f t corner as 0, far r iqht as
1023, while Y = 0 starts a t 'the lower l e f t
corner t o the top as 779. Screen 12 to 14
defines the basic words, which draw the
line, move the cursor, relative draw and
move. Screen 15 defines the words to
draw a square and the erasinq of it.

; a d v a n c e n A y , c n a c r r r n < r ;

L 2 X X: 2 37;: LU'' 2 ; 7 - z k 2 c :':.-- -'.;-:' : .!.- . - - s. -. , - 5: a. " -. * .
Z L S t ; i i nFc.>r LRLt> ' " " "

l U - G
'TiIlil .""..'

.<.LA. :
Y @ y ; 5 CUP DIJ: c (C R J ~ ;;,SF jac: 1 :;:-:.

LLS; 7 ? 9) :r j R b : URSI' 7 5 ' ' LiJ:' -.Kt:: ? ; . t i : ':

Screen 16 lets me draw many squares.

I know that there are s t i l l a l o t o f nice
words that can be written, such as, to
draw triangles, curve lines, etc. But, f rom
this small exercise, I am totally convinced
the FORTH is the one I wi l l use f rom now
on.

,' PLATANOS ?4

F O R M DIMENSIONS 11115 Page 157

A VIDEO VERSION OF MASTER MIND
David Butler

Dorado Systems

The writing of this program served as
my introduction to FORTH. Using the fig-
FORTH Installation Manual, I stumbled my
way through the basic concepts of FORTH
and eventually arrived at this video
Master Mind game. The game is derived
completely from the original board version
of Master Mind, therefore, al l credit for
the game itself goes to the Invicta Game
Company.

The program contains many of the
functions found in video editors, including
cursor management and character col-
lection. The sequence of this computer
version of the game is as follows: After
displaying the directions, the program
prompts the player to enter his skill level.
Then a 'secret code' is generated with the
help of the player tapping the space bar.
The screen is cleared, and a 'mask1 of the
Master Mind playing board is displayed.
The cursor lands at the location where the
player is to begin entering his guess. The
program retains control of the cursor, re-
sponding to the player's key strokes.
Backspacing and tabbing are allowed, en-

.> . ,.LP # 18
O (Mas te r M ind i n F o r t h b v D a v i d A. B u t l e r
1 --' 2
2; 1:lavid A. Bu t1 e r
3 33300 M i s s i o n B l v d
4 FIPt 126
5 U n i o n C i t y * CA. 34587
& (4 15) 487-6033
7
8
'3 **.*** A n o t e ahou t s t u l e : If: t h e r e i s anvr i t i s an a c c i d e n t .

10 T h i s was ntLi f i r s t a p p l i c a t i o n i n F o r t h , so i t may l a c k
11 some e l eganre.
12
13 **.#** Requ i rements : A v i d e o d i s p l a v 8 0 x 2 4 c h a r a c t e r s ,
1 4 c u r s o r a d d r e s s i n s and c l e a r sc reen
I. 5 +ur~cti~:nrts.

!?CR # 19
0 i Mas te r M ind -no tes - DAB-l7nov80)
1 -->
2 T h i s i s an i m p l e m e n t a t i o n o f Mas te r M ind b u I n v i c t a .
3 The same i s v e r y p o p u l a r because i t is easy t o l e a r n and a.
4 cha l l e r ~ S e t o ~ l a v . There i s a h i t o f l u c k t o i t , b u t i t i s
5 rna in l r . an e x e r c i s e i n l o $ i c a l d e d u c t i o n . A " s e c r e t " tiode i s
b genera ted , and i t i s " c racked " b v a n a l v z i n s a s e t o f c l u e s .
7
:3 Those *amt i l i a r w i t h t h e o r i g i n a l b o a r d same w i l l have no
8 d i f f i c u l t . ? a d j u s t i n s t o t h e computer v e r s i o n . To newcomers.

10 f o l l o w t h e d i r e c t i o n s c a r e f u l l v and vou w i l l have i t i .n no
11 t ime. The F o r t t i v e r s i o n i s f u n c t i c ~ n a i l . . , i d e n t i c a l t o t h e
12 bl:lard v e r s i o n . I t i s w r . i t t e n i n G ig -For th . and 11a.s been r.un
13 s u c c e s s f u l l r on 1-.5(:)2. 8080, Z80. and 6%0OCJ p rocesso rs . T t
1 4 i s a good d e m o n s t r a t i o n p rogram as wei 1 as an en . j vvab le game.
15

SCR # :20
i:) (Mas te r M ind s e t UP some v a r i a . b l e s
1.
2 : TASK : i FI]RGE-l'T'RHLE MARKER)

.:.
4 O VhRIABLE COLORS 2 8 ALLOT COLORS JC) FLANKS
5
/1. O VARIABL..E !?il:ODE 2 HLL.CIV 0 VAR1AHL.E GlJESS 2 ALLOT
7 O VARI ABLE SECRE'T 2 AL.L.llT
:3 O VAR IQBL..E HLQl::)::EFi (11 VAfi'I: AHI-E: WH :['TEH
9 6 VARIAHLE #i:ClL.OHS

1 CI
1 1 3 VQHIABLE CUR. ROW 23 VARIABLE CUR. COL
12 1 V.4F:IABl-E XLUC 1 VARIfiBLE YLlllC C) VARIFIBLE DONE
1,:s ... --:,
14
1 t",

'1"R # 2 1 .-* .,
O i Mas te r M ind s e t UP - cctnt. DAB- 17novgi j)

1
2 : (1:. IZIIINSTAN-r . " YELL0WRE:li BLACK GREEN WHITE FLI-IE *I I

.I

4 OVARIQHL..E CULOR.KEY 6 Al~LDT' (" c o l o r s " t ah l c -)

6 i 1-Ire t h e sum of: t h e &SKI1 code of t h e f i r s t 3 l e t t e r s)

7 (i . e . BL,I.IE = "B" + "1-" + "I-I" = 66. + 76 + 85 = 227)
.I. .-.
9 234 I:I:ILI:~R. k;EY C 1 2L';j Cl:lLOH. KEY 1+ C!

10 CI:ILOR.KEY 2 + I:! 222 CC)LOR.KEY 3 -I. C:!
1 1 2:3:: ~1111 .SIF?. YEY 4 + i:: ! 227 COL.l::lR. KEY 5 + (::!
1 ; '36 I;I:IL-OR.~:.:EY t. + I.::!
1 ;::
14 t:! VAKIAHLE #ATIEMPT'S i used t n keep s c o r e)

1.5; -->

Page 158 FORTH DIMENSIONS II1/5

SIZR # 22
O (M a s t e r M i n d prompt and r a n d o m i z e DAB-1 7nov:E:i:))

1 f These d e f i n i t i o n s 3 e t t h e random v a l u e s f a r t h e 3ame !

: IVEWCll~lhlT (CCl:lLOR# +. ! 1 ! DCIP #CC:ILC'IR$; i? .:::
I F i + ELSE: DR1:lF' 1 THEN ;

: RAND 1 B E G I N NEWCOUNT ':-'TERMINAL CINTIL t:+Y DROF ;

: 4SK.FOR.RANDOM ." To r a n d o m i z e 7 t a p space bar 4 t l n i e s . "
4 O Dl3 RAND I !<CODE + C ! LOi iP i:R ;

: ASK. FOR. L E V E L
I'F: . " L.eve'l 1 or- 2 '1:' " t:::f:Y 1:iCIF' IFMI''[' t..EY t::m]1

3 3 = IF: 7 #I:.I::IL-CIR::; 1 F:I.,.::;E k, #~.::I:ILI:IF~~~. ! .[HEN I..:N :

-- ..:.
23
(M a s t e r M i n d t r a n s l a t e c o l o r to numer ic

: TF<(.>N!::L.. &'T'E:' . I::~II:IE
(c o n v e r t s c o l o r # frcrm SC::ODE tc, CiiLfiH.KE'y')

(numeric. v a l u e i n a r r a ' i "SECRET" .!

4 O Di3 SCilDE I -b tl@ 1 - COL..Of?.t::EY + I:@ $.f:lltH[i7
I + I:! L1:IOP :

1 .<:
1 -3
1 : ,J R::. R.?. Ci"i'lMF'I.LEI f-: ::;WAF' .::R ?;WQp ..[;: 7:;;WAp ..F> ;
1.5 --:.>

'?.I-:R # 24
.. -

f:) I M a s t e r M i n d c u r s o r rriotiar~ ~:IAB- 1 7 rl 0 v::::':! I
1 (U t cour.se, IZR'l .Jependent. H e r e i s H e a t h : j .:. f +*l* s t a r t CRT deper~r len t wnr-ds *+9)

3 : CCIR!SOR i [Y] [X j--.- L :I fiEtS13L..ClTt: I: I-.IRSl::lFi P i : iSI T:[1.IP.I i

4 31. + SWAP 31 + :39 217 E M ~ T [:MI'.[MI t : tq l r :
c

C:, : (::LEAF? (i.'l-E'QR i:::f.<-r !i;l:.:Rb,EPJ) 27 F:t+ll! k Y 1 1 ' :
7
:3 : 1~41:111E: (PI-IT I:::L.IR!=;I:IF; AT f.11:iME pel!:; 1 1. I I)N) i.! (:) (:I-lt.+.l. if.(;
'? (*a* e n d rrf I::R-i der:crlderrt word5 ++$* 1

19 : SHI3W. CDLISRS (D I S P L A Y CI:ILI:IF(C'HOICES ;
1 1 7 1 DO 1 2 + 5% CURSOR 1 C~:IL.I:IR. FIND L.!ItOP
12 #C:i:tLl3RS @ 7 = IF 9 57 C:(jRS(JR . " <Bi-ANI.:.:-" £ L :::;[I 1 HEN
13 12 SEi: ClJF:'.":CIR . :' TAB bethieen c.p i or.5, "
14 1 :3 58 (_UR?:i:IR . " PE T'l-fF\'hl t o g e t r 1 t . 1 ~ 5 . " ':
1 z:; --:::,

- .. !=.LR # 25
C! Master. M i n d b o a r d l a . ;ou t trlask Ti&R.-.j -, "7r l!.sv:.~:: - - . " ' > !
I
2 : B&R . 8 0 ; " : DaSH . u -" ; [BuaEU SYf-iBLcL-S)

'1. ., . . TITLE 21 !E;PAC;E!<

4 I , . _-__ M A S 1 5 R M 1: N [:I ====" :
5 : ClfiSHER 2 2 1 C:l-IRSnfi BAR 32 () L]u . " - f l L j i g P BAN ; :f< ;
b : CL.INE Cll,JP 21 C:l-IR!~l:lfi' BAR 54 C:IJRSilR BAR :
7 , ,! . :3 : !%PACER 21 C:I-IRSOR . " I-:"'. .''. .''. . . .
9 : CBLOCI: DUP ClLINE 1+ SPACER :

It:! : HIDDEN :5 23 CURSI:I~-? . " X X X X X X X X X X X X X X x X X X g Y x k ' X X 1 ' :
11
12 : D I S P L 4 Y . BOARD

13 CLEAR T I T L E DASHER H I D D E N 2 4 3 U i j I CBLOCK: 2 -+LO!ZlP
1 4 SHCIW. C::l:lLORS ;
15 -->

abling the player to keep changing his
guess unt i l he is satisfied that i t is consis-
tent with the clues he has thus far receiv-
ed. A correct guess Es the result of the
player's logical deduction (or very good
luck) based on his previous clues. The
directions on screen 3 1 explain the mean-
ing of the two types of clues.

When the player signals he is ready,
the program compares the player's guess
to the secret code which was stored away
earlier. Clues are generated and dis-
played, indicating to the player how dose
he is to the solution. The player has ten
chances to deduce the secret code.

There are many improvements which
could be made to this program to take ad-
vantage of more o f FORTii'S built- in
vocabulary -- most notably PAD and re-
lated words. For those short o f memory,
note that the directions could be short-
ened, le f t out, or read from disk with no
change to the overall logic o f the pro-
gram.

Further notes and comments may be
found i n the source screens.

F O R T H DIMENSIONS III/5 Page 159

!3CR it 26
(3 ! M a s t e r W i n d c u r s o r t r a c k i n g d e f i n i t i o n s DAB-l7nov8C?)

1
2 : x XLOC e : : v YLOG @ : .:. .-.
4 : XBUMP x 52 =
..I
._.I I F 23 Ell-IF CUR. CI:IL,. ! XLJC !
ir. ELEiE 1 XL.01, I - ! X C:I-IR.C:iIlL @ 8 -t. =
7 PF X CUR. COL THEN
C.
c* THEN i
9

l i 3 :: UIVBUMPX X 23 = I F 52 XLOC: ! ELSE -1 XLOC + ! THEN ;
.L .L
12 : TAB i:I-IR. i:OL Q 47 =
1 :'3 I F 23 CUR. COL !
14 ELSE 8 CUR. C I ~ L + '
15 THEN CUR. COL C XLOC: ! DROP Y X CUHSOR ; --3

:ii;c, # 27
O (M a s t e r M i n d c h a r a c t e r c o l l e c t i n n / c d i t i n ~ DAB-lSncevSO)
1 : BfiCK!SPACE X CllH. C i lL @ =
2 I F DROP
...#

a ELSE UNBUMPX Y X CURSOR SPACE Y X CURSOR DRClP
4 .- .. .32 COI-12R8 X + 23 - C !
:.:I THEN ;
b
7 r F)ROCESS I [CHAR] -- C j PROCESSES IZHAH, MfiNAGES l::UHSOR)

8 DIjP E M I T CifL.OR!s X + 23 - i:! XBIJNP Y)t C:UHSO&' :
9

1.0 : I~I-~.I:HQFZ C:EY ~II-IP 127 =
11 IF ' BfiCK!SPfiCE C:liJP 9 =
11 2 I F TAB ELSE DUP 13 =
1 13 I F 1 DONE ! DROP
14 EL.SE PIT'I:ICE!?S THEN 'THEN THEN ;
1.5 --3.

!s;,-::R # .>a:. .-.-=
O i M a s t e r M i n d
1

4 : ,i I ' I 1 . 2 * ::: + I:ll_rP YL..CII: ! l::l-IH . BI:IW ' ::>:::: ;' :: X LiIC:
3 ! CI-lR.COL ! Y X CClfiSi:~Fi
C 120 o D i i 32 1 COLORS + C! LOOP ;
7
8 : I X T . COLI:IHS INIPT'AI. <> rli:lhiE ! BEGIN OLT. C:HAR I)ONE @ CINTSL. ;

1 0 : I:3.X":;E . I:il-IES!< 4 O 1,:Ii:l 1 E! a C:C:lL.C!R!=; + C:(+
11 I $3 a l:::OLCIR!=; 1 + + !::@
1'
L I 3 C<ILI:IH~ 2 + + i:@

1 1:. + + 1: C;I-!ESS + C; i LTJIIIF' ;
1.4 ---)
15

SC;F; w 24
$3 i M a s t e r M i n d
1
:? : lI:L.l.IE. CHECK
: 0 HI-.NCI:..FR !.i WH1TE:P ' (' l ,N:[-IIf i i , ,J7E I:I-II.I~I.'~':-,
4 '1 (-1 l:l(:l
ii SEil:RE T I + Gl_lE2:!3 1 -F c@ = < CHEi:t:: F[IR U:[C'T H 11-

I F 1 BLACKER - 1 - 1 1;) I fil.,.lE':::.:; + 11.:
7 THEN LI':1i.:IF
;:.; 1 0 Ll1.1 ' 'I - I : (:, :::. I f. i I I , ' Nlr~ H 1 -1- !

4 !It f3li
.! ti l;l-l[t.~~ r + c-e C~:,:RET %..! + !1@ = (I:HEI.:I:: FI:.:It? W t i I IF_ !
1 1 1 F 1 WHITEFi + - I 1 I IGl-.ltlSS + I (L.EfiVE
1. .I? -Ti-IEN
1 ':; L I I F THE.:N
l f l i ,(:I(It:' ;
1 5, .-.-:'..

guess ! r o w s e c t i o r ,

C l u e g e n e r a t i o n

-- -
Page 160 FORTH DIMENSIONS 11115

Si'R # 3 0
O (Master - M i n d ~ r - e s e n t c 1 ues
3.
2 : G T VE . C:LClE:!5 PARSE. GIJES!:; C:L.CIE. CHE<:'tr(
-5 Y 1 C:I..IR!E;iJR BLACKER @ . ." HL..AI:K "
4 WHITER @ . ." W H U E " ;
5 : UNMA!SK 3 23 ClJH!~i:lR
. 4 O DO I SCOnE + C@ COLijR. F 1, NU 1 3 =
7 1.F ." " ELSE: . " " THEN L-I:II:I~ 23 1 i::URsOR ; .-.
9 : '?AGAIN 20 58 C:lJRSOR . " TYPE MUSTER r12" 21 58 1:: - - IR!~I>R -...
10 . " PLAY AG4 I N . " i-lNMASK 23 1 CI-IR!<jjR ;
1 1 : LOSER 55 II_':URSI:IR . M NI C:E 'TRY]L~I-IT" 17 58 c:uR!::~;IR
12 ." NO CIGAR." ? & G A I N :
1::: : WINNER 16 53 CI.IRSOR . " PREC I SELY. " #A1-TEMpT'. ;2

%. .
14 . " TRYz. " ?AG&]:N ;
1 5 - - 1::.

.-. - .II..:H # .3 1
O (Maste r - M i n d D i r e c t i o r t s t o p l a y e r
1

2 : DIREC'TI1:INS C:L..EAR CR i:R CR I CR
3 10 0 D!Zi L.OCIF' . " We1 come t o MASTER MIND. " CF: Cfi'
4 . " The ob.. iect o f M a s t e r Mir113 is t o b r e a k t h e F . C C ~ O ~ ,:,:,,je."
5 C:R . " The c o n ~ ~ u t e r w i ' l l p i c k t h e s e c r e t <:*:#do, a n d ..;- , uu r n t l ~ t "
6 CFi ." f i g ~ ~ r e i t o u t . Two k i n d s of: c l u e s a r e giver,:" CF:
7 CR . 1 # BLACK weans t h a t vou have # p e 2 s c n r r e c l " CK
8 i n b rl t ti c ,:I 1 a r a rl d PO s j. t 1 a r! . " C:R I: :H
Q . " (2) # WHITE means t h a t vou h a v e # p e 9 s o f t h e " i f i

1 (3 c o r r e c t c o l o r t h a t a r - e i n c o r r c c t l v " CR
11 p l a c e d . " CR CR
12 m u Be s u r e t o s p e l l t h e c o l o r - s c o r r i - c t l - r . Yoi j rr~a.~. t a t l an.liti.:nr
1 I"'R " -. . t h e 4 r e s i t i o n s u n t i l uou've make r.ol.lr-. h e s t S I J ~ S P . c:H
14 CR . " T.i.t=e [RETURN3 t o r e c e i v e c l tjcs. " CR [::R . " Goa2d- 1 1 j + k . "
15 I:H CR : --3

.-. -. =,l-:R # 32
(1) (M a s t e r M i n d -++ F I N G L ++
1
..-,

'1: : MA!:;TER D I REi::T' 1: !:i Ci *&'Krt.MF"I' k. !
4 ASK. FOR. LEVE:L ASK. FCIH. RANDl:lM
9 DISPLAY. BOARD 'TRANSLATE. CI:IDE i FIJ t 1-It4MAYb:. t o deb IJ 3 !
4, CI 1 (:)
7 1 #A'T l-EpIP"r:< + 1
'2, PAR!SE:. GLIESS 1: GET. IZOLI~R!S: 131 I/E. CL..I-IES
9 BLACKER (!? 4 =

10 I F W:[NNEFr L.EAVf-1
1 I. EL: !..; E:' .. THEW
2 : -.-I .sL(>I:.lF'
13 BL.AC.:t<ER @ 4 ..:
14 I F i..l:lSE fi' EL. ':;E THEN ; MA5;TE:R
1 =;

==== n 6 -5 7 F n n I N o ===-
: .,..-,._-_,.,.,.-_-.. ^--,,-- " --,-- -",*..:

(~ h r r r a r e h l d . i r n : RE14 REO BLUE GRFEN :
d s ~ ? l r $ s ~ l a ~ l ' . ---- -----

. 7,

: VELLOW
, _ RED

: BLACK
:- GREEN

: WHITE

. . , - ------- ------- ------- ------,
4 HLII:I: rr WHI rE : HEU RED HLI-IE ' ILIHEEN :

: _ _ _ _ _ _ _ _ ___-___ -__-_-- _ - - - _ _ 1

1 BLACY 3 WHITE : RED BLUE GREEN RED : . ,. .- ------- _------ ------,
0 B L K K 4 WHITE : BLUE GREEN RED RED : PRECISELY.

: _ 4 TRIES
0 PLRCK 1 WHITE : YELLOW GREEN BLACK WHITE :

(Snapst-ot rf board after rlarins Master Mlnd)

NEW JERSEY FIG CW.4PTER BEING
FORMED

Interested parties should contact:
George B. Lyons
280 Henderson St.
(212) 696-7606 - days
(201) 451-2905 - eves

BOSTON FIG CHAPTER SEEKING
MEMBERS

Interested parties should contact:
R. I. Demrow
P. 0. Box 158, Blv. Sta.
Andover, MA 01810
(617) 389-6400 x 198 - work
(617) 664-5796 - home

MOUNTAIN WEST FIG CHAPTER
ORGANIZING

Interested parties i n the greater Salt Lake
Ci ty area should contact:
B i l l Haywood
(801) 942-8000

,, TECHNICAL PRODUCTS CO. MOVES

New address:
P. 0. Box 2358
Boone, NC 28607-2358

FIG NEW YORK CITY MEETING
CONTACT

James Basile
40 Circle Drive
Westbury, NY 115900
(516) 333-1298

DALLAS-FT. WORTH METROPLEX FIG
MEETING CHANGE

Meetings now being held at:
Software Automation, Inc.
1005 Business Parkway
Richardson, TX

contact:
Marvin Elder (214) 231-9142
Bi l l Drissel (214) 264-9680

FORTH DIMENSIONS 11115 Page 161

PRODUCTS R N I E W

SORCERER-FORTH
by Quality Software

For about a year, I have been using an
excellent version of f ig-FORTH tailored
for the Exidy Sorcerer. It is a product of
Quality Software, 6660 Reseda Blvd.,
Suite 105, Reseda, C A 91335.

FORTH for the Sorcerer implernents
Release 1.1 of 8080 fig-FOP.TH. It in-
cludes a fu l l screen editor and input/-
output routines for the keyboard, screen,
and both serial and Centronics printers.
The Sorcerer's excellent graphics are also
available.

Disc storage is simulated i n RAM. A
32 K Sorcerer can hold 14 screens--with
48 K, up to 30 screens. Tape-handling
routines are provided, to rnove data to and
f rom the simulated disk space. The CP/M
disk interface routines are present, but
not implemented.

One of the nicest features 07 Quality
Software's FORTH is i ts documentation.
The 126-page manual is well-written, and
relatively complete. It includes suff ic ient
information for a FORTH neophyte,
though it does not delve too deeply into
system operations.

Quality Software permits--even en-
courages--users to market application
programs incorporating Sorcerer FORTH.
They do ask that wr i t ten permission be
obtained frist, but promise that permission
wi l l normally be granted a f ter review o f a
sample of the program.

I highly recommend this excellent pro-
duct, and ask that you include it in your
periodic l isting o f available software.

C. Kevin McCabe
1560 N. Sandburg Terr. 64105
Chicago, IL 60610
(312) 664-1632

A COMPARISON OF TRANSFORTH
WITH FORTH

Insoft
Medford, OR

A question we've been hearing a Lot
lately is "How does TransFORTH compare
with fig-FORTH?" In structure, Trans-
FOKTH is similar to most version of
FORTH, but is is not a FORTH-79 Stand-
ard System. The major differences are
outlined i n this paper.

Floating-point numbers

I n TransFORTH, the stack i tsel f con-
tains floating-point numbers, w i th 9 digits
of accuracy. No special sequences are
required t o retrieve floating-point
values. Words are available for storing or
retrieving single bytes and two-byte cells,
but a l l values are stored on the stack i n

floating-point format. Numbers can be as
large as 1E38, and as small as 1E-38.

Transcendental functions

The floating-point format mentioned
above makes TransFORTH a natural larlq-
uage for transcendental functions. Func-
tions included i n the system which are not
found i n most versions of FORTH
include: sine, cosine, tangent, arctangent,
natural logarithm, exponential, square
root, and powers.

Data structures

TransFORTH contains words that w i l l
store or fetch 5-byte floating-point
values, 2-byte cells, and single bytes from
any location i n memory. TransFCSRTH
does not have the fig-FORTH <BUILDS,
DOES> construction, but instead uses a
powerful bui l t - in array declaration.
Arrays can either f i l l space in the diction-
ary, or be located absolutely i n memory.
Arrays with any number of dimensions
may be declared, and each dimension can
have any length, within the l imi ts of
available memory.

Strings

Strings are merely arrays (of any di-
mension and size) w i th an element length
of one. Each character occupies one byte,
i-e., one element o f the array. Built- in
string functions included.

Disk access and the editor

TransFOKTH does not use the vir tual
memory arrangement found i n most ver-
sions o f FORTH. Instead a standard DOS
3.3 format is used, and fi les are called
f rom the disk by name.

TransFORTH includes a straightfor-
ward line-based tex t editor. The editor is
not added to the dictionary as a l i s t o f de-
fined words, but is included as a separate
module callable frorn TransFORTH. DOS
text f i les are used for saving source
files. This means that any tex t editor that
uses DOS tex t f i les may be used for edit-
inq TransFORTH programs. In addition,
TransFORTH program data may be shared
with other programs and languages.

Grahics

Two graphics ut i l i t ies along with a
couple o f graphics demo programs are in-
cluded on the system diskette. One u t i l i t y
contains high-resolution graphics and
Turtlegraphics commands, and the other
has low resolution graphics commands.
The graphics capabilities are added to the
system by compiling these ut i l i t ies into
the dictionary. The hi-res package in-
cludes a ca l l t o a module which ailows
tex t and graphics t o appear together any-
where on the screen.

Vocabulary

TransFORTH is a single-vocabulary

system. Related programs can be qrouped
together i n disk files, rather than in sep-
arate vocabularies. !Multip!e vocabularies
f ind their most usage i n multi-user sys-
tems.)

(:ompilation and speed

A l l entries i n TransFOKTH are corn-
piled dirsct ly in to 6502 machine language
for greater speed. No address interpreter
is used. Even immediate keyboard entries
are compiled before being executed. This
means that rootines can be tested a t the
keyboard for speed before being added as
colon definitions.

TransFORTIi is fast. I t is not as fast
an integer versions of FORTH, because i t
handles 5 bytes wi th every stack manipu-
lat ion instead o f two. TransFORTH pro-
grams wi l l run faster than similar Apple-
soft programs, and show a great increase
in speed when longer programs are com-
pared.

While TransFOKTH works much l ike
Fig-FORTH, the differences between the
two hecorne readily apparent under closer
examination. FORTH programmers w i l l
pick up TransFORTH with l i t t l e trouble,
but nearly a l l FORTH programs w i l l re-
quire translation into TransFORTH to
take advantage of i t s powerful features.
These features are accessible with a min-
imum of work f rom the user, bringing a
FORTH-like environment in to the realm
o f pract ical scientif ic and business pro-
gramming for the f i rs t time.

EDITOR'S RESPONSE TO
TRANSFORTH

The above material is,extracted from
explanatory sales material f rom the pro-
gram vendor. Comrnentary we have indi-
cated from TransFORTH users can be
summarized:

I. This implementation should be
named as one of the CONVERS group
of languages, as it compiles to as-
sembly language rather than threaded
code.
2. It is easier t o add floating point
math to FORTH, than to al ter Trans-
FORTH to use integers for execution
speed improvements. Why not both?
3. I f the implementor had done his
DO5 3.3 interface using the standard
FORTH word BLOCK, an immense gain
i n value would result. D i rec t access
and DOS compatibility. -
4. <BUILDS DOES> probably could be
added but apparently the implementor
doesn't know how or chooses to deprive
his customers of this powerful struc-
ture. Arrays are definitely not equiva-
lent technically or philosophically.

I n conclusion, it appears that
TransFORTH is a reverse POLISH
BASIC, with names rather than
labels. A small amount of additional
e f for t would have bui l t upon FORTH,
rather than strip out major attributes.-
-ed.

FORTH DIMENSIONS 11115 Page 163

NEW PRODUCTS

FLEX-FORTH

Complete compiler/interpreter, assem-
bler, editor, operating system for:

APPLE I1 computers $25.00
K I M computers $21.00

FLEX-FORTH is a complete structured
language with compiler, interpreter,
editor, assembler and operating system for
any APPLE 11 or APPLE 11+ computer wi th
48K and disk or K I M wi th 16K of mem-
ory. Most application programs run i n less
than 16K starting a t 1000 HEX and often
as l i t t l e as 12K, including the FLEX-
FORTH system, itself.

This is a full-featured FORTH follow-
ing the F.I.G. standard, and contains a
6502 assembler for encoding machine
language algorithms i f desired. The
assembler permits macros BEGIN ... UNTIL,
BEGIN ... AGAIN. BEGIN ... WHILE ...
REPEAT, IF ... ENDIF, and I F ... ELSE...
ENDIF. Editor and vir tual memory fi les
are linked to the Apple DOS 3.2. An ap-
plication note for upgrading t o DOS 3.3 is
included. Object code on disk with user
manual sells for $25.00. (APPLE) or on
cassette w i th user manual for $21.00
(KIM).

A complete source l isting is available
t o purchasers of FLEX-FORTH for
$20.00. The source is valuable in both
showing how FORTH works and i n giving
examples o f FORTH code and integrated
assembly code.

Order from: GEOTEC, 1920 N. W.
Mi l ford Way, Seattle, W A 98177. Be sure
t o specify machine.

MARX FORTH V1.1
Perkel Software Systems

1636 N. Sherman
Springfield, MO 65803

(417) 862-9830

Enhanced 280 fig-FORTH implemented
for Northstar System enhancements in-
clude link fields in f ront o f nalne for fast
compile speed; dynamic vocabulary relink-
ing; case; arguments-results w i th 'to' vari-
ables: and more. 79-Standard package in-
cludes easy to use screen editor.

Price: $75.00

Smart assembler, meta-compiler and
source code (in FORTH) sold separately.
Cal l for information.

TWO NEW PRODUCTS FROM
L A X M AND HARRIS, INC.

Laxen and Harris, Inc.
24301 Southland Drive
Hayward, C A 94545

(415) 887-2894

1. Working FORTH
Release 2.1

"Starting FORTH" compatibie FORTH
software for a 8080 or Z8G comptiter
system with the CP/M (TM) operating
system.

Copyright (C) 1981 by Laxen and Harris,
Inc. A l l r ights reserved.

This FORTH impiernentation is com-
patible with the popular book "Starting
FORTH" by Leo Brodie. It Is intended to
be a companion to the book to aid learning
FORTH. It is also a complete environ-
ment for developing and executing FORTH
programs. It contains:

Compilers
Disk operating system
Fu l l names stored, up t o 31 characters
String handling
Enhanced error checking
16-bit and 32-bit integer arithmetic
and input/output
This is a single-user, single-task sys-

tem which is not ROM-able as supplied.
Floating point ar i thmetic and CP/M f i le
access are not supported.

This system as supplied runs comfort-
ably i n a 8080 or Z80 computer system
wi th at least 32K bytes of R A M memory,
a t least one floppy disk drive (8" single
density, single sided, soft sectored format
is assumed), and the "BIOS" par t of the
CP/M operating system. The use o f a
printer is supported but not required. This
software may be easily modified to use
other memory sizes or disk formats. It
requires 14K bytes o f memory which in-
cludes 4K bytes o f disk buffers.

This FORTH system was adapted f rom
the fig-FORTt-l model but is not fu l ly
compatible w i th that language dialect. It
is also not fully compatib!e with the
FORTH-79 Standard. The three dialects
are similar, but the Starting-FORTH ver-
sion has advantages over the other two.

Price: $33.00 - plus $2.00 - Postage and
Handling

CP/M is a registered trademark of Digi ta l
Research, lnc.

2. Learning FORTH
Learning FORTH is a coniputer aided

instruction package that interactively
teaches the student the fundamentals o f
the FORTH programming language and
philosophy. It consists of a set of
FORTH screens that contain program
source code and instruction text. It is
based on the book, "Startinq FORTH," by
Leo i3rodie. It w i l l run with any Starting
FORTH compatible system, as well as f ig-
FORTt i system. The manual is only one
page long and describes how to load the
systerii. Af ter that, everytlhing is self
explanatory. It is supplied on 0" sinqle
density diskettes in IBM 3740 forrnat. The

POLYMORPHIC FORTH
Abstract Systems, etc.
1686 West Main Road
Portsmouth, R I 02871

(sol) 683-0845
Ralph E. Kenyon, Jr.

Product Description: FORTH (Poly-
Morphic fig-FORTH 1.1.0). 8080 fig-
FORTH 1.1 without asmb. or Editor (uses
PolyMorphic resident editor.)

A demo application which computes a
table o f values for a general quadratic
equation is included.

PolyMorphic Systems 8813, 8810 needs
only 16K. Documentation on FORTH not
included.

Manual: documentation covers parti-
cular implementation details for f ig-
FORTH to interface to the PolyMorphic
Systems Microconlputer. Sorted VLIST
included.

Imolementation document availabie
separately. Separate document available
for cost of postage. Product data avail-
able on PolyMorphic SSSD 5" diskette
format. 4 copies sold to date. Price:
840.00, includes shipping, diskette, (R.I.
residents add 6% sales tax). Warranty
l imited to replacement o f a diskette
damaged in shipment. (We'll t ry to f ix any
bugs discovered.) Orders shipped out
within 3 days of receipt (usually next day).

HEATH HB9 FORTH
MCA

8 Newfleld Lane
Newtown, Conn. 06470

MCA announces the availability of
FORTH for the I-leath H89 computer.
MCA FORTH is 8080 fig-FORTH V1.1
configured to run on a single disk H89 wi th
32K or more of memory, ut i l iz ing HDOS
1.6 or later.

MCA FORTH provides the standard
FORTH facil i t ies plus the following
special features: HDOS f i le manipulation
capability, a control character to restart
FORTH (recover f rom loops), on-line
tailoring of FORTH facil i t ies (e.g., num-
ber of disk buffers), abil i ty to hook t o sep-
arately assembled routines, and use of
Heath DBUG.

Items supplied wi th FORTH include the
fig-Editor, an 8080 structured assembler,
and two games provided as examples of
1:-ORTH programming.

The documentation supplied wi th MCA
FORTH is suitable for experienced
FORTH programmers; however, a bibli-
oqraphy of documentation for beqinners is

pr ico i s $33.00 if ordered toqether w i th provided.
the Workinq FORTH Disk. Please add
$2.00 for shipping and handlinq, and allow MCA FORTH is available f rom MCA
at 1e:lst 3 weeks for delivery. on a 5-I/&" disk for $25 including docu-

mentation. Documentation is available
Note: Buy both for $55.001 paus $2.00 for $4.00. (Corin. residents please add
postage and handling. sales tax).

- - - - -- -
Page 164 FORTH DIMENSIONS 11115

NEW PRODUCTS FROM
INNER ACCESS CORPORATiON

1. Fig-FORTH compiler/interpreter for
PDP-11 for RT11, R S X l l M or stand-
alone with source code in native as-
sembler. Included i n this package are
an assembler and editor wr i t ten i n
FORTH and installation documenta-
tion. Rice: $80.00

This is available on a one 8'l single
density diskette only.

Reference Manual for PDP-11 fig-
FORT14 above. Price: $20.00

2. Fig-FORTH compiler/interpreter for
CP/M or CROMEMCO Cl3OS system
comes complete w i th source code wr i t -
ten i n native assembler. Included i n
this package are an assembler and
editor wr i t ten i n FORTH and instal-
lation documentation. Price: $50.00

A l l diskettes are single density, w i th 5-
1/4" diskettes i n 128 byte, 18 sector/-
track format and 8" diskettes i n 128
byte, 26 sectorltrack (IBM) format.

Released on two 5-114" diskettes w i th
source i n 8080 assembler.

Released on one 8" diskette wi th
source i n 8080 assembler.

Released on two 5-1/4" diskettes w i th
source i n Z80 assembler.

Released on one 8" diskette wi th
source i n Z80 assembler.

Manual for CP/M (or Cromemco) f ig-
FORTH above. Price: $20.00

3. M E T A F O R T H ~ ~ Cross-compiler fo r
CP/M or Cromemco CDOS to produce
79-Standard FORTH on a target
machine. The target can include an
application without dictionary heads
and l ink words. It is available on single
density diskettes wi th 128 byte 26
sectorltrack format. Target compiles
may be readily produced for any of the
following machines:

CROMEMCO-all models
TRS80 Model I1 under CP/M
Northstar Horizon
Prolog 280

Released on two 5-1/4" diskettes or on
one 8" diskette.

Price: $450.00

4. Complete Zilog (AMD) 28002 develop-
ment system that can be run under
CP/M or Cromemco C System
includes a METAFORTHqHS~ross com-
piler which produces a 28002 79-
Standard FORTH compiler/interpreter
for the Zilog 28000 Development
Module. Package includes a 28002
assembler, a Tektronix download
program and a number o f utilities.

Released on two 5-114" diskettes or on

FORTH DIMENSIONS 11115

one 8" diskette.

Price: $1,450.00

5 . Zilog 28002 Development Mcdule fig--
FORTH ROM set. Contains 79-Stand-
ard FORTH wi th 28002 assembler and
editor i n 4 (2716) PROMS. Price:
$280.00

CODE9
Arthur M. Gorski

2240 S. Evanston Avenue
Tulse, OK 74114

(918) 743-0113

C3DE9 is a M6809 Assembler for use
wi th any fig-FORTH systern. It features
a l l M6809 addressing modes except long
relative branch instructions. It performs
syntax error checking a t assembly time.
Memory requirements: 4.75K bytes free
R A M above FORTH. CODE9 is distribut-
ed as a commented source l ist ing and
manual. Price: $20.00

PET-FORTH

by

Datatronic AB
Box 42094

5-126 12 Stockholm
Sweden

(0)-8-744 59 20
Peter Bengtson

Product Description: Extended fig-
FORTH for the Commodore CBM/PET
computer series.

Screeri editor, ut i l iz ing the special CBM
screen edit ing possibilities for compact-
ness and ease o f use, macro-assembler,
double-precision extensions, CRT hand-
ling, random numbers, real-t ime clock, a
very complete string package, IEEE con-
t ro l words, integer t r i g functions.

An expansion disk (corning soon) w i l l con-
ta in f loating point arithmetic including
complex numbers, transparent overlay
control words for data and program
segments, a f i le system, and more. A
METAFORTH compiler w i l l shortly be
available.

Rcrns on CBM 6032 plus an 8050 dual disk
drive. Other configurations coming: 4032,
4040, VIC, and MicroMainFrame.

8032 version runs i n 32K only. 4032
versions w i l l run i n either 16 or 32K.

Manual Description: 322 pages, including
a l l source code.

Complete introduction t o FORTH. Special
chapters cover the asembler, <E)UILDS and
DOES>, IEEE handling, strings etc.

Manual is available separately.

Separate purchase price i s $40.00. This is
not creditable towards later purchase. -
Product/Ordering Data: Shipped as disk-
e t te and an accompanying security ROM,
holding par t of the Kernel.

Currently, there are approximately 75 in-
stallations, af ter 2 months on the market.

Price: $290.00 Includes diskette, ROM,
manual, shipping and taxes.

PET-FORTH, as a l l other Datatronic soft-
ware, carries a l i fe- t ime guarantee. A l l
future versions w i l l be distributed to the
registered owners without any cost what-
soever.

Delivery is immediate.

U S dealers are invited. UK sole distrib-
utor is Petalect Electronic Services Ltd,
33/35 Portugal iioad, Woking Surrey. You
may also order directly f rom us.

Diskette o f FORTH Application Modules
f rom

Tirnin Engineering Company
9575 Genessee Avenue, Ste. E-2

San Diego, C A 92121
(714) 455-9008

The diskette of FORTH application
modules, a new product by Timin Engin-
eering, is a variety package of FORTH
source code. It contains hundreds o f
FORTH definitions not previously pub-
lished. Included on the diskette are data
structures, software development aids,
string manipulators, an expanded 32-bit
vocabulary, a screen calculator, a typing
practice program, and a menu gener-
ationiselection program. In addition, the
diskette provides examples of recursion,
<BUILDS. ..DOES> usage, output number
formatting, assembler definitions, and
conversational programs. One hundred
screens of software and one hundred
screens of instructional documentation are
supplied on the diskette. Every screen is
in exemplary FORTH programming style.

The FORTH screens, wr i t ten by Scott
Pickett, may be used wi th Timin FORTH
or other fig-FORTH. The price f o r the
diskette o f FORTH application modules is
$75.00 (if other than 8" standard disk, add
$15.00). To order the FORTH modules,
wr i te Timin Engineering Company, 9575
Genesee Avenue, Suite E-2, San Diego,
CA 92121, or cai l (714) 455-9008.

AUDIO TAPES OF
1980 FORML CONFERENCE
AND 1980 FIG CONVENTION

1. FORTH-79 Discussion, 200 min. Rice:
$35.00

2. Purpose of FIG, 37 rnin. Price: $10.00

3. Charles Moore, 63 rnin. Price: $15.00

4. FORTH, Alan Taylor, 47 min. Price:
$15.00

Complete set $65.00
edu-FORTH
1442-A Walnut Street, 8332
Berkeley, C A 94709

Page 165

FORTH VENDORS

The following vendors have versions of
FORTH available or are consultants. (FIG
makes no judgment on any products.)

Software Federation
44 University Dr.
Arlington Heights, IL 66064
(312) 259-1355

68000
Emperical Res. Grp.
P. (3. Box 11'76
Milton, WA 98354
(206) 631-4855

ALPHA MICRO
Professional Management Services
724 Arastradero Rd. i l l 0 9
Pa10 Alto, CA 94306
(415) 858-2218

Technical Products Co.
P. 0. Box 12983
Gainsville, FL 32604
(904) 372-8439

Firmware, Boards and Machines
Datricon
7911 NE 33rd Dr.
Portland, OR 97211
(503) 284-8277

Sierra Computer Co.
617 Mark NE
Albuquerque, NM 87123

Tom Zimmer
292 Falcato Dr.
Milpitas, CA 95035 Forward Technology

2595 Martin Avenue
Santa Clara, CA 95050
(408j 293-8993

APPLE
IDPC Company
P. 0. Box 11594
Philadelphia, PA 19116
(215) 676-3235

1802
FSS
P. 0. Box 8403
Austin, TX 78712
(512) 477-2207

Rockweii International
Microelecironics Devices
P.O. Box 3669
Anaheim, C A 92803
(714) 632-2862

IUS (Cap'n Software)
281 Arlington Avenue
Berkeley, CA 94704
(415) 525-9452

6800 & 6809
Kenyon Microsystems
1927 Curtis Avenue
Redorido Beach, CA 90278
(213) 376-9941

Zendex Corp.
6398 Dougherty Rd.
Dublin, CA 94566

George Lyons
280 Henderson St.
Jersey City, N J 07302
(201) 451-2905

TRSEQ
The Micro Works
P. 0. Box 1110
Del Mar, CA 92014
(714) 942-2400

Variety of FORTH Producb
Interactive Computer Systems,
6403 D i Marco Rd.
Tampa, F L 33614

Inc.
MicroMotion
12077 Wilshire Blvd. 11506
Los Angeles, C A 90025
(213) 821-4340 Miller Microcomputer Services

6 1 Lake Shore Rd.
Natick, MA 01760
(617) 653-6136

Mountain View Press
P. 0. Box 4646
Mountain View, C A 94040
(415) 961-4103

CROSS COMPILERS
Nautilus Systems
P.O. Box 1098
Santa Cruz, CA 95061
(408) 475-7461

The Software Farm
P. 0. Box 2304
Reston, VA 22090

Supersoft Associates
P.O. Box 1628
Champaign, IL 61820
(217) 359-2112 polyFORTH

FORTH, Inc.
2309 Pacific Coast Hwy.
Hermosa Beach, CA 90254
(213) 372-8493

Sirius Systems
7528 Oak Ridge Hwy.
Knoxville, TN 37921
(615) 693-6583

Consultants
Creative Solutions, Inc.
4801 Randolph Rd.
Kockville, MD 20852

6502
Eric C. Rehnke
540 5. Ranch View Circle #61
Anaheim Hills, CA 92087

LYNX
3301 Ocean Park B301
Santa Monica, CA 90405
(213) 450-2466

Dave Boulton
581 Oakridge Dr.
Redwood City, CA 94062
(415) 368-3257

M & B Design
820 Sweetbay Drive
Sunnyvale, CA 94086

Saturn Software, Ltd.
P. 0. Box 397
New Westininister, BC
V3L 4Y7 CANADA

Go FORTH
501: Lakemead Way
Redwood City, CA 94062
(415) 366-6124 Micropolis

Shaw Labs, Ltd.
P. 0. Box 3471
Hayward, CA 94540
(415) 276-6050

8080/ZEQ/CP/M
Laboratory Microsystems
4147 Beethoven St.
Los Angeles, CA 90066
(213) 390-9292

Inner Access
517K Marine View
Belmont, CA 94002
(415) 591-8295

North Star
The Software Works, Inc.
P. 0. Box 4386
Mountain View, CA 94040
(408) 736-4938

Timin Engineering Co.
9575 Genessn Ave. #E-2
San Diego, CA 92121
(714) 455-9008

.Inhi1 S. James
P, 0. Bcx 3aG
Derkeiey, CA 94701

Laxen & Harris, Inc.
24701 Southland Drive, 6303
Hayward, CA 94545
(015) 007-2894

Application Packages
InnoSys
2150 Shattuck Avenue
Berkeley, CA 94704
(415) 843-8114

PDP-11
Laboratory Software Systems, Inc.
3634 Mandeville Canyon Rd.
Los Angeles, CA 90049
(213) 472-6995 Microsystems, Inc.

2500 E. Foothil l Blvd., W102
Pasadena, CA 91107
(213) 577-1471

Decision Resources Corp.
28203 Ridgefern Ct.
Rancho Palo Verde, CA 90274
(213) 377-3533

OSI
Consumer Computers
8907 LaMesa Blvd.
LaMesa, CA 92041
(714) 698-8088

Page 166 FORTH DIMENSIONS 11115

FORTH lNTEREST GROUP

MAIL ORDER

FOREIGN
USA AIR

Membership in FORTH INTEREST GROUP and Volume 111 (6 issues) of
FORTH DIMENSIONS.
Volume II of FORTH DIMENSIONS (6 issues)

Volume I of FORTH DIMENSIONS (6 issues)

fig-FORTH Installation Manual, containing the language model of
fig-FORTH, a complete glossary, memory map and installation instructions
Assembly Language Source Listings of fig-FORTH for specific CPU's and
machines. The above manual is required for installation. Check appropriate
boxfes). Price per each.

1802 6502 6800 6809
8080 8086/8088 17 9900 APPLE II
PACE ALPHA MICRO 5 PDP-1 1 17 NOVA

"Starting FORTH" by Brodie. BEST book on FORTH. (Paperback) N E W
"Starting FORTH" by Brodie. (Hard Cover) E

PROCEEDINGS 1980 FORML (FORTH Modification Lab) Conference

PROCEEDINGS 1981 FORTH Univ. of Rochester Conference

PROCEEDINGS 1981 FORML Conference, Both Volumes N E W

Volume I, Language Structure

Volume II, Systems and Applications

FORTH-79 Standard, a publication of the FORTH Standards Team

Kitt Peak Primer, by Stevens. An indepth self-study primer.

BYTE Magazine Reprints of FORTH articles, 8/80 to 4/81

FIG T-shirts: Small 17 Medium I7 Large X-Large

Poster, Aug 1980 BYTE cover, 16 x 22"

FORTH Programmer's Reference Card. If ordered separa.tely, send a
stamped, addressed envelope.

FREE

TOTAL

NAME MAIL STOP/APT
ORGANIZATION (If company address)

ADDRESS

CITY S T A T E L I P COUNTRY

VISA # MASTER CHARGE #
Expiration Date (Minimum of $1 0.00 on charge cards)

Make check or money order in US Funds on US bank, payable to: FIG. All prices include postage. No
purchase orders without check.

ORDER PHONE NUMBER: (41 5) 962-8653

FORTH INTEREST CROUP PO BOX 1 105 SAN CARLOS, CA 94070

support
Your Local

FIG

BULK RATE
U.S. POSTAGE

FORTH INTEREST GROUP
P.O. Box 1 105
San Carlos, CA 94070

Address Correction Requested

