e

FORTH IIMIETSIL IS

FORTH INTEREST GROUP Volume |l
P.0.Box 1105 Number 5
San Carlos, CA 94070 Price: $2.%

NS0k

CEEEAE

N

1

\

—

Functional Programming and Forth

137 Harvey Glass

Forth and Artificial Linguistics
138 Raymond Weisling
140 Technotes

A Forth Assembler for The 6502
143 William F. Ragsdale

A Technical Tutorial:
Table Lookup Examples

151 Henry Laxen

The Game of Reverse
152 M. Burton

The 31 Game
154 Tony Lewis

Simulated Tektronics
4010 Graphics with Forth
156 Timothy Huang

A Video Version of Master Mind
158 David Butler

Transfer of Forth Screens by Modem
162 Guy T. Grotke

HUSTH IMEISIDNS

Published by Forth Interest Croup
Volume III No. 5 January/February 1982

Publisher
Editor

Roy C. Martens
C. J. Street

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris

John James
Dave Kilbridge
Henry Laxen
George Maverick
Bob Smith

John Bumagarner

FORTH DIMENSIONS solicits editorial material, comments
and letters. MNo responsibility is assumed for accuracy of material
submitted. ALL MATERIAL PUBLISHED BY THE FORTH
INTEREST GROUP IS IN THE PUBLIC DOMAIN. Information in
FORTH DIMENSIONS may be reproduced with credit given to the
author and the Forth Interest Group.

Subscription to FORTH DIMENSIONS is free with membership
in the Forth Interest Group at $15.00 per year ($27.00 foreign
air). For membership, change of address and/or to submit
material, the address is:

Forth Interest Group
P.O. Box 1105
San Carlos, CA 94070

HISTORICAL PERSPECTIVE

FORTH was created by Mr. Charles H. Moore in 1969 at the
National Radio Astronomy Observatory, Charlottesville, VA, It
was created out of dissatisfaction with available programming
tools, especially for observatory automation.

Mr. Moore and several associates formed FORTH, Ine. in 1973
fo the purpose of licensing and support of the FORTH Operating
System and Programming Language, and to supply application
programming to meet customers' unique requirements.

The Forth Interest Group is centered in Northern California.
Our membership is over 2,400 worldwide. It was formed in 1978
by FORTH programmers to encourage use of the language by the
interchange of ideas through seminars and publications.

EDITOR'S COLUMN

1981 is behind us and as I look back, I am pleased to see how
much has been accomplished for FORTH, FIG and FORTH
DIMENSIONS.

I really appreciate all the help and support I have received
from our readers. I have not done everything right and some of
the best help has been your disagreement. Intelligent, construc-
tive criticism is as welcome as earned praise.

1982 will be a year of continued growth. You can look
forward to continuing responsiveness. It is my plan to contact
every FIG chapter by telephone at least quarterly to get feedback
and encourage reader contributions.

FORTH DIMENSIONS wiil also be awarding AUTHOR'S
CERTIFICATES for outstanding articles that contribute to the
growth and understanding of the language. While we are not yet
in a position to give you cash for your contributions, we at least
will give you credit.

Starting in this issue will be a policy of putting in tutorial
articles designed to help our entry level readers. This, however,
will not be done at the expense of our more seasoned FIGGERS
who will find an expanded base of challenging articles and
applications.

In closing, I want to say that the writer's kits have finally
come off the presses and I will be glad to send one to anyone who
wants to contribute. Please send in applications and utilities,
philosophy, questions and problems -- in the final analysis,
FORTH DIMENSIONS is what you make it.

C. J. Street

PUBLISHER'S COLUMN

1981 has been a great year for FORTH, the FORTH Interest
Group and for me, personally. FORTH has spread around the
world and is being wused on thousands of computer and
microprocessor-based products. It is being taught extensively in
schools, companies and by FORTH programmers. FIG has just
completed its most successful national convention with almost
500 attendees, over 20 exhibitors and multiple sessions. (Thanks
to Bob Reiling, Conference Chairman and Gary Feterbach,
Program Chairman.) The FORML conference was well attended
and the Proceedings are now available--see order form.

My deepest thanks to the FORTH community for "THE

FIGGY", Man of Year Award. It was a fantastic thrill and a
surprise. I stand in good company.

Roy C. Martens

Page 134

FORTH DIMENSIONS 111/5

LETTERS TO THE EDITORS
Dear Fig:

I have developed a process-simulation
program that occupies very little memory
space and yet has many of the capabilities
of commercial simulation packages.

I have been heavily involved in model-
ing and simulation of automated manufac-
turing systems for over six years. My
ultimate objective for this work is to
develop a microprocessor-based simulation
capability which incorporates process
control structures far beyond those of
currently available languages. However,
the relatively extensive modeling power of
the current code would seem to offer in-
teresting market potential in its own
right.

If you can provide information on
marketing such a product, please contact
me by mail or by phone (home (317) 447-
9206, office (317) 749-2946).

Joseph Talavage, Ph.D.
3907 Prange Dr.
Lafayette, IN 47905

Hope printing your letter helps.--ed.

Dear Fig:

I am puzzled as to why [have not seen
mention in your New Products announce-
ments of fullFORTH+ for PET, available
also, | believe for Apple. It is published by
IDPC, Co., PO Box 11594, Bethlehem
Pike, Colmar, PA 18915 at $65. It is
advertised as "A full-featured FORTH
with extensions conforming to Forth
Interest Group standards. Includes as-
sembler, string processing capabilities,
disk virtual memory, multiple dimensioned
arrays, floating point and integer pro-
cessing." Surely, fullFORTH+ is worth a
mention, if not a comprehensive review!

Francis T. Chambers

ROCK HOUSE

Ballyoroy, Westport

Co. Mayo, Ireland
Thank you for your interest. This was
reviewed in Vol. I, #3.--ed.

Dear Fig:

This is our response to Chuck's
(Moore's) cute letter.

Arthur Goldberg

Spencer SooHoo

CEDARS SINAI MEDICAL CTR.
9700 Beverly Blvd.

Los Angeles, CA 90048

DEA- CHU--

WE CHA------ YOU TO CON----- THE
CON---—- OF THI- CON-~-=nn LET---, WE
CLA-- THA- THE CON---- OF A WOR- IN
COM--- ENG---- CON CON
- TO OUR ABI---- TO DEC----- IT FRO-
THR-- LET---- AND THE LEN---,

HOW----, IN COM-=--- PRO----- THE
CON---- IS LES- CON---enn o) - M
WOR-- CAN BE SWA---- WIT--- CHA----

- THE SEM). CON IT CON--
------ CON-nmnmmmem LES= HEL= IN IDE-----
-— THE DEF -—---— OF A WOR-. INFAC-

, AS THI- LET--- DEMe--seeee-, THR—-

LET---—- AND A LEN--- CAN LET----
EVE- A CAR---- REA--- OF COM---
ENG----.

SIN-vensn YOU--,

ART--- GOL-=nen

SPE---- 500---
(TRANSLATION)

Dear Chuck:

WE CHALLENGE YOU TO CONSIDER
THE CONTENTS OF THIS CONFUSING
LETTER. WE CLAIM THAT THE
CONTEXT OF A WORD IN COMMON
ENGLISH CONTRIBUTES CONSIDER-
ABLY TO OUR ABILITY TO DECIPHER
IT FROM THREE LETTERS AND THE
LENGTH.

HOWEVER, IN COMPUTER PRO-
GRAMS THE CONTEXT IS LESS
CONFINING (COMMONLY, WORDS CAN
BE SWAPPED WITHOUT CHANGING THE
SEMANTICS). CONSEQUENTLY IT
CONTRIBUTES CONSIDERABLY LESS
HELP IN IDENTIFYING THE DEFINITION
OF A WORD. INFACT, AS THIS LETTER
DEMONSTRATES, THREE LETTERS AND
A LENGTH CAN LETDOWN EVEN A
CAREFUL READER OF COMMON
ENGLISH.

SINCERELY YOURS,
ARTHUR GOLDBERG
SPENCER SOOHOO

Your letter and its "translation" certainly
make the pointi--ed.

Dear Fig:

Right now I am trying to put together
a local Danish FIG, and I would therefore
like you to update me with the names and
addresses of the Danish FIG members and
possible make a note in FORTH
DIMENSIONS about my intentions.

As the communication lines are rather
long and since our magazine is only bi-
monthly, please inform me on your next
deadline as soon as possible.

Niels Oesten
Brostvkikeveh 189
Di-2650 Hvidovre
Denmark

Thanks Niels. Good juck on esiablishing a
local Danish FIG Group. Anyone inter-
ested, plesse contact Niels as listed
above. Regarding deadiines: Copy must
be in our hands 6 weeks prior to pubi-
ication, i.e., 4/15 iz the deadline for
May/June edition, ete.--ed.

Dear Fia:

I just wanted to write te tell you how
much I enjoy FORTH DIMENSIONS. Every
issue has several things of interest to me,
and | appreciate your work in seeing that
it gets done (often a thankless task). Here
in New Hampshire, Rob Moore of SNAC
(Southern New-Hampshire Apple Corps) is
doing most of the work in implementing
and refining a version of fig-FORTH for
the Apple II. We have takern as much as
possible from page zerc so that we can use
the many subroutines available from the
Applesoft ROM. | have been working with
our version for some time now and am

doing a high-resolution graphics game
using FORTH and Applesoft hi-res
routines.

Gregg Williams
BYTE Publications
PO Box 372
Hancock, NH 03449

Thanks Gregg. Glad you enjoy and
appreciate our efforts.--ed.

Dear Fig:

Regarding the 8080 Renovation Pro-
ject's requests for bug fixes, I would like
to counter with a request that they pro-
vide a status report in FORTH DIMEN-
SIONS that includes those bugs already
reported along with any solutions proposed
or implemented. It would also be of inter-
est to find out what the goals are for the
8080 Renovation Project and how local
FIG chapters can help.

There is what | consider a bug in that
the message routine uses an absolute value
of screen 4 and 5 for getting error mes-
sage information. This is fine where offset
is zero but when an offset other than zero
is used and the disk has other information
on absolute screens 4 and 5, things don't
look too good.

Raobert 1. Demrow
P. O. Box 158 BluSta
Andover, MA 01810

Thanks for the input. Your request has

FORTH DIMENSIONS I11/5

Page 135

been forwarded to the 8080 Renovation
Project people as well as printed here.

--ed.

Dear Fig:

After receiving my installation guide, I
spent a week keying in the requisite sev-
enty-five pages of 6502 assembler code.
Now, 1 am a confirmed figger. 1 have
written my own 6502 FORTH assembler, a
small wordprocessor (with which I am
writing this letter), and an APPLE 1I

graphics utility resembling LOGO. I like
FORTH:
Bob Wiseman
118 St. Andrews Drive
Cincinnati, OH 45245
Your last name says it alll How about

some articles for FD-publication?--ed.

Dear Fig:

I am spreading the FORTH gospel here
in Taiwan. [have written about 20 lec-
tures and numerous demonstrations to var-
ious universities and institutions in this
area and have generated quite a bit of
local interest.

From ground zero, ! can now count
about 10 FORTH systems installed al-
ready. Many of them, from the FIG In-
stallation Manual and source listing, 1
brought with me.

An informal FORTH discussion group
has already been formed, and our last
meeting on October 25th attracted 20 en-
thusiasts, 1am having fun too!

My home phone in Taipei is 393-1554,
If any of you happen to be heading this
way, be sure to let me know.

Dr. Chen-hanson Ting

National Yang Ming Medical
College

Taipei, Taiwan, 112 R.0.C.

(02) 831-2301

Glad to hear you are doing so well. We all
miss you here.--ed.

Dear Fig:

I want to extend my apologies to you,
your readers and the FORTH Interest
Group. I sent in an announcement about
FORTH ROMS for the TRS-80, MOD [sev-
eral months ago. Unfortunately, cir-
cumstances beyond my control now force
me to revise their avabilability schedule.
I will spare everyone further embarrass-
ment by waiting to send in another an-
nouncement until T have the first chip set
in hand.

Martin Schaaf
P. 0. Box 1001
Daly City, CA 94017

Thanks for the update, Martin. This points
up why we have our policy of not announc-
ing unreleased products.--ed.

Dear Fig:

In the packet of materials I got when I
joined FIG was a copy of FORTH DIMEN-
SIONS, Volume III, #1 with a product re-
view of Timin-FORTH. The review inter-
ested me in two respects. One was the
benchmark tests that it contained; the
other were the comments on the alleged
lack of superiority of the Z-80 compared
to the 8080.

Those benchmarks gave me a chance to
compare my machine with my version of
FORTH--the results of which surprised me
since my machine only runs at 2 mhz and
the machine used in the review runs at 6
mhz, [expected my machine would take
three times longer but in all tests, it ran
comparable or even faster. It would seem
my implementation is faster for involved
arithmetic operations.

The editors of FORTH DIMENSIONS
are right, 1 believe, in being wary of
timing benchmarks for it is easy to draw
invalid conclusions from them. In fact,
the editors themselves drew the wrong
conclusions!

The tests do not show the Z-80 runs
benchmarks slower than the 8080--the Z-
80 was used for both tests. The correct
conclusion is that some FORTH implemen-
tations are more efficient than others and
that some versions on the market are ter-
ribly slow.

I am sure you get a flood of letters fol-
lowing a benchmark; but 1 just had to
write to say that the speed of FORTH is
not necessarily just a function of pro-
cessor speed as you have often claimed.

Everett Carter

Harvard University

Division of Applied Sciences
Cambridge, MA 02138

Thank you for your well thought out con-
tribution.--ed.

Dear Fig:

A comment about your publication
FORTH DIMENSIONS. The information is
certainly useful (especially the ap-
plications), however, much of the material
assumes a complete understanding of
FORTH'S inner workings. 1 don't really
understand how the compiler works and
what all those cryptic words (CFA, PFA,

SMUDGE, IMMEDIATE, etc.) do, but I
would like to learn. [am sure there are
others out there like me, so how about
some tutorial articles on some of these
FORTH-unigque features.

Thomas Kastner
7918 207th St. SE
Snohomish, WA 98290

Entry-level tutorial articles are an area |
have been exploring for the past year.
Check this issue and you will find the first
in a series of articles contributed by
Henry Laxen of LAXEN AND HARRIS,
INC., a firm that specializes in FORTH
instruction.--ed.

Dear Fig:

[don't doubt FORTH would be more
usefu!l if my machine had all of the fea-
tures described in "An Open Response"
(Volume 11, #6) but consider what I have
gained without them:

1. An understanding of how FORTH
waorks.

2. A demonstration that a workable sub-
set of FORTH can be implemented on
a very small system.

3. Hours of enjoyment and appreciation
of FORTH's virtues.

4. A useable language faster and better
than Tiny Basic and more convenient
than machine lanquage.

5. The ability to install and interactively
test a larger version of FORTH when [
expand my machine.

I feel the article does users of
small systems a disservice. Instead of
discouraging users of small systems,
FIG should encourage development of
standardized subsets for use on small
machines.

Roger L. Cole
395 Elm Park Avenue
Elmhurst, IL 60126

FORTH DIMENSIONS publishes articles to
encourage communications, thought and
growth of the FORTH world. Far from
discouraging users of small systemns, the
FIG leadership is composed almost exclu-
sively of members with small systems.
F1G has been a leader in encouraging the
development and use of FORTH on small
systems. In fact, it is probably safe to say
that if there were no FIG, there would be
no FORTH, for small users today. Most of
the vendors and systems now in use have
been derived from FIG listings provided at
cost. The source data for these listings,
FORML research, standards, ete., which
so many take for granted, have been de-
rived from the labor and cash contribu-

Page 136

FORTH DIMENSIONS TII/5

tions of volunteers serving without reim-
bursement. The FORTH DIMENSIONS
editorial staff supports FIG efforts to
keep FORTH intact and resist the temp-
tation to obtain mere popularity and in the
process, fail in their mission to provide
and support the finest software concepts
and tools available today. This has not
been an easy task (and all too often, a
thankless one) but it is hoped that if
others will least try to understand, the
efforts and contributions of these volun-
teers will continue to benefit us all.--ed.

Dear Fig:

Congratulations to all the people who
produce FORTH DIMENSIONS on its qual-
ity and improvement. Please send me a
writer's kit so I can make some of my ap-
plications presentable for publication.

Bob Royce
Box 57 Michiana
New Buffalo, MI 49117

Your kit is on the way! Anyone else?

--ed.

Dear Fig:

Glen Haydon's nice article in FORTH
DIMENSIONS 111/2, page 47 talks about an
algorithm he would like to have to
determine the Julian day. With the
background that FORTH has in astronomy,
I'm sure there must be several, but this is
the nicest [know. It comes from the U. S.
MNaval Observatory via an article in the
Astrophysical Journal Supplement Series,
Vol. 41 No. 3 Nov. 1979 pp 391-2.

0 (JULIAN DATE)

1 :JD >R SWAP

2 DUP 9 +12 /R +7 * 4 /| MINUS

3 OVER 9 -7 /R +100 /1+3 %4/ -
4 SWAP 2759 %/ + -

5 + 8-> D 1.721029 D+

6 367 R> M* D+ ;

Example: 3 20 1982 JD D.
2445049 OK

If you are only concerned with dates
between 3/1/1900 and 2/28/2000, then you
can omit line 3 entirely.

On another subject, there is another
correction [noticed in the dump of the
fig-FORTH 6502 Assembly Source - at
location OC32, 80 1A should be D7 OB.

Peter B. Dunckel
52 Seventh Avenue
San Francisco, CA 94118

Really slick! But the algorithm would be
hard to explain to most people.--ed.

FUNCTIONAL PROGRAMMING AND
FORTH

Harvey Glass
University of Scuth Florida
College of Engineering
Department of Computer Science
Tampa, FL 33620

The distinguished computer scientist,
John Backus, in his 1977 Turing Award
lecture (1) describes the shortcomings of
conventional programming languages and
suggests a new approach to programming
in a style described as functional pro-
gramming (FP). We will summarize the
faults that Backus finds in conventional
languages, briefly describe the functional
programming style, and lastly show that
FORTH meets the spirit of this style of
programming.

Conventional Lanquages

An underlying problem of conventional
programming lanquages is that they tend
to be high level descriptions of the Von
Neumann computer. The assignment
statement is the principal construct of
these languages. A program becomes a
series of these assignment statements,
each of which requires the modification of
a single ecell. We may think of the Von
Neumann computer as a set of storage
cells, a separate processor, and a channel
connecting the two. If assignment state-
ments imitate the store operation, then
branch statements imitate jump and test
while variables imitate storage cells. The
high level languages provide sophisticated
constructs to directly model the under-
lying Von Neumann design. Conventional
languages in the "word at a time" flow
described above require large data trans-
fers through this small channel connecting
main storage and the CPU. Backus calls
this the Von Neumann bottleneck. It is
not merely a physical bottleneck but,
more importantly, it is a bottleneck to our

thinking about computer languages.
Backus refers to it as an "intellectual
bottleneck." He characterizes conven-

tional languages as both fat and weak
since increases in the size and complexity
of these languages have provided only
small increases in power. The typical pro-
gramming language requires a large fixed
set of constructs, is inflexible, and is not
extensible. The problem has been eased
by approaches such as top-down design and
structured programming, but these have
not provided a solution to the underlying
difficulty. Backus suggests that we need a
new way of thinking about computing. He
describes a new style which he calls func-
tional programming.

Functional Programming

This new style of programming has the
following characteristics:

- A function (program) is constructed
from a set of previously defined

functions using a set of functional
forms that combine these existing
functions to form new ones.

- The most fundamental functional
form is called composition. If the
composition operator is denoted by
o, then in Backus' notation "fog" is
the function where g is first applied
and then f.

- The functions incorporate no data
and do not name their conventions
nor substitution rules.

- A function is hierarchical; i.e., built
from simpler functions.

Backus points out that, "FP (Functional
Programming) systems are so minimal that
some readers may find it difficult to view
them as programming languages." We
have a set of predefined functions in a
library (dictionary) and may define new
functions in terms of these predefined
functions.

Functional forms are constructs de-
noting functions which take functions as
parameters. For example, the construct
"if-else-then", and the construct "do
while" are functional forms. As indicated
above, composition is also a functional
form.

FORTH of course has predefined con-
structs which serve as the functional
forms of FP systems. In fact, FORTH
provides facilities for adding new func-
tional forms. An example would be a
"case" construct to provide a more flex-
ible and clear decision structure than that
of a set of nested "if-else-then''s. The
capability of language to add new func-
tional forms is not inherent in FP
systems. Backus defines a language with
this capability as a formal functional pro-
gramming (FFP) language.

An Example of Functional Programming:

The Factorial Function

An example of a program written in
the style of functional programming is as
follows:

def ! =eq0~ 1;*olid, ! subl], where
the notation o,Z, and [] denote func-
tional forms. As we have seen, o denotes
composition. The notation [f,f,] denotes
construction where [f},f,] applied to an
argument x yields the sequence <f,(x),-
f,(x)> . The notation p - f;g applied to an
a?gument x indicates that the value p(x) is
to be examined and if p(x) is true the ex-
pression yields f(x) else it yields g(x).

Other definitions usea in the above
are:

eql applied to x yields a value true if x

is 0, and yields false otherwise.

1 is the literal value 1 and yields the

FORTH DIMENSIONS 111/5

Page 137

value 1, regardless of the argument.

* is the multiplication operator, and
applied to a sequence <x,y> yields x*y.
id is the identity operator. id applied
to x yields x.

subl applied to an argument x yields x-

Following the logic of the above func-
tion we see that ! applied to an argument
n yields 1 if n is zero. If n is not zero we
generate n*(n-1)!

Clearly then for n) this is a definition
of the factorial function. In FORTH (if
the language were recursive) we would
write:

« N

DUP 0= TF 1+
ELSE DUP 1 - & *
THEN 3

The syntaxes of the two examples are
different. The composition rule is applied
right to left in the first example and left
to right in FORTH. The rules for dropping
arguments are different. Construction is
not used in FORTH.* That the rules of
syntax are different should not be sur-
prising. The operations were defined by
different people at different times. What
is most important is that on close exami-
nation it is apparent that the style is es-
sentially the same. We have "words"
which denote functions which are eval-
uated following very similar rules.

FORTH as a lLanguage with Charac-

teristics of Functional Programming

Consider the FORTH (outer) inter-
preter. Literally all that the interpreter
recognizes are functions; or to be precise,
words that denote functions.** The fund-
amental combining form is composition
where in FORTH "fog" would be expressed
as g f. Functions need not incorporate
data, do not name their arguments, and
require no substitution rules for parameter
passing. There are no assignment state-
ments and a new function is built from
simpler previously defined functions. It is
this style of programming in FORTH--s0
different than that of conventional lang-
uages--that provides a power and flex-
ibility that has sparked the enthusiasm of
so many of us.

Summary.

This very short summary of the article
by John Backus does not begin to do
justice to either the scope or depth of the
paper.

The "new" type of programming has
generated considerable interest within the
computing community and most particu-

larly among those interested in innovative
approaches to computer architectures. It
is this author's contention that FORTH is
a functional programming language which
closely resembles the approach suggested
by John Backus in his definitive paper. It
will be interesting to see if, as a result of
this paper, languages which have attri-
butes similar to FORTH begin to appear in
academic circles.

* The author has recently implemented
such an operator in FORTH.

** The way that literals are handled can
be viewed as merely a question of im-
plementation and efficiency.

References

1. J. Backus, "Can Programming be
Liberated from the Von Neumann
Style?" CACM, Vol. 21, No. 8, August
1978, p. 613.

FORTH AND ARTIFICIAL LINGUISTICS

Raymond Weisling
Surakarta, Jawa Tengah
Republik Indonesia

There has not been much said about
the linguistic nature of computer
languages, principally because so few of
them permit the development of syntax
structures that apporach human language,
and hence foster linguistic observation.
FORTH and its other threaded-code rela-
tives allow for such structures to be
developed, principally because of the
larger body of words that arise from its
extensibility and hierarchal function of
operators.

The point I wish to address here is the
syntactical limitations of the language we
are building, an artificial language based
in part on a human language (English) that
is widely used wherever technology has
developed. But there is a fundamental
weakness in this English which [think we
must be aware of, since it runs counter to
the philosophy of FORTH. This is the syn-
tax-sensitivity of word forms, especially
nouns and verbs, which in English are
commonly spelled and pronounced exactly
the same. We rely on the structure (word-
order, partly) to distinguish these often
unrelated words.

A few examples are in order. Consider
the possible function of these FORTH
words, both with respect to their current
use (some are nouns while others are
verbs), but also in their opposite hypothet-
ical use: BUFFER , FENCE , KEY ,
LIMIT , LOOP , SPACE , TYPE , etec.
Others which a programmer might wish to
use in developing applications might
include: OFFSET , SPAN , INSERT ,

FILE ,CATALOG , OUTPUT . Since the
action of these words is not known from
the word itself, but only from either pre-
vious agreement or syntax, and since syn-
tax sensitivity is not a common part of
FORTH (i.e., where a syntactical form
does not alter the way in which a word is
compiled), some degree of confusion can
result.

Furthermore, use of a word in only one
form rules out its use in another form, ex-
cept where it can reside in a different vo-
cabulary. Thus words like KEY , LOOP ,
BLANK , and TYPE (all FORTH verbs)
cannot function as nouns despite our
temptation to use them that way for their
inherent (English language-based) clarity.
The same is true of some of the FORTH
nouns like BLOCK , BUFFER , STATE ,
LIMIT , and BASE .

Thus it is not possible to know the
nature of the word from its name alone.
Would prefixes for verbs unnecessarily
clutter the language? Would some prefix
or suffix to differentiate constants from
variables be useful? Or should we leave it
alone. The TO and FROM words help clar-
ify things but are not without problems,
whereas ! and @ are perfectly uniform in
function. Could a FORTH-like language
be built that allows the word-type to be-
come part of the header, with the com-
piler choosing which form of the same-
named word to use based on its syntactical
position, like nouns (variables, constants,
arrays) being objects of TO and FROM 7
Or does this push us back into the horrible
mess of artificial syntax forms such as
algebraic notation (something we are per-
haps proud to have departed from)?

I offer no solution per se. [only wish
to point out a weakness that we all should
be sensitive to when we assign names to
our words. Since FORTH is still in evo-
lution, this is yet another aspect to con-
sider when standards are defined. I wish
to disclaim any implication that 1 am a
linquist of any sort other than Armchair
Linguist. My sensitivity to this is a result
of living in a different culture where [am
learning a human language that permits
far greater fluidity of structure due to the
inherent differences in nouns and verbs,
shown by a well codified system of pre-
fixes and suffixes (morphemological dif-
ferentiators). Those here who learn
English struggle with the structural dif-
ferentiation of all the parts of speech
while our morpheme differentiators are
used for relatively useless things like verb
conjugation, plurality, cases, and tenses
{which are all essentially absent in this
part of the world). As technology spreads,
an artificial language for man-machine
manipulation (a two way street) should be
more universally based, at least with re-
spect to linguistic modeling. As FORTH is
already in use in many parts of the world,
the channel for feedback is already open.

Page 138

FORTH DIMENSIONS I11/5

FORTH STANDARDS CORNER
Robert L. Smith

More Words on WORD

In my last column, 1 discussed WORD.
I neglected te rmention an important topic
relating to the implementations of WORD
which may influence transportability.
Prior to the 79-Standard, the execution of
WORD caused the string from the input
medium to be moved to the dictionary
area, starting at HERE with the character
count. Some implementers would be
tempted to define the 79-Standard WORD
from the older WORD in a manner some-
what like this:

: WORD WORD HERE ;

Other implementers would probably put
the string elsewhere. MNow suppose that
the user wished to reverse the character
string and emplace the modified string in
the dictionary. The result from the for-
mer implementer's system will not be as
expected, and will not result in "equiva-
lent execution" on the later implementer's

system. A similar but much less serious
problem occurs with PAD, PAD is
conventionally offset from HERE by a

fixed amount (68 bytes in fig-FORTH).
There are at least three different solu-
tions:

(1) Implementations which place the
string at HERE could be con-
sidered non-standard, and the
problem goes away.

(2) A clarification could be added to
the Standard indicating either that
the string will always be at HERE,
or that it may be at HERE.

(3} The problem could be foreed upon
users by requiring that the char-
acters from WORD be stored in a
user-defined area prior to their
movement to the final destination.

Let Me Number the Ways

In many areas the 79-Standard defines
limits and formats in painful detail. There
is an important area in which very little is
said, namely the format for single and
double precision numbers in the input
streamn. In the section "interpreter, text"
it is clear that "numbers" are allowed in
the input text stream and may either be
compiled or placed on the parameter
stack. A definition of the format of a
number should include at a minimum the
distinction between double and single pre-
cision, the sign of the number, and the set
of allowed characters from which the
number is constructed. In keeping with
the spirit of the rest of the Standard, I
would like to propose a few definitions
which should be fairly easy to implement
and which appear to be compatible with
most current implementations (including

fig-FORTH). First, we define a digit:

digit

A digit is any one of a set of ASCII
characters which represent numeric values
in the range from 0 to base-1. For bases
greater than decimal 10, the set of char-
acters is 0 ... 9 A B C ... where the as-
cending ASCII sequence is used for A and
above.

Next, we add to the original definition of
number as follows:

number

A number is represented in the input
stream as a word composed of a sequence
of one or more digits with a leading ASCII
minus (=) if the number is negative and a
trailing ASCII dot (.) if the value is to be
considered double precision.

I recommend that implementers allow
the above format, and that authors of
transportable programs adhere to the
same format. In any case, when the Stan-
dards Team meets again, they shouid cer-
tainly clarify this area.

Under the Spreading FIG-TREE

As many of you are aware, there is a
Computer Conference Tree (now nick-
named the FIG-TREE) which contains
items of interest to the FORTH com-
munity. 1 would like to encourage all
persons interested in the 79-Standard to
read and contribute to the branch of the
FIG-TREE called 79-5TANDARD. All you
need is a terminal (110 or 300 baud), a
modem, and a telephone. The number is
(415) 538-3580. See back issues of FORTH
DIMENSIONS for further information, or
just call up and send a few carriage
returns until the system responds.

CORRECTIONS
Add to: FD 1II/4, pg. 102 the following:
REFERENCES

L, Forsley, Lawrence P.
Laser Control System. A talk given
at the Laboratory for Laser Energet-
ies on March 9, 1977 and on July 16,
1977 at the Wilson Synchrotron,
Cornell University.

2. Forsley, Lawrence P. "Forth Multi-
tasking in URTH". The Best of the

Computer Faires Volume IV. San

Francisco: 1979.

3. Boles, J. A., Pessel, D. and L. P.
Forsley. "Omega Automated Laser

The Beta

Control and Data Acquisition". 1EEE
Journal of Quantum Electronics, Vol
QE-17 No. 9. New York, New
York: IEEE, September, 1981,

4. ————— Towards More Usable
Systems: The LSRAD Report.
(Large Systems Requirements for
Application Development). Chicago:
Share, Inc., 1979.

S5 mmmeee . IEEE Standard 583-1975.
New York: IEEE, 1975.

6. mmmme- . 1977 Laboratory for Laser
Energetics Annual Report.
Rochester, NY: L.aboratory for

Laser Energetics, 1978.

7. Moore, Charles. "Forth: A New
Way to Program Minicoimputers”
Journal of Astronomy and Astro-
physics Supplement 15. New York:
AAAS, September, 1974,

"Forth, The Past
Ten Years and the Next Two
Weeks". Forth Dimensions. Vol. 16
San Carlos, CA: Forth Interest
Group, 1979.

8. Moore, Charles.

Elizabeth and Charles
"The FORTH Approach to
ACM '76 Pro-
ACM,

9. Rather,
Moore.
Operating Systems".
ceedings. New York:
October, 1976.

10. Ritchie, D. M. and K. Thompson.
"The WNIX Time-Sharing System'".
The Bell System Technical Journal.
Vol. 57 No. 6 Part 2. New Provi-
dence, NJ: A.T. and T., July-August,
1978.

11. Ritchie, D. M., et al. "The C Pro-
gramming Language". The Bell Sys-
temn Technical Journal. Vol 57 MNo. 6
Part 2. New Providence, NJ: A.T.
and T., July-August, 1978.

Change: FDIII/4, pg. 118, para 3 to:
The TO concept yas developed by
Dr. Paul Bartholdi™ as an alternative
to constants and variables.

EDITOR'S NOTE:

Peter Bengtson of DATATRONIC AB in
Stockholm, Sweden sent us a copy of the
September, 1981 edition of Electronics
And Computing Monthly. Feature article
was FORTH, "The Language of the Eight-
ies" in which FIG is mentioned prominent-
ly. More confirmation we are all riding
the crest.

FORTH DIMENSIONS I1I/5

Page 139

TECHNOTES, BUGS AND FIXES
1 have three questions about FORTH:

Qs [know of two CP/M FORTHs that have
their own way of dealing with the BIOS
and BDOS and as a result cannot read each
other's screens. What I'm leading to is
this: CP/M and fig-FORTH are both sup-
posed to be machine independent systems
but cannot read each other's source code
files. CP/M figgers ought to get together
on this one.

A. Differences between disk organizations
are sector skewing and location. It is easy
to add definitions to a FORTH which uses
BIOS so it can read other organizations; it
is not possible the other direction.

2. When selecting a new drive, you need
to do a COLD start or you'll remain on the
last drive--this is only true if you are
accessing the same screen number. If you
leave an empty line between two defini-
tions on the screen, a LOAD will stop
loading at the empty line. Are these
FORTH conventions 1 haven't heard about
yet or are they peculiar to my Timin
FORTH?

A. Both of these are bugs--demand fixes
from Timin.

3. Somehow(?), I've been leaving a lot of
control characters behind when using the
editor. They don't show up on a screen list
but they sure ruin any attempt at loading
the screen. 1 am not sure if this is a
common problem but [have enclosed a
short routine to replace control charaters
with spaces for anyone else who has this
problem.

SCREEN: 95
{ HUNT FOR CONTROL CHARACTERS)
: HUNT (SCREEN # ---)
BLOCK
1024 0 DO DUP C@ DUP 32 <
IF CR ."t" &4 + EMIT
@ " DUP U, ELSE DROP
ENDIF 1+ LOOP DROP ;
: FIXSCREEN (SCREEN # ---)
BLOCK
1024 0 DO DUP CA 32 < IF
DUP 32 SWAP C! ENDIF
1+ LOOP DROP :

(ACTUALLY HUNT AND FIXSCREEN
ARE QUITE SIMILAR, HUNT JUST
SHOWS UP ANY GUILTY CHARACTERS
AND FIXSCREEN REPLACES THEM)

A. Don't know. May be an editor bug or
the way you are using it. If you add a line
with #P followed immediately by a car-
riage return in the fig editor, a null is
introduced into the line which stops com-
piling. (editor fix should be supplied)

THAT MYSTERIOCUS fig-FORTH
AMNESIA

Many fig-FORTH users have probably
noticed the curious phenomenon I refer to
as "amnesia" in their computers, and thaose
who understand the method of the fig--
FORTH dictionary search, no doubt under-
stand it as well. It is an amusing, often
perplexing, but usually useful property
peculiar to fig-FORTH dictionaries.

Because names in fig-FORTH may
have variable length, the distance between
the start of the name and the link to the
next name in the dictionary is also vari-
able. Because the width (number of char-
acters saved) is also allowed to be less
than the actual number of characters in
the name, one cannot rely on the count to
provide the address of the link-field, given
the address of the name-field. This is why
the fig-FORTH compiler automatically
sets the most significant bit of the first
character and the last character in every
name. By this device, one can scan a
name forward or backward by looking for
this bit.

In a dictionary search, the address in
the link-field is followed to the beginning
of the name-field of the previous word. If
it is not a match to the key you are look-
ing for, we scan forward in memory until
the most significant bit tells us we have
found the link-field to the next word.
When a dictionary link is "broken" by clob-
bering RAM, an erroneous address is fol-
lowed, and the system is said to "crash".

However, in fig-FORTH, the system
does not always "die". In many cases, it is
merely "wounded", displaying a strange
kind of amnesia in which it has no recol-
lection of recent definitions, but remem-
bers with clarity its "childhood". What
happens is this: the broken link sends the
dictionary search off to a totally random
part of memory (if you do not have 641, it
may address RAM where there are no
boards!). Since it is not likely to find a
match at this address, it scans forward for
the most significant bit that marks the
end of the "name". The odds are that it
will eventually find one, mistake the next
two bytes for a link, and follow another
wild address somewhere else.

MNow, depending on how much of your
memory is filled with dictionary, and de-
pending on what is in your unused RAM,
the odds are not bad that after bouncing
aimlessly around for awhile, the search
may land in the middle of a valid name.
One does not expect a match to compare
with the middle of a name, but the search
then scans for the most significant bit,
finds a valid link, and gets back into the
dictionary. What the "amnesia" has ac-
tually forgotten, then, is everything be-
tween the broken link and the point where
the search re-enters the dictionary.

If your used RAM is large in compar-
ison to FORTH, you are likely to find most
of FORTH still available as a kind of crip-
pled monitor to help you find out what
went wrong without re-booting the system
(which destroys the damage). Further-
more, since you now know the cause of
this illness, you can exploit it to your ad-
vantage. Simply modify your boot-up
RAM-check routine so that it leaves a
pattern in your unused RAM, such that no
matter how it is viewed, it will appear to
be an address somewhere in the middle of
a name-field, somewhere near the top of
your basic FORTH and utilities. You will
now find, to your delight, that when you
"erash", you wusually have your most
powerful tools still at your disposal.

Users of FORTH, Inc. Micro-FORTH
are not likely to observe this phenomenon.
Because names are always exactly four
characters long, the link field does not
have to be scanned for; instead, it is found
by simple arithmetic. In order to re-enter
the dictionary, one must land by chance on
the exact beginning of a name-field.
Much more likely than this, is that the
search will enter a loop in which it goes
again to an address it has already visited,
and get caught forever. Remember that
the addresses found are by no means ran-
dom. All you have to do is cover the most
common ones.

Steve Munson
8071 E. 7th Street, #14
Buena Park, CA 90621

TRANSIENT DEFINITIONS

These utiliites allow you to have tem-

porary definition (such as compiler
words: CASE, OF ENDOF, ENDCASE,
GODO, etc.) in the dictionary during

compilation and then remove them after
compilation. The word TRANSIENT
moves the dictionary pointer to the
"transient area" which must be above the
end of the current dictionary. The tem-
porary definitions are then compiled into
this area. Next, the word PERMANENT
restores the dictionary to its normal
location. MNow the application program is
compiled and the temporary definitions
are removed with the word DISPOSE.
DISPOSE will take a few seconds because
it goes through every link (including vo-
cabulary links) and patches them to bypass
all words above the dictionary pointer.

NOTE: These words are written in
MieroMotion's FORTH-79 but some
non-79-5tandard words are used. The
non-Standard words have the fig-
FORTH definitions.

Philip Wasson

Page 140

FORTH DIMENSIONS III/5

MORE WORDS ABOUT WORD

Robert D. Villwock
Microsystems, Inc.

in analyzing eor proposing changes to
any Standard definition, it is very impor-
tant to concentrate on the details of the
needed function and to avoid any precon-
ceived notion of internal implementation
details, unless, of course, the two are in-
separable. [f this is not done, we can
severely and unnecessarily constrain
future implementors from doing their best
possible job, or, worse yef, find them a-
voiding the Standard entirely.

A good case in point is the word
WORD. Since most FORTH implementors
have favored using the "free space" above
the dictionary to store tokens extracted
by WORD, and further since their exper-
ience seems to be centered around small
to medium sized application programs, it
is tacitly assumed that this free space is
arbitrarily Jarge. In addition to storing
tokens at HERE, PAD is usually also de-
fined to float above the dictionary in this
"unbounded" free space. Therefore,
whether WORD handles tokens of length
128, 256 or even 1024 hytes is innocently
discussed with the idea that the only issue
involved is the length descriptor preceding
the string:

However, whether this token buffer
and PAD float above HERE or are fixed
location buffers or some different scheme
is devised, they consume real memery and
are not really "free space". To illustrate,
suppose we assume the traditional imple-
mentation for a moment and use HERE as
the start of the token buffer used by
WORD. The PAD is then usually floated
at a location equal to HERE plus some
constant. If WORD must handle tokens as
long as 255 bytes, then PAD must be
floated at least 256 bytes above HERE to
prevent token extraction from corrupting
the contents of PAD. The 79-STANDARD
requires that PAD be able to hold at least
64 bytes, so now we're at HERE + 320
bytes.

If one is compiling a large application
program, the dictionary will grow until
eventually HERE + 320 hits the opeg
{(whether it is a fixed boundary or the
PSTACK bottom or whatever). When it
does, no more compilation can take place
(even though there is at least 320 bytes of
unused dictionary left) without violating
the Standard. If you permit further com-
pilation, the size of PAD begins to drop
below the minimum 64, which is not al-
lowed. Even if you start automatically
reducing the PAD offset so that it remains
fixed in size, the token buffer begins
shrinking and can no longer satisfy the 256
byte string requirement.

I'm trying to illustrate that "free
space" is only "free" as long as all of

memory isn't needed. When memory fills,
these "free space" buffers prevent rode
from being compiled into their space. The
floating buffer concept seems to obscure
this fact more than if the token buffer and
the PAD were given fixed, dedicated areas
of memory.

If the token buffer must handle 1024
byte strings, the situation is even worse.
We then have to stop compiling when the
dictionary has over 1K bytes cf space
left! Since most of the time the tokens
extracted by WORD are very short (31
characters or less), we pay a dear price to
be able to handle the occasional long
string, given that WORD must handle it,
and WORD is defined as at present.

If you discard the notion that a more
o less unbounded "free space" exists
somewhere in memory, the approach to
WORD's definition takes on a new facet.
At Microsystems, we have developed
several large applications using FORTH,
which resulted in target campiled code in
the range of 3ZK to 4BK bytes, exclusive
of the dictionary headers and the FORTH
operating sysemn software. When appli-
cations become that large, there isn't even
room to hold all the names in memory at
one time (even if constrained to 3 char-
acters and length), let alone room to burn

for large "free space" buffers! Our im-
plementati?nm which is called
proFORTH" ™, handles this problem by

means of multiple dictionaries and
ROM/RAM segment control with selective
symbol purging. Names are classified as
to their needed lifetimes during com-
pilation. When the names are no longer
needed, they are purged and their memory
space is reclaimed. This allows much of
the mermory devoted to dictionary headers
to be reused many times during com-
pilation, thereby enabling very large ap-
plications to be compiled.

The foregoing is not a commercial for
proF ORTH, but rather is intended to illus-
trate that the scope of usage to which
FORTH can be applied is very broad. In a
situation where you have multiple diction-
aries and are fighting for every byte of
memory available, thinking in terms of
storing unbounded tokens at HERE and
floating PADs of arbitrary length becomes
very incongruous. Admittedly, I've des-
cribed a somewhat extreme situation, but
it is not as rare as you may think. Micro-
processor applications are getting more
ambitious every day and sooner or later
you will have a crowded memory
condition. [think FORTH should be able
to handie these situations gracefully,
without having to deviate from the
Standard.

When defining WORD, then, one ob-
jective should be to enable users to
extract arbitrarily long tokens from the
text stream but not force the implementor
to provide an arbitrarily long memory

buffer to accomplish it. While this may
sound a little like trying to "have your
cake and eat it too", a rather simple
factoring of WORD can easily accomplish
it. To illustrate my point, suppose we
devise a more basic WORD called (WORD)
and define it as follows:

: (WORD) (e=--an) BLE @ 7hup
IF BLOCK

FLSE TIH &

THEN >IN @ + SWAP ENC]

>IN +1 OVER = -ROT -+

where ENCLOSE is defined as in the FIG
glossary and -ROT is equivalent to ROT
ROT.

This new (WORD) extracts the next
token from the text stream, delimited by
¢, and leaves its address and length on the
stack. Actually, the token is merely left
in the input buffer (keyboard or disk) and a
pointer to it is given. Thus, no additional
or temporary buffer is needed. The user
may now do anything he (she) wants with
the string, including moving it to HERE if
desired {and if it will fit).

For example, if you want to compile
the token as a "dot-quote" string, a defini-
tion such as WORD, can be used.

: WORD, (o ==)
(WORD) HERE OVER 1+ ALLOT SWAP OVER €}
COUNT CMOVE

If you want a blank-filled line put in
PAD, the following could be used:

: TEXT (¢ ==) PAD /L 2+ BLANKS
(WORD) C/L MIN PAD C! PAD

COUNT CMOVE ;

For the routine compiler/interpreter
job of extracting small (31 characters or
less) tokens from the text stream, the fol-
lowing could be used:

t WORD (¢ -- a)
(WORD) WDSZ MIN
CMOVE WBFR 3

WBFRE C! WBFE COUNT 1+

where WBFR is a "small" word buffer
limited to WDSZ + 2. Note that except
possibly for the self-imposed size limi-
tation*, the last definition satisfies the
79-STANDARD definition of WORD.

If you will carefully examine these
constructs, you can quickly discover that
given (WORD) as the elementary form, the
user can extract tokens of any size, put
them wherever he wants, and format them
with or without the trailing delimiter, or
for that matter, the leading count byte (or
16 bit word if you prefer.. In other words,
the user ought to be able to do essentially
anything that he may desire, but, the im-
plementor need not provide any special,
temporary buffers or arbitrary size just to

FORTH DIMENSIONS TII/5

Page 141

satisfy the Standard.

Using (WORD) as the fundamental
token extractor allows implementors to
compile dot quote strings, for example,
without the need for any transitional buf-
fers (see WORD,). On the other hand, if
dot quote strings are acquired by the
present form of WORD in the Standard,
then the token buffer must be at least as
large as the longest dot quote string,
which is presently specified to be 127
characters.

One might argue that if the buffer is
at HERE, there is no penalty since that is
where the string must go anyway, and if it
won't fit it can't be compiled. However,
this line of reasoning is again limited by a
parochial view that all FORTH implemen-
tations must be alike. If a system like
proF ORTH is being used, the target defin-
ition body can optionally be compiled "in
place" separate from the dictionary
header. There may be room for the string
in the target segment of memory but not
enough in the dictionary.

In conclusion, let me say that if there
is sufficient memory, the user may
declare all the buffers he wants, but we
should not require that these buffers be
preallocated by the implementor in order
to satisfy the Standard. Therefore, I sub-
mit that my definition of (WORD) is a
more fundamentally valuable function
than WORD (as currently defined in the
79-5TANDARD,) from which all others
can be built without burning sometimes
precious memory space. There are al-
ready enough buffers and such required
(directly or indirectly) by the Standard.
Let's not arbitrarily insist on more by ac-
cidently defining words in such a way as to
force an implementor to provide them.

* [emphasize "possibly" because fortun-
ately the Standard is not explicit as to the
length of tokens that must be handled by
WORD.

CORRECTION TO FEDIT

Sorry you had trouble with FEDIT. The
listing was retyped at FIG and several
typos creeped in. They are:

1. SCR 64 Line 10:
COMPILE

2. SCR 65 Line 23: 1+/MOD should be 1+
16 /MOD

3. SCR 67 Line 48: B/BUD should be
B/BUF

4, SCR 67 Line 49: :e should be : .E

5. SCR 67 Line 50: + ALIN should be
+ALIN

compile should be

You are perfectly right that source
text should be loadable. I talked to some

of the people at FIG about this and they
were acutely aware of the problem but
they are simply not set up to directly
reproduce listings into FD at the present
time. They do the best job they can with
the resources available to them, and they
work darn hard at it. [can't fault them.

REPL is a pseudonym for the Fig-
FORTH line editor definition, R . I used
the pseudonym because FEDIT was the
first program I wrote in FORTH and I
really wasn't familiar enough with Vocab-
ularies to comfortably use a word that was
already used in the FORTH vocabulary,

Let me know how it works for you. If
you would like a machine produced listing,
I could run one for you from my current
version.

Edgar H. Fey, Jr.
18 Calendar Court
La Grange, IL 60525

A HELPFUL UTILITY

Here's a short FORTH word of great
utility that I use heavily in my screens. [
hope you like it. Its name is CVD, which
stands for "convert to decimal".

DECIMAL

: CVD
BASE @ SWAP
OVER /MOD
ROT /MOD
10 * +
10 * +

I like to work in hexidecimal, but often
make mistakes when using the words
LLOAD, LIST, and many of the FORTH
screen editor words because I'm thinking
in decimal when the system's in hex. If I
do the following:

: LIST CVD LIST ;
then 130 LIST lists screen 130 whether I'm
in decimal or hex. It also works for any
other base, as long as that base accepts
the number.

As to how it works, a little work will
show that CVD splits a three-digit number
into its respective digits (IF, 130 becomes
1, 3, and 0) and reassembles the digits into
the number that is, in decimal, the same
as the keys pressed by the user.

Gregg Williams
BYTE Publications
PO Box 372
Hancock, NH 03449

CALL FOR PAPERS

1982 Rochester FORTH Conference
on

Data Bases and Process Control
May 17 through May 21, 1982

University of Rochester
Rochester, New York

The second annual Rochester FORTH
Conference will be held in May, and will
be hosted by the University of Rochester's
Laboratory for Laser Energetics. This
year's topics complement and extend the
work described at the 1981 FORML Con-
ference and the previous Rochester Con-
ference. We believe that the areas of
data bases and process control can be
uniquely dealt with using FORTH,

There is a call for papers on the fol-
lowing topics:

1. Data Bases, including, but not lim-
ited to: hierarchical, network and
relational models; scientific use;
process control; and commercial
systems.

2. Process Control, including, but not
limited to: multitasking, meta-
compilation, data acquisition and
real time systems; video games.

3. Related concepts of:
implementation, speed/space
tradeoffs; user interactions; de-
signer tools; and graphics.

Papers will be handled in either oral
sessions or poster sessions, although oral
papers will be refereed in accordance with
conference direction, paper quality and
topic. Please submit a 200 word abstract
by March 15, 1982. The oral papers dead-
line is April 15, 1982, and the poster
papers deadline is May 1, 1982. Send ab-
stracts and papers to the conference
chairman, lawrence Forsley, by those
dates. Please keep papers to a maximum
of 10 printed pages. If this restriction
causes a serious problem, contact us.

For more information, please contact
the conference chairman at:

Lawrence P. Forsley

Laboratory for Laser Energetics
University of Rochester

250 East River Road

Rochester, New York 14623

Page 142

FORTH DIMENSIONS I1/5

A FORTH ASSEMBLER
FOR THE 6502
by William F. Ragsdale

INTRODUCTION

This article should further polarize the
attitudes of those outside the growing
community of FORTH users. Some will be
fascinated by a label-less, macro-
assembler whose source code is only 96
lines long! Others will be repelled by
reverse Polish syntax and the absence of
labels.

The author immodestly claims that this
is the best FORTH assembler ever distri-
buted. It is the only such assembler that
detects all errors in op-code generation
and conditional structuring. It is released
to the public domain as a defense mechan-
ism. Three good 6502 assemblers were
submitted to the FORTH Interest Group
but each had some lack. Rather than
merge and edit for publication, I chose to
publish mine with all the submitted fea-
tures plus several more.

[Imagine having an assembler in 1300
bytes of object code with:

1. User macros (like IF, UNTIL,) de-
finable at any time.

2. Literal values expressed
numeric base,
time.

in any
alterable at any

3. Expressions using any resident

computation capability.

4. Nested control structures without
labels, with error control.

5. Assembler source itself in a port-
able high level language.

OVERVIEW

Forth is provided with a machine lang-
uage assembler to create execution pro-
cedures that would be time inefficient, if
written as colon-definitions. It is intended
that "code" be written similarly to high
level, for clarity of expression. Functions
may be written first in high-level, tested,
and then re-coded into assembly, with a
minimum of restructuring.

THE ASSEMBLY PROCESS

Code assembly just consists of inter-
preting with the ASSEMBLER vocabulary
as CONTEXT. Thus, each word in the in-
put stream will be matched according the
Forth practice of searching CONTEXT
first then CURRENT.

ASSEMBLER (now CONTEXT)

FORTH (chained to ASSEMBLER)
user's (CURRENT if one exits)
FORTH (chained to user's vocab)

try for literal number
else, do error abort

The above sequence is the usual action
of Forth's text interpreter, which remains
in control during assembly.

During assembly of CODE definitions,
Forth continues interpretation of each
word encountered in the input stream (not
in the compile mode). These assembler
words specify operands, address modes,
and op-codes. At the conclusion of the
CODE definition a final error check veri-
fies correct completion by "unsmudging”
the definition's name, to make it available
for dictionary searches.

RUN-TIME, ASSEMBLY-TIME

One must be careful to understand at
what time a particular word definition
executes. During assembly, each as-
sembler word interpreted executes. Its
function at that instant is called 'assemb-
ling' or 'assembly-time'. This function
may involve op-code generation, address
calculation, mode selection, ete.

The later execution of the generated
code is called 'run-time'. This distinction
is particulary important with the condi-
tionals. At assembly time each such word
(i.e., IF, UNTIL, BEGIN, etc.) itself 'runsg'
to produce machine code which will later
execute at what is labeled 'run-time' when
its named code definition is used.

AN EXAMPLE

As a practical example, here's a simple
call to the system monitor, via the NMI
address vector (using the BRK opcode).

CODE MON (exit to monitor)
BRK, NEXT JIMP, END-CODE

The word CODE is first encountered,
and executed by Forth. CODE builds the
following name "MON" into a dictionary
header and calls ASSEMBLER as the
CONTEXT vocabularly.

The "(" is next found in FORTH and
executed to skip til)", This method skips
over comments. Note that the name after
CODE and the ™" after "(" must be on the
same text line.

OP-CODES

BRIK, is next found in the assembler as
the op-code. When BREK, executes, it as-
sembles the byte value 00 into the dic-
tionary as the op-code for "break to moni-
tor via "NMI",

Many assembler words names end in
"". The significance of this is:

1. The comma shows the conclusion
of a logical grouping that would be
one line of classical assembly
source code.

ra

nn
¥

compiles into the dictionary;
thus a comma implies the point at
which code is generated.

3. The ™" distinguishes op-codes
from possible hex numbers ADC
and ADD.

NEXT

Forth executes your word definitions
under control of the address interpreter,
named NEXT. This short code routine
moves execution from one definition, to
the next. At the end of your code defini-
tion, you must return control to NEXT or
else to code which returns to NEXT.

RETURN OF CONTROL

Most 6502 systems can resume execu-
tion after a break, since the monitor saves
the CPU register contents. Therefore, we
must return control to Forth after a
return from the monitor. NEXT is a con-
stant that specifies the machine address
of Forth's address interpreter (say
$0242), Here it is the operand for IJMP,.
As JMP, executes, it assembles a machine
code jump to the address of NEXT from
the assembly time stack value,

SECURITY

NMumerous tests are made within the
assembler for user errors:

1. All parameters used in CODE
definitions must be removed.

2. Conditionals must be
nested and paired.

properly

3. Address modes and operands must
be allowable for the op-codes

These tests are accomplished by
checking the stack position (in CSP) at the
creation of the definition name and
comparing it with the position at END-
CODE. Legality of address modes and
operands is insured by means of a hit mask
associated with each operand.

Remember that if an error occurs
during assembly, END-CODE never exe-
cutes. The result is that the "smudged"
condition of the definition name remains
in the "smudged" condition and will not be
found during dictionary searches.

The user should be aware that one
error not trapped is referencing a defini-
tion in the wrong vocabutlary:

i.e., 0= of ASSEMBLER when you want
0= of FORTH

FORTH DIMENSIONS 111/5

Page 143

(Editor's note: the listing assumes that
the figFORTH error messages are already
available in the system, as follows:

7CSP issues the srror message "DEFI-
NITION NOT FINISHED" if the stack
position differs from the value saved in
the user variable CSP, which is set at the
creation of teh definition name.

?PAIRS issues the error message
"CONDITIONALS NOT IMPAIRED" if its
two arguments do not match.

3 ERROR prints the error message
"HAS INCORRECT ADDRESS MODE".)

SUMMARY
The object code of our example is:
305 983 4D 4F CE CODE MON
305D 4D 30 link field
305F 61 30 code field
3061 0O BRK
3062 4C 42 02 IMP NEXT

OP-CODES, revisited

The bulk of the assembler consists of
dictionary entries for each op-code. The
6502 one mode op-codes are:

BRK, CLC, CLD, CLI, CLYV,
DEX, DEY, INX, INY, NOP,
PHA, PHP, PLA, PLP, RT]

RTS, SEC, SED, SEI, TAX,
TAY, TSX, TXS, TXA, TYA,

When any of these are executed, the
corresponding op-code byte is assembled
into the dictionary.

The multi-mode op-codes are:

ADC, AND, CMP, EOR, LDA,
ORA, SBC, STA, ASL, DEC,
INC, LSR, ROL, ROR, STX,
CPX, CPY, LDX, LDY, STY,
JSR, JMP, BIT,

These usually take an operand, which
must already be on the stack. An address
mode may also be specified. If none is

EXAMPLES

Here are examples of Forth vs. con-
ventional assembler. Note that the oper-
and comes first, followed by any mode
modifier, and then the op-code
mnemonic. This makes best use of the
stack at assembly time. Also, each as-
sembler word is set off by blanks, as is
required for all Forth source text.

.AROL, ROL A
1 #1LDY, LDY #l
DATA ,X STA, STA DATA,X
DATA ,Y CMP, CMP DATA,Y
6 X) ADC, ADC (06,X)
POINT)Y STA, STA (POINT),Y
VECTOR) JMP, JMP (VECTOR)

(.A distinguishes from hex number 0A)

The words DATA and VECTOR specify
machine addresses. In the case of "6)X
ADC," the operand memory address $0006
was given directly. This is occasionally
done if the usage of a value doesn't justify
devoting the dictionary space to a symbol-
ic value.

6502 CONVENTIONS
Stack Addressing

The data stack is located in z-page,
usually addressed by "Z-PAGE,X". The
stack starts near $009E and grows down-
ward. The X index register is the data
stack pointer. Thus, incrementing X by
two removes a data stack value; decre-
menting X twice makes room for one new
data stack value.

Sixteen bit values are placed on the
stack according to the 6502 convention;
the low byte is at low memory, with the
high byte following. This allows "indexed,
indirect X" directly off a stack value.

The bottom and second stack values
are referenced often enough that the sup-
port words BOT and SEC are included.
Using

BOT LDA, LDA(0,X)
BOT 1+ ORA, ORA (1,X)
SEC ORA, ORA(2,X)
SEC 1+ ORA, ORA (3,X)

To obtain the 14-th byte on the stack:
BOT 13 + LDA,

RETURN STACK

The Forth Return Stack is located in
the 6502 machine stack in Page 1. It
starts at $01FE and builds downward. No
lower bound is set or checked as Page 1
has sufficient capacity for all (non--
recursive) applications.

By 6502 convention the CPU's register
points to the next free byte below the bot-
tom of the Return Stack. The byte order
follows the convention of low significance
byte at the lower address.

Return stack values may be obtained
by: PLA, PLA, which will pull the low
byte, then the high byte from the return
stack. To operate on aribitrary bytes, the
method is:

1) save X in XSAVE

2) execute TSX,
register to X.

to bring the S

3) wuse RP) to address the lowest
byte of the return stack. Offset
the wvalue to address higher
bytes. (Address mode is

automatically set to ,X.)
4) Restore X from XSAVE.

As an example, this definition non-
destructively tests that the second item
on the return stack (also the machine
stack) is zero.

CODE IS-IT (zero ?)
XSAVE STX, TSX,
return stack)

RP) 2+ LDA, RP) 3 + ORA,
{ or 2nd item's two bytes

(setup for

given, the op-code uses z-page or absolute BOT LDA, assembles LDA (0,X) and together)
addressing. The address modes are deter- SEC ADC, assembles ADC (2,X) 0= IF, INY, THEN, (if zeru, bump
mined by: Y to one)
BOT leaves 0 on the stack and sets the TYA, PHA, XSAVE LDX, (save
Symbol Mode Operand address mode to ,X. SEC leaves 2 on the low byte, rstore data stack)
stack also setting the address mode to ,X. PUSH IMP, END-CODE (push
A accumulator none boolean)
immediate 8 bits only Here is a pictorial representation of
»X indexed X z-page or the stack in z-page. Return Stack
absolute
Y indexed Y z-page or hi byte second
absolute sec high PR) =$0101,X--> | lo byte item
X) indexed indirect X z-page only sec low
)Y indirect indexed Y z-page only hi byte bottom
) indirect absolute only bot high lo byte item
none memory z-page or bot low {==X offset
absolute above $0000 S--> free byte
Here is an examples of code to "or" to
the accumulator four bytes on the stack:
Page 144 FORTH DIMENSIONS 111/5

FORTH REGISTERS

Several Forth registers are available
only at the assembly level and have been
given names that return their memory ad-
dresses. These are:

IP address of the Interpretive
Pointer, specifying the next Forth
address which will be interpreted
by NEXT.

W address of the pointer Lo the code
field of the dictionary definition
just interpreted by NEXT. W-1
contains $6C, the op-code for in-
direct jump. Therefore, jumping
to W-1 will indirectly jump via W
to the machine code for the def-
inition.

UP User Pointer containing ad-
dresz of the base of the user
area.

N a uatility area in z-page from
N-1 thru N+7.

CPU Registers

When Forth execution leaves NEXT to
execute a CODE definition, the following
conventions apply:

1. The Y index register is zero. It
may be freely used.

2. The X index register defines the
low byte of the bottom data stack
item relative to machine address
$0000.

3. The CPU stack pointer S points
one byte below the low byte of the
bottorn return stack item. Exe-
cuting PLA, will pull this byte to
the accumulator.

4. The accumulator may be freely
used.

5. The processor is in the binary
mode and must be returned in that
mode.

XSAVE

XSAVE is a byte buffer in z-page, for
temporary storage of the X register.
Typical usage, with a ecall which will
change X, is:

CODE DEMO
XSAVE STX, USER'S J5R,
(which will change X)
XSAVE LDX, NEXT JMP,
END-CODE

N Area
When absolute memory registers are

required, use the '™ Area' in the base
page. These registers may be used as

peinters for indexed/indirect addressing or
for temporary values. As an example of
use, see CMOVE in the system source
code.

The assemblier word N returns the
base address {usually $0001). The N Area
spans 9 bytes, from N-1 thru N+7. Con-
ventionaily, N-1 holds one byte and N,
N+2, N+4, N+6 are pairs which may hold
16-bit values. See SETUP for help on
moving values to the N Area.

It is very important to note that many
Forth procedures use N. Thus, N may only
be used within a single code definition.
Never expect that a value will remain
there, cutside a single definition!

CODE DEMD HEX
6 #1DA, N 1 - STA,
(setup a counter)

BEGIN, 8001 BIT,
(tickle a port)

N 1 - DEC,
(decrement the counter)

0= UNTIL, NEXT IJMP, END-CODE
(loop till negative)

SETUP

Often we wish to move stack values to
the N area. The sub-routine SETUP has
been provided for this purpose. Upon en-
tering SETUP the accumulator specifies
the quantity of 16-bit stack values to be
moved to the N area. That is, A may
be 1, 2, 3, or 4 only:

3 # LDA, SETUP JSR,

stack before N after stack after

H high H
G low bot--> G
F F -
E_ E_
D D

sec--> C_ C
B B

bot--> A N->A

CONTROL FLOW

Forth discards the usual convention of
assernbler labels. Instead, two replace-
ments are used. First, each Forth defini-
tion name is permanently included in the
dictionary. This allows procedures to be
located and executed by name at any time
as well as be compiled within other defini-
tions.

Secondly, within a code definition,
execution flow is controlled by label-less
branching according to "structured pro-
gramming". This method is identical to
the form used in colon-definitions. Branch
calculations are done at assembly time by
temporary stack values placed by the con-

trol words:

BEGIN,
THEN,

UNTIL, IF, ELSE,

Here again, the sssembler words end
with a comma, to indicate that code is
being produced and to clearly differen-
tiate from the high-leve! form.

One major difference occurs! High-
level flow is controlled by run-time
boolean values on the data stack., As-
sembly flow is instead contrelled by pro-
cessor status bits. The programmer must
indicate which status bit to test, just be-
fore a conditional branching word (IF,
and UNTIL,).

Examples are:

PORT LDA, 0= IF,<a> THEN,
{read port, if equal to zero do <a>)

PORT LDA, 0= NOT IF, <a> THEN,

(read port, if not equal to zero
do <a>)

The conditional specifiers for 6502 are:

CS test carry set C=1 in
processor
status
x byte less than zero N=1
0= equal to zero Z=1
CS NOT test carry clear C=0
0 <NOT test positive N=0
0= NOT test not equal zero Z=0

The overflow status bit is so rarely
used, that it is not included. If it is
desired, compile:

ASSEMBLER DEFINITIONS HEX
50 CONSTANT VS (test overflow
set)

CONDITIONAL. LOOPING

A conditional loop is formed at as-
sembler level by placing the portion to be
repeated between BEGIN, and UNTIL,:

6 # LDA, N STA,
(define loop counter in N)
BEGIN, PORT DEC,
{repeated action)}
N DEC, 0= UNTIL,
(N reaches zero)

First, the byte at address N is loaded
with the value 6. The beginning of the
loop is marked (at assembly time) by
BEGIN,. Memory at PORT is decrement-
ed, then the loop counter in N is decre-
mented. Of course, the CPU updates its
status register as N is decremented.
Finally, a test for Z=1 is made; if N hasn't
reached zero, execution returns to
BEGIN,. When N reaches zero (after exe-
cuting PORT DEC, 6 times) execution
continues ahead after UNTIL,. Note that

FORTH DIMENSIONS 111/5

Page 145

BEGIN, generates no machine code, but is
only an assembly time locator.

CONDITIONAL EXECUTION

Paths of execution may be chosen at
assembly in a similar fashion and done in
colon-definitions. In this case, the branch
is chosen based on a processor status con-
dition code.

PORT LDA, O= IF,
THEN, (continuing code)

(for zero set)

In this example, the accumulator is
loaded from PORT. The zero status is
tested if set (Z=1). If so, the code (for
zero set) is executed. Whether the zero
status is set or not, execution will resume
at THEN,.

The conditional branching also allows a
specific action for the false case. Here
we see the addition of the ELSE, part.

PORT LDA, 0=1F, <for zero set>
ELSE, <for zero clear>
THEN, <continuing code>

The test of PORT will select one of
two execution paths, before resuming
execution after THEN,. The next
example increments N based on bit D7 of
a port:

PORT LDA, (fetch one byte)
X IF, N DEC, (if D7=1, decrement
N)
ELSE, N INC, (if D7=0, increment
N)
THEN, (continue ahead)

CONDITIONAL NESTING

Conditionals may be nested, according
to the conventions of structured pro-
gramming. That is, each conditional se-
quence begun (IF, BEGIN,) must be ter-
minated (THEN, UNTIL,) before the next
earlier conditional is terminated. An
ELSE, rmust pair with the immediately
preceding IF,.

BEGIN, < code always executed>
CS IF, <code if carry set>
ELSE, <code if carry clear>
THEM,
0= NOT UNTIL, (loap till condition
flag is non-zero)
<code that continues onward>

Next is an error that the assembler
security will reveal.

BEGIN, PORT LDA,

0=IF, BOT INC,

0= UNTIL, ENDIF,

The UNTIL, will not complete the

pending BEGIN, since the immediately

preceding IF, is not completed. An error

trap will occur at UNTIL, saying "condi-
tionals not paired".

RETURN OF CONTROL, revisited

When concluding a code definition,
several common stack manipulations often
are needed. These functions are already
in the nucleus, so we may share their use
just by knowing their return points. Each
of these returns control to NEXT.

POP POPTWO remove one lé-bit stack

values.

POPTWO remove two 16-bit stack
values.

PUSH add two bytes to the data
stack.

PUT write two bytes to the
data stack, over the
present bottom of the
stack.

Our next example complements a byte
in memory. The bytes' address is on the
stack when INVERT is executed.

CODE INVERT (a memory byte) HEX

BOT X) LDA, (fetch byte addressed
by stack)
FF # EOR, (complement accumu-
lator)

BOT X) STA, (replace in memory)

POP JMP, END-CODE (discard
pointer from stack,
return to NEXT)

A new stack value may result from a
code definition. We could program placing
it on the stack by:

CODE ONE (put 1 on the stack)
DEX, DEX, (make room on the
data stack)
1 # LDA, BOT STA, (store low byte)
BOT 1+ STY, (hi byte stored from Y
since = zero)
NEXT IMP, END-CODE

A simpler version could use PUSH:

CODE ONE
1 # LDA, PHA, (push low byte to
machine stack)
TYA, PUSH JIMP, (high byte to
accumulator, push to data stack)
END-CODE

The convention for PUSH and PUT is:
1. push the low byte onto the
machine stack.
2. leave the high byte in the
accumulator.
3. jump to PUSH or PUT.

PUSH will place the two bytes as the
new bottom of the data stack. PUT will
over-write the present bottom of the
stack with the two bytes. Failure to push
exactly one byte on the machine stack will
disrupt execution upon usage!

FOOLING SECURITY

Occasionally we wish to generate
unstructured code. To accomplish this, we
can control the assembly time security
checks, to our purpose. First, we must
note the parameters utilized by the
control structures at assembly time. The
notation below is taken from the as-
sembler glossary. The --- indicates as-
sembly time execution, and separate input
stack values from the output stack values
of the words execution.

BEGIN, ==> ~-- addrB 1
UNTIL, ==> addrB 1 cc ---
IF, == cce --- addrl 2
ELSE, ==> addrl 2 --- addrE 2
THEN, ==> addrl 2 -

or addrE 2 -

The address values indicate the
machine location of the corresponding
'B'EGIN, TF, or 'E'LSE,. cc represents the
condition code to select the processor
status bit referenced. The digit 1 or 2 is
tested for conditional pairing.

The general method of security control
is to drop off the check digit and manipu-
late the addresses at assembly time. The
security against errors is less, but the pro-
grammer is usually paying intense atten-
tion to detail during this effort.

To generate the equivalent of the high
level:

BEGIN <a> WHILE REPEAT
we write in assembly:

BEGIN, DROP (the check digit
1, leaving addrB)

{a>

(leaves addrl and digit

2)

CSIF,

ROT (bring addrB to bottom)
IMP, (to addri? of BEGIN,)
ENDIF, (complete false for-
ward branch from IF,)

It is essential to write the assembly
time stack on paper, and run through the
assembly steps, to be sure that the check
digits are dropped and re-inserted at the
correct points and addresses are correctly
available.

ASSEMBLER GLOSSARY

Specify ‘'immediate' addressing
mode for the next op-code gener-
ated.

W Specify 'indirect indexed Y' ad-

dressing mode for the next op-
code generated.

Page 146

FORTH DIMENSIONS 111/5

0<

;CODE

ASSEMBLER

BEGIN,

Specify 'indexed X' addressing
mode for the next op-code gener-
ated.

Specify '‘indexed Y' addressing
mode for the next op-code gener-
ated.

Specify accumulator addressing
mode for the next op-code gener-
ated.

--- cc (assembling)

Specify that the immediately fol-
lowing conditional will branch
based on the processor status bit
being negative (Z=1), i.e., less
than zero. The flag cc is left at
assembly time; there is no run--
time effect on the stack.

--- cc (assembling)

Specify that the immediately fol-
lowing conditional will branch
based on the processor status bit
being equal to zero (Z=1). The
flag cc is left at assembly time;
there is no run-time effect on the
stack.

Used to conclude a colon-defini-
tion in the form:

F <name> ... iCODE
<assembly code> END-CODE
Stop compilation and terminate a
new defining word <name> . Set
the CONTEXT wvocabulary to AS-
SEMBLER, assembling to machine
code the following nmencnics. An
existing defining word must exist

in name prior to ;CODE.
When <name> later executes in
the form:

<name> <namex>

the definition <namex> will be
created with its execution proced-
ure given by the machine code fol-
lowing <name> . That is, when
<{namex> is executed, the address
interpreter jumps to the code fol-
lowing ;;CODE in <name> .

in FORTH

Make ASSEMBLER the CON-
TEXT vocabulary. It will be
searched first when the input
stream in interpreted.

--- addr 1

(assembling)
(run-time)
Occurs in a CODE definition in
the form:

BEGIN, . . . cc UNTIL,
At run-time, BEGIN, marks the
start of an assembly sequence re-
peatedly executed. It serves as
the return point for the corres-
ponding UNTIL,. When reaching
UNTIL, a branch to BEGIN, will
occur if the processor status bit
given by ce is false; otherwise

BOT

CODE

cPU

Cs

ELSE,

execution continues ahead.

At assembly time, BEGIN, leaves
the dictionary pointer address
addr and the value 1 for later
testing of conditionary pairing by
UNTIL,.

--- n (assembling)
Used during code assembly in the
form:

BOT LDA, or BOT 1: X) STA,

Addresses the bottom of the data
stack (containing the low byte) by
selecting the ,X mode and leaving
n=0, at assembly time. This value
of n may be modified to another
byte offset into the data stack.
Must be followed by a multi-mode
op-code mnemonic.

A defining word used in the form:

CODE <name>.... END-CODE
to create a dictionary entry for
<name> in the CURRENT vocabu-
lary. Name's code field contains
the address of its parameter
field. When <name> is later
executed, the machine code in this
parameter field will execute.
The CONTEXT wvocabulary is
made ASEMBLER, to make
available the op-code mnemonics.

n --- (compiling assembler)
An assembler defining word used
to crate assembler mnemonics
that have only one addressing
mode:

EA CPU NOP,

CPU creates the work NOP, with
its op-code EA as a parameter.

When NOP, later executes, it
assembles EA as a one byte op-
code.

--- cc (assembling)
Specify that the immediately fol-
lowing conditional will branch
based on the processor carry is set
(C=1). The flag cc is left at as-
sembly time; there is no run-time
effect on the stack.

(run-time)
--- addr? 2
(assembling)
Occurs within a code definition in
the form:
cc IF, <true part> ELSE,
<false part> THEN,
At run-time, if the condition code
specified by cc is false, execu-
tion will skip to the machine code
following ELSE,. At assembly
time ELSE, assembles a forward
jump to just after THEN, and re-

addrl 2

solves a pending forward branch
from IF. The values 2 are used for
error checking of conditional pair-
ing.

END-CODE

INDEX

An error check word marking the
end of a CODE definition. Suc-
cessful execution to and including
END-CODE will unsmudge the
most recent CURRENT vocabu-
lary definition, imaking it available
for execution. END-CODE also
exits the ASSEMBLER making
CONTEXT the same as
CURRENT. This word previously
was named Cj;

ce --- addr 2
time)

time)

(assembly

addr 2 (assembly-

QOccurs within a code definition in
the form:
ce IF, <true part> ELSE,
false part THEN,

At run time, IF, branches based on
the condition code ce, (0< or 0=
or CS). If the specified processor
status is true, execution continues
ahead, otherwise branching ocecurs
to just after ELSE, (or THEN,
when ELSE, is not present). At
ELLSE, execution resumes at the
corresponding THEN,.

When assembling, IF, creates an
unresolved forward branch based
on the condition code cc, and
leaves addr and 2 for resolution
of the branch by the corresponding
ELSE, or THEN,. Conditionals
may be nested.

--- addr (assembling)
An array used within the assem-
bler, which holds bit patterns of
allowable addressing modes.

--- addr {assembling)
Used in a code definition in the
form:

IPSTA, or IP)Y LDA,
A constant which leaves at as-
sembly time the address of the
pointer to the next FORTH exe-
cution address in a colon-defini-
tion to be interpreted.

At run-time, NEXT moves I[P
ahead within a colon-definition.
Therefore, IP points just after the
execution address being inter-
preted. If an in-line data struc-
ture has been compiled (i.e., a
character string', indexing ahead
by IP can access this data:

IP STA, or IP)Y LDA,

FORTH DIMENSIONS TII/5

Page 147

M/CPU

MEM

MODE

NEXT

NOT

POP

loads the third byte ahead in the
colon-definition being interpreted.

nl n2 --- (compiling assembler)
An assembler defining word used
to create assembler mnemonics
that have multiple address modes:
1C6E 60 M/CU ADC,

M/CPU creates the word ADC,

with two parameters. When
ADC, later executes, it uses
these parameters, along with

stack values and the contents of
MODE to calculate and assemble
the cerrect op-code and operand.

Used within the assembler to set
MODE to the default value for
direct memory addressing, z-page.

--- addr
A variable used within the
assembler, which holds a flag
indicating the addressing mode of
the op-code being generated.

--- addr (assembling)
Used in a code definition in the
form:

N1 -
ADC,

STA, or N2+)Y

A constant which leaves the ad-
dress of a 9 byte workspace in z-
page. Within a single code defini-
tion, free use may be made over

the range N-1 thru N+7. See
SETUP.

--- addr (assembling)
A constant which leaves the

machine address of the Forth ad-
dress interpreter. All code defini-
tions must return execution to
NEXT, or code that returns to
NEXT (i.e., PUSH, PUT, POP,
POPTWO).

cel --- cel (assembly-time)
When assembling, reverse the con-
dition code for the following con-
ditional. For example:

0= NOT IF, <true part> THEN,

will branch based on 'not equal to
zero'.

(assembling)
(run-time)

addr

N ==

A constant which leaves (during
assembly) the machine address of
the return point which, at run-
time, will pop a 16-bit value from
the data stack and continue inter-
pretation.

POPTWO

PUSH

PUT

RP)

THEN,

--- addr (assembling)
nl n2 --- (run-time}
A constant which leaves (during
assembly) the machine address of
the return point which, at run--
time, will pop two 16-bit values
from the data stack and continue
interpretation.

=== addr (assembling)

— (run-time)
A constant which leaves (during
assembly) the machine address of
the return point which, at run--
time, will add the accumulator (as
high-byte) and the bottom
machine stack byte (as low-byte)
to the data stack.

--- addr (assembling)

nl --- n2 (run-time)
A constant which leaves (during
assembly) the machine address of
the return point which, at run--
time, will write the accumulator
(as high-byte) and the bottom
machine stack byte (as low-byte)
over the existing data stack 16-bit
value (nl).

--~ (assembly-time)

Used in a code definition in the
form:

RP) LDA, or RP) 3+ STA,
Address the bottom byte of the
return stack (containing the low
byte) by selecting the ,X mode and
leaving n=%$101. n may be modi-
fied to another byte offset. Be-
fore operating on the return stack
the X register must be saved in
XSAVE and TSX, be executed; be-
fore returning to NEXT, the X
register must be restored.

---n (assembling)
Identical to BOT, except that
n=2. Addresses the low byte of
the second 16-bit data stack value
(third byte on the data stack).

--- (run-time)
addr 2 --- (assembly-time)
Occurs in a code definition in the
form:

cc IF, <true part> ELSE,
<false part> THEN,

At run-time THEN, marks the
conclusion of a conditional struc-
ture. Execution of either the true
part or false part resumes fol-
lowing THEN,. When assembling
addr and 2 are used to resolve the
pending forward branch to THEN,.

UNTIL,

upP

X)

XSAVE

--- (run-time)
addr 1 cc --- (assembling)
Occurs in a CODE definition in

the form:

BEGIN, . . . cc UNTIL,

At run-time, UNTIL, controls the
conditional branching back to
BEGIN,. If the processor status
bit specified by cc is false, exe-
cution returns to BEGIN,; other-
wise execution continues ahead.

At assembly time, UNTIL, as-
sembles a conditional relative
branch to addr based on the condi-
tion code cc. The number 1 is
used for error checking.

--- addr (assembling)
Used in a code definition in the
form:

UP LDA, or UP)Y STA,

A constant leaving at assembly
time the address of the pointer to
the base of the user area. i.e.,

HEX 12 # LDY, UP)Y LDA,

load the low byte of the sixth user
variable, DP.

--- addr (assembling)
Used in a code definition in the
form:

W 1+ STA, or W1 - JIMP, or
W)Y ADC,

A constant which leaves at as-
sembly time the address of the
pointer to the code field (exe-
cution address) of the Forth dic-
tionary word being executed. In-
dexing relative to W can yield
any byte in the definition's
parameter field. i.e.,

2 # LDY, W)Y LDA,

fetches the first byte of the
parameter field.
Specify 'indexed indirect X' ad-
dressing mode for the next op-
code generated.

--- addr (assembling)
Used in a code definition in the

form:
XSAVE STX, or XSAVE LDX,

A constant which leaves the ad-
dress at assembly time of a tem-
porary buffer for saving the X
register. Since the X register in-
dexes to the data stack in z-page,
it must be saved and restored
when used for other purposes.

Page 148

FORTH DIMENSIONS 1I1/5

FORTH Assembler for 6502 by W. F. Ragsdale July 1, 1980

SCR # 81
0 (FORTH-65 ASSEMBLER
1 HEX
2 VOCABULARY ASSEMBLER IMMEDIATE ASSEMBLER
3
4 (REGISTER ASSIGNMENT SPECIFIC TO IMPLEMENTATION
5 E0 CONSTANT XSAVE DC CONSTANT W DE
6 D9 CONSTANT 1P D1 CONSTANT N
7
8 (NUCLEUS LOCATIONS ARE IMPLEMENTATION SPECIFIC
9 ° (Do) OE + CONSTANT POP
10 - (po) o0Cc + CONSTANT POPTWO
11 ° LIT 13 <+ CONSTANT PUT
12 ° LIT 11 + CONSTANT PUSH
13 ° LIT 18 + CONSTANT NEXT
14 ° EXECUTE NFA 11 - CONSTANT SETUP
15
SCR # 82
0 (ASSEMBLER, CONT.

0 VARIABLE INDEX -2 ALLOT
0909 , 1505 , 0115 , 8011 , 8009 , 1DOD , 8019 ,
o080 , 1404 , 8014 , 8080 , 8080 , lcoc , B0lc ,

: LA 0 MODE ! ; : 1 MODE ! ; : MEM
t ,X 3 MODE ! ; T ¢ 4 MODE ! 3 1 X)

1

2

3

4

5 2 VARIABLE MODE

[3

7

8 :)Y 6 MODE ! ; :) F MODE ! ;
9

WFR~79JUNO3)

DEFINITIONS

)
CONSTANT UP

y
4

WFR-780CTO03)

8080 ,
2¢80 ,

2 MODE ! ;
5 MODE !

10 : BOT X 0 (ADDRESS THE BCTTOM OF THE STACK *)
11 : SEC s K 2 (ADDRESS SECOND ITEM ON STACK *)
12 : RP) X 101 (ADDRESS BOTTOM OF RETURN STACK *)
13
L4
15
SCR # 83

0 (UPMODE, CPU WFR-780CT23)
1

2 : UPMODE IF MODE @ 8 AND 0= IF & MODE +! THEN THEN

3 1 MODE @ OF AND -DUP IF O DO DUP + LOOP THEN

4 OVER 1+ @ AND 0= ;

5

[CPU <BUILDS €, DOES> C@ Cc, MEM ;

7 00 CPU BRK, L8 CPU CLC, D8 CPU CLD, 58 CPU CLI,

8 B8 CPU CLV, CA CPU DEX, 88 CPU DEY, E8 CPU INX,

9 C8 CPU INY, EA CPU NOP, 48 CPU PHA, 08 CPU PHP,

10 68 CPU PLA, 28 CPU PLP, 40 CPU RTI, 60 CPU RTS,

11 38 CPU SEC, F8 CPU SED, 78 CPU SEI, AA CPU TAX,

12 A8 CPU TAY, BA CPU TSX, 84 CPU TXA, 9A CPU TXS,

13 98 CPU TYA,

14

15

FORTH DIMENSIONS TII1/5

Page 149

w
0
=

L= R R R =]

el
LY R - PO

SCR

RN LE WO

b b
W w0

—
SOOIV E W= O

i 84
(M/CPU, MULTI-MODE OP-CODES WFR-79MAR26)
M/CPU <BUILDS C, , DOES>

DUP 1+ @ 80 AND IF 10 MODE +! THEN OVER

FFO0O0 AND UPMODE UPMODE IF MEM CR LATEST ID.
3 ERROR THEN C@ MODE C@
INDEX + C@ + C, MODE C@ 7 AND IF MODE C@

OF AND 7 < IF C, ELSE , THEN THEN MEM ;

1C6E 60 M/CPU ADC, 1C6E 20 M/CPU AND, 1C6E CO M/CPU CMP,
LC6E 40 M/CPU EOR, 1C6E AO M/CPU LDA, 1C6E 00 M/CPU ORA,

90 CONSTANT »>= (ASSEMBLE TEST FOR GREATER OR EQUAL ZERO

1C6E EO M/CPU SBC, 1lCé6C 80 M/CPU STA, 0DOD 01 M/CPU ASL,
0ococ ¢l M/CPU DEC, 0COC E1 M/CPU INC, ODOD 41 M/CPU LSR,
oDOD 21 M/CPU ROL, ODOD 61 M/CPU ROR, 0414 81 M/CPU STX,
0486 E0O M/CPU CPX, 0486 CO M/CPU CPY, 1496 A2 M/CPU LDX,
OCBE A0 M/CPU LDY, 048C 80 M/CPU STY, 0480 14 M/CPU JSR,
8480 40 M/CPU JMP, 0484 20 M/CPU BIT,
85
(ASSEMBLER CONDITIONALS WFR-79MAR26)
: BEGIN, HERE 1 IMMEDIATE
: UNTIL, ?EXEC >R 1 ?PAIRS R> C, HERE 1+ - C, ; IMMEDIATE
: IF, cC, HERE 0 ¢, 2 ; IMMEDIATE
: THEN, ?EXEC 2 7?PAIRS HERE OVER cC@
IF SWAP ! ELSE OVER l+ - SWAP C! THEN ; IMMEDIATE
: ELSE, 2 ?PAIRS HERE 1+ 1 JMp,
SWAP HERE OVER 1+ - SWAP C! 2 ; IMMEDIATE
: NOT 20 + (REVERSE ASSEMBLY TEST)
90 CONSTANT CS (ASSEMBLE TEST FOR CARRY SET)
DO CONSTANT O= (ASSEMBLER TEST FOR EQUAL ZERO)
10 CONSTANT O0c< (ASSEMBLE TEST FOR LESS THAN ZERO)
)
(»>= IS ONLY CORRECT AFTER SUB, OR CMP,)
86
(USE OF ASSEMBLER WFR-79APR28)
: END-CODE (END OF CODE DEFINITION *)
CURRENT @ CONTEXT ! ?7EXEC ?7CSP SMUDGE ; IMMEDIATE
FORTH DEFINITIONS DECIMAL
: CODE (CREATE WORD AT ASSEMBLY CODE LEVEL *)
?EXEC CREATE [COMPILE] ASSEMBLER
ASSEMBLER MEM ICSP IMMEDIATE
{ LOCK ASSEMBLER INTO SYSTEM)
‘ ASSEMBLER CFA ;CODE 8 + ! (OVER-WRITE SMUDGE)
LATEST 12 +ORIGIN ! (TOP NFA)
HERE 28 +ORIGIN ! (FENCE)
HERE 30 +40RIGIN ! (DP)
“ ASSEMBLER 6 + 32 +0ORIGIN ! (VOC-LINK)
HERE FENCE !

Page 150

FORTH DIMENSIONS IH/5

APPLICATIONS

A TECHNICAL TUTORIAL:
TABLE LOOKUP EXAMPLES

Henry Laxen
Laxen and Harris, Inc.

One of the problems with FORTH, as
with every rich language, is that given an
idea, there are many ways of expressing
it. Some are more eloguent than others,
but it takes practice and experience to
create the poetry and avoid the mundane.

This article is written to illustrate 4
different ways of implementing a simple
Table Lookup operation. The goal is the
following: we want to create a FORTH
word, named DAYS/MONTH which be-
haves as follows: Given an index on the
stack which is the month number, such as
1 for January and 12 for December, we
want to return the number of days in that
month, in a normal year. Thus if we exe-
cute 6 DAYS/MONTH it should return 30,
which is the number of days in the month
June. [will use the Starting FORTH dia-
lect in this paper, not fig-FORTH, so if
you try to type in the examples, they
probably won't work unless you are running
a system that behaves as described in
Starting FORTH (or the 79-Standard).

Our first attempt at solving this prob-
lem uses the FORTH word VARIABLE.
The code is as follows:

VARIABLE 'DAYS/MONTH 22 ALLOT

31 'DAYS/MONTH

28 'DAYS/MONTH 2
31 'DAYS/MONTH 4
30 'DAYS/MONTH 6
31 'DAYS/MONTH 8
30 'DAYS/MONTH 10
31 'DAYS/MONTH 12
31 'DAYS/MONTH 14
30 'DAYS/MONTH 16
31 'DAYS/MONTH 18
30 'DAYS/MONTH 20
31 'DAYS/MONTH 22
: DAYS/MONTH (INDEX --- VALUE)

1- 2% 'DAYS/MONTH * @ ;

'
1
.
T
"
1
1
'
1
1
[
]

+ 4+ + F A+ o+

There is nothing significant about the *
(apostrophe), [only prefaced the VARI-
ABLE name with it because 1 want to use
the word DAYS/MONTH later. Now, what
happened is that VARIABLE allocated 2
bytes in the dicticnary for the value of
DAYS/MONTH, The 22 ALLOT then allo-
cated another 22 bytes, for a total of 24
bytes, or 2¥12 celis. We next proceeded
to initialize the values that were allocated
by explicitly calculating the offsets and
storing in the appropriate location.
Finally, we defined DAYS/MONTH as a
colon definition which performs arith-
metic on the index, adds it to the start of
the table, and fetches the result.

Now, let's look at another way of doing

this that requires less Lyping and is also
more general. We will first define a word
called TABLE which will aid us in the cre-
ation of tables like the one above. What
we will do is first place the initial values
of the TABLE on the stack, together with
the number of the initial values. Then, we
will define TABLE to copy these into the
dictionary. Here is how it works:

: TABLE (Nn Nn-1 ... N1 n ---)
0 DO, LOOP ;

CREATE 'DAYS/MONTH
31 30 31 30 31 31 30 31 30 31 28
31 12 TABLE

: DAYS/MONTH (INDEX --- VALUE)
1- 2% 'DAYS/MONTH + @ ;

Now this is considerably less typing than
the first way of doing it, but notice that I
had to reverse the order of the days per
month since that is the way stacks be-
have. 1 used CREATE instead of VARI-
ABLE because it does not allocate any
space for the initial value, but otherwise
behaves just like VARIABLE. The access
word DAYS/MONTH is identical to before.

I am still not satisfied, however, so
let's try it yet another way. Instead of
defining TABLE to add values to the dic-
tionary with , (comma) why not just use ,
directly?

CREATE 'DAYS/MONTH
31,28,31,30,31,30,
31,31,30,31,30,31,

: DAYS/MONTH { INDEX --- VALUE)
1- 2* 'DAYS/MONTH + @ ;

Now we are getting somewherell If we
simply use the FORTH word , {comma) to
add the value to the dictionary, see how
simple and readable it becomes. The
values are just typed in and separated by
commasl Is it possible to improve even on
this? Funny you should ask. There is a
quality that can be abstracted from the
definition of DAYS/MONTH, namely that
of table lookup. Wouldn't it be nice if we
didn't need to create that extra name
'DAYS/MONTH simply so we could access
it later in our : definition. Well, that is
where our friend CREATE DOES> comes
in.

Instead of defining a particular in-
stance of a TABLE, we will create a new
Defining Word called TABLE, which acts
as follows. It creates a new entry in the
dictionary which when executed, uses the
value that was placed on the stack as an
index into itself and returns the contents
of that location. It would be coded as fol-
lows:

: TABLE
CREATE (-=)
DOES> { INDEX --- VALUE)
SWAP 1- 2% + @ ;

TABLE DAYS/MONTH
31,28,31,30,31,30,
31,31,30,31,30,31,

Now we have truly generalized the
problem and solve it in an elegant way.
We have defined a new data type, called
TABLE, which is capable of defining new
words. Part of the definition of TABLE
was specifying the run-time behavior of
the word being defined. This is the code
following the DOES>. We then use the ,
{comma) technique discovered above to
initialize the table. Note that
DAYS/MONTH is now just a special case
of TABLE, and is in fact defined by the
new defining word TABLE.

The above examples illustrate the im-
mense diversity available in FORTH.
There is no obvious right or wrong, and the
simplest and usually most general solution
to a given problem must be discovered,
usually by trial and error. FORTH's big-
gest virtue, in my opinion, is that it makes
the trial and error process extremely ef-
ficient, and therefore, allows people to
experiment and discover the best solution
for themselves.

HELP WANTED

Programmers needeed to produce new
polyFORTH systems and applications.
Two to three years extensive FORTH
experience working with mini/micro
computers and peripherals.

(Contact: Patricia Jones

FORTH, INC.

2309 Pacific Coast Highway
Hermosa Beach, CA 90254
(213) 372-8493

fig-FORTH NOVA GROUP

Mr. Francis Saint, 2218 Lulu, Wichita,
K5 67211, (316) 261-6280 (days) has
formed a FIG Group to trade information
and assistance between fig-FORTH NOVA
users.

Pub. Comment: Hope to see a new,
clean listing. How about some other
specific groups!

FORTH DIMENSIONS T11/5

Page 151

THE GAME OF REVERSE
M. Burton

REVERSE is a number game written in
FORTH, primarily as an exercise in array
manipulation. The ohject of REVERSE is
to arrange a list of numbers (1 through %)
in ascending numerical order from left to
right. Moves are made by reversing a sub-
set of the list (from the left). For
example, if the current list is

234516789

and four numbers are reversed, the list
will be

543216789

then if five numbers are reversed, the
game is won.

12345678689

To leave a game that is in progress,
simply reverse zero numbers.

REVERSE Glossary

SEED
The number seed for the pseudorandom
number generator. SEED is initialized
as the REVERSE words are compiled,
by hitting any key on the console.

MOVES
Keeps track of the number of moves
made in a REVERSE game. If more
than fifteen moves are made to win,
you haven't got the hang of the game.

RND range -- random.number
The pseudorandom number generator,
courtesy of FORTH DIMENSIONS,
RND generates random.number in the
range 0 through range-1l. RND is used
to scramble the number list.

DIM n-=-
A defining word used in the form
n DIM xxxx
Produces an n+l length word array
named xxxx, with elements 0 through
n. For the REVERSE application,
element 0 is not used.

Y/N -- flag
Solicits an input string from the con-
sole, then checks the first character of
the string for an uppercase or lower-

SCR # 228
O (The Game of Reverse [SEED, MOVES, RND, DIM, Y/N1 101281-MPB)
1
2 0 VARIABLE SEED { Seed for random number generator)
3 0 VARIABLE MOVES { Number of raverses so far)
4 CR ." Please depress any key:" (Fertilize the seed)
5 KEY SEED 1!
6
7 : RND { Random number generator range -- rnd#)
8 SEED @ 2%9 * 3 + 32767 AND DUP SEED | 32767 */ ;
9
10 DIM { Reserve an integer word array n --)
11 <BUILDS 1+ 2 * ALLOT
12 DOES>
13
14 Y/N (Get a Y or N response -- flag)
15 PAD 80 EXPECT PAD C& CR CR 95 AND 89 = ; -—
SCR # 229
0 { The Game of Reverse ([(Game instructions]) 101281-MPB)
1
2 : INSTRUCT CR CR 18 SPACES ." The Game of REVERSE"
3 CR CR ." HWould you like instructions? " Y/N
4 IF ." The object of the game is to arrange a random list"
5 CR ." of nine numbers into ascending numerical order in"
6 CR ." as few moves as possible by reversing a subset of"
7 CR ." the 1list. For example, given the random list," CR
8 CrR ." 5 2 4 8 7 3 9 1 6 " CR
9 CR ." reversing a subset of 4 would yield the list,"” CR
10 CR ." 8 4 2 5 7 3 9 1 6 " CR
11 CR ." To quit the game, simply reverse 0." CR CR
12 THEN ;
13
14 -->
15
SCR #® 230
0 (The Game of Reverse [ARRAY operations) 101281-MPB)
1
2 9 DIM ARRAY { Reserve a ten word array)
3
4 AR { Fetch an array word index -- array.value)
5 2 ®* ARRAY + @ ;
&
7 Al { Store an array word array.valuelindex --)
8 2 * ARRAY + 1
o
10 AINIT (Initialize ARRAY -}
11 10 1 DC I DUP A! LOOP ;
12
13 A. (Print ARRAY -=)
14 CR ." The list is now..."
15 CR 6 SPACES 10 1 DO I A 3 .R LOOP ; -->
fig-FORTH Version 1.15 M. Burton

Page 152

FORTH DIMENSIONS III/5

SCR # 231
0 (The Game of Reverse [(ARRAY operations, cont.] 100781-HPB)
1
2 : ASCRAMBLE { Mix up the array values i
3 1 9 DO I RND !+ (Calculate K)
4 I Ré { Get ARRAYI[I] value)
S OVER A { Get ARRAYI(K] value)
6 I Al { Store ARRAYIK) in ARRAYII])
7 SWAP A! -1 { Store ARRRAYII] in ARRAYI(K])
8 +LOOP ;
9
10 GETIN { Get amount to reverse --n
11 BEGIN CR ' Reverse how many? "
12 PAD 80 EXPECT FPAD @ 48 -
13 DUP 0< OVER 9 > OR DUP
14 IF CR ' Only O through 9 is allowed. " THEN O=
15 UNTIL CR ; -—>
SCR # 232
0 (The Game of Reverse [ARRAY operations, cont.) 100781-MPB)
1
2 AREVERSE { Reverse a subset of ARRAY n -)
3 DUP 2 / 1+ 1 (Loop limits are 1 to [(n/2]1+1)
4 DO DUP I ~- 1+ { Calculate index n-I+1)
-3 DUP AR® SHAP (Get ARRAYI(n-I+1))
6 I A { Get ARRAYII])
7 SWAP A1l (Store ARRAYI[I] in ARRAY(n-I+1l))
] I Al (Store ARRAYIn-I+1l) in ARRAYI(I1])
9 LOOP DROP ;
10
11 ACHECK { Check for ascending seq. -- flag)
12 1 10 1 DO
13 I DUP A® = AND
14 LOOP
15 -=>
SCR # 233
0 (The Game of Reversze [REVERSE definition) 101281-MPB)
1
2 : REVERSE { Play the game)
3 INSTRUCT AINIT
4 BEGIN
5 ASCRAMBLE O MOVES 1!
6 BEGIN
7 A. GETIN DUP O=
B8 IF 1 ELSE
9 AREVERSE 1 MOVES +! ACHECK
10 THEN
11 UNTIL
12 A. CR ." You made " MOVES @ . ." reversals." CR
13 CR ." Care to play again? " Y/N O=
14 UNTIL
13 CR ." Thanks for playing REVERSE... " CR CR ; ;S
£1g-FORTH Version 1.15 M. Burton

ok

case 'Y'. If a'Y' is present, the flag
returned is true. For any other char-
acter, the flag is false.

INSTRUCT -
Prints the name of the game and then
asks if instructions are required. If
yes, instructions are displayed.
ARRAY .
A ten word array that contains the
number list that REVERSE works on.
Element zero of the list is not used.

A@ index -- array.value
Fetches the index array.value of
ARRAY and leaves it on the data
stack.

array.value index --
Stores array.value into the index ele-
ment of ARRAY.

AINIT
Initializes ARRAY with the numbers 1
through nine in game winning order.

A. -
Displays ARRAY in an understandable
format.
ASCRAMBLE -
Using RND, scrambles the numbers in
ARRAY for a new REVERSE game.
GETIN --n
Solicits the number of elements of the
list to reverse. If any character other
than 0 through 9 is entered, GETIN
prints "Only 0 through 92 is allowed.",
and solicits another number.
AREVERSE n--
Reverses the nth length subset of
ARRAY, starting from element 1.
ACHECK -- flag
Checks ARRAY for proper ascending
numerical order. If ARRAY is in the
proper order, ACHECK returns a true
flag.
REVERSE --

The game definition. Uses all pre-
viously defined words to play the game
of REVERSE.

FORTH DIMENSIONS III/5

Page 153

THE 31 GAME
Written by Tony Lewis 11/81

The "31 Game" is an attempt to use
FORTH fundamentals to produce an enter-
taining result. The object is to entice you
into anlyzing both the game itslef and the
methods used to produce it. The game
buffs might wish to know that I have been
an avid "player" (not gambler!) for over 30
years and have made extensive practical
studies of various games. Any phone
communication is welcome. [am two
years behind in my written corres-
pondence; so sending me letters which
require replies will prove futile. The pro-
gram is my first effort in FORTH. How-
ever, | have had extensive experience with
six different main frame assemblers plus a
little COBOL of the late 60's vintage.
Any constructive suggestions on general
style and technique are welcome, but [am
not really interested in being told that I
could have shaved 100 microseconds from
my run time or saved fifteen bytes of
memory. In fact, there are indeed extran-
eous "Cr's" which were included to get
good hard copy, also.

This program was written in micro-
motion (¢} FORTH-79 Version 1.2 to be
run on a 48K *Apple IL.

Therefore, the following words are
non-standard but included in the micro-
motion FORTH.

Home - position the cursor to the
upper left corner of the CRT and clear the
CRT to blanks.

CV and CH are used to position the
input cursor anywhwere on the text win-
dow per Ex. 4 CV 10 CH moves the cursor
to the 4th (pun) row 10th column of
screen.

SETINV, SETFLASH, and SETNORM
set flags in the Apple output subroutines
which respectively cause all subsequent
characters to be displayed on the text
screen inverse, flashing and normal mode
without affecting charcters already dis-
played.

In closing, 1 wish to thank Bill Ragsdale
for his gracious support and I especially
acknowledge the incredibly patient treat-
ment [received from Phil Wasson of
Micromotion as he neatly led me through
my FORTH initiation.

Tony Lewis

100 Mariner Green Dr.
Corte Madera, CA 94925
(415) 924-1481

(415) 924-4216 (late hours)

*Apple is a reqgistered trademark of Appie
Computer, Ine.

SCR#51
: HOWTOZ1 HOME ¢ 31 GAME-TONY LEWIS) ."
31 GAME BY TOMY LEWIS
317 I8 PLAYED WITH A DECK OF 24 CARDS
CONTAININING OMLY THE ACES THRU SIXES.
EACH OF TWD FLAYERS ALTERNATELY DRAWS
CARDS FROM THE DECK, ONE CARD AT A TIME.
A RUNNING TOTAL IS KEFT OF THE COMBINED"

SUM OF THE CARDS DRAWN. THE PLAYER WHO
ARRIVES AT THE SUM OF 31 EXRCTLY WINS.
IF NEITHER FPLAYER CAN MAKE 31 EXACTLY.
THEN THE FPLAYER WHO MUST GO OVER 21
LOSES! THE GAME MAY APFEAR TOO EASY. BUT
1T I8 DECEFTIVE. WHEN C[OR IF73 YOU HAVE"
WON THREE GAMES, TRY TO BEAT THE PROGRAM
FOR "THE BIG BET® BY TYPING IN "B
RATHER THAN “¥° OR "N WHEN “NEW GAME??
COMES UFP. THE *RBIG BET® IS A TWO GAME
SERIES. YOU GO FIRST IN GAME 1 AND
SECUND IN GAME 2. YOU MAY BE SURFRISED!"
CR CR CR ." HIT ANY kKEY T BEGINM®

KEY DROF HOME & CV 3 —

SCR#SD
{ WORDS OF W1sDOM 31 BY TOWY LEWIS)
t THE “ANSWER™ FAGE IS NEXT. IT DOESN'T
REQUIRE ANY SKILL TO FIGURE OUT WHAT THE
CONSTANTS REALLY ARE! THEY ARE ENCODED
SO THAT YOU CAN ENTER AND COMFILE THE
GAME WITHOUT DISCOVERING 175 PRINCIFLE.
REMEMEBER, THE FURFOSE OF THIS PROJECT
WAS TO GET YOU TO FIRST EXAMINE THE GAME
BY PLAYING 17T, THEMN FIGURE OUT HOW 70
AFPFROACH THE FROBLEM OF FPROGRAMMING IT,
AND FINALLY G0 BACK AND COMFARE YOUR
METHODS TO MINE. THE GAME 15 AMUSING
AND IS5 A LITTLE KNOWN CINCH BAR BET. IF
YOU TAKE THE TIME TO ENTER IT ONTO YOUR
FORTH DISC., YDU SHOULD HAVE FUN BOTH
ANALYZING IT AND THEM ENTERTAINING [OR
HUSTLING] FRIENDS AND FAMILY WITH IT.
OF COURSE WHEN FLAYING AT A BAR YOU MUST
USE A& REAL DECEK OF CARDS AS [T WOULD
FROBABLY TEND TO DISCOURAGE WAGERING IF
YOU SHOULD BRING YOUR "MICRO™ WITH YOU.)

SCRH#ST

1 ENCODED CONSTANTS 31 BY TONY LEWIS)
t NOTE: THESE CONSTANTS ARE USED ONLY
TO CONCEAL THE SOLUTION OF THE GAME.
MOT TO MAKE THE CODING HARD TO FOLLOW!»

O CONSTAMNT F
O CONSTANT F
¥
k

O COMSTANT
O COMSTANT

BC & 418 Ki
Ck x» ~ 4&CTF - K2 !
BD % - SEBs - K3 ¢
DB ¥ -~ IFDB - L

SETUR AND UTILITY WORDS 31-T0nY LEWIS)
CREATE DECEK
G, 04, 4,04, 4,4, 4, 0,
VARLABLL CARDSUM YRk ITABLE GAMESWHON
* MEWGAME i FIRST. WEW DECE)
1 L I 2% DECE + 4 SwWar ' LooF
O CaRDSLM ! HOME 4 CV &

. SHOWDECHSUM LR CR
- THE DECE NOW CONTAINS
1 DO I (NOT J'! » 2
DECKE + Ca (DUCK O DD » DUF
1 CR DO J . LOOP
DROF

LOOFP 12 CH
L THE RUNHING TOTAL IS " CARDSUM @ . 3

1 RRDFLAY
i FLAG BAD FLAY) O CR CR
< BAD TYFPE-IN" SHOWDECE S0 3

SCREAS0
1 UTILITY WORDE CONT. 31 BY TONY LEWIS)
r UPDATEDECKSUM « 1 TO & NOW O STACK?
DUF 2% DUP DECE + G2 DUP (ANY LEFTT)
IF 1- (UPDATE DECK) SWAP DECK + C!
CARDSUM Ca + CARRDSUM C! { MEW SuUM)
2 (CARD=IN-DECH FLAG)
ELSE DROF DROP DROP O
THEM 3

ML TNE WORDS 31 BY TONY LEWIS)
FLAYERMOVE R LR

e 7 IM CARD I - & " KEY CR

43 = (FROM ASCII) DUF DUF DUF

{ CHECE VALILID ENTRY)

7 ¢

IF Q> { CARD 1 - & 7)

IF UPBATEDECKSUN SWAF
HOME ." YOUR CARD WAS A& ¥
1= { 15 CARD IN THE DE
I DROF { FLAG ERD PLAY)

CR CR .* CARD NOT IN DECK®
SHUWDECKSUM
THEM
ELSE DROF DROFP BADFELAY
THEM
EL.SE DROF DROF DROF BADFLAY
THEM 3
SLRHST

{ MAINLINE WORDS COMT. 21 BY TUNY LEWIS)
o Cr CR
iF { CHECK 15T PLAY SWITCH)
FAMDOR L+ DUF UFDATEDECKSUNM DROF
K1 DuUF CArDSEUM Ca +
LI B o (A1) = DL
]
= (1T FLAG Ok VYalID CHOICE?
IF DROF 1 DUP UPDATEDECKSUM
LF
EiLSE DROF 2 UFDATENECKSUM
THI N { Flhb=CaRD, S0 N0 DROFD
TiHEN
THEN " MY Piay I35 " o SADWLEDSSUM

Sl

FGINL (NE WORDS CONT. 31 BY TUNy LEWISH

M FLAYERMOVE

Flay LEAVES o oW STalk)
SHOWDELE SUM

YER MADE LAST FLAY: 3

YOI i U T ik

. } TEY WO WINLY SETHNORM
GAMESKWON Ca 1+ GAMESKON Y
YOULOSE LR LR T
JTOYOU LDSE. BETTER LUCK NEXT TIME.™
SETHORM 3
sCHRET
. bl IME WORDE COoMT. 21 BY TONY LEWIS)
¢ MORMAL ST HumE 7 oy
DD YOU WAaMT FIRLY PLAY T“FE ¥ OR M.

[23 rEY
i ¢ 15T
=0 0 SWAR 2y SET UF
BEGIN
i t TRUE Freas SET ON YU AGD)

ST CARDSUIN e

I ¥OUW LR Iv (SET Lo EXIT

L1 BE T CAaRoSUR Co -

¢ M
Y RYCARD ELSE yOURCARD
L OO

I YiEOsE 1+ ELBE yOURCARD O
Ve
1Ak

CLsE ¢ REGURN FROFM vOuRoaRD)

bt WL I]
i+

ELGE oUaRDSUR Do =
TE v 1 ELSE syLiaRD o
T i NOT 18T HOVE:
[RE St
[ER)
Urleie o O LdDE BACE EN mMalkily g =

Page 154

FORTH DIMENSIONS 1II/5

SCHHLO
{ METNLINE WORDS COMT. 31 BY TONY LEWih
: MYBRIGBETI LR Ck
K1l DUP CakDSUM Co + k2 - Ki MOD
P UPLAETEDELESUM o=

1F DROF ES DU UPDATEDECKSUM DROP
THEN .* MY FLAY I5 " SHOWDECKSUM 2 3

: MYBIGEEY? LR CR
IF DU UPFDATELECKSUM DROF
EL k1 CARDSUM Ca k2 - &1 MOD - DUF
LFDATEDECESUM 0=
IV DROF E4 DUP UPDATEDECESUM DROF
THIEEN
THEM . " MY FLAY 1S

SHOWDELCKSUM 2 3

GURbBA
¢ MAITMLTNE WORDS CONT. 21 BY TONY LEWIS)
BIGBETL
YOURCARD
BEGIM
IF v TRUE FROM MYBIGEETL)
21 CARDSUM Lo
IF vOUWIN 1 o
21 CARDSUM Ca =
L Dk 1
rOURLARD O

LooF EXLT)

RETURKN FRur YOURCGREDY
CARDSUM L

IF volhoseE |

B S LhAREDSUM Ce =

1

ELSE MYBIGBETI O

BLURENSS
¢ OMALNMLINE WORDS COMT. 51 BY TONY LEWIS)
: BIGEE
1 MYE
BEGIN
IF 31 LARDSUM Co =
IF YOULOSE |1
ELSE YOURCARLD o
THEM
E 31 CARLDSUM L3
LI 3 |
F o0 0 NDT 18T MYBIGBET

BRET.

iF
(SRS
THEN
THEM
UMTIL 3

SUR#LD
¢ MAINLINE WORDS CONT. 21 BY TONY LEWIS)

: BIGRET 5 HOME e
WELCOME TO “BIG BET", THE FINAL FHASE OF
L BAME. TWO GAMES WILL BE PLAYED."
YOU WLl Go FIRST IN GAME ONE AND
1 WLk w0 FIRST IN GAME TWO. GODOD LUCK."

BiwBr1]

CR CR

UMD ANY EEY sND I WILL BEGIN BAME 2.7
ChR FEY DROF MEWGAME

SEIFLASH . " HIG BET GWME Z THE FINALE"

LR CR SETMORM

BIGRET2
CR .
WELL DID YOU HAVE THE CORRECT ANALYSIS?
IF 50, THEN SEE 1F YOUu CAN FIGURE QUT"
Ch -
WHDO WINS WITH A& 1ST CARD OF OME OR TWO.
IT°S A TOUGH COMBINATORIAL PROBLEM!TY

1 ¢ SET FINAL EXIT IN MAINZL1) 3 —-—

SCR#44
{ FLAY THE GAME OF 31 BY TONY LEWIS)
: MAINZT (LOGIC SHELL) O GAMESWON @
BEGIN CR CR
.M ONEW GAMET? *
UOTYPE ¥ OR M OOR B(BIG BET)."
CR CR KEY DUF 78 — (CHECE FOR M)

t FALSE LEAVES 8 ON STACK FOR CUNTILT)

IF NEWGHME && = (B)
IF GAMESWUON Ca 2
IF BIGBET
ELSE HOME O . YOU HAVE WON *
GAMESWON Ca DUF . ." GAME" 1 =
IF w" =
ELSE .* 8."
THEW CkR
SUOYOU MUST WIN Z GAMES 10
" PLAY "BIG BETT.™
THEM
ELSE MNORMALZL
THEN
THEN
UNTIL 3
1 31GAME HOWTO31 CODECONS MAIN31 3

O
CODECONSA MAINSL

NEW GAME™ TYFE ¥ Ok N OR B(BIG BET).

DO YOU WANT FIRST FLAY? TYPE Y OR M.

MY FLAY IS 2

THE DECK. NOW LCONTAINS

1 111
4 4
S5 9
&b H b6 THE RUNNING TOTAL 15 2

TYFE IN CARD 1 - &
YOUR ChkD WAs & 5

I HE CENOW CONTHRINS

FHE RUNNING TOTal 18 S5

& 6 s 5

MY PLAY IS5 S

MOW COMBATHS

4 o4 4
55
-

THE RUNMING TOTAL IS5 iC

TYPE IN CARD L - &
YOUR CARD WAB A o

THE DECKE mMOW CONTAINS

THE RUNMNING TOTAL 1S 16

™My FLAY IS 1

THE DECK NOW COMTAINS
1

m

K e

OB e
&

4
=1
&

o

THE RUNNING TOTAL IS 17

TYPE INM CARD 1 - &
YOUR CARD WAS A 3

THE DECK NOW CONTAING

111

225

4444

§55

56 6 THE RUNNING TOTAL IS 20

MY FLAY IS5 4

MHE DECE MU CONTAINS

4 4 4

I]

& bH & THE RUNMMING TUTal 15 24
YR In CARD 1 &

YUk CARD waS A F

THE DECE MOW CONTATHS

THE RUNMING TOTAL 15 2%

S o8 ob THE RUNMING YOTAL IG5 52

You LOSE. TER LUCK NEXT TIME.

NEW GAME” TYPE v UR N OR EBE(RLISG BET).

YOU HAVE WON O GARMES.
YOU MUST WIN O GAMES TO FLAY "BIG BET .

MEW GAME? TYFE ¥ OR N OR B(BIS BET!.

FORTH CLASSES

LAXEN AND HARRIS, INC.

24301 Southland Drive

Hayward, CA 94545

(415) 887-2894
Introductory classes
Process control
Applications programming
Systems level programming

GREG STEVENSON
Anaheim, CA
(714) 523-4202

Introductory classes

KNOWARE
NOLOGY
Box 8222
Stanford, CA 94305

INSTITUTE OF TECH-

(408) 338-2720

Introductory classes
Graphics classes

INNER ACCESS CORPORATION
Belmont, CA
(415) 591-8295

Introductory classes

FORTH, INC.
2309 Pacific Coast Highway
Hermosa Beach, CA 90254
(213) 372-8493
Introductory classes
Advanced classes

FORTH DIMENSIONS I11/5

Page 155

SIMULATED TEKTRONICS
4010 GRAPHICS

WITH FORTH
i 3szeen # 10
Pg{cr;nmitg)I;Hg?ggl ¢ « VYidec contrels ior cmeia MX744 Thh 12/391/5:
FORTA DEFINITIONS DZIc
In this article, I am going to tell a true 3 : GOTORY (2 § w-- o
story. For those people wh think FORTH 3 c ?'i-\‘: 23 MIN SWEE
is a religion, they might just consider this N , ﬂf“; .
to be my testimony. 3 L
Last November, I had access to a very @ @ BOME 23 _‘:’:":T. e ::‘IIW‘_":‘_"“U . :fqzﬁ"
little known, but well built microcomputer 8 CLR CLR-VIDEQ HOMZ . . CLIARSCRIEN CLE
-~ MX 964/2 by Columbia Data Products, ?) . [, C s e
Inc. of Maryland. This little machine has i6 - DW-C Q0 EMIT ko Bl T
two Z-80A CPUs. One is for the Host and 1. RT-C 1% LRIT BELL T ERe
the other for terminal. There are 64 K of iz o o A
RAM in the Host, and 32 K of the Ter- i CLREQS 23 EHIT , FrREOL s
minal RAM is dedicated to the 512 x 256 I8 T EREENE 2% BN
bit mapped graphics. It also includes a 9" g
CRT, 2 double density drives, keyboard, &4 Screar # il I
serial ports, and 4 parallel ports. Its all in 9+ Grasphic Package = : Tuk Laratrat o
one piece. It boots up with whatever 3 R
operating system is on the disk after 2 0 VARIAELE ¥ 0 VARLABLE Y 0 WVARIABLZ L U VARIAELE T3
powered up and the carriage return key 3 0 VARIABLE XI 0 VARIABLE ¥!
has been pressed. Beautiful isn't it? 4
¢ ESC 27 EMIT IT i2 EMIT , 42 LML O vector o
However, there is a big problem, as « US 3i EMIT ¢ alpha 1 , GAM 2% EMIT : menm-gtueliv !}
with most microcomputer companies, the 7 EM &% LMIT (clear video mewory) -
instruction manuals are terrible. And 1 3 . WHITL ©SC 97 GEMIT . : ELACK ESI :27 EMIT
mean terrible! Let me just give you one ?
examle: "For this information, please see 10
figure __ ", only to find there was no such i1
figure and no page number. 12
Graphics are one of the most impor- is
tant features with this machine. 512 x i§
256 bit mapped graphic is the best that P ———
can be expected under the price al- 3 ¢ Giaphic Package = 2 or L 2rG9iB0
lowance. There are quite a few well known :
microcomputers on the market claiming i < VECTON ¢ n == Lo, Hi)
High Resolution Graphics. But those High ; 1023 AND 32 10D
Resolution ones are just like a big blob 5
compared with the individual pixel that bit s yoen (LeX , HiX —)
mapped. 5o, I have a nice machine with § 17 . MIT ¢4 + EMIT
all _the fancy graphic cap.?hilities, ‘but ” voIn (loY , HY) — D
lacking the key to open it. Anxiety 3 32 - EMIT ' & Ry
mounts up quickly. .
I have a friend who's an excellent ‘? SIGSE ':'Ec(’.'ﬁ:"?m:n -Jc);-;an GEN
8080/Z80 assembly programmer. He im- 11
plemented UCSD Pascal for a microcom- 15 . PAGE | enter alpha {cod vecied
puter. Naturally, since he was the first 4 Tue rr
one, it seemed logical to seek his help. .
With a poorly written computer manual __'_'ee_ _—
¢ ¢ Grapnic Packags 2 7Db 2107540
2 TRIT
5 PAGE G35 32 EMI 76 IMIT 32 BN 66 TMin
S LNDRAW
2 URAV iy ---
g hHE S SWAY DUE A SWAP FRE-QUT
1 GMOVE { &y ---
2 G3 DaAv

Page 156 FORTH DIMENSIONS III/5

Screen # 14

0 ¢ Giaphic Package -~ 4 TLH
3 . RDRAW (Relative DRAV)
3 Y @ «+ SWAD i ® + SWAP DRAW
q
3 KMOVE « Relative MOVEI /
[} G5 RDAAW
7
b ACURSOR { alphacursor L § ~~=
9 G3 CRAW vs
0
11 SCROLL CAN CR ." press FUNC & 5 kevs
1z
i3 LINE-ERASE
14 BLACK I8 ¥ e CRE-UUT
15
Screen # 15
¥ - Graphic Package - 4 ToH
H JNITO
3 INIT ROT L pup 7 SWADT DU? 3 &Y
3 SQUARE I A
3 INITC X L & + OUF X Y @
4 Iev @ L@ + DULY
7 Ii@L e - oup 2 &
] X 2 YyYei @ - DuU?
?
id ERASZESGU HE -
13 INITO reL e+ 1
il f @ L @ « Y
13 X e ove - 3
4 @ L e -1
screen ¢ 16
6 ¢ Graphic Tackage - & Db
i iNITH
bl
o
] INITz L e i@ e iy
5
H) MANYSQUARES t [&4 7 :m £1 41 --~-
11 INITY SQUARE TH @ - & Du (N
12
H] CELAYELD LGoe CH

ZDELAY « D DO DILAYIL 44l

(we at least knew that the graphic part
simulates Tektronics 4010}, he spent a
whole week just trying to draw one mere
square along the edges of the CRT. Seem-
ingly it would be an easy job, but even so
it never came near to what he would have
liked. Later on, I spent a couple of weeks
twiddling with Microsoft BASIC compiler
and it also produced lousy results.

At the same time, I received my BO80
fig-FORTH listing. So, I typed the whole
60 K of assembly listing with the lousiest
text editor (i.e., ED. COM). It was a mon-
umental job. Nevertheless, I had the fig-
FORTH up and running.

By now, I was very desperate to get it
going. Equipped with the FORTH power
and the poor manual, I set forth to try the
graphics again. Again, I sought help from
a friend who works for Tektronics and is
experienced with FORTH. With FORTH,
the whole task turned into a very simple
job, compared to the previous attempts we
had with the assembly and BASIC. Thus,
now I am steadfast in my belief in
FORTH.

Screen 10 and 11 sets up the variables
and the Columbia Mx964 hardware depen-
dent words. The X-coordinate starts at
the lower left corner as 0, far right as
1023, while Y = 0 starts at the lower left
corner to the top as 779. Screen 12 to 14
defines the basic words, which draw the
line, move the cursor, relative draw and
move. Screen 15 defines the words to
draw a square and the erasing of it.
Screen 16 lets me draw many squares.

I know that there are still a lot of nice
words that can be written, such as, to
draw triangles, curve lines, etc. But, from
this small exercise, I am totally convinced
the FORTH is the one [will use from now
on.

L

[pLATANOS 79

£ pLATANOS!

“'BANANAS H

R

>

FOR TH DIMENSIONS T1i/5

Page 157

A VIDEO VERSION OF MASTER MIND
David Butler
Dorado Systems

The writing of this program served as
my introduction to FORTH. Using the fig-
FORTH Installation Manual, I stumbled my
way through the basic concepts of FORTH
and eventually arrived at this video
Master Mind game. The game is derived
completely from the original board version
of Master Mind, therefore, all credit for
the game itself goes to the Invicta Game
Company.

The program contains many of the
functions found in video editors, including
cursor management and character col-
lection. The sequence of this computer
version of the game is as follows: After
displaying the directions, the program
prompts the player to enter his skill level.
Then a 'secret code' is generated with the
help of the player tapping the space bar.
The screen is cleared, and a 'mask' of the
Master Mind playing board is displayed.
The cursor lands at the location where the
player is to begin entering his guess. The
program retains control of the cursor, re-
sponding to the player's key strokes.
Backspacing and tabbing are allowed, en-

)]
L]
ol

LR NFNPEW = C

10
11
12
12
14

15

SCR

[l

R R A]

15

12
{ Master
—-—2

Mind in Forth by David A. Butler DAB=17nov80)
David A. Butler

233200 Mission Blwd

Art 124

Union Citw. CA.

(415) 487-46£039

24587

A4 note about stvle:s 1f there is anwv, it is an accident.
This was mv first aprlication in Forth, so it mavy lack
some eledance.

####e Requirements: A video diseplavy 20 x 24 characters,

curgor addressing and ciear screen

functions.

19
{ Master
—T

Mind -notes— DAB=-17naovE0)
This is an implementation of Master Mind by Invicta.

The game is very PoPular because 1t 1s easy to learn and a

challendge to elav. There is a bit of luck te 1t. but 1t 1s

mainly an exercise in lodical deduction. A "secret” Cdode is

dgenerated, and it 1s "cracked" by analwvzindg a set of clues.

Those
difficulty

familiar with the oridginal board dame will have no
adjusting to the campPuter version. To newcomers,
follow the directions carefully and vou will have it 1n no
time. The Forth wversion is functionallvy identical to the
board version. It is written in fidg-Forth, and has been run
successful 1y an &502, 2080, 720, and &2000 pProcessors. It

is a good demonstration eprodgram as well as an enJovable game.

20
Master Mind

set up some variables DAB~17nova0)

: TAskKE 3 { FORGETTABLE MARKER)

O VARIABLE COLORE 28 ALLOT COLORS 20 BLANKS
O VARIABLE SCODE 2 ALLOT 0 VARIABLE GUESS 2 ALLOTY
O VARIABLE SECRET 2 ALLOT
O YARIABLE BLACKER O VARIABLE WHITER
- VARIABLE #COLORSE
YARIABLE CUR.ROW VARIABLE CUR.COL
XLo 1 VARIABLE YLOC O VARIAEBELE DONE

VARIABLE

21

Master Mind set up — cant. DAB—17novE0 3

@ LCL.CONSTANT - " YELLOWRED BLACK GREEN WHITE BLLUE b

0 VARIABLE COLOR.EEY & ALLOT ("colors" table)

letters)
227)]

{ lse the sum of the ASCII code
IlUl'

of the first =

{ 1.e. BLUE = "RB" + "LL" + = L&+ THA + 85 =
2324 COLOR.KEEY Ct

07 COLOR.EEY 2 + O

OLOR.EEY 4 + O

76 COLOR.EEY & + 0

O VARTABLE #ATTEMFTS { used to keep score)

Page 158

FORTH DIMENSIONS III/5

SCR # 22
{ Master Mind promet and randomize DAR-17nowvaid)
(These definitions det the random values far the dame)

TONEWCOUNT o [COLOR#E + '3) DUP $COLORS @ <
IF 1+ ELSE DROF 1 THEN 3

: RAND 1 BEGIN NEWCOUNT “TERMINAL UNTIL EEY DROF 3

Whim OD MR m O GD NN DR =0T

T ASE. FOR . RANLICM ." To randomize, tar space bar 4 times."
4 O D RAND I =SCODE + C!) LOOP CR O3
1
11 = ASK.FOR.LEVEL
1 CROW" Level 1 ar 2% " KEY DUF EMIT EEY EMIT
1 50 = IF YOHCOLORS ' ELSE & #OOLORS ' THEN CR
1
15 —=>
SCR # 23
¢ Master Mind transiate color to numerac DAE=17navEs)
fOCOLOR.FIND (LCOLOR#] ———-— k1 TYFPES COLLOR FROM #)
1 = & # 7 LCLCONSTANT 2+ + & TYPE H
4
S5 TRANSLATE . CODE

(converts color # from SC0DE to COLOR.KEY)
(numeric value in array “SECRET")

&

7

2 04 0 DO SCOpDE I o+ 0@ 1 - COLOR.KEEY + =ECRET
=

1+ C! LOOF H

14 @ R R» R [COMFILE] R sSWAF R sSWAF R SWaAP =R s

15 >

24 N

{ Master Mind CUFsOr motion NAEBE=-17noavid)

(OFf course, CRT dependent. Heres 1= Heath:)
{ ### start CRT derFrendent words H*EH¥F)

¢ CURSOR {(C[Y1 [X1——=L1 A CURSOR FOSITION

21 + SWAFP 21 + 89 27 EMIT EMIT EMIT 2

CLEAR (CI.LEAR CRT =SCREEN) 7 EMIT &9 EMIT :

: HOME (FUT CURSOR AT HOME FOSITION) O O UG

1)
1
=
4
&
b
o
=
)

10

{ ##% end of URT derosndert words *HE
SHOW. COLORS { DISFLAY COLOR CHOICES
11 71 0D01 2+ 52 CURSOR I COLOR.FIND
12 $¥COLORS @ 7 = IF 2 57 CURSOR . " <BLANE>" ELSE THEM
|2 12 58 CUR=DR . TAB between calo -
14 13 528 CURSOR " RFETURN to get olus H
15 ==
SCR O # 25)
O (Master Mind toard lavout mask DAR-17novac)

b

2t BAR .MM 3 :oDAasH Lot o (BEOARD SYMBOL=E)
3t TITLE 21 SPACES
4 5 = = MA S ER MIND mmgme it 2

= DASHER 2 21 CURSOR BAR 22 O Do " ~" LOOF BAR R
A ¢ CLINE DUF 21 CURSOR BAR 5S4 CURSOR BAR 3
7
=
L

"

i BPACER Z1 CHRSOR & e T
7 ¢ CBLOCK DUF CLINE 1+ SPFACER 3
10 = HIDDEN 2 22 CURSOR " XXXXXX XXXXXX XXNXXX Zaxkxxx"

1z ¢ DISPLAY.BOARD

13 CLEAR TITLE DASHER HIDDEN 24 3 Do [CRLOCE 2 +LOOF
14 SHOW. COLORS 3

15 -2

]

abling the player to keep changing his
quess until he is satisfied that it is consis-
tent with the clues he has thus far receiv-
ed. A correct guess is the result of the
player's logical deduction (or very good
luck) based on his previous clues. The
directions on screen 31 explain the mean-
ing of the two types of clues,

When the player signals he is ready,
the program compares the player's quess
to the secret code which was stored away
earlier. Clues are generated and dis-
played, indicating to the player how close
he is to the solution. The player has ten
chances to deduce the secret code.

There are many improvements which
could be made to this program to take ad-
vantage of more of FORTH'S built-in
vocabulary -- most notably PAD and re-
lated words. For those short of memory,
note that the directions could be short-
ened, left out, or read from disk with no
change to the overall logic of the pro-
gram,

Further notes and comments may bhe
found in the source screens.

FORTH DIMENSIONS I11/5

Page 159

i)
0
pral
k3

24
{ M™Master Mind cursor tracking definitions DAB-17nove0)

X XLoo @ 30 oty YLOC @ s

XBUMF X 52 =
IF 22 DUFP CUR.COL ! XLOC !
ELSE 1 XLOC +! X CUR.COL @ 2 + =
IF X CUR.COL ' THEN
THEN 3

WM ARG D

10 LNBUMPX X 22 = IF %2 XLoC ! ELSE -1 XLOC +' THEN 3

i1

12 ¢ TAB CUR.COL @ 47 =

173 IF 22 CUR.COL ¢

14 ELSE & CUR.COL +!

15 THERN CUR.COL @ XLoo ¢ DROF Y X CURSOR 3 ——=2
=SCR # 27

0 (Master Mind character collection/editing DAB-17novE0)

1 BACKSPALCE X CUR.COL @ =

=2 IF DROP

3 ELSE LUNBUMFX Y X CURSOR SPACE Y X CURSOR DROF

4 32 COLORS X + 22 - (!

b THEN 3

i

4 FROCESS { [CHAR]I -- [1 FROCESSES CHAR, MANAGES CURSOR)

2 DUP EMIT COLORS X + 22 — ' XBUMP Y X CURSOR ¢

=

10 ¢ GET.CHAR KEY DUF 127 =

i1 iF BACKSPACE ELSE DUP 9 =

12 IF TAE ELSE DUF 12 =

i3 IF 1 DONE ' DROF

14 EL.SE PROCESS THEN THEN THEN 3

15 —=3

SCR # 28
0 { Master Mind guess / row section UAB~-17novE0)

CCURLCOL DY X CURSOR

1
2
i : INITYIAL 2% 3 o+ DUR YLOC Y CURLROW 2 i XL
=
= 20 0 DO 22 1 COLORS + 0 LooP s

= GET.COLORS INITIAL O [DONE ' BEGIN GET.CHAR DONE @ UNTIL 3

=]

10 & PARSE.GUESS 4 O DO I & # COLORS + e

11 1 2 # COLORS 1+ + 0@

12 I 8 # COLORE 2 + + L@

13 + + I GUESS + ! LOOF 3

14 ——2

1%
SCR # 29

oo Master Mind Clue deneration DAR-17nowva0)

1

2 1 CLUE, CHECK

z 0 HL ER ! 0O WHITER ¢ (INITIALIZE COUNTS

i 4 O Ll

o] SECRET I + L@ GUESS 1+ 2@ = (CHECKE FOR DIRECT HIT

= IF 1 BLACKER +! 0 I GUESE +)

7 FHEN LIO0GOF

- a4 O [GLESS 1 + @ O > 1+ Pk WD HIT

4 o [

10 GLESS T + O SECRET O + C@ (CHECKE FOR WHIITE

11 IF 1 WHITER +! 1 I GUESSE + (! LEAVE

1.2 THEN

;3 LUDF THEM

14 R

15, o

Page 160 FORTH DIMENSIONS TI1/5

]
[}
Py

20

{ Master Mind present clues

i GIVE.CLUES
Y 1 CURSOR

FARSE. GUESS CLUE, CHECE
BLACKER @ . ." HLACK *
WHITER @ . ." WHITE

23 CURSOR

SCONE + C@ COLOR.FIND 1 & =
ELESE .* "OTHEN LOOP 23 1

il b= O

: UNMASK 3
4 0 D1
]F . II "

~

W

@ PAGAIN G 20 52 CURSOR " TYFE MASTER
LUOPLAY AGAIN, " LINMASE
LOSER 14 52 CURSOR
LUOND CIGAR. M TAGAIN 3
WINNER 16 92 CURSOR " PRECISELY. "
14 " TRYS." TAGAIN 3
15 =2
SCR # 321
{ Master

23 1 CURSOR 3

Mind Directions to rlaver
DIRECTIONS CLEAR CR CR LR CR o CR
16 O DD LOOF " Welcome to MASTER MIND.
" The obdect of Master Mind 15 to
CR " The computer will pick the secret
CR ." fidure it out.
R a" (1) # HLACKE

a in boath
(2) # WHITE

W B = D

colar

~0 00

" placed. " CR CK
Bz sure to seell

et
i3 bl e O

the 4 positions until vou“ve make

CR 3

Ta" 21

- NICE TRY BUT"

break the secret

Two kinds of clues are diven:”
means that wvou have # peds
and Fosition.”
means that vou have
carrect color that are

the colors correctly

" Twvee [RETURN] to receive clues." R CR "

[AB-17nava0)

CURSOR 3

S8 CURSOR

17 582 CURSUR

BATTEMETE 7

DaB=-17novag)

" CR CR

cade. "
vou moast”
LR
correct " TR
CR R

pPeds of the " K
incarrectly " CR

code, and

” You mavy tab amowung v

best suess." LR
Good-juck.™

Wour

DAB-1/nowv=0)

NMASE to deboug)

O { Master Mind ++ FINAL ++

I

£] MASTER DIRECT IONS O 0 #ATTEMFTS
4 ASK.FOR.LEVEL ASK . FOR. RANDOM

b DISFLAY . BOARL FRANSLATE. COUE ¢ eut
£ 0 10 DO

i 1 #ATTEMFTS +1
2 FARSE.GUESS 1 GET.COLORS GIVE. CLUES
@ EBLACKER @& 4 =
10 IF WINNER LEAVE
1 &, ELZE THEN
12 ~=1 +L0O0P
1z BLALC Co@ 4
14 IF LOSER ELSE THEN 3 MAZTER
15

===3 MASTER MIND s==a

{These are hidden RED RED BLUE

during slav? - =

4 BLACK O WHITE
1 BLACY 2 WHITE

! FRECISELY.
I 4 TRIES

0 BLACY & WHITE

0 BLACK 1 WHITE

{ Snaeshot of board aftéer elaving Haster Mind)

ANNOUNCEMENTS

NEW JERSEY FIG CHAPTER BEING
FORMED

Interested parties should contact:
George B. Lyons

280 Henderson St.

(212) 696-7606 - days

(201) 451-2905 - eves

BOSTON SEEKING
MEMBERS

FIG CHAPTER

Interested parties should contact:
R. L. Demrow

P. O. Box 158, Blv. Sta.
Andover, MA 01810

(617) 389-6400 x 198 - work
(617) 664-5796 - home

FIG

MOUNTAIN CHAPTER

ORGANIZING

WEST

Interested parties in the greater Salt Lake
City area should contact:

Bill Haywood

(801) 942-8000

TECHNICAL PRODUCTS CO. MOVES

New address:

P. 0. Box 2358

Boone, NC 28607-2358
FIG NEW YORK CITY MEETING
CONTACT

James Basile

40 Circle Drive
Westbury, NY 115900
(516} 333-1298

DALLAS-FT. WORTH METROPLEX FIG
MEETING CHANGE

Meetings now being held at:
Software Automation, Inc.
1005 Business Parkway
Richardson, TX

contact:
Marvin Elder (214) 231-9142
Bill Drissel (214) 264-9680

FORTH DIMENSIONS III/5

Page 161

TRANSFER OF FORTH SCREENS
BY MODEM

Guy T. Grotke
Forth Gear
San Diego, CA

Here is a simple but hopefully useful
set of definitions for serial transfer of
FORTH screens between machines.
Several of us in the San Diego FIG are in-
terested in sharing software, but we have
been unable to do so because of all the
different disk formats in use. While only a
few had access to similar machines, we
took a poll and found that more than 90%
had RS-232 ports. The following two
screens permit unidirectional transfer
with a modem over telephone lines at 300
baud or hardwired at 19,200 baud. The
definitions are not particularly sophisti-
cated. There is no error checking or
ack/nack with retry. Since it is source
code which is being transferred, some
editing will probably be necessary anyway,
so such safeguards aren't worth the effort
to write them.

There are four definitions which are
entirely system dependent in each
screen. These are SCUTPUT, COUTPUT,
SINPUT, and CINPUT. Respectively, they
direct output to the serial port, output to
the console, input from the serial port,
and input from the console. If your sys-
tem doesn't use 1/O flags or vectors, you
may have to write serial port drivers and
point KEY and EMIT to them for
SOUTPUT and SINPUT. In screen 80,
these four words are defined for an
APPLE running a serial interface in slot
two (driver at $C200). In screen 58, they
are defined for an Ohio Scientific with the
normal serial port found in the parsonal
models. These are examples of vectored
and flagged 1/O redirection.

The remaining definitions should be
quite universal among fig {(and other)
systems. Screen 80 contains all that is
necessary to receive screens under the
control of the sender. FINISHED and
RECEIVE simply redirect input and out-
put. The word P redefines the fig editor
word P to do the same thing except with
I/O redirection. Note that these three
definitions are simple and fool-proof
enough that they could be sent to another
computer if that computer was first told
to accept all input from the serial transfer
line. Once these definitions were com-
piled by the receiving system, screen
transfer could beqgin. In screen 58, the
word WAIT waits for anything to be sent
back from the receiver with a carriage
return on the end. The word OK is defined
just in case the receiver sends one or more
OK's back to the sender during transfers.
SEND-SCREEN will send a screen to the
receiver, one line at a time, by emulating
a user entering lines with the receiver's
line editor. First SEND-SCREEN asks the
receiver to list the screen being sent.

This insures that the proper disk blocks
are resident. After the LIST, the receiver
will reply "OK" followed by a carriage re-
turn. WAIT makes the transmitter wait
for this carriage return. This is the only
handshaking needed. Each line's text is
sent preceded with the letter P and a
space, and followed by a carriage return.
WAIT causes the transmitter to wait for
the receiver to reply "OK" after each line
is sent. SEND is a multi-screen transmit-
ter. Note that the range of screens re-
ceived and recorded on disk will corres-
pond exactly to the screen numbers sent.

If that is inconvenient, a variable contain-
ing an offset or starting receiver screen
number could be added.

The proof that it works is before you:
the different screen formats and distant
screen numbers reflect the fact that
screen 58 was written on my OSI and sent
to my APPLE to be printed. I have used
these definitions to send a 6502 assembler,
a database manager, and several hundred
data entries between my machines with no
trouble.

SCR # S8
O (Serial Screen Transfer —— sending GT6 7-02-81
1 HE X
2 sOuUTRPUY 2 C! 3 ¢ SEND QUTPUT TO SERIAL + CONSOLE
I CouTrPuT 22 C! 3 (SEND QUTFUT ONLY TO CONSOLE
4 = SINFUT 21 CY 3 ¢ GET INFUT FROM SERIAL
S 3 CINFUT Cit—is (GET INFPUT FROM CONSOLE
& @ SOUT SOUTPUT CINPUT 3 1 SIN COUTFUT SINPUT 3
7 s 0K g : WAIT SIN RUERY 3
2 1 SEND.SCREEN { SCR# -~ nothing left
? SOUT DUFP . ." COUTFUT LIST SOUTFUT " CR WAIT
10 10-0-DO--1I—-S0U—s— PV OVER—-INE—ER
11 WAIT CINPUT 2?TERMIMAL IF LEAVE THEN LOOF j
12 @ SEND { FIRST SCR# / LAST SCR# ——» nothing left
13 1+ SWAF DO 1 SEND.SCREEN ?TERMINAL IF LEAVE THEN LOOF
14 S0UT CR WaATT sout LOFINISHED " CROOCOUTRUT g
5 DECIMAL 38
SCR # 80
O CONSOLE/SERIAL I/0)
1 FORTH DEFINITIONS HEX
2 ¢ UNLINE FDFO 36 ! FD1R 38 ! 3
A S0OUTEUT SI H
4 : COUTEUY FDFO 36 ' 3
S SINFUT C200 38 ! g
& ¢ CINFUT FDIEB 38 ! 3
8 EDITOR DEFINITIONG
10 : FINISHED CINFUT COUTPUT FLUSH 3
11 : P COUTPUT F SOUTFUT 3
12 1 RECEIVE COUTFUT SINFUT 3

L3 FORTH DEFINITIONS EDITOR
DECTMAL

-t
o

HE>

HELP WANTED

Part-time - New York-New Jersey Area

Assist internationally known sound
artist, Max Neuhaus, develop additional
software for micro computer controlled
sound synthesis system. FORTH con-
trolling 32 synthesizers from CRT Light
Pen Terminal.

Moderate fees, travel possibilities,
hardware experience preferred.
Send information or resume to:

Max Neuhaus

210 Sth Avenue

New York, NY 10010

Independent FORTH programmers to im-
plement Marx FORTH for TRS-80, Apple,
CP/M and other systems. Royalties paid
for best implementation with most en-
hancements. Great opportunity for the
competitive programmer who, like me,
would like to make a living at home and
not have to move to California to do it.

Contact:

Marc Perkel

Perkel Software Systems

1636 N. Sherman

Springfield, MO 65803

(417) 862-9830

Page 162

FORTH DIMENSIONS I11/5

PRODUCTS REVIEW

SORCERER-FORTH
by Quality Software

For about a year, I have been using an
excellent version of fig-FORTH tailored
for the Exidy Sorcerer. It is a product of
Quality Software, 6660 Reseda Bivd.,
Suite 105, Reseda, CA 91335,

FORTH for the Sorcerer implements
Release 1.1 of 8080 fig-FORP.TH. It in-
cludes a full screen editor and input/-
output routines for the keyboard, screen,
and both serial and Centronics printers.
The Sorcerer's excellent graphics are also
available.

Disc storage is simulated in RAM. A
32 K Sorcerer can hold 14 screens--with
48 K, up to 30 screens. Tape-handling
routines are provided, to move data to and
from the simulated disk space. The CP/M
disk interface routines are present, but
not implemented.

One of the nicest features of Quality
Software's FORTH is its documentation.
The 126-page manual is well-written, and
relatively complete. [t includes sufficient
information for a FORTH neophyte,
though it does not delve too deeply into
system operations.

Quality Software permits--even en-
courages--users to market application
programs incorporating Sorcerer FORTH.
They do ask that written permission be
obtained frist, but promise that permission
will normally be granted after review of a
sample of the program.

I highly recommend this excellent pro-
duct, and ask that you include it in your
periodic listing of available software.

C. Kevin McCabe

1560 N. Sandburg Terr. #4105
Chicago, IL. 60610

(312) 664-1632

A COMPARISON OF TRANSFORTH
WITH FORTH
Insoft
Medford, OR

A question we've been hearing a lot
lately is "How does TransF ORTH compare
with fig-FORTH?" In structure, Trans-
FORTH is similar to most version of
FORTH, but is is not a FORTH-79 Stand-
ard System. The major differences are
outlined in this paper.

Floating-point numbers

In TransFORTH, the stack itself con-
tains floating-point numbers, with 9 digits
of accuracy. Mo special sequences are
required to retrieve floating-point
values. Words are available for storing or
retrieving single bytes and two-byte cells,
but all values are stored on the stack in

floating-point format. Numbers can be as
large as 1E38, and as small as 1E-38.

Transcendental functions

The floating-point format mentioned
above makes TransFORTH a natural lang-
vage for transcendental functions. Func-
tions included in the system which are not

found in most versions of FORTH
include: sine, cosine, tangent, arctangent,
natural logarithm, exponential, square

root, and powers.
Data structures

TransFORTH contains words that will
store or fetch 5-byte floating-point
values, 2-byte cells, and single bytes from
any location in memory. TransfCRTH
does not have the fig-FORTH <BUILDS,
DOES> construction, but instead uses a
powerful built-in array declaration.
Arrays can either fill space in the diction-
ary, or be located absolutely in memory.
Arrays with any number of dimensions
may be declared, and each dimension can
have any length, within the limits of
available memory.

Strings

Strings are merely arrays (of any di-
mension and size) with an element length
of one. Each character occupies one byte,
i.e., one element of the array. Built-in
string functions included.

' Disk aceess and the editor

TransFORTH does not use the virtual
memory arrangement found in most ver-
sions of FORTH. Instead a standard DOS
3.3 format is used, and files are called
from the disk by name.

TransFORTH includes a straightfor-
ward line-based text editor. The editor is
not added to the dictionary as a list of de-
fined words, but is included as a separate
module callable from TransFORTH. DOS
text files are used for saving source
files. This means that any text editor that
uses DOS text files may be used for edit-
ing TransFORTH programs. In addition,
TransF ORTH program data may be shared
with other programs and languages.

Grahics

Two graphics utilities along with a
couple of graphics demo programs are in-
cluded on the system diskette. One utility
contains high-resolution graphics and
Turtlegraphics commands, and the other
has low resolution graphics commands.
The graphics capabilities are added to the
system by compiling these utilities into
the dictionary. The hi-res package in-
cludes a call to a module which allows
text and graphics to appear together any-
where on the screen.

Voeabulary

TransFORTH is a single-vocabulary

system. Related programs can be grouped
together in disk files, rather than in sep-
arate vocabularies. (Multiple vocabularies
find their most usage in multi-user sys-
tems.)

Compilation and speed

All entries in TransFORTH are com-
piled directly into 6502 machine language
for greater speed. No address interpreter
is used. Even immediate keyboard entries
are compiled before being executed. This
means that routines can be tested at the
keybopard for speed hefore being added as
colon definitions.

TransFORTH is fast. It is not as fast
an integer versions of FORTH, because it
handles 5 bytes with every stack manipu-
lation instead of two. TransFORTH pro-
grams will run faster than similar Apple-
soft programs, and show a great increase
in speed when longer programs are com-
pared.

While TransFORTH works much like
Fig-FORTH, the differences between the
two become readily apparent under closer
examination. FORTH programmers will
pick up TransFORTH with little trouble,
but nearly all FORTH programs will re-
quire translation into TransFORTH to
take advantage of its powerful features.
These features are accessible with a min-
imum of work from the user, bringing a
FORTH-like environment into the realm
of practical scientific and business pro-
gramming for the first time.

EDITOR'S RESPONSE TO
TRANSFORTH

The above material is extracted from
explanatory sales material from the pro-
gram vendor. Commentary we have indi-
cated from TransFORTH users can be
summarized:

1. This implementation should be
named as one of the CONVERS group
of languages, as it compiles to as-
sembly language rather than threaded
code.
2. It is easier to add floating point
math to FORTH, than to alter Trans-
FORTH to use integers for execution
speed improvements. Why not both?
3. If the implementor had done his
DOS 3.3 interface using the standard
FORTH word BLLOCK, an immense gain
in value would result. Direct access
and DOS compatibility.
4, <BUILDS DOES> probably could be
added but apparently the implementor
doesn't know how or chooses to deprive
his customers of this powerful struc-
ture. Arrays are definitely not equiva-
lent technically or philosophically.

In conclusion, it appears that
TransFORTH is a reverse POLISH
BASIC, with names rather than
labels. A small amount of additional
effort would have built upon FORTH,
rather than strip out major attributes.-
-ed.

FORTH DIMENSIONS I11/5

Page 163

NEW PRODUCTS

FLEX-FORTH

Complete compiler/interpreter, assem-

bler, editor, operating system for:

$25.00
$21.00

APPLE II computers
KIM computers

FLEX-FORTH is a complete structured
language with compiler, interpreter,
editor, assembler and operating system for
any APPLE 1l or APPLE Il+ computer with
48K and disk or KIM with 16K of mem-
ory. Most application programs run in less
than 16K starting at 1000 HEX and often
as little as 12K, including the FLEX-
FORTH system, itself.

This is a full-featured FORTH follow-
ing the F.LG. standard, and contains a
6502 assembler for encoding machine
language algorithms if desired. The
assembler permits macros BEGIN.L..UNTIL,
BEGIN...AGAIN, BEGIM...WHILE...
REPEAT, IF...ENDIF, and IF...ELSE...
ENDIF, Editor and virtual memory files
are linked to the Apple DOS 3.2, An ap-
plication note for upgrading to DOS 3.3 is
included. Object code on disk with user
manual sells for $25.00. (APPLE)} or on
cassette with user manual for $21.00
(KIM),

A complete source listing is available
to purchasers of FLEX-FORTH for
$20.00. The source is valuable in both
showing how FORTH works and in giving
examples of FORTH code and integrated
assembly code.

Order from: GEOTEC, 1920 N. W.
Milford Way, Seattle, WA 98177. Be sure
to specify machine.

MARX FORTH V1.1
Perkel Software Systems
1636 M. Sherman
Springfield, MO 65803
(417) 862-9830

Enhanced Z80 fig-FORTH implemented
for MNorthstar System enhancements in-
clude link fields in front of name for fast
compile speed; dynamic vocabulary relink-
ing; case; arguments-results with 'to' vari-
ables: and more. 79-Standard package in-
cludes easy to use screen editor.

Price: $75.00

Smart assembler, meta-compiler and
source code (in FORTH) sold separately.
Call for information.

TWO NEW PRODUCTS FROM
LAXEN AND HARRIS, INC.

Laxen and Harris, Inc,
24301 Southland Drive
Hayward, CA 94545
(415) 887-2894

1. Working FORTH
Release 2.1

"Starting FORTH'" compatible FORTH
software for a 8080 or Z80 computer
system with the CP/M (TM) operating
system.

Copyright (C) 1981 by Laxen and Harris,
Inc. All rights reserved.

This FORTH implementation is com-
patible with the popular book "Starting
FORTH" by Leo Brodie. It is intended to
be a companion to the book to aid learning
FORTH. It is also a complete environ-
ment for developing and executing FORTH
programs. [t contains:

Compilers

Disk operating system

Full names stored, up to 31 characters

String handling

Enhanced error checking

16-bit and 32-bit integer arithmetic

and input/output

This is a single-user, single-task sys-
tem which is not ROM-able as supplied.
Floating point arithmetic and CP/M file
access are not supported.

This system as supplied runs comfort-
ably in a 8080 or Z80 computer system
with at least 32K bytes of RAM memory,
at least one floppy disk drive (8" single
density, single sided, soft sectored format
is assumed), and the "BIOS" part of the
CP/M operating system. The use of a
printer is supported but not required. This
software may be easily modified to use
other memory sizes or disk formats. It
requires 14K bytes of memory which in-
cludes 4K hytes of disk buffers.

This FORTH system was adapted from
the fig-FORTH model but is not fully
compatible with that language dialect. [t
is also not fully compatible with the
FORTH-79 Standard. The three dialects
are similar, but the Starting-FORTH ver-
sion has advantages over the ather two.

Price: $33.00 - plus $2.00 - Postage and
Handling

CP/M is a registered trademark of Digital
Research, Inec.

2. Learning FORTH

Learning FORTH is a computer aided
instruction package that interactively
teaches the student the fundamentals of
the FORTH programming language and
philosophy. It consists of a set of
FORTH screens that contain program
source code and instruction text. [t is
based on the book, "Starting FORTH," by
Leo Brodie. It will run with any Starting
FORTH compatible system, as well as fig-
FORTH system. The manual is only one
page long and describes how to load the
systern. After that, everything is self
explanatory. [t is supplied on 8" singie
density diskettes in IBM 3740 format. The
price is $33.00 if ordered logether with
the Working FORTH Disk. Please add
$2.00 for shipping and handling, and allow
at least 3 weeks for delivery.

Note: Buy both for $55.00 plus $2.00
postage and handiing.

Page 164

POLYMORPHIC FORTH
Abstract Systems, ete.
1686 West Main Read
Portsmouth, R1 02871

(401) 683-0B45
Ralph E. Kenyon, Jr.

Product Description: FORTH (Poly-
Morphic fig-FORTH 1.1.0). 8080 fig-
FORTH 1.1 without asmb. or Editor (uses
PolyMorphic resident editor.)

A demo application which computes a
table of values for a general quadratic
equation is included.

PolyMorphic Systems 8813, 8810 needs
only 16K. Doccumentation on FORTH not
included.

Manual: documentation covers parti-
cular implementation details for fig-
FORTH to interface to the PolyMorphic
Systems Microcomputer. Sorted VLIST
included.

Iimplementation document available
separately. Separate document available
for cost of postage. Product data avail-
able on PolyMorphic S55D 5" diskette
format. &4 copies sold to date. Price:
$40.00, includes shipping, diskette, (R.L
residents add 6% sales tax). Warranty
limited to replacement of a diskette
damaged in shipment. (We'll try to fix any
bugs discovered.) Orders shipped out
within 3 days of receipt (usually next day).

HEATH H89 FORTH
MCA
8 Newfield LLane
Newtown, Conn. 06470

MCA announces the availability of
FORTH for the Heath H89 computer.
MCA FORTH is 8080 fig-FORTH V1.1
configured to run on a single disk HB89 with
32K or more of memory, utilizing HDOS
1.6 or later,

MCA FORTH provides the standard
FORTH facilities plus the following
special features: HDOS file manipulation
capability, a control character to restart
FORTH (recover from loops), on-line
tailoring of FORTH facilities (e.q., num-
ber of disk buffers), ability to hook to sep-
arately assembled routines, and use of
Heath DBUG.

Items supplied with FORTH include the
fig-Editor, an 8080 structured assembler,
and two games provided as examples of
FORTH programming.

The documentation supplied with MCA
FORTH is suitable for experienced
FORTH programmers; however, a bibli-
ography of documentation for beginners is
provided.

MCA FORTH is available from MCA
on a 5-1/4" disk for $25 including docu-
mentation. Documentation is available
for $4.00. (Conn. residents please add
sales tax).

FORTH DIMENSIONS III/5

NEW PRODUCTS FROM
INNER ACCESS CORPORATION

1. Fig-FORTH compiler/interpreter for
PDP-11 for RT11l, RSXI1M or stand-
alone with source code in native as-
sembler. Included in this package are
an assembler and editor written in
FORTH and installation documenta-
tion. Price: $80.00

This is available on a one 8" single
density diskette only.

Reference Manual for PDP-11 fig-
FORTH above. Price: $20.00

2. Fig-FORTH ecompiler/interpreter for
CP/M or CROMEMCQO CDOS system
comes complete with source code writ-
ten in native assembler. Included in
this package are an assembler and
editor written in FORTH and instal-
lation documentation. Price: $80.00

All diskettes are single density, with 5-
1/4" diskettes in 128 byte, 18 sector/-
track format and 8" diskettes in 128
byte, 26 sector/track (IBM) format.

Released on two 5-1/4" diskettes with
source in BOBO assembler.

Released on one 8" diskette with
source in BOBO assembler.

Released on two 5-1/4" diskettes with
source in Z80 assembler.
Released on one B" diskette with
source in ZB0 assembler.

Manual for CP/M (or Cromemco) fig-
FORTH above. Price: $20.00

3. METAFORTH'™ Cross-compiler for
CP/M or Cromemeco CDOS to produce
79-Standard FORTH on a target
machine. The target can include an
application without dictionary heads
and link words. It is available on single
density diskettes with 128 byte 26
sector/track format., Target compiles
may be readily produced for any of the
following machines:

CROMEMCO-all models
TRSB0 Model Il under CP/M
Nerthstar Horizon

Prolog 780

Released on two 5-1/4" diskettes or on
one B" diskette.

Price: $450.00

4, Complete Zilog (AMD) Z8002 develop-
ment system that can be run under
CP/M or Cromemco CQQF System
includes a METAFORTH cross com-
piler which produces a ZB002 79-
Standard FORTH compiler/interpreter
for the Zilog ZB8000 ODevelopment
Module. Package includes a Z8002
assembler, a Tektronix download
program and a number of utilities.

Released on two 5-1/4" diskettes or on

one 8" diskette.
Price: $1,450.00

5. Zilog 78002 Development Module fig-
FORTH ROM set. Contains 79-Stand-
ard FORTH with ZB002 assembler and
editor in 4 {2716) PROMS. Price:
$280.00

CODE9
Arthur M. Gorski
2240 S, Evanston Avenue
Tulsa, OK 74114
(918) 743-0113

CODEY is a M6B09 Assembler for use
with any fig-FORTH system. It features
all M6B09 addressing modes except long
relative branch instructions. It performs
syntax error checking at assembly time.
Memory requirements: 4.75K bytes free
RAM above FORTH. CODE9 is distribut-
ed as a commented source listing and
manual. Price: $20.00

PET-FORTH
by

Datatronic AB
Box 42094
5-126 12 Stockholm
Sweden
(0)-B-744 59 20
Peter Bengtson

Product Description: Extended fig-
FORTH for the Commodore CBM/PET
computer series.

Screen editor, utilizing the special CBM
screen editing possibilities for compact-
ness and ease of use, macro-assembler,
double-precision extensions, CTRT hand-
ling, random numbers, real-time clock, a
very complete string package, [EEE con-
trol words, integer trig functions.

An expansion disk {coming soon} will con-

tain floating point arithmetic including
complex numbers, transparent overlay
control words for data and program

segments, a file system, and more. A
METAFORTH compiler will shortly be
available.

Runs on CBM 8032 plus an 8050 dual disk
drive. Other configurations coming: 4032,
4040, VIC, and MicroMainf rame.
8032 version runs in 32K only. 4032
versions will run in either 16 or 32K,

Manual Description:
all source code.

322 pages, including

Complete introduction to FORTH, Special
chapters cover the asembler, <BUILDS and
DOES», IEEE handling, strings etc.

Manual is available separately.

Separate purchase price is $40.00. This is
not creditable towards later purchase.

Product/Ordering Data: Shipped as disk-
ette and an accompanying security ROM,
holding part of the Kernel.

Currently, there are approximately 75 in-
stallations, after 2 months on the market.

Price: $290.00 Includes diskette, ROM,
manual, shipping and taxes.

PET-FORTH, as all other Datatronic soft-
ware, carries a life-time guarantee. All
future versions will be distributed to the
registered owners without any cost what-
Soever,

Delivery is immediate.

US dealers are invited. UK sole distrib-
utor is Petalect Electronic Services Ltd,
33/35 Portugal Road, Woking Surrey. You
may also order directly from us.

Diskette of FORTH Application Modules
from
Timin Engineering Company
9575 Genessee Avenue, Ste, E-2
San Diego, CA 92121
(714) 455-9008

The diskette of FORTH application
madules, a new product by Timin Engin-
eering, is a wvariety package of FORTH
source code. It contains hundreds of
FORTH definitions not previously pub-
lished. Included on the diskette are data
structures, software development aids,
string manipulators, an expanded 32-bit
vocabulary, a screen calculator, a typing
practice program, and a menu gener-
ation/selection program. In addition, the
diskette provides examples of recursion,
<BUILDS...DOES> usage, output number
formatting, assembler definitions, and
conversational programs. One hundred
screens of software and one hundred
screens of instructional documentation are
supplied on the diskette. Every screen is
in exemplary FORTH programming style.

The FORTH screens, written by Scott
Pickett, may be used with Timin FORTH
or other fig-FORTH. The price for the
diskette of FORTH application modules is
$75.00 (if other than 8" standard disk, add
$15.00). To order the FORTH modules,
write Timin Engineering Company, 9575
Genesee Avenue, Suite E-2, San Dieqgo,
CA 92121, or call (714) 455-9008.

AUDIO TAPES OF
1980 FORML CONFERENCE
AND 1980 FIG CONVENTION

1. FORTH-79 Discussion, 200 min. Price:
$35.00

2. Purpose of FIG, 37 min. Price: $10.00
3. Charles Moore, 63 min. Price: $15.00

4. FORTH, Alan Taylor, 47 min. Price:
$15.00

Complete set $65.00
edu-FORTH
1442-A Walnut Street, #332
Berkeley, CA 94709

FORTH DIMENSIONS II1/5

Page 165

FORTH VENDORS

The following vendors have versions of

FORTH available or are consultants. (FIG ::fb\:?:eer;i::el;tion £ ical Res. G
; . mperic: es. Grp.
makes no judgment on any products.) Arlington Heights, IL 60004 P. 0. Box 1176

ALPHA MICRO

Professional Management Services

724 Arastradero Rd. #109
Palo Alto, CA 94306
(415) 858-2218

Sierra Computer Co.
617 Mark NE
Albuguerque, NM 87123

APPLE
IDPC Company
P. O. Box 11594
Philadelphia, PA 19116
(215) 676-3235

IUS (Cap'n Software)
281 Arlington Avenue
Berkeley, CA 94704
(415) 525-9452

George Lyons

280 Henderson St.
Jersey City, NJ 07302
(201) 451-2905

MicroMotion

12077 Wilshire Blvd. #506
Los Angeles, CA 90025
(213) B821-4340

CROSS COMPILERS
Mautilus Systems
P.0O. Box 1098
Santa Cruz, CA 95061
(408) 475-7461

polyFORTH
FORTH, Inc.
2309 Pacific Coast Hwy.
Hermosa Beach, CA 90254
(213) 372-8493

LYMNX

3301 Ocean Park #301
Santa Monica, CA 90405
(213) 450-2466

M & B Design
820 Sweetbay Drive
Sunnyvale, CA 94086

Micropolis
Shaw Labs, Ltd.
P. O. Box 3471
Hayward, CA 94540
(415) 276-6050

North Star
The Software Works, Inc.
P. O. Box 4386
Mountain View, CA 94040
(408) 736-4938

PDP-11

Laboratory Software Systems, Inc.

3634 Mandeville Canyon Rd.
Los Angeles, CA 90049
(213) 472-6995

0sI
Consumer Computers
8907 L.aMesa Blvd.
LaMesa, CA 92041
(714) 698-8088

(312) 259-1355

Technical Products Co.
P. O. Box 12983
Gainsville, FL 32604
(904) 372-8439

Tom Zimmer
292 Faleato Dr.
Milpitas, CA 95035

1802
FsS
P. O. Box 8403
Austin, TX 78712
(512) 477-2207

6800 & 6809
Kenyon Microsystems
1927 Curtis Avenue
Redondo Beach, CA 90278
(213) 376-9941

TRS-B0
The Micro Works
P. 0. Box 1110
Del Mar, CA 92014
(714) 942-2400

Miller Microcomputer Services

61 Lake Shore Rd.
Natick, MA 01760
(617) 653-6136

The Software Farm
P. O. Box 2304
Reston, VA 22090

Sirius Systems

7528 Oak Ridge Hwy.
Knoxville, TN 37921
(615) 693-6583

6502
Eric C. Rehnke

540 S. Ranch View Circle #61

Anaheim Hills, CA 92087

Saturn Software, Ltd.
P. 0. Box 397

New Westminister, BC
V3L 4Y7 CANADA

8080/Z80/CP/M
Laboratory Microsystems
4147 Beethoven St.
Los Angeles, CA 90066
(213) 390-9292

Timin Engineering Co.
9575 Genesse Ave. #E-2
San Diego, CA 92121
(714) 455-9008

Application Packages
InnoSys
2150 Shattuck Avenue
Berkeley, CA 94704
(415) 843-8114

Decision Resources Corp.
28203 Ridgefern Ct.

Ranche Palo Verde, CA 90274

(213) 377-3533

Milton, WA 98354
(206) 631-4855

Firmware, Boards and Machines

Datricon

7911 NE 33rd Dr.
Peortland, OR 97211
(503) 284-8277

Forward Technology
2595 Martin Avenue
Santa Clara, CA 95050
(408) 293-8993

Rockwell International
Microelectronics Devices
P.0. Box 3669

Anaheim, CA 92803
(714) 632-2862

Zendex Corp.
6398 Dougherty Rd.
Dublin, CA 24566

Variety of FORTH Products
Interactive Computer Systems, Inc.

64073 Di Marco Rd.
Tampa, FL 33614

Mountain View Press

P. O. Box 4656

Mountain View, CA 94040
(415) 961-4103

Supersoft Associates
P.O. Box 1628
Champaign, IL 61820
(217) 359-2112

Consuitants

Creative Solutions, Inc.
4801 Randolph Rd.
Roekville, MD 20852

Dave Boulton

581 Oakridge Dr.
Redwood City, CA 94062
(415) 368-3257

Go FORTH

504 Lakemead Way
Redwood City, CA 94062
(415) 366-6124

Inner Access

517K Marine View
Belmont, CA 94002
(415) 591-B295

John 5. James
P. O. Box 348
Berkeley, CA 94701

Laxen & Harris, Inc.

24301 Southland Drive, #303
Hayward, CA 94545

(415) 887-2894

Microsystems, Inc.

2500 E. Foothill Blvd., #102
Pasadena, CA 91107

(213) 577-1471

Page 166

FORTH DIMENSIONS [I1/5

FORTH INTEREST GROUP

MAIL ORDER
FOREIGN
USA AIR

[J Membership in FORTH INTEREST GROUP and Volume Ill (6 issues) of $15 $27

FORTH DIMENSIONS.
1 Volume Il of FORTH DIMENSIONS (6 issues) $15 $18
[0 Volumel of FORTH DIMENSIONS (6 issues) $15 $18
[0 fig-FORTH installation Manual, containing the language mode! of $15 $18

fig-FORTH, a complete glossary, memory map and installation instructions

Assembly Language Source Listings of fig-FORTH for specific CPU’s and

machines. The above manual is required for installation. Check appropriate

box(es). Price per each.

701802 (1 6502 J 6800 {1 6809

] 8080 [J 8086/8088 [0 9900 0 APPLE Il

[1 PACE 1 ALPHA MICRO O PDP-11 1 NOVA $15 $18
o “Starting FORTH” by Brodie. BEST book on FORTH. (Paperback) NEW %16 $20
[0 “Starting FORTH” by Brodie. (Hard Cover) E $20 $25
[0 PROCEEDINGS 1980 FORML (FORTH Modification Lab) Conference $25 $35
[J PROCEEDINGS 1981 FORTH Univ. of Rochester Conference $25 $35
[0 PROCEEDINGS 1981 FORML Conference, Both Volumes NEW $40 $55

0 Volume |, Language Structure $25 $35

O Volumelll, Systems and Applications $25 $35
0 FORTH-79 Standard, a publication of the FORTH Standards Team $15 $18
0O Kitt Peak Primer, by Stevens. An indepth self-study primer. $25 $35
[0 BYTE Magazine Reprints of FORTH articles, 8/80 to 4/81 $5 $10
O FIG T-shirts:[J Small [0 Medium [Large [X-Large $10 $12
[0 Poster, Aug 1980 BYTE cover, 16 x 22" $ 3 $ 5
0 FORTH Programmer’s Reference Card. If ordered separately, send a FREE

stamped, addressed envelope.

TOTAL $

NAME MAIL STOP/APT

ORGANIZATION (If company address)

ADDRESS

CITY STATE ZIP COUNTRY

VISA # MASTER CHARGE #

Expiration Date (Minimum of $10.00 on charge cards)

Make check or money order in US Funds on US bank, payable to: FIG. All prices include postage.
purchase orders without check.

FORTH INTEREST GROUP

ORDER PHONE NUMBER: (415) 962-8653

POBOX 1105

No

SAN CARLOS, CA 94070

Support
Your Local

FIG

Chapter

BULK RATE

U.S. POSTAGE
PAID
Permit No. 241
Mtn, View, CA
FORTH INTEREST GROUP
P.O.Box 1105
San Carlos, CA 94070
\
sull 1%

Address Correction Requested

