
Mastering
Rodents
2-bit programming of 8-bit mice

Bored Already?

https://github.com/blondie7575/MouseII

https://github.com/blondie7575/WeeGUI

Searching for
modernity

• Firmware, firmware, where to put the firmware?

• Screen holes! Some readonly!

• Slot firmware areas!

• All of them!

Searching for
modernity

• Old school ROM entry points

• JSR $fded

• Modern style API calls

• Indirection in the name of abstraction

Spanning
generations

• Apple //e Enhanced and Apple //c quite different

• Firmware moved in nearly every //c version

• Many other pain points here, so stay tuned

• Lots of self-modifying code

Search for
pellets

• Apple //e

• Search for magic pattern $38 18 01 20 d6

• Yes, seriously

• Apple //c

• The same!

Squeak!

• ROM entry: $cX00 + routine index

• Indirect jump

• X = routine number

• Y = slot number

• Not re-entrant!!

Better
mousetrap?

• Mouse is fundamentally asynchronous

• Interrupts are your friend

• On //c, they’re interrupts anyway

• Independent of clock speed

• Included code used Combined Interrupt Mode

Better
mousetrap?

• SERVEMOUSE

• X,Y values 0-1023

• Set clamping for power-of-two scaling math

Better
mousetrap?

• For example, for 80 distance in X:

• Clamp to 640

• lsr $0578 
ror $0478 
lsr $0578 
ror $0478 
lsr $0578 
ror $0478

Comparing
Apples

• Apple //e Enhanced with AppleMouse card:

• Onboard 6502

• Interrupts only on new data (movement, button)

• 60Hz sample rate

• Button interrupts only on down event

Comparing
Apples

• Apple //c and //c+:

• CPU driven

• VBL interrupts

• 30Hz sample rate

• Button interrupts always while down

Known issues

• No button up interrupt

• New button down not detected until mouse moves

• Either play nice with user on //e only, or be
consistent

• Not IIgs compatible, although mostly harmless

Demo!

Any Questions?

https://github.com/blondie7575/MouseII

https://github.com/blondie7575/WeeGUI

