UNDERTALE FOR 64K APPLES: SOURCE FOR SELECTED ASSEMBLY ROUTINES

Due to performance concerns, a large chunk of UnderTale for Apple II relies on 6502 assembly routines. This is particularly important for music synthesis and animation, routines for which we document below.

Accuracy of these code listings is not guaranteed - copy/paste at your own risk. (It's likely safer to refer to the binaries used in the actual demo.)

1. MUSIC SYNTHESIS

1.1. spookbit. With music synthesis, it is always important to keep track of timing, which is why you will see cycle counts next to each instruction, as well as the occasional 'screw timing' comment when trying to handle branching.
The routine uses the X and Y registers to keep track of the state of each voice, while the accumulator is alarmingly misused to keep track of which voice needs to be output to the speaker. Note that the Apple's speaker is a 1-bit beeper, and the only way to control it is by accessing $\$$ C030 in memory to toggle the output. Because of this peculiarity, we access the location carefully in each iteration of the loop so that the routine 'knows' the 'state' of the speaker.

\$0303	A9 FF	LDA \#\$FF	
\$0305	85 EB	STA \$EB	
\$0307	AE 0103	LDX \$0301	
\$030a	AC 0203	LDY \$0302	
\$030d	861 E	STX \$1E	
\$030f	84 EE	STY \$EE	
\$0311	A9 00	LDA \#\$00	
\$0313	CE 0003	DEC \$0300	[6]
\$0316	F0 59	BEQ +\$59	[2; 3 if branch to RTS]
\$0318	4A	LSR A	[2]
\$0319	9005	BCC +\$05	[2 or 3; branches to DEX because screw timing]
\$031b	0980	ORA \#\$80	[2]
\$031d	8D 30 C0	STA \$C030	[4]
\$0320	CA	DEX	[2]
\$0321	D0 04	BNE +\$04	[2; 3 if branch to DEY]
\$0323	A6 1E	LDX \$1E	[3]
\$0325	49 AA	EOR \#\$AA	[2]

[^0]| \$0327 | 88 | | DEY | [2] |
| :---: | :---: | :---: | :---: | :---: |
| \$0328 | D0 | 04 | BNE +\$04 | [2; 3 if branch to BCC because screw timing] |
| \$032a | A4 | EE | LDY \$EE | [3] |
| \$032c | 49 | 55 | EOR \#\$55 | [2] |
| \$032e | CA | | DEX | [2] |
| \$032f | D0 | 04 | BNE +\$04 | [2; 3 if branch to DEY] |
| \$0331 | A6 | 1E | LDX \$1E | [3] |
| \$0333 | 49 | AA | EOR \#\$AA | [2] |
| \$0335 | 88 | | DEY | [2] |
| \$0336 | D0 | 04 | BNE +\$04 | [2; 3 if branch to BCC because screw timing] |
| \$0338 | A4 | EE | LDY \$EE | [3] |
| \$033a | 49 | 55 | EOR \#\$55 | [2] |
| \$033c | 90 | 03 | BCC + \$03 | [2; 3 if branch to LSR] |
| \$033e | 8D | 30 CO | STA \$C030 | [4] |
| \$0341 | 4A | | LSR A | [2] |
| \$0342 | 90 | 05 | BCC +\$05 | [2 or 3; screw timing] |
| \$0344 | 09 | 80 | ORA \#\$80 | [2] |
| \$0346 | 8D | 30 CO | STA \$C030 | [4] |
| \$0349 | CA | | DEX | [2] |
| \$034a | D0 | 04 | BNE +\$04 | [2; 3 if branch to DEY] |
| \$034c | A6 | 1E | LDX \$1E | [3] |
| \$034e | 49 | 55 | EOR \#\$55 | [2] |
| \$0350 | 88 | | DEY | [2] |
| \$0351 | D0 | 04 | BNE +\$04 | [2; 3 if branch to BCC] |
| \$0353 | A4 | EE | LDY \$EE | [3] |
| \$0355 | 49 | AA | EOR \#\$AA | [2] |
| \$0357 | CA | | DEX | [2] |
| \$0358 | D0 | 04 | BNE +\$04 | [2; 3 if branch to DEY] |
| \$035a | A6 | 1E | LDX \$1E | [3] |
| \$035c | 49 | 55 | EOR \#\$55 | [2] |

UNDERTALE FOR 64K APPLES: SOURCE FOR SELECTED ASSEMBLY ROUTINES 3

\$035e	88	DEY	[2]
\$035f	D0 04	BNE +\$04	[2; 3 if branch to BCC]
\$0361	A4 EE	LDY \$EE	[3]
\$0363	49 AA	EOR \#\$AA	[2]
\$0365	9003	BCC +\$03	[2; 3 if branch to DEC]
\$0367	8D 30 CO	STA \$C030	[4]
\$036a	C6 EB	DEC \$EB	[5]
\$036c	DO AA	BNE -\$??	[3 if branch back to first LSR A; 2 otherwise]
\$036e	4C 1303	JMP \$0313	[3; jump all the way back to DEC \$0300]
\$0371	60	RTS	

The result is a two-voice tone generator, which takes pulse widths for each tone at $\$ 0301$ and $\$ 0302$ and the tone length at $\$ 0300$. The frequencies roughly follow

$$
f=\frac{1.023 \times 10^{6} \mathrm{~Hz}}{54+36 \cdot(\text { pulsewidth }-1)}
$$

1.1.1. in copy-and-paste-friendly format.

303: A9 FF 85 EB AE 0103 AC 020386 1E 84 EE A9 00
313:CE 0003 FO 59
318:4A 90050980 8D 30 C0
320:CA D0 04 A6 1E 49 AA 88 DO 04 A4 EE 4955
32e:CA D0 04 A6 1E 49 AA 88 D0 04 A4 EE 49559003 8D 30 C0
341:4A 90050980 8D 30 C0
349:CA DO 04 A6 1E 495588 DO 04 A4 EE 49 AA
357:CA D0 04 A6 1E 495588 DO 04 A4 EE 49 AA 9003 8D 30 C0
36a:C6 EB DO AA 4C 130360
1.1.2. Applesoft companion code. Since the routine generates one note/chord at a time and can only take arguments for one note/chord, one way to operate it is by feeding it a numeric data array in Applesoft.

```
D DATA 48,164,54,48,164,27,96
    , 130,36,48,138,41,48,138,27,
    96,146,54, 48,164,54,48,164,
    41,48,130,27,48,130, 24,48,13
    8,27,48,138,36,96,146,41
10 FOR I = 1 TO 13: READ A,B,C:
        POKE 768,A: POKE 769,B: POKE
    770,C: CALL 771: NEXT I
```

1.1.3. octave-switching in real time. It is possible to slow down the update rate simply by removing some counter updates:

- switch between 32e:ca d0 04 and 4c 3503 (dex/bne vs jmp)
- switch between 335:88 d0 04 and 4c 3c 03 (dey/bne vs jmp)
- switch between 357 : ca d0 04 and 4c 5e 03 (dex/bne vs jmp)
- switch between 35e:88 d0 04 and 4c 6503 (dey/bne vs jmp)
which extends the pulse width by 1.78 , or in alternate terms turns A4 into B3. So to play tunes this slowly, all you need to do is go to this subroutine
10030 POKE 814,76: POKE 821,76: POKE 855,76: POKE 862,76
10031 POKE 815,53: POKE 822,60: POKE 856,94: POKE 863,101
10032 POKE 816,3: POKE 823,3: POKE 857,3: POKE 864,3
10033 LPF = 1: RETURN
or its assembly equivalent, which is left as an exercise to the reader.
1.1.4. tempo adjustment in real time. Sometimes we want finer control of the note duration without altering the pitch. This means that instead of having the duration be multiples of 256 cycles (which is what effectively happens as we decrement EB continuously), we want it to be multiples of, say, 128 or 64 .

This actually does not require major adjustment-we just need to specify after the dec \$eb and bne that we want the address to roll over to \#\$ff, for instance. The easiest way to do this would be with lsr \$eb, which then adds 5 cycles once every 127 loops. This is probably the right order of magnitude to be negligible, and the carry flag set/reset should not persist since we then encounter a lsr a instruction.

Here's one way to quadruple the level of control over the tempo:
304:3F
317:5F
36e:C6 EB 46 EB 46 EB 4C 130360
1.2. spookbits. Whereas the spookbit routine accepts parameters for only one possible chord, spookbits is meant to work through many notes all at once. Furthermore, the notes played by one voice do not have to align perfectly with the other, as they would necessarily with spookbit.
1.2.1. assembly code. Given that we are now throwing in machinery to handle the voice notes separately, we can no longer hold the entire code in the free part of page 3 .

\$B500: A9 7F	LDA \#\$7F	$[2]$
\$B502: 85 EB	STA \$EB	$[3]$
\$B504: A0 00	LDY \#\$00	$[2]$
\$B506: 84 E3	STY \$E3	$[3]$
\$B508: C8	INY	$[2]$
\$B509: 84 EF	STY \$EF	$[3]$
\$B50B: 84 FE	STY \$FE	$[3]$
\$B50D: 20 9B B5	JSR \$B59B	$[6!]$
\$B510: 20 CB B5	JSR \$B5CB	$[6!]$
\$B513: A5 E3	LDA \$E3	$[3]$
\$B515: 4A	LSR A	$[2]$
\$B516: 90 05	BCC +\$05	$[2$ or 3 ; branches to DEX because screw timing]
\$B518: 09 80	ORA \#\$80	$[2]$
\$B51A: 2C 30 C0	BIT \$C030	$[4]$

\$B51D: CA	DEX	[2]
\$B51E: D0 04	BNE + \$04	[2; 3 if branch to DEY]
\$B520: A6 1E	LDX \$1E	[3]
\$B522: 49 AA	EOR \#\$AA	[2]
\$B524: 88	DEY	[2]
\$B525: D0 04	BNE +\$04	[2; 3 if branch to BCC because screw timing]
\$B527: A4 EE	LDY \$EE	[3]
\$B529: 4955	EOR \#\$55	[2]
\$B52B: CA	DEX	[2]
\$B52C: D0 04	BNE +\$04	[2; 3 if branch to DEY]
\$B52E: A6 1E	LDX \$1E	[3]
\$B530: 49 AA	EOR \#\$AA	[2]
\$B532: 88	DEY	[2]
\$B533: D0 04	BNE +\$04	[2; 3 if branch to BCC because screw timing]
\$B535: A4 EE	LDY \$EE	[3]
\$B537: 4955	EOR \#\$55	[2]
\$B539: 9003	BCC +\$03	[2; 3 if branch to LSR]
\$B53B: 2C 30 C0	BIT \$C030	[4]
\$B53E: 4A	LSR A	[2]
\$B53F: 9005	BCC + ${ }^{\text {0 }}$ -	[2 or 3; screw timing]
\$B541: 0980	ORA \#\$80	[2]
\$B543: 2C 30 C0	BIT \$C030	[4]
\$B546: CA	DEX	[2]
\$B547: D0 04	BNE +\$04	[2; 3 if branch to DEY]
\$B549: A6 1E	LDX \$1E	[3]
\$B54B: 4955	EOR \#\$55	[2]
\$B54D: 88	DEY	[2]
\$B54E: D0 04	BNE +\$04	[2; 3 if branch to BCC]
\$B550: A4 EE	LDY \$EE	[3]
\$B552: 49 AA	EOR \#\$AA	[2]
\$B554: CA	DEX	[2]
\$B555: D0 04	BNE +\$04	[2; 3 if branch to DEY]
\$B557: A6 1E	LDX \$1E	[3]
\$B559: 4955	EOR \#\$55	[2]
\$B55B: 88	DEY	[2]

```
$B55C: D0 04
$B55E: A4 EE
$B560: 49 AA
$B562: 90 03
$B564: 2C 30 C0
$B567: C6 EB
$B569: DO AA
$B56B: 85 E3
$B56D: C6 EC
$B56F: DO OB
$B571: A5 EF
$B573: F0 07
$B575: 84 D7
$B577: 20 9B B5
$B57A: A4 D7
$B57C: C6 ED
$B57E: D0 07
$B580: A5 FE
$B582: F0 03
$B584: 20 CB B5
$B587: A5 EF
$B589: 05 FE
$B58B: D0 01
$B58D: 60
$B58E: A9 7F
$B590: 85 EB
$B592: A5 E3
$B594: 4C 15 B5
$B59B: A0 00
$B59D: B1 FA
$B59F: DO OC
$B5A1: AA
$B5A2: CA
$B5A3: 86 1E
$B5A5: 8D 1C B5
$B5A8: 8D 3D B5
$B5AB: DO OB
$B5AD: }85\mathrm{ 1E
BNE +$04 [2; 3 if branch to BCC]
LDY $EE [3]
EOR #$AA [2]
BCC +$03 [2; 3 if branch to DEC]
BIT $C030 [4]
DEC $EB [5]
BNE -$?? [3 if branch back to first LSR A; 2 otherwise]
STA $E3 [3]
DEC $EC [5]
BNE +$OB [2; 3 if branch ahead to DEC $ED]
LDA $EF [3]
BEQ +$07 [2; 3 if branch past note load]
STY $D7 [3]
JSR $B59B [3; load note 1]
LDY $D7 [3]
DEC $ED [5]
BNE +$07 [2; 3 if branch ahead to LDA $EF]
LDA $FE [3]
BEQ +$03 [2; 3 if branch past note load]
JSR $B5CB [3; load note 2]
LDA $EF [3]
ORA $FE [3]
BNE +$01 [2; 3 if branch past RTS]
RTS [6]
LDA #$7F [2]
STA $EB [3]
LDA $E3 [3]
JMP $B515 [3; jump back to first LSR A]
LDY #$00 [2]
LDA ($FA),Y [5-6]
BNE +$OC [2; 3 if branch to other STA $1E]
TAX [2]
DEX [2]
STX $1E [3]
STA $B51C [4; overwrite first C0]
STA $B53D [4; overwrite second C0]
BNE +$OB [3; must branch to INY]
STA $1E [3]
```

\$B5AF: AA	TAX	[2]
\$B5B0: A9 C0	LDA \#\$C0	[2]
\$B5B2: 8D 1C B5	STA \$B51C	[4; rewrite first C0]
\$B5B5: 8D 3D B5	STA \$B53D	[4; rewrite second C0]
\$B5B8: C8	INY	[2]
\$B5B9: B1 FA	LDA (\$FA), Y	[5-6]
\$B5BB: 85 EC	STA \$EC	[3]
\$B5BD: 85 EF	STA \$EF	[3]
\$B5BF: A5 FA	LDA \$FA	[3]
\$B5C1: 18	CLC	[2]
\$B5C2: 6902	ADC \#\$02	[2]
\$B5C4: 9002	BCC + ${ }^{\text {02 }}$	[2; 3 if branch past INC]
\$B5C6: E6 FB	INC \$FB	[5]
\$B5C8: 85 FA	STA \$FA	[3]
\$B5CA: 60	RTS	[6]
\$B5CB: A0 00	LDY \#\$00	[2]
\$B5CD: B1 FC	LDA (\$FC), Y	[5-6]
\$B5CF: DO OC	BNE + \$0C	[2; 3 if branch to other STA \$1E]
\$B5D1: 85 EE	STA \$EE	[3]
\$B5D3: C6 EE	DEC \$EE	[5]
\$B5D5: 8D 45 B5	STA \$B545	[4; overwrite third C0]
\$B5D8: 8D 66 B5	STA \$B566	[4; overwrite fourth C0]
\$B5DB: D0 OB	BNE + \$0B	[3; must branch to INY]
\$B5DD: 85 EE	STA \$EE	[3]
\$B5DF: EA	NOP	[2]
\$B5E0: A9 C0	LDA \#\$CO	[2]
\$B5E2: 8D 45 B5	STA \$B545	[4; rewrite third C0]
\$B5E5: 8D 66 B5	STA \$B566	[4; rewrite fourth C0]
\$B5E8: C8	INY	[2]
\$B5E9: B1 FC	LDA (\$FC), Y	[5-6]
\$B5EB: 85 ED	STA \$ED	[3]
\$B5ED: 85 FE	STA \$FE	[3]
\$B5EF: A5 FC	LDA \$FC	[3]
\$B5F1: 18	CLC	[2]
\$B5F2: 6902	ADC \#\$02	[2]
\$B5F4: 9002	BCC + ${ }^{\text {02 }}$	[2; 3 if branch past INC]
\$B5F6: E6 FD	INC \$FD	[5]
\$B5F8: 85 FC	STA \$FC	[3]
\$B5FA: A4 EE	LDY \$EE	[3]
\$B5FC: 60	RTS	[6]

1.2.2. test example.
b600: c3 0c 0010 c3 180004 c3 0e c3 180004 c3 18
b610: 0004 c3 180004 c3 0e c3 0e c3 Oe c3 Oe 00 Oe
b620: db 0c 0010 db 180004 db 0 e db 180004 db 18

```
b630: 00 04 db 18 00 04 db 0e db 0e db 0e db Oe 00 0e
b640: e8 0c 00 10 e8 18 00 04 e8 0e e8 18 00 04 e8 18
b650: 00 04 e8 18 00 04 e8 Oe e8 Oe e8 Oe e8 Oe 00 Oe
b660: f6 0c 00 10 f6 18 00 04 f6 0e f6 18 00 04 db 18
b670: 00 04 db 18 00 04 db 0e db 0e db 0e db 0e 00 0e
b680: 00 00
b690: 61 0c 00 02 61 0c 00 02 30 18 00 04 41 18 00 12
b6a0: 45 18 00 04 49 18 00 04 52 18 00 04 61 0e 52 0e 49 0e
b6b2: 6d 0c 00 02 6d 0c 00 02 30 18 00 04 41 18 00 12
b6c2: 45 18 00 04 49 18 00 04 52 18 00 04 61 0e 52 0e 49 0e
b6d4: 74 0c 00 02 74 0c 00 02 30 18 00 04 41 18 00 12
b6e4: 45 18 00 04 49 18 00 04 52 18 00 04 61 0e 52 0e 49 0e
b6f6: 7b 0c 00 02 7b 0c 00 02 30 18 00 04 41 18 00 12
b706: 45 18 00 04 49 18 00 04 52 18 00 04 61 0e 52 0e 49 0e
b718: 00 00
00fa: 00 b6 90 b6
b500g
```

It may be apparent that the only arguments that this routine takes are the start addresses for the note data to feed into each voice (at $\$ \mathrm{fa}$ and $\$ \mathrm{fc}$). Each note has a byte indicating duration and a byte indicating pulse width, and if both are zero the routine stops reading in any further notes. Furthermore, this engine actually accommodates rests, which spookbit does not.

Nonetheless, spookbit is in the final diskette alongside spookbits (which was originally intended to supersede spookbit altogether-hence the confusing name) because of certain applications where it is actually quite useful to have the ability to generate only one arbitrary note instead of a sequence that has to be played all at once.
1.2.3. copy-paste friendly hex code. This also removes the extraneous NOP at \$B5DF.

```
B500: A9 7F 85 EB AO 00 84 E3 C8 84 EF 84 FE
B50D: 20 9B B5 20 CB B5 A5 E3
B515: 4A 90 05 09 80 2C 30 C0
B51D: CA D0 04 A6 1E 49 AA 88 D0 04 A4 EE 49 55
B52B: CA D0 04 A6 1E 49 AA 88 D0 04 A4 EE 49 55
B539: 90 03 2C 30 C0
B53E: 4A 90 05 09 80 2C 30 C0
B546: CA D0 04 A6 1E 49 55 88 D0 04 A4 EE 49 AA
B554: CA D0 04 A6 1E 49 55 88 D0 04 A4 EE 49 AA
B562: 90 03 2C 30 C0
B567: C6 EB DO AA 85 E3
B56D: C6 EC D0 0B A5 EF F0 07 84 D7 20 9B B5 A4 D7
B57C: C6 ED D0 07 A5 FE F0 03 20 CB B5
B587: A5 EF 05 FE D0 01
B58D: 60
B58E: A9 7F 85 EB A5 E3 4C 15 B5
```

```
B59B: A0 00 B1 FA D0 0C
B5A1: AA CA 86 1E 8D 1C B5 8D 3D B5 D0 0B
B5AD: 85 1E AA A9 C0 8D 1C B5 8D 3D B5
B5B8: C8 B1 FA }85\mathrm{ EC }85\mathrm{ EF A5 FA
B5C1: 18 69 02 90 02 E6 FB 85 FA
B5CA: 60
B5CB: A0 00 B1 FC D0 0C
B5D1: 85 EE C6 EE 8D 45 B5 8D 66 B5 D0 OA
B5DD: 85 EE A9 C0 8D 45 B5 8D 66 B5
B5E7: C8 B1 FC 85 ED 85 FE A5 FC
B5F0: 18 69 02 90 02 E6 FD 85 FC
B5F9: A4 EE
B5FB: 60
```

1.2.4. octave- and tempo-switching in real time. As with spookbit, we can lower the pitch range quite simply by modifying select dex/bne and dey/bne blocks into jumps. The addresses involved are easy to figure out.

Tempo-switching is easier than in spookbit, somehow, as the rejiggered code now always loads a specific constant into the X or Y register for every pulse width unit. Modifying the byte $\$ 7 \mathrm{~F}$ at $\$ \mathrm{~B} 501$ and $\$ \mathrm{~B} 58 \mathrm{~F}$ is sufficient.
1.3. note-to-hex lookup table. The two engines share the same pitches for given pulse widths. Here $\mathrm{A} 4=436 \mathrm{~Hz}$, mostly to mitigate errors in D6.

A2	$\begin{aligned} & (255) \\ & (\$ \mathrm{FF}) \end{aligned}$	$\begin{array}{r} \mathrm{A} \# 2 \\ \text { (Bb2) } \end{array}$	$\begin{aligned} & 246 \\ & \$ \mathrm{~F} 6 \end{aligned}$	B2	$\begin{aligned} & 232 \\ & \$ \mathrm{E} 8 \end{aligned}$	C3	$\begin{aligned} & 219 \\ & \$ \mathrm{DB} \end{aligned}$	$\begin{gathered} \mathrm{C} \# 3 \\ (\mathrm{Db} 3) \end{gathered}$	$\begin{aligned} & 206 \\ & \$ \mathrm{CE} \end{aligned}$	D3	$\begin{aligned} & 195 \\ & \$ \mathrm{C} 3 \end{aligned}$
D\#3	184	E3	174	F3	164	F\#3	155	G3	146	G\#3	138
(Eb3)	\$B8		\$AE		\$A4	(Gb3)	\$9B		\$92	(Ab3)	\$8A
A3	130	A\#3	123	B3	116	C4	109	C	03	D4	97
	\$82	(Bb3)	\$7B		\$74		\$6D	(Db4)	\$67		\$61
D\#	92	E4	87	F4	82	F\#	77	G4	73	G\#4	69
(Eb4)	\$5C		\$57		\$52	(Gb4)	\$4D		\$49	(Ab4)	\$45
A4	65	A\#4	61	B4	58	C5	54	C\#5	51	D5	48
	\$41	(Bb4)	\$3D		\$3A		\$36	(Db5)	\$33		\$30
,	46	E5	43	F5	41	+	38	G5	36	G\#5	34
(Eb5)	\$2E		\$2B		\$29	(Gb5)	\$26		\$24	(Ab5)	\$22
A5	32	A\#5	30	B5	29	C6	27	C\#6	25	D6	24
	\$20	(Bb5)	\$1E		\$1D		\$1B	(Db6)	\$19		\$18

2. ANIMATION

The last shot of the UnderTale intro is a vertical pan. This is ridiculously difficult to do in an Apple II with a full image, where the deltas are non-trivial and the display lines are not contiguous in memory.

The SCROLLER routine handles the pan via a lookup table and swapping between the two hi-res pages. In addition to scrolling down whatever is on the screen, the routine also scrolls in image data just beyond the hi-res pages, and this part of the lookup table has to be continuously updated.

```
B000: 18 f0 c8 a0 78 50 28 00
B008: 00 00 00 00 00 00 00 00 80 80 80 80 80 80 80 80
B018: 00 00 00 00 00 00 00 00 80 80 80 80 80 80 80 80
B028: 00 00 00 00 00 00 00 00 80 80 80 80 80 80 80 80
B038: 00 00 00 00 00 00 00 00 80 80 80 80 80 80 80 80
B048: 28 28 28 28 28 28 28 28 a8 a8 a8 a8 a8 a8 a8 a8
B058: 28 28 28 28 28 28 28 28 a8 a8 a8 a8 a8 a8 a8 a8
B068: 28 28 28 28 28 28 28 28 a8 a8 a8 a8 a8 a8 a8 a8
B078: 28 28 28 28 28 28 28 28 a8 a8 a8 a8 a8 a8 a8 a8
B088: 50 50 50 50 50 50 50 50 d0 d0 d0 dO dO dO dO dO
B098: 50 50 50 50 50 50 50 50 dO dO dO dO dO dO dO dO
BOA8: 50 50 50 50 50 50 50 50 dO dO dO dO dO dO dO dO
BOB8: 50 50 50 50 50 50 50 50 dO dO dO dO dO dO dO dO
B100: 61 60606060606060
B108: 20 24 28 2c 30 34 38 3c 20 24 28 2c 30 34 38 3c
B118: 21 25 29 2d 31 35 39 3d 21 25 29 2d 31 35 39 3d
B128: 22 26 2a 2e 32 36 3a 3e 22 26 2a 2e 32 36 3a 3e
B138: 23 27 2b 2f 33 37 3b 3f 23 27 2b 2f 33 37 3b 3f
B148: 20 24 28 2c 30 34 38 3c 20 24 28 2c 30 34 38 3c
B158: 21 25 29 2d 31 35 39 3d 21 25 29 2d 31 35 39 3d
B168: 22 26 2a 2e 32 36 3a 3e 22 26 2a 2e 32 36 3a 3e
B178: 23 27 2b 2f 33 37 3b 3f 23 27 2b 2f 33 37 3b 3f
B188: 20 24 28 2c 30 34 38 3c 20 24 28 2c 30 34 38 3c
B198: 21 25 29 2d 31 35 39 3d 21 25 29 2d 31 35 39 3d
B1A8: 22 26 2a 2e 32 36 3a 3e 22 26 2a 2e 32 36 3a 3e
B1B8: 23 27 2b 2f 33 37 3b 3f 23 27 2b 2f 33 37 3b 3f
B200: D8 CLD
B201: A0 9D LDY #$9D
B203: F0 36 BEQ +$34
B205: 98 TYA
B206: 18 CLC
B207: 69 05 ADC #$05
B209: A8 TAY
B20A: B9 02 B0 LDA $B002,Y
B20D: 85 42 STA $42
B20F: B9 02 B1 LDA $B102,Y
B212: 49 60 EOR #$60
B214: 85 43 STA $43
B216: 98 TYA
B217: 38 SEC
B218: E9 06 SBC #$06
```


[^0]: Date: 2017/09/15.

