5K BASIC MANUAL
(SOFTWARE #:2)

[Oj5sceoi8

6200 Hollis Street
Emeryville, CA 94608
Phone: (415) 652-8080

&

PROCESSOR TECHNOLOGY CORPORATION 6200 HOLLIS STREET EMERYVILLE CA 94608

BASIC/5

(SOFTWARE #2)

INTRODUCTION: BASIC (Beginner's All Purpose Symbolic Instruction
Code) is a computer programming language characterized by versatility
and ease of use. It's resemblance to standard mathematical notation
and simple English statements enables novices and professionals to
program solutions to a variety of problems in the shortest possible
time.

BASIC is a conversational language which permits a user to sit down
at his computer or terminal device and engage in a dialog with it.
The results may be either immediate answers to a mathematical pro-
blem, or a working computer program which may be used in the future
to process new data.

There are many good books available to instruct the user in how to
program in BASIC; therefore, no attempt has been made to teach BASIC
in this document. Appendix E lists several references that may be of
interest. ’

Here we only give Processor Techmology's BASIC/5 Programming Language;
its features and restrictions. One of the best ways to learn BASIC is
to experiment with your system.

CABLE ADDRESS “PROCTEC”

“Copyright © by Processor Technology Corporation 1976”

(415) 652-8080

FEATURES OF BASIC/S

_More than one statement can be entered on a line.

_All mathematical operations are performed in BCD
(Binary Coded Decimal) arithmetic for maximum accuracy.

_Multiple program files may be utilized.(See MEM command)

_BASIC/5 permits the user to format the output of data.

_Programs may be saved and restored from magnetic tape.

_Many Function subprograms are implemented.

_Most program statements may be executed in the direct
mode for immediate calculations and enhanced program

debugging.

_Processor Technology's Video Display Module may be used
immediately. The I/0 driver is built-in!

_Most programs will run with a memory of only 8K bytes.

_Linkage to 8080 machine language program segments is
facilitated by the ARG and CALL functions.

NOTATION

In this document square barckets ([]) are used to

denote options.

statement n means
var ’ means
exp means
rel exp means
"textstring" means

statement number

variable name

mathematical expression

relational expression

a concatenation of literal alpha-numeric
characters enclosed by quotation marks

I. PROGRAM STRUCTURE

A BASIC program is comprised of statements. Every

statement begins with a statement number, followed by

the statement body, and terminated by a CR (Carriage

Return),

ments.

or a semicolon in the case of multiple state-

There are four types of statements in BASIC:

Declarations, Assignments, Input/Output, and Control.

These statement types are described in the corresponding

sections of this document.

Statements

Every statement must have a statement number
ranging between 1 and 65000.
Statement numbers are used by BASIC to order
the program statements sequentially.
In any program, a statement number can be
used only once.
Statements need not be entered in numerical
order, because BASIC will automatically order
them in ascending order.
A statement may contain no more than 72
characters including blanks.
Blanks, unless within a character string and
enclosed by quotation marks, are not processed
By BASIC, and their use is optional.
Example: 110 ; LET A=B + (3.5*5E2)

is exactly equivalent to:

110LETA=B+(3.5%5E2)
With blanks, the statement is more readable, but
takes longer to process.
More than one statement can be input on a line
if separateé by a semicolon, but only one
statement number is allowed.

Example: 520 LET A=1; B=3.2; C=5E2

I. PROGRAM STRUCTURE cont.

Data Format

The range of numbers that can be represented in
this version of BASIC is: .1E-127 to .999999E+127

There are six digits of significance in this
version of BASIC. Numbers are internally rounded to
fit this precision.

Numbers may be entered and displayed in three
formats: integer, decimal, and exponential.

Example: 153, 34.52, 136E-2

Variable Names

Variables may be named any single alphabetic
character or any alphabetic character followed by

a single numerical digit,e.g., A, B5, X, D1

REM Statement

The REM, or remark statement, is a non-executable
statement which has been provided for the purpose
of making program listings more readable. By generous
use of REM statements, a complex program may be more
easily understood. REM statements are merely repro-
duced on the program listing, they are not executed.
If control is given to a REM statement, it will perform
no operation. (It does hpwever, take a finite amount

of time to process the REM statement.)

Caution: A REM statement. cannot be terminated by
a semicolon. '

Example: 150 REM NOW HOW; LET R1=3.5E2.1

The assign statemﬁnt will not be executed. The

entire line is considered to be a non-executable

comment.

II. PROGRAM PREPARATION

After BASIC/5 is loaded into your system, it
may be started at memory address 0. At this time,
BASIC/5 will prompt you to provide the range of
address of the working storage. These values must
be entered in decimal. Inquiry will also be made
to learn whether there is already a program in that
memory segment. Response may be made by typing a ¥
or N followed by a CR for 'yes' or 'no'.

The system is then ready to accept commands

or statements. For example, the user might enter

the following program:

150 REM PROGRAM TO DEMO

160 PRINT "ENTER SOME DATA ",
170 INPUT ,B5

180 LET P7=B5+3/2

185 PRINT

190 PRINT B5,P7

200 END

If the user wishes to insert a statement between
two others, he need only type a statement number

that falls between the other two. For example:

181 REM NOW fOLLOWS THE LET STATEMENT

If it is desired to replace a statement, a
new statement is typed that has the same number as
the one to be replaced. for example:

.
180 LET P7=STN(BS) replaces previous

LET statement

IT. PROGRAM PREPARATION cont.

Each line entered is terminated by a Carriage Return.
BASIC positions the print unit to the correct position

on the next line.

The &~ or @ <controls may be used to erase a
character or a line that was typed in error. See

explanation in the Commands Section.

If the user wishes to execute the program at this

point, the RUN command should be entered.

IITI. COMMANDS

It is possible to communicate with BASIC by typing
direct commands at the terminal device. Also, certain
other statements can be directly executed when they
are given without statement numbers. See Calculator Mode
section.

Commands have the effect of causing BASIC to take
immediate action. A BASIC language program, by contrast,
is first entered into the memory and then executed

later when the RUN command is given.

When BASIC is ready to receive a command, the

word READY is displayed on the terminal device.

Commands are typed without statement numbers.
After a command has been executed, the user will
either be prompted for more information, or READY will
again be displayed indicating that BASIC-is ready
for more input, either another command or program

statements.

CLEAR

Sets all variables to zero, resets the READ pointer
and initializes the program so that it may be run.
CLEAR may be used as -.a statement in programs that

exit FOR_TO loops or GOSUB in a non-standard fashion.

LIST]étatementgj])

Causes all the statements of the current program

to be displayed on the user's terminal. The lines
S0,

are listed in increasing numerical order by state-

ment number. The display will begin with statement

number n,if given.

III. COMMANDS cont.

MEM

By issuing a MEM command and providing BASIC
with address parameters, it is possible to partition
the memory system into several program areas. (As many
as will be accommodated by the user's memory.)

It is the user's responsibility to record the
addresses of the various memory segments because
BASIC does not perform this function.

In the following example, a program is entered
into the memory segment between 6484 and 8191, inclusive;
a second program is entered into a memory segment
beginning at 8192. Then the user returns to the first
program and executes it.

Note: If the user receives an SO error while
entering a program, he may issue a MEM command and
restate the upper memory bound. He then answers yes
to the program loaded query, and continues entering
the program.

Example:

READY
MEM

FIRST ADDR 6484

LAST ADDR 8191

PROGRAM LOADED? N

READY :

90 REM PROGRAM ONE

100 PRINT "ENTER VALUE '",; INPUT ,Al
110 PRINT Al1*53.2 ; END

MEM .

FIRST ADDR 8192 :

LAST ADDR 9000

PROGRAM LOADED? N

READY

100 REM PROG TWO

110 LET A=5.34 ; PRINT A*3E-2

140 END

MEM

FIRST ADDR 6484

LAST ADDR 8191

PROGRAM LOADED Y
RUN (executes program one)

III COMMANDS cont.

NULL [n]

Causes null character codes to be transmitted
to the user's terminal device after a carriage return/

line feed . This has no particular meaning for output
to a non-mechanical terminal, but for hardcopy terminals
a delay is usually required to allow the printing
carriage to return to rest after its movement.

Null must be set to at least four when punching
a paper tape because when that tape is read into the
computer by BASIC, some time is required for processing
each line. The null characters give BASIC the required
time. Also upon reading such a paper tape, the NULL

command must be given with an argument of zero.

RUN

Causes the current program to begin execution
at the first statement number. Run always begins at
the lowest statement number. Run resets the DATA

pointer and performs a CLEAR.

SCR

The scratch command. Causes working storage and
all variables and pointers to be reset. The effect
of this command is to.erase all traces of the program

from memory and to start over.

TLOAD .
TSAV

These two commands may be used to link to

assembly language p}ograms provided by the user.
The specifications for the Tape Load and Tape Save

programs are given in an appendix.

III. COMMANDS cont.

Control/C

Simultaneous depression of the Control and C
switches on the terminal console will cause BASIC
to halt its current operation and to respond with a
READY. BASIC will then accept further commands. This
command is often used to stop a LIST command before it

has completed or to halt the execution of a program.

Clear the current line buffer. If the user types
a line at the terminal and decides that the line is
in error and should be deleted; depression of the @
key (commercial at sign, equivalent to Shift/P) before
the carriage return will clear the line.
Note: This command must be used after Video Display

Module commands Control/A and Control/Z.

&

Single character erase. If a character is
determined to have been typed in error, it may be
erased by striking the ' <« ' key (Shift/0) and
then entering the correct character.When the print
mechanism kcursor) reaches the extreme left character

position, a tone or bell is sounded.

; (semicolon)

The use of semicolons provides the ability to
enter more than one statemepnt on a line. Each state-
ment must be separated by a semicolon and the total
number of characters may not exceed the line length
of 72 characters. There may be only one statement
number on a line and therefore one cannot transfer
control to any of the appended statements except
by the natural program flow.

Example: 150 LET A=1; B=2*A; IF A THEN PRINT B

IV. DIRECT EXECUTION - CALCULATOR MODE

BASIC/5 facilitates computer utilization for the
immediate solution of problems, generally of a
mathematical nature, which do not require iterative
program procedures. To clarify: BASIC/5 may be used
as a sophisticated electronic calculator by means of

its 'Direct' statement execution capability.

While BASIC is in the command mode some BASIC
statements may be entered without statement numbers.

BASIC will immediately execute such statements. This

is called the direct mode of execution.
Example: A=1.5; B=3; PRINT A,B, "ANS= ", (A+B)*A

Statements that are entered with statement
numbers are considered to be program statements

which will be executed later.

In the following sections of this document all
BASIC/5 statements are described. Only those state-
ment which are flagged with the word 'Direct' may be

used in the direct mode.

Another use for direct execution is as an aid
in program development and debugging. Through use
of direct statements, program variables can be altered

or read, and program flow may be directly controlled.

V. DECLARATION STATEMENTS

DIM var [exp] (Direct)

Allocates memory space for an array. In this
version of BASIC, only single dimension arrays are
allowed. Maximum array size is 10000 elements. All
array elements are set to zero by the DIM statement.

If an array is not explicitly defined by a DIM
statement, it is assumed to be defined as an array
of 10 elements upon the first referenct to it in a
program.

Caution: An array can be dimensioned only once

in a program, dynamically or statically.

DATA num[,num...,num]
READ var[,var...,var]
RESTORE

The DATA and READ statements are used in con-
junction with each other as one of the methods to
assign values to variables. Every time a DATA statement
is encountered, the values in the argument field
are assigned sequentially to the next available
positions of a data buffer. A1l DATA statements, no
matter where they occur in a program, cause data

to be combined into one data list.

READ statements cause values in the data buffer
to be accessed sequentially and assigned to the

variables named in the READ statement.

V. DECLARATION STATEMENTS cont.

Example: 110 DATA 1,2,3.5
120 DATA 4.5,7,70
130 DATA 80,81
140 READ B2,B3,D5,Z6

Is the equivalent of:

10 LET
20 LET
30 LET
40 LET

B2=1
B3=2
D5=3.5
Z26=4.5

The RESTORE statement causes the data buffer

pointer, which is advanced by the execution of READ

statements, to be reset to point to the first position

in the data buffer.

Example: 110 DATA 1,2,3.5
120 DATA 4.5,7,70
130 DATA 80,81
140 READ B2,B3
150 RESTORE
160 READ D5,D6

In this example, the variables would be assigned

values equal to:

100 LET B2=1;B3=2;D5=1;D6=2

VI. ASSIGNMENT STATEMENTS

LET var=exp (Direct)

The LET statement is used to assign a value to

a variable. The use of the word LET is optional.

Example: 100 LET B=827
110 LET B5=87E2
120 R=(X*Y)/2*A

The equal sign does not mean equivalence as in
ordinary mathematics. It is the replacement operator.

It says, replace the value of the variable named on

the left with the value of the expression on the right.

The expression on the right can be a simple numerical
value or an expression composed of numerical values,

variables, mathematical operators, and functions.

Mathematical Operators

The mathematical operators used to form expressions

are:

- (unary) ... Negate (Requires only one operand)
* Multiplication

/ <......... Division

+ ce Addition

R Subtraction

No two mathematical opérators may appear in
sequence, and no operator is ever assumed: A++B and
(A+2) (B-3) are not valid.

An arithmetic expression is evaluated in a
particular order of preference: Negation is performed
first, then multiplication and division, and last,

addition and subtraction.

VI. ASSIGNMENT STATEMENTS cont.

In cases of equal precedence, the evaluation

is performed from left to right.

Through use of pairs of parentheses the order
of evaluation can be controlled explicitly. The
expression inside the innermost pair is evaluated

first; the outermost last.

Example: 150 LET R=A+B-C/2%*3
is evaluated as:
Templ= C/2 Temp2=Templ * 3
R = A+ B - Temp2

Example: 137 LET R= ((A+B)-C)/(2%*3)
1s evaluated as: '
Templ= A+B Temp2=Templ - C
Temp3 = 2%*3 R=Temp2/Temp3

VII. CONTROL STATEMENTS

Control statements are use to control the natural
sequential progression of program statement execution.
They can be used to transfer control to another part
of a program, terminate execution, or control iterative

processes (loops).

FOR var=expl TO exp2 [STEP exp3]

NEXT [wvar]

The FOR and NEXT statements are used together
for setting up program loops. A loop causes the ex-
ecution of one or more statements for a specified
number of times. The variable in the FOR_TO statement

is initially set to the value of the first expression

(expl). Subsequently, Lthe stdtements rfollowling the FOR
are executed. When the NEXT statement is encountered,
The named variable is added to the value indicated

by the STEP expression in the FOR_TO statement, and
execution is resumed at the statement following the
FOR_TO. If the addition of the STEP value develops

a sum that is greater than the TO expression (exp2),

the next instruction executed will be the one following
the NEXT statement. If no STEP is specified, a value

of one is assumed. If the TO value is initially less
than the initial value,‘the FOR_NEXT loop will still

be executed once.

<

Example: 110 FOR I= 1 TO 10
120 INPUT X
130 PRINT I,X,X/5.6
140 NEXT I

VII. CONTROL STATEMENTS cont.

Although expressions are permitted for the initial,
final, and STEP values in the FOR statement, they will
be evaluated only once, the first time the loop is
entered.

If the variable in the NEXT statement is not
given by name, BASIC will properly add the STEP

value to the variable in the last FOR statement.

Example: 110 FOR K=1 TO 350

120 FOR L= 1 TO 80

130 NEXT
135 NEXT

In this example, the NEXT at stateﬁent number 130
will STEP the FOR loop beginning at statement 120. The
NEXT at 135 will step the FOR loop beginning at 110.

It is not possible to use the same variable in
two loops if they are nested. In the above example,

the variable in line 120 could not be K.

When the statement after the NEXT statement is
executed, the variable is equal to the value that
caused the loop to terminate, not the TO value itself.
In the first example, I Qould be equal to 11 when the

i

loop terminates.

VII. CONTROL STATEMENTS cont.

STOP

The STOP statement causes the program to stop
executing. BASIC returns to the command mode. The
STOP statement differs from the END statement in
that it causes BASIC to display the statement number
where the program halted, and the program can be
restarted by a GOTO. The message displayed is
"STOP IN LINE XXXX"

END

The END statement causes the program to stop
executing. BASIC returns to the command mode. In
this version of BASIC END may appear more than once

and need not appear at all.

GOTO etatement n (Nirocect)

The GOTO statement directs BASIC to execute
the specified statement unconditionally. Program flow

continues from the new statement.
Example: 150 GOTO 270

IF relational exp THEN statement n

IF relational exp THEN BASIC statement (Direct)

The IF statement is used to control the sequence
of program statements to be executed, depending on
specific conditions. If the relational expression
given in the IF is "true'", then control is given to
the statement number declared after the THEN. If
the relational expression is "false'", program execution

continues at the statement following the IF statement.

It is also possible to provide a BASIC statement
after the THEN in the IF statement. If this is done,

and the relational expression is true, the BASIC

VII. CONTROL STATEMENTS cont.

statement will be executed and the program will

continue at the statement following the IF statement.
When evaluating relational expressions, arithmetic

operations take precedence in their usual order,

and the relational operators are given equal weight

and are evaluated last.
Example: 5+6%5> 15%2 evaluates to be true

Relational expressions will have a value of -1
if they are evaluated to be '"true'", and a value of

zero if they evaluate to "false".

Example: (12>10)= -1 or (A<>A)= 0

The Relational Operators

= Equal

{?> Not Equal

< Less Than

> Greater Than
<= Less Than or Equal

=> Greater Than or Equal

Examples: 110 IF "‘A>B+3 THEN 160

180 IF A= B+3 THEN PRINT "VALUE A ",A
190 IF A< B THEN T1=B

VIII. INPUT/OUTPUT STATEMENTS

INPUT [,]var [,var...,var]

The INPUT statement allows users to enter data
from the terminal during program execution.
Example: 110 INPUT A,B,C
120 INPUT ,V(1),R,V(2)

When the program comes to an input statement,
a question mark is displayed on the terminal device.
The user then types in the requested data separated
by commas and followed by a carriage return. If no data
is entered, or if insufficient data is given, the system
prompts the user with '?77?7'.

Only constants can be given in response to an
INPUT statement.

If the optional preceding comma is given, it
causes the carriage return/line feed and the '?' prompt

to be suppressed.

PRINT var

PRINT "string"

PRINT exp (Direct)
PRINT ZIZ1[E]JI[N1%

The PRINT statement directs BASIC to print
out on the user's terminal device. The value of ex-
pressions, literal values, simple variables, or
text strings may be prfnted out. The various forms
may be combined in the print list by separating them
with commas. If the list is terminated with a comma,

the line feed/ carriage return will be suppressed.

Examples:110 PRINT X,Y,5
120 PRINT (spaces one line)
130 PRINT "VALUE=-b",X3,'"SAM2= ",A2
140 PRINT A,B,

¢ 5 !

—

-

VIII.INPUT/OUTPUT STATEMENTS cont.

Values are printed next to one another with an
intervening blank. If the next position to be printed
is greater than or equal to position 56, then a carriage
return/ line feed is given before the next value is

printed.

PRINT giveﬁﬁwith no arguments causes one line to

be skipped.

The TAB Function.
The TAB function is used in the PRINT statement

to cause data to be printed in exact locations.
TAB tells BASIC which position to begin printing the
next value in the print list. The argument of TAB

may be an expression.

Example: 110 PRINT TAB(2),B,TAB(2*R),C

Note: The print positions are numbered zero to 71.

Formatted Print

_ BASIC enables the user to control the format of
the printed output by specifying; Free format,
Exponential format, Trailing zeros, and the number

of places of accuracy to the right of the decimal point.

If no specification is made, BASIC will print
six places of precision ﬁith the low order digit rounded
and trailing zeros suppressed. BASIC will also auto-
matically select between ‘the decimal, integer, and
exponential formats depending on the size of the stored

value.

VIII.INPUT/OUTPUT STATEMENTS cont.

It is possible for the user to override BASIC's
automatic formatting by including a format specification
in the output list. A format specification is two

percent signs with interposed code characters.

Format Specification Z[Z][E][F][N]%

F = Free Format (BASIC selects format)
Z = Print Trailing Zeros

E = Print in Exponential Format

N = Print N (N=1-6) Places To Right of

Decimal Point

All parameters are optional, but once a format
specitication is given, it will continue to be used
until a new format specification is given. To force
BASIC to return to its usual default format, a format

specification of %% must be given.

Examples: 110 PRINT %5E%
145 PRINT %Z2%,A,B; PRINT%Z3%,CD,%%

NOTE: In BASIC/5 the colon ":" may in every instance be
substituted for the word ”BRINT".
Example: 50 PRINT A,B,"ANS" is exactly the same as
50 : A,B,"ANS"

VIII.INPUT/OUTPUT STATEMENTS

Example:

cont.

FOR I= 1 TO 150
B=I; GOSUB 50

B=1*15/2;

STEP 7.5

GOSUB 50

5
6
7 PRINT %Z2%,TAB(9),"$",TAB(M),B,
8
9

PRINT %Z3%,TAB(M+10),B

10 NEXT
20 END

50 M=13;
55 M=12;
60 M=11;
65 M=10;
70 M=9;
READY

RUN

Try running this program

RETU

> > >

B
B
B
B
R

N

16.
23.
31.
38.

1 THEN RETURN
10 THEN RETURN
100 THEN RETURN
1000 THEN RETURN

.00
.50
00
50
00
50

etc.

.500

63.
120.
176.
232.
288.

750
000
250
500
750

yourself.

IX. SUBPROGRAMS

A subprogram is a sequence of instructions
which perform some task that would have utility in
more than one place in a BASIC program. To use such
a sequence from more than one place, BASIC provides

subroutines and functions.

A subroutine is a program unit that receives
control upon execution of a GOSUB statement. Upon
completion of the subroutine, control is returned
to the statement following the GOSUB by execution of
a RETURN statement.

A Function is a program unit to which control
is passed by a reference to the function name in
an expression. A value is computed for the function
name, and control is returned to the statement that

invoked the function.

GOSUB statement n

Statementtn

RETURN

The GOSUB statement causes control to be passed
to the given statement number. It is assumed that the
given statement number is an entry point of a subroutine.
The subroutine returns control to the statement following

the GOSUB statement with a RETURN statement.

¢

IX. SUBPROGRAMS cont.

Subroutine Example:

100 X=1

110 GOSUB 200

120 PRINT X

125 X=5.1

130 GOSUB 200

140 PRINT X

150 STOP

200 X=(X+3)*5.32E3
210 RETURN

211 END

Subroutines may be nested; that is, subroutines

can use GOSUB to call another subroutine which in turn

can call another. A subroutine cannot call itself.

Subroutine nesting is limited to six levels.

BASIC Functions

ABS (exp)

INT (exp)

RND (exp):

SGN (exp)

Gives the absolute value of the expression

Gives the largest integer less than or

equal to its argument

Generates pseudo-random numbers ranging
between 0.0 and 1.0 . The argument is
required ‘for syntax, but does not alter
the function. The random number generator
is reset by fhe CLEAR command.

Gives a value of +1, if argument is
greatey than or equal to 0. Gives a value

of -1 if argument is negative.

IX. SUBPROGRAMS cont.

SQR (exp) Gives the square root of the argument

SIN (exp) Gives the sine of the argument, when the

argument 1is given in radians

COS (arg) Gives the cosine of the argument, when

the argument is given in radians

TAN (exp) Gives the tangent of the argument, when

the argument is given in radians

TAB(exp) See PRINT statement. Used to position

output characters
ARG (exp) ARG and CALL are used together to link

CALL (exp) to assembly language program segments.

Both may be used in the direct mode.

ARG and CALL

When the ARG function appears in some BASIC statement
such as B=ARG(V1) ; the argument will be evaluated as
a sixteen bit integer and temporarily stored in the BASIC
monitor. éhould linkage be made to an assembly language
(8080) prbgram segment via the CALL function, the
previously stored sixteen bits will be passed to the
assembly language code in the D,E register pair.
When the CALL function is invoked by coding it
into some BASIC statement such as X6=CALL(5.2%A4) ;the
argument of the CALL function will be evaluated as a sixteen
bit address. BASIC will transfer control to that address.
The user's maéhine language code loads registers
H,L with any desired information; this information is
then passed back into the BASIC program as the value of

the CALL.

IX. SUBPROGRAMS

Example: 110
120
130
140
150
160

cont.

REM LINK TO ASSY LANG PROG
LET X=12; R3=3192
B=ARG(X/5)

LET M=CALL(R3)

PRINT M

END

In this example,B is assigned the value of the

ARG argument, linkage is made to assembly language

program at address 3192, and M is set to whatever

was returned in H,

L.

To get back into ALS8 the user can use B=CALL(57440)

APPENDIX A

HOW TO LOAD AND RUN BASIC

To run BASIC/5 the following applies:

INPUT:

OUTPUT:

Status at port O
Data available (DAV) tested at Bit #6
Data In at port 1

May be Processor Technology's Video Display
Module or a standard terminal.

Section between I/0 devices is made through
Sense switch #1 (A8): Up for standard terminal,
down for VDM.

The VDM is adressed at CC¢¢16

The VDM output port is C81¢

Status for standard terminal is at port O.

Transmitter Buffer Empty (TBE) is tested at Bit #7

Data Out is at Port 1

¢

LOADING PROCESSOR TECHNOLOGY'S BASIC 5

The paper tape for BASIC 5 is in check summed Intel
format. In this package you will find a sheet with the
heading:

*%*INTEL FORMAT PAPER TAPE LOADER**

This loader must be entered into locations 1800 (HEX)
thru 1852 (HEX).

This loader reads input status on port zero, and waits
for data bit six (D6) to come true. (See location 1847 -
line 0049 of the loader listing.) This bit (D6) is
"Receiver data available."

NOTE: If your serial port status assignment
for "Receiver Data Available' is not set to
data bit six (D6), enter your own receiver
data available bit mask at HEX location 1848
at the time that you enter the inter format
paper tape loader into memory.

This loader will read the data address from the program
tape as loading takes place, so that it is not necessary to

set any register values at load time. Memory to be loaded
must, of course, be unprotected.

Load BASIC 5 into memory using the loader.

Run BASIC 5 starting at location 0000.

1800
1800
1800
1800
1800
1800
1800
18063
1806
1829
182B
180E
1811
1812
1813
1816
1817
181A
181B
I181E
1821
1822
1823
1824
1827
182A
182A
182A
182D
1830
1831
1832
1833
1834
1835
1838
183B
183C
183D
183D
183D
183F
1841
1842
1844
1845
1845
1845
1847
1849
184C
184E
1850
1852

DUMP
1880 :
1810
1820:
1833
1840
1858

31 00 D8
CD 06 18
CD 45 18
FE 3A

C2 26 18
CD 2A 18
57

c8

CD 2A 18
67

CD 2A 18
6F

CD 2A 18
CD 2A 18
77

23

15

C2 lE 18
C3 26 18
CD 45 18
CD 3D 18

a7

17

17

17

S5F

CD 45 18
CD 3D 18
83

c9o

D6 3@

FE BA

D8

D6 87

c9

DB 00

E6 40

CA 45 18

DB 01

D3 01

E6 7F

c9

18060 1852
31 2@ D8
18 57 C8
18 77 23
87 17 17
BA D8 D6

E6 7F C9

CcD
CcD
1S
17
a7

a6
2A
c2
S5F
c9

3021
2202
2803
2034
2895
2826
2027
2208
22029
8e10
ga11
go12
2a13
@a14
2a15
aa16
ge17
@018
ea19
2820
agg21
ga22
2023
2224
8825
2326
2827
2228
2029
@230
8831
@232
2a33
8834
@035
@836
8237
2038
@039
2040
go41
@a42
8243
2044
20345
@046
2847
2848
@049
0250
2851
2852
8653
@854

18 CD
18 67
lIE 18
CD 45
DB 020

x <<
*

* * W
‘0

READ

LOooP

CHAR

HEX

TTYIN

45 18
CD 2A
C3 B6
18 CD
E6 40

INTEL

ORG
EQU

LXI
CALL
CALL
CPl
JNZ
CALL
MOV
RZ
CALL
Mov
CALL
MOV
CALL
CALL
MOV
INX
DCR
JNZ
JMP

CALL
CALL
RLC
RAL
RAL
RAL
MOvY
CALL
CALL
ADD
RET

SuUl
Crl
RC

SuUl
RET

JIN
ANI
\Jz
IN
‘oUT
ANI
RET

FE 3A
18 6F
18 CD
3D 18
CA 45

FORMAT PAPER TAPE LOADER

1880H
6

SP,@D8GJH
READ
TTYIN

"'

READ

CHAR

DsA

CHAR
H.,A
CHAR
L,A
CHAR
CHAR
My,A
H

D
LOOP
READ

TTYIN
HEX

E,A
TTYIN
HEX

E

48
10

64
TTYIN

127

CD 2A
CD 2A
3D 18
30 FE
D3 21

C2 26 18
CD 2A 18
45 18 CD
83 C9 D6
18 DB 21

>>

Appendix A

con't.

cormands For The VDM

control/A - Invert cursor switch.
control/zZ - Clear screen.,

Note:

while

gither of the above commands must be followed

by the commercial at sign (3) to clear them from
the input line buffer. BASIC does not understand
these control characters.

RASIC is outputting to the VDM:

Terminal keyboard switches 1 to § control the
speed at which the character display is written.

Depressing key 1 will cause display to be
written at approximately 2000 lines per minute.

Depressing key 9 will gzive a displam of
approximately 3 characters per second.

pepressing the space bar will temporarily
halt the display.

Touching the space bar will cause one character
to be written for each depression.

After stopping the display, depressingzg any key,
except keys 1 to 9, will cause the display
to continue being written at the previous rate.

After stopping the display with the space bar,
depressing keys 1 to § will set a new rate
of character display, as indicated above.

APPENDIX B - ERROR MESSAGES

Errors Explanation

BA Bad argument.A command has been given an
illegal argument.

BS Bad syntax.

CS Control stack error. For example, FOR has
no corresponding NEXT, illegal FOR_NEXT,
GOSUB-RETURN nesting, or control stack too deep.

DI Direct input error. User has tried to give
BASIC a command which it cannot process
in the direct mode.

DM Dimension error. Attempt to dimension (DIM)
array more than once in program.

FP Floating point arithmetic error. User
has attempted to divide by zero, or a

calculation has resulted in a number too
large to be represented in BASIC's number
format. Note: Underflow will result in zero
with no error indication.

IN Input error. User has given a number in
incorrect format in response to an INPUT
statement.

LL Line too long. User has attempted to input
a line of more than 72 characters.

LN ‘ Line number error. Line number specified
in a GOTO, GOSUB, or IF statement was
not foundi

NA Negative argument for square root function.

0B Out of bounds. An array index, TAB value or

other integer has exceeded its permissible

limit.

APPENDIX

B

ERROR MESSAGES cont.

RD

So

Read error. No more data in data buffer.
The number of READ statements has exceeded
the number of DATA values given.

Storage overflow. Working memory has
insufficient room for text, symbol table,

array space, or program is too large.

APPENDIX C - THE BASIC CHARACTER SET

I I1 ITT IV \'/
< @ : + YA
A 9-0 * $
] N /) 7
\ = ("
[< - ' !
Z-A 5 s & &

APPENDIX D - BASIC STATEMENT SUMMARY

DATA num{,num...,num] Supplies data for READ statement

DIM var (exp) Used to dimension numerical arrays
containing a subscript greater than 10

END Halts program execution

FOR var=exp TO exp[STEPexp] Loop control statements; var
must be the same in both state-

NEXT [var] ments. (If used)

GOSUB statement n Transfers control to the subroutine
. beginning at statement n, and then
statement n returns control to the statement

. following GOSUB.

RETURN

GOTO statement n Branches to statement n

IF relational exp THEN

If the relational expression is
statement n

true, branches to statement n, or
IF rel. exp THEN statement n executes statement n

INPUT var[,var...,var] Requests numerical data at program
execution time

LET var=exp Assigns value of expression to
variable

PRINT var Types out variable or literal

PRINT "string" values. Forms may be combined.

PRINT exp

: may be used for PRINT -

READ var[,var...,var] Reads numerical values from DATA
statements

REM anything Comment statement

REETORE Rcocto READ pointer to boginning

of first DATA statement
STOP Program terminator

APPENDIX E - REFERENCES

J. Sack and J. Meadows, Entering BASIC, Science Research
Associates, 1973. w

C. Pegels, BASIC: A Computer Programming Language, Holden-Day,Inc.
1973.

J. Kemeny and T. Kurtz, BASIC Programming, 1967.
Albrecht, Finkle, and Brown, BKSIE, 1973.
-both from People Computer Company

P.0.Box 310
Menlo Park, Calif. 94025

T. Dwyer, A Guided Tour of Computer Programming in BASIC,
Houghton Mifflin Co., 197/3.

Eugene H. Barnett, Programming Time Shared Computers in Barer,
$12.00. Wiley-Interscience, L/C 72-175769.

Programming Language #2, Digital Equipment Corp., Maynard, Mass.
01754.

101 BASIC Computer Games, $7.50. Software Distribution Center,
Digital Equipment Corp., Maynard, Mass. 01754,

What To Do After You Hit Return. $6.95. Peoples Computer Company
TOTO Doyle St., Menlo Park, Calif. 94025. A

APPENDIX F - TAPE SAVE and TAPE LOAD , PROGRAM SPEC

TSAV

The user's tape save I1/0 driver must:

1.
it
2.
3.

TLOAD

Get the BOFA (Beginning of File Address) and save

on the medium.

Get the MEMTOP address and save it on the medium.

Get the EOFA (End of File Address) and calculate:
(EOFA-BOFA)+1 Save sum on medium.

Get bytes from BOFA and save sequentially on medium.

Use the calculated value above to count.

Return to BASIC by jumping to CMD1l in BASIC (0062).

The user's tape load I/0 driver must:

1.
2.
3.

5.

Get BOFA and MEMTOP from medium and restore to BASIC
Get blocksize from medium.

Read the bytes from tape and stofe in memory
beginning at BOFA until blocksize is exhausted.

Put an ASCII "Y" in the accumulator. ("Y"=59H)

Jump to STAR1l, the starting address of BASIC at 2F.

Note: BOFA is at 194E double byte

EOFA is at 1950 " "
MEMTOP is at 1952 " "

The user must stére the addresses of his TSAV and TLOAD

routines in memory locations '7DC' and '7DE' respectively.

~

il

-

NOTES

NOTES

NOTES

	image_Page_01_Image_0001.tif
	image_Page_02_Image_0001.tif
	image_Page_03_Image_0001.tif
	image_Page_04_Image_0001.tif
	image_Page_05_Image_0001.tif
	image_Page_06_Image_0001.tif
	image_Page_07_Image_0001.tif
	image_Page_08_Image_0001.tif
	image_Page_09_Image_0001.tif
	image_Page_10_Image_0001.tif
	image_Page_11_Image_0001.tif
	image_Page_12_Image_0001.tif
	image_Page_13_Image_0001.tif
	image_Page_14_Image_0001.tif
	image_Page_15_Image_0001.tif
	image_Page_16_Image_0001.tif
	image_Page_17_Image_0001.tif
	image_Page_18_Image_0001.tif
	image_Page_19_Image_0001.tif
	image_Page_20_Image_0001.tif
	image_Page_21_Image_0001.tif
	image_Page_22_Image_0001.tif
	image_Page_23_Image_0001.tif
	image_Page_24_Image_0001.tif
	image_Page_25_Image_0001.tif
	image_Page_26_Image_0001.tif
	image_Page_27_Image_0001.tif
	image_Page_28_Image_0001.tif
	image_Page_29_Image_0001.tif
	image_Page_30_Image_0001.tif
	image_Page_31_Image_0001.tif
	image_Page_32_Image_0001.tif
	image_Page_33_Image_0001.tif
	image_Page_34_Image_0001.tif
	image_Page_35_Image_0001.tif
	image_Page_36_Image_0001.tif
	image_Page_37_Image_0001.tif
	image_Page_38_Image_0001.tif
	image_Page_39_Image_0001.tif
	image_Page_40_Image_0001.tif
	image_Page_41_Image_0001.tif
	image_Page_42_Image_0001.tif
	image_Page_43_Image_0001.tif

