
.* Apple* II Apple IIGSn.
BASIC

APDA draft
September 11, 1987
Apple® Software Publications

This document contains preliminary
information. It does not include:
• fmal editorial corrections
• final an work
• index
It may not include final technical changes.

C APPLE COMPUTER, INC.

Copyright C 1987 by Apple
Computer, Inc.

All rights reserved. No pan of
this publication may be repr~
duced, stored in a retrieval
system, or transmitted, in :tny
form or by a.uy.me:ms~·.;:Itccha~1-
ical, electronic, photocopying,
recording, or otherwise, without
prior written permission of
Apple Computer, Inc. Printed in
the United States of America.

Apple, the Apple logo,
AppleTalk, ImageWriter,
LaserWriter, and ProDOS are
registered trademarks of Apple
Computer, Inc.

Apple Desktop Bus, Apple ncs,
AppleWorks, Macintosh, and
SA.'lE are trademarks of Apple
.Computer, In:c.

ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapf
Dingbats are registered
trademarks of International
Typeface Corporation.

Microsoft is a registered trade­
mark of Microsoft Corporation.

POsr5CRlPT is a trademark of
Adobe Systems Incorporated.

Simultaneously published in the
.United States and Canada.

ISBN 0-201-x:xxxx-x
ABCDEFGHIJ-00-8987
First printing, Nnnn 1987

Chapter 1

Introduction to Appie IIGs
BASIC

Starting up xx

Entering statements xx

Immediate end deferred execution xx

Editing while typing xx

Entering your program xx

Syntax checking xx

Editing your program xx

Interrupting c running program xx

Controlling text on the screen xx

The IJST statement xx
The reserved variable USTTAB xx
The reserved variables INDEl\'T and OI.~'TREC xx
The DEl statement xx
The TEXTPORT statement xx
The TEXT statement xx
The reserved variables VPOS and HPOS xx
The HOME statement xx
The INVERSE and NORMAl statements xx

System and utll!ty statements xx

Memory management xx
The NEW command xx
1"he CLEAR command xx
The reserved variable FRE xx

I.oading and saving programs xx
The LOAD statement xx
'The SAVE statement xx

Starting and stopping programs xx
The RUN statement xx
The STOP statement xx
The E..,.,.'D Statement xx
The CONT statement xx

Handling large programs xx
The: CHAIN statement xx

Debugging programs xx
The TRACE statement xx
The NO'I'RACE statement xx

Special keyboard functions xx
The Conuol-C combination xx
The Conuol-Reset combination xx

·Automatic execution xx
'rne EXEC statement xx

Deferred immediate statements xx
Creating deferred statements xx

Capturing programs a,s te."'Ct files xx

2 Chapter 1 : ln1roductton to Apple IIGS BASIC

Apple ncsTM BASIC is an extended version of the BASIC prog.ra.m.mir.:g language for
the Apple IlGS computer. The following are some of its more important features:

c The facilities for using disk files are built in, so that progr-.um c:.n easily read and
write flles, including special, easy-to-use type-tagged Data flle i."l)JUt and output of
all types of BASIC variables.

o The double-precision real vuiable type provides arithmetic with 15 digits of
precision and a numeric range of 10-308 to 10+308.

~ The long-integer variable type provides 19-digit precision, :lind the double-integer
variable type provides 9 digits for add.ress nwlipulation.

o The PRD\"T USING and IMAGE satements are powerful tools ior :onuolling the
exaa format of data displayed or printed by a BASIC prog."'2.m..

o The INPL"T USING and IMAGE satements are spec:iali.zed toola fvr controlling the
input text fields and lines by a BASIC program.

c Variable names may be up to 30. characters long. Reserved wotds are recognized
only when they are set off either by spaces or c:haraaers other tr...a.."l leners, the
period or digits. This allows you to use reserved words embeeided in variable names
without causing syntaX problems.

c Any line in a program may have an optional label, and it can be referenced by the
label or by the line number in a GOTO, GOSUB, or sirr.ilar statemenL

o A full-featured command line editor, with insert and replace modes, and an EDIT
command for editing existing program lines one at <i time are available.

-. Complete suppon for access to the Apple IlGS Toolbox, via CALL, CALLo/o, and
UBRARY statements, as well as language extension with extem.al assembly­
langu;lges modules, through !!'-.\TOKE, ~. and PERFORM statements.

- A Window Manager and Menu Manager interface, through EVE!\7DEF, ME.-,..,."L'DEF,
Olnd TASKPOll statements, provides a simple and efficient link to Task .Master for
writing mouse-based desktop application programs in GS BASIC.

= A special form of the OPEN command can open a QuickDraw n GrafPort or a
Window Manager window port for applying PRINT • and PRlNT • USING statements
direaly to the graphics screen.

Starting up
Before you read any further, load Apple llGS BASIC so that you can follow along with
the examples in this manual.

1 . Begin "With the system plugged in and the power S"Witch off.

2. Insert the Apple ncs BASIC diskene into the system disk drive (use the method
shown in your .Apple OGS Owners Guide).

Storting ~}~ ~!

3 . Tum the powez· :.witch on. '!be system will start up, and the drive1s in-use light will
come on for a few moments while the information on your BASIC diskette is being
loaded into the Apple .IIGS system memory.

4. Soon you will see a prompt line at the top of the saeen, giving the version of
Apple ncs BASIC that you are running. Below this line is a right parenthesis
char.acter at the left margin of the video display screen, with a cursor to its right.
Apple ncs BASIC is up and running. (See your Apple OGS Oumers Guttie if you
have difficulty starting up your computer.)

If there is a BASIC program me named GSB.HEI.LO on the diskette that you use when
starting up your computer (as there is on the Apple ncs BASIC diskette) 1 that program
will automatically be executed when the system startS. 1bis feature lets you develop
rumkey sysrems easily; simply name your working program GSB.HEllO.

The right parenthesis is BASICs prompt character. When it appears on the saeen, it
means that BASIC is ~ting for you to type something. 1be cursor, which appears as a
vertic:al blinking rea:.mgle alternating between the current text color and the
background color, shows }'l;)u where the next character that you type will appear on the
saeen. If you are using a color vic.leo monitor, you can change the colors for the text
and the background (and ::.h~ border) in the Control Panel. (See Appendix A in the
Apple IIGS Owners Guide for details.)

Entering statements
~ow that you have the prompt charaaer and the cursor on the screen, you are ready to
begin using the Apple ncs BASIC language. Before you do :u1ything else, enter the
command NEW and press the Rerum key. NEW tells your computer that you are
entering a new program.

1'he:l type exaaiy as ~hown here:

and press Rerum. Your computer will display

!U '!:here

foUowed by the prompt and the blinking cursor.

'This mtement instructed your computer to display all of the characters between the
quotation marks.

If you misspell the reserved word PRlNT, like this:

?R:':N "!!i :!'\ere"

You will see this error message

?Sr.t'l'AX !:RROR

4 Chcpttr~r 1 : lntrodue11on to Apple IIGS BASIC

'I'he word syntax refers to the rules for constructing statements in the BASIC langu.~gc.
Unfornmately, not all your errors be so apparent. You may enter a statement that is
syntaaically correct, but does not say quite what you intended. BASIC will execute the
statement exaaly as you typed it. For example, if you type

PRIN': Ei ~here

The computer will display

0

Since there were no quotation marks, the computer displayed a zero, the value ttf the
variable HlTiiERE.

When you finish typing a Statement, press the Return key, and BASIC will try to
understand whu you typed and carry out your instruaions.

Don't press the Return key if you are typing a long statement and getting close to the
right margin of the display saeen. When you reac:h the end of the fi.I'St screen line,
BASIC automatically continues the statement on the next screen line. BASIC will allow
you to enter three screen lines of text before reaching its right margin.

'I'he prompt character will not scroll to the bottom line of the saeen; it always stays at
least three lines above the bottOm.

Immediate end deferred execution
The PRJ:!\-r statement example "WaS executed immediately after you pressed the Returr.
key. 1bi.s is called immediate execution. Now type

and press Rerum. The number 10 is called a line number. Nothing appears nn the
screen except the BASIC prompt. Now type

RON

and press the Return key. You should see this on the screen:

BASIC has executed the PRil'o'T statement. When you typed the P~'T statement v.-il.l1 •
number in front of it, BASIC stored the statement in memory as a one-statement
prognm. When you typed the Rt.JN statement, it was executed immediately because .ir.

didn't have a line number. RL1N is a statement that tells BASIC to execute whatever
program is currently stored in memory. ExeOJtion of statements previously stored it1

memory is called deferred execution.

':.

Immediate ond deferred e~<ecwion 5

Statements without line numbers are executed immediately and forgotten as soon as
they are executed. Statements with line numbers are not executed immediately, but
remain in your computer's memory and can be executed again and again with the Rt:N
statement. Your computer executeS the lines of instruaions you type in numeric
order, al~ys beginning with the lowest number. For the time being, number your
program lines by tens (10, 20, 30, and so on). You'll learn why later.

A deferred statement and the line number preceding it are often referred to as a
program line. For example, consider

30 PRI~T "3ye :1ow! •

Line 30 comprises both the PRINT statement and the line number 30.

Let•s add another line to the program. Type

20 PRINT "!ii yet aqai.:1"

and press the Return key. Then type another RtJN statement, and press Return. Once
again your screen displays

RON
:ii aqain
.:ii yet aqain
J

You can see that the statement at line number 10 is executed before the statement at
line number 20. BASIC al~ys executes statements in a program in the order of their
line numbers, unless the program statements tell it to alter that sequence . .:'llote that the
order in which statements are executed is not necessarily the order in which you typed
them.

+ By the way: ~ow that you have learned that every program line you enter must be
ended by pressing the Rerum key, we won't bother to include that step in t."le
remaining instructions.

Editing while typing
You can correct errors that you catch while entering immediate or deferred statements
before you press Return (called command line editing) by using the editing keys
desaibed below .

..
Left (•)and Right V£) Arrow keys Move the cursor to the error within the te."Ct you

have entered. You can retype right over the
mistake.

6 Chopter 1: lntroduc:11on to Apple JIGS BASIC

(.....

Delete key

Control-D

Control-F

Control-X

Control-Y

Delete unwanted charaaers by positioning the
cursor just to the right of an incorrea letter and
pressing this key. 'This will erase the characters to
the left of the cursor. You may repeat, moving the
cursor bac:kwards through the text a.s you do so.

Hold down the Control key and then press and
release the D key to perform the same funaion a.s
the Delete key.

Hold down Centro~ then type F to delete the
character under the cursor, rather than the one to
its left. You may repeat this to delete forwuds
through the text; the cursor will remain stationary,
and the text will shift to the left a.s charaaers are
removed.

Hold down Control, then press X to erase the
entire program line: This will erase everything you
have typed since the last time you pressed Return.
You can now retype the entire program line (a
program line can aaually be up to three lines on
the screen).

Hold down Control, then press Y to erase all the
characters from the current cursor position to the
end of the text. To use Control-Y, fll'st position the
c:ursor on the f1rst character you want deleted, and
then press Control-Y. The character under the
cursor and everything to its right will be erased,
but charaaers to the left of the cursor will remain
unchanged.

Let's experiment with these editing features now. First, just hold down a letter key until
three lines fill up with the same letter. Note that auto-repeat will speed up the entry of
these leners, following a short pause after the first letter. When you approach the end
of the third line, release the key, and then press it repeatedly to display one cr..arac:ter
at- a time to the end.

When the cursor is in the last position of the third line, the computer will beep if you
type another c:haraaer. You have now reached the right margin. Now try backing up
with the Left Arrow key 0 to somewhere in the middle of the second line and press
Control-Y. All the leners from the cursor to the end will be erased.

Now press Control-X to erase all the remaining c:haraaers.

+ Note: Applesoft BASIC programmers should be aware that all the ~aaers you
have typed, even those to the right of the cursor, are considered part of your input
line after you press Return.

Edttln~ while typing 7

Up to this point, our command line editing has been in replace mode, which is
indicated by the blinking block cursor, the replace cursor. In replace mode,
whenever you type a character, it replaces the character under the cursor.

Another mode, called Insert mode, allows you to insert new characters between ones
you have already typed. This mode is indicated on the screen by the insert cursor.
To see the insert cursor, press Control-E. The cursor will become a blinking underline
character. Now press Conuol-E again, and the replace cursor will reappear. The
Control-E edit key functions as the cursor toggle switch.

Let's see how the different editing cursors work.. Type the line

::y ou~ :he old cursor

Move the cursor over the beginning of the word old and type in new.

::y ou~ t.he new curser

The word new is typed right over the previous word.

Now change to the insert cursor by pressing Control-E. You will see the blinking
underline character. Move to the space between the and new by pressing the Left
Arrow key and type .snaz:y.

::y out. :he snazzy new curser

The new word is inserted into the text. Existing chataaers are shifted to the right as new
characters are typed.

Press Control-X to er2Se the text before you press Rerum.

Entering your program
What if you make a mistake and.don't catch it before you press Rerum? If it is a
stateme!'lt for immediate execution, you may get an error message right away. If you
make a spelling or grammar error in typing a statement with a line number, BASIC
may not detect the error until you type RON and it tries to execute the statement. For
example, if you enter the statement

lS P!t!N'l' !NPOT "!!EL:.O"

into your progr:un, BASIC won't f'1nd the syntax error until it attempts to execute line
15. At that point, exeo.nion scops, and BASIC displays the message

?SYNTAX ERROR IN 15

where 15 is the line number of the inconea statement. You should correct the
erroneous statement before you run the program again.

You can make changes co existing program lines in two ways. The fllSt method is to
simply type a new line with the same line number. For e.'tampie, if you rype

S Chcpter 1: ln1Toduct1on to Apple IIGS BASIC

~S PRIN~ wEi another ~ime"

this nev.· version of line 15 replaces the old one. If you want to delete a stored statement
altogether, type just its line number, then press Rerum The second way is to use the
EDIT command as descnbed later in this chapter.

It's a good idea to leave room for additional line numbers between the numbers you
use when you write a program. 1bat way, if you want to insert a new program line
between two lines already in memory, you can give it one of the unused numbers. For
example, if you have entered two lines numbered 15 and 20, you can put a new line
between them by giving it the number 18. Line numbers must be within the range of l
IO 65279, or a

'?I:O:.EG.Al. l.INU /:LABEL ERROR

message will be displayed on the screen.

The AUTO command provides a.n easy way to enter lines in your program a.nd have
BASIC automatically generate the line numbers for you. To use the A'L,.O command,
simply type

AO~O ~i.nenun:

You must select a linenwn as the starting line number for the AL,.O command. When
you enter the auto-edit mode., the .screen is split into rwo parts. The line number you
requested will appear in a four-line entry window at the bottom of the screen, followed
by the cursor. You can now type a statement and then press Rerum

The statement will be chec:ked and displayed in the upper 20 lines of the screen. Then
the next line number will be displayed in the entry window. To exit from auto-edit
mode, press the Esc (Escape) key, and the screen split will disappear. Other features of
the At..-ro command are described in Chapter 8, •BASIC Reference. •

If you -want to see your program as currently stored in memory, type

All statements in memory will be displayed on your screen in order of their line
numbers.

If you want to get rid of all stored statements to stan a new program, type

WEK

Be sure that you don't want to save the program in memory before you type NEW,
since there is no way to recover the program after you press Rerum, unless you flrst
save the program on a diskette. If you type LIST after you type NEW, you will see that
Ihe program previously stored in memory is gone.

Syntax checking 9

Syntax checking
BASIC does limited syruax checking when statements are entered in direa mode.
When error messages are displayed for direa mode entry (but not during an EXEC),
two lines are displayed on the screen below the text you entered The fJtSt line is mostly
blank. except for the pointer c:haraaer, the caret("). BASIC displays one line with the
caret at the position where it failed when scanning the statement.

usually, but not always, the caret will point at the cause of the error message or at the
end of a reserved word that was used incorrealy. The process of scanning your
statement is called tokenizatJon. "'bis refers to the fact that all the BASIC reserved
words are converted into tokens which only require 1 or 2 bytes instead of 1 byte for
every charaaer in the reserved word (this makes the program smaller that its
equinlent text).

BASIC does a limited check of the syntax of each statement in a line, but does not
verify the entire syntax of each statement that you enter. The syntax of a program line
is described as either of the following:

linnum [labet.·J statement rerum
ltnnum [labeL·lstatement [{: statement }] return

The bracket c:haraaers are used to indicate that the element they enclose is optional;
you should not type the bracket or brace characters when entering a line. The simplest
case, shown first, has only one statement in the line. This fJtSt description means that
a deferred line consisrs of a line number optionally followed by a label ended with a
colon, then a BASIC statement followed by a Rerum.

The brace c:h.aracters used in the second defutition indicate that the elements they
enclose may be repeated The second description adds the concept that a program
line may have multiple statemenrs separated by colons; the brackets indicate that the
colon and the second statement are optional, and the braces indicate that the colon­
statement sequence may be repeated as many times as necessary.

The general syntax of a statement is described as:

verb [{nouns· adverbs' numbers' characters}]
or vartable- {nouns' adverbs· numbers· characterlt
or z;artable({ nouns· adtJerbs· numbers· characters}

The vertical-bar charaaers are used to indicate that the elements they separate are
alternatives; you should not type the vertical-bar, bracket, or brace c:.hararaers when
entering a line. In other words, a statement is either one of the following:

o a verb optionally followed by one or more nouns, adverbs, numbers or any other
valid characters (such as arithmetic operators) in the proper sequences.

= a variable name followed by either an equal sign or a left parenthsis and some
colle~..ion of other elements that make up an implied LET statement

10 Chopter 1 : Introduction to Apple IIGS BASIC

For the purposes of this description, nouns and adverbs are specific subsets of the list
of reserved words known to BASIC. Generally, a BASIC noun is a reserved word that
has a ~lue, or retu.ms a ~ue. For example the reserved word SIN is a function that
returns a value but SIN is never a ~id verb or a variable name and cannot be used to
begin a statement.

BASIC adverbs are reserved words used to separate clauses within the syntax of a
statement be$Wl wi~ a verb. For example, the statement

FOR l • l TO 20 STEP 3

contains the verb FOR and the two adverbs TO and STEP. Adverbs are like nouns in
that they never begin a statement. Some verbs, like FOR, are also used as adverbs by
some other verb, as m
OP!:N • • • FOR OPDATE

The BASIC tokenizer requires that statements begin with a verb or a variable name
followed by an equal sign or a left parenthesis. If you begin a statement with a noun or
an adverb BASIC will display the caret pointing at the last charaaer of the invalid
word, followed by the message

"?RXS!:RVE= WORD UROR

on the next line. If you use a verb that can only begin a statement as an adverb, this
same message will appear. The specific reserved words in each subset considered here
are described in Appendix C, •Reserved Words. •

Starting end stopping programs
You may want to stop a program while it is running or restart a stopped program. The
statements that allow you to stop and restart programs are described below.

The RUN statement
RUN is used to start running a program. When you enter a RtJN statemenc, BASIC
clears all variables, closes all open rues (except executing text f.Lles), and begins to
execute the program in memory, beginning with its smallest line number.

If there is no program in memory, the cursor drops to the next saeen line, and BASIC
redisplays the prompt. For example, to execute whateVer program is currently in
memory, type

You can specify program execution to begin at a line other than the smallest line
number by following the command with that number. For example, to begin
execution at line 205, type

RON 205

If you specify a nonexistent line number, the

"?'JNOEF' ::l S':A'l'E~~'l' ERROR

message appears.

If you want to run a program that is in a disk file rather than stored in memory, you can
specify the program to be run by giving its pathname. For example, to run the
program stored in a me named ASSETS, use

RON ASSt'l'S

And if you wanted to begin execution at line 7254 of that program, use

RON ASSE':S, 7254

If BA.SlC cannot fmd the me that you specified after searching the disk, it displays the

message. If the fl1e is found, the current program and all of its variables are erased
from memory, and all open flies (except an executing text flle) are closed. The
program specified in the RtJN state:ne.'lt is then stored in memory, and BASIC begins
executing it at either the lowest numbered line or at the specified line.

The Rt.lN stateme.'lt is the last statement e.~ecuted in any line. For e.umple, in the line

Chapter 1: Introduction To A!:)!:)le llc;s BASIC

the variable I will never be 2SSigned the value 1.

Trying to run a program that is not 'Mitten in BASIC generates a

"?!'!U: TYPE ERROR

message.

The STOP statement
lF BASIC encounters the STOP statement while a program is running, it halts execution
of the program, closes any exe01ting text me, reru.ms BASIC to immediate execution,
resets the output file to the console, redisplays the prompt, and displays a message.
For example, the message

?PROGRAM :!N':ERR'OPTEO !N 8712

will appear if 8712 is the number of the program line containing the STOP statement
The program in memory is not altered in any way. STOP has no options associated
~thit.

The END statement
EJ'I.'D is the same as STOP, except that no message is displayed when it is executed. The
E."\'"D statement has two options used in conjunction with the DEF statement See
Chapter i, •Advanced Topics,• and Chapter 8 •BASIC Reference,• for more details.

The CONT statement

CO!\"T causes execotion of a program that has been halted by a STOP or E!\'"D
statement, or by a Control-C. to resume. The CO!\'T command resumes execution at
the statement immediately following the one at which execution was suspended, not
with the fll'St statement in the next program line. For example:

l! PR:N': .. P:or;:arr. :ber;ins"?
J:C END: PR!N: "Back ac;ain"7
l 2C PR!N': ·~~ Done"
JR:JN
P:oq:-am bec;ins
) CON':

Back ac;ain
A.:.l Done

CO!\"T does not clear the program or reset the variables in memory, and there are no
options associated with it. CO!\'T has no effect if there is no program in memory.

Starting end stopping programs 13

You an continue a program halted by an error by using the CONT command. BASIC
will attempt to continue execution starting with the statement in which the error
occurred. .-\n error made in immediate execution will not prevent a program from
being continued.

A program that has had any of its statements altered, or any new statements added,
cannot be continued with the CONT command. If you try, you will see the message

?CAN'': CON'!'!NOE ERROR

Variables in a program an be changed using assignment statements in immediate
execution. For example:

I lO X•4 : PRINT X
I 20 STOP
l 30 PRIN'l' X
l RON
4

3REAK IN 20
I X•X•2
ICON'!'
6

The CONT command an only be used in immediate excecution mode, and it will
display an error message if you use it within a program.

Handling Iorge programs
Even with the large amount of memory available for Apple ITGS BASIC prognms, you
may fmd ways to fill it up. Then too, it is usually not a good idea to pack thousands of
program lines into a single program, since the result is hard to read and difficult to
modify. The flex1bilicy to divide large programs into easier to handle pieces is
provided by the CHAIN statement, described below.

The CHAIN stctement
If a program requires more memory than is available on your computer, or you want
to divide it up logically, you an split the program into smaller pieces and e."tecute
them individually with the CHAIN statement.

Chcpter 1: Introduction To Apple IIGS BASIC

OiAIN automatically loads and runs a specified program, without clearing the values
of the variables left over from the previous program or closing a.ny fJ.les the previous
program left open. !his allows variables used in one program to be used in another.
The pathname of the program to chain must follow the reserved word CHAIN. For
example, to chain to a program named T"ues, use

CHAIN ':ires

1f the progr2m specified in the ~ statement does not exist on the diskene, then a

?TI~ N~ FOOND ~RROR

message 'Will be displayed.

Execution of the specified program begins at the smallest line number, unless you
specify otherwise. Therefore

CliA!N /l..ink/Fence. 800

causes execution to begin at line 800 of the program named Fence on the volume
;l.ink_

1f the chained progr.un uses a variable that -was not used in the program exeo.ned
before it, a new variable will be created; otherwise, the old variable will be used.

1f the chained program dimensions an array that was dimensioned in the previous
program, a

?DOPl.lCA'l'E DE!'!Nl'l'!ON ERROR

message appeazs.

Here is an example of how you might use the CHAIN statement:

lN!:fi

i 1 C PR:N':' "'Program '!'we speak.:..nq"
)20 PR!N: .,AC32l .is ";A!32)
l3C A!32) • ~2

) ~ C C.BA!N ProqramOne. i C : R!:~ Go l:>aclt to Pror;ram One
l Save Proqrarr.'!'wc
lNEt-0

JlC PR!N'l' "'Proqram One•
J20 DI~ A!Hl
)30 FOR i•l TO ~4

)40 A!il • i
)30 NEX':" i
) 6C CRAIN Proqram'!'wo : REM Now Proqram '!'we will be run
l iC PR!N'!' "Baclt ~o Proqram One" : R!:M Baclt from Pror;ram Two
l 80 PRIN'!' .. AC32l is now ••;A !32J
) 90 !:N.O

J Save Proc;ramOne

Running this program displays:

Handling Iorge programs 15

l RON
P:-oqram One
P:-oqram :'wo .spea.icinq
A (3.2 l is 32
3ack '!O P:-oqram One
A<32l is now 42
)

Notice that you may chain back and forth between separate programs, and variable
values are preserved throughout

Debugging progrcms
Although Apple IIGS BASIC can easi}y ~ 1:rrors such as unknown verbs and faulty
syntax, you will have to find the more subtle sorrs of errors such as slightly misspelled
variable names. The TRACE statement em help you to catch these types of errors.

The TRACE stotement

TRACE functions while a program is e:'tecuting. It prints a number sign (•) followed by
the number of each line of the program as it executes. It is very useful when tracing
partS of the program that do not follow in sequential order.

TRACE used without any options displays the line numbers on the screen. If :.he
program that you are running displays characters on the screen, the output of TRACE
combines with that display in unpredictable ways. The line numbers may appear
around and within, or even be overlayed by the program's display.

Fortunately, the TRACE statement h3S .an option for directing irs output co a file or
another device, such as a printer. The synu.x for !his is:

Th.is option allowS you to ope..'l a flle or a device with the open command, and then
send all the trace information to a disk, RA.\1 disk flle, or printer. You could even send
the trace information through a serial connection to a separate terminal or computer
and display the trace information on another screen.

If you trace a program that uses the Ol)TPt..'T• statement, the line numbers listed by
TRACE will be included in the file written to by OUTPtrr ...

TRACE is canceled by !'l"OTRACE, RUN NEW followea by a pathname, or by LOAD
followed by a pathname. TRACE is not canceled by CHAIN or RI:N alone.

Chopter 1: Introduction To Apple IIGS BASIC

Warnfng:

Using mACE with o program thot Includes en ON KBD statement con be risky
because TI<ACE slows program execution. end mcny keys could be pressed while
the ON KBD statement Is being executed. lhis might cause c stock overflow
error, giving o false error message for the program.

The NOTRACE statement
NOTRACE simply cancels TRACE, stopping the display of the line numbers of
executing program statements. To use it, type

NC"!'RAC:::t

There are no options associated with NOTRACE.

Speciol keyboord functions
Control-C and Control-Reset h2ve special functions for users of Apple nos BASIC, as
described below. Refer to your Apple OGS Owner's Guide for information about other
key combinations that have special funaions.

The Controi-C combination

Pressing ContrOl-C while a statement in a program is being executed is equivalent to
inserting a STOP statement immediately after the statement Control-C ca.n be used to
stop the exeOJtion of any statement. For example, you could use it to terminate the
display generated "by a UST statement

Pressing Control-C while a program is waiting at an INP'L"T statement, before the
Return key is pressed, will abort that program.

Contrel-C will not stop execution of a program in the following cases:

~ A BREAK OFF or ON BREAK statement has been executed (Control-C is handled by
ON BREAK; see Chapter 8, •BASIC Reference, • for details).

An ON KBD staremem has been executed (ON KBD causes Control-C to be treated
like any other keystroke). However, the statement executed by ON KBD can issue an
E]I.;'D or STOP command if Control-C is pressed.

Specie! keyboard functions 17

_ The program is waiting for an inpuc/output 0/0) operation to be completed. For
example, if the printer is not properly connected while the program is trying to
print, Apple IIGS BASIC will not recognize Control-C. The printer connection must
be adjusted before the program can continue or be aborted by Control-C.

The Control-Reset combination
Pressing the Reset button while holding down the Control key halts I/0 operations and
reboots your computer. Control-Reset causes an elearical reset of the entire system.
Anything stored in memory is lost after pressing Control-Reset, including your
program and Apple IIGS BASIC.

Automctic execution
In addition to immediate e."'tecution (directed from the keyboard) and deferred
execution (directed by programs stored in memory and started by a RL"N command),
Apple IIGS BASIC allows operation to be directed from a text flle. You use the EXEC
statement for automatic execution of insuuctions.

The EXEC statement
EXEC simulates keyboard input by reading the contents of a text flle and executing its
insuuctions. To use this statement, enter the reserved word EXEC, followed by the
pathname of the text file containing the commands to be exeC'.lted. For example:

!XEC /Workaisk/3usiness/Games~ar~e~

If the file you have specified is not a text flle, the

::::..z ~~PE: ERROR

message is displayed

Apple IIGS BASIC accepts input only from the file specified in the EXEC statement
until one of the following occurs:

o Control-C is pressed

o a STOP statement is executed

r: an error message is displayed

_, the end of the rue is reached

.-\fte: any of the above events, BASIC returns control to the keybc....rd.

Chcpter 1: Introduction To Apple IIGS BASIC

:EXEC automatically opens the me that it uses, but BASIC does not consider this file as
one of tbe total of six files that may be open at one time.

Deferred immediate statements

You may have an application that is actually a series of programs, running one after
the other. If the individual programs require no user interaction, you can use EXEC to
run the sequence of programs, and then leave the operation unattended while the
computer works. You can do this by creating a text file that contains the RUN
statements, and then issuing an EXEC statement specifying that me. For example, you
would type

EXEC Runner

where Runner is a text .file containing the lines

RON P::oc;::am:
RON P::oc;::a:r.2
RON P::oc;::an-.3

You can write programs that produce Files to be run by the EXEC statement. The
following program, called Text.f.LleMaker, is an example of such a program:

lO REt-~ Proc;::aTr ... '!'ex-t!ileMalte::"
20 OPEN •Runner", F:::l.'!''tP• '!'X': FOR OO!PD'I AS t :3
30 !NPO'! •-•; ss : RE!-! Ce't a line of 'tex't
4 c IF !.EN css) -c THEN i C : RE~ Was only Re't urn pres sec:
SC PR:::N':" f3; SS : RE~ Write 'the line in-:o 'the ~ile

6C GO'!"C 30 : RE~ Gc ~acit anc ge-:; ano-:he= line
i 0 c:.osE f::
BC EN:;

TextfileMaker displays a hyphen to prompt you to enter lines of text, one at a time,
until you type nothing but a Rerum. The lines will be written into a text flle named
Runner. If you run TextfileMaker and enter the following responses:

RON

-RON P:-oc;A
-RON Proc;E
-RON P::oc;C

Apple llGS BASIC will create the desired EXEC file. When you type

EXEC Runner

the coruents of the Runner flle will be output, one line at a time, exactly as though you
were entering the data from the keyboard. When the line containing RUN ProgA is
output, BASIC executes that line as a RUN statement, and runs ProgA. When Prog.-\ is
fmished running, the next line of text is output, causing ProgB to run. After ProgB
flnishes, ProgC is .RUN. After ProgC flnishes, control rerum.s to the keyboard.

Automatic execution 19

Note that you would not get the same result by writing a program to run the three
programs. A program containing the lines

lO RON "?roqA"
20 i\ON "ProqB"
30 RON "ProqC"

runs only the first program because exe01ting the RUN statement clears the current
program in memory, thus wiping out lines 20 and 30.

EXEC accepts any legal statement in BASIC, including conditional statements. This
allows you to make the order of program exeOJtion dependent on the result of a
program's execution. For example, you might want to run ProgB after ProgA only if
the value of X as determined by ProgA is negative. If X is positive, you might want to
run ProgC instead. To do this, your Runner flle should contain the following:

RON ?:-oqA
::: X<O ':SEN :tON ProqB : EI.SE RON ProqC

Remember that an executing text flle replaces keyboard input If an !:'TP'L'T or GET
statement occurs in a program, it takeS ics input from the next line of the text flle, not
from the keyboard.

If you call an EXEC flle from a program, the E:a:C statement must be followed by
~"D. as shown below:

l 0 AS•"WoodF ile"
20 EXEC A$: ~0
25 :NPOT AS
30 GOTO 10

You can reenter the calling program after the EXEC flle is fmished by using either R'L");
with a line number or GOTO with a line number as the last line of the EXEC flle.

You can force the computer to take input from the keyboard while a text me is
exec.Jting by opening the file .CONSOLE in your program or in the re..u flle and doing
.file input (see Chapter 5 •File Handling•).

Creoflng deferred statements

When a deferred statement (one with a line number) occurs in an exeOJting te.."'tt me,
the eff'ea is just as if you typed it on the keyboard The line is stored in memory, and it
can be run or saved.

Suppose that you have a program ~ memory (either one that you have just typed or
one previously saved) and you exeOJte a text flle containing deferred statemencs. If
these statemencs have line numbers different from those already in the program, the
effea is to add the new statemencs to the program. If any new line has the same number
2S a line in the program, the new une replaces me old one.

Chcpter 1: Introduction To Apple IIGS BASIC

Suppose that you write a set of programs using modulo functions defmed for real .
variables. A modulo function takes the fust expression and returns the remainder after
dividing the f.ust expression by the second expression, called the modulus. ('The
value returned by 7 modulo 5 is 2. 8 modulo 2 returns 0.) nus is the same as the MOD
function in Apple DGS BASIC.

If we c:al1 the real variable A and the modulus B, we can defme a function named ModB
as follows:

30 DEF FN Mod.B !AI • (A/B - IN'! tA/BI I •B

where B is replaced by an aaual number. The result is meaningful only if A has a
positive value.

If you "W'aalted to have Modl2, Mod15, and Mod255 functions, you could begin each
program with the lines

l DEF !'N Mocil21Al•(A/l:2 - IN'l'IA/12))*12
2 DE! :'"N Mod.151Al•IA/l5- IN!IA/15))•15
::; DE! FN Moci255 IAI • !A/255 - IN'!' IA/255)) •255

Instead of typing these lines into each program that uses these functions, you can
create a texi me called Mods that contains them, and then enter

EXEC Moc!s

A program ~e TextfileMaker (sho'WI'l in the previous section) could be used to create
the Mods flle. Before running TextfileMaker, ~ter line 20 to produce a file named
Mods instead of Runner. When prompted, enter

RON . i:)~':" :1\ Moc::<CAl•IA/::2 - !N!CA/121 1"12 -
-2 o:::r FN Mod:SIAl•iA/15 - !N':CA/15) 1"15

.,~- =~ Mod255!Al•!A/255 - !N':'CA/255))•255 - -l

Now whenever you want to 'Write a program using these MOD functions, start by typing
EXEC Mods (enter this command before running the program, but after loading it).

The same principle can be used whenever you have some lines to insert in several
programs. Make sure that the line numbers in the text me and the line numbers in your
program don't overlap.

Automotic execution 21

Capturing programs cs text files
Some of your programs may contain lines that you would like to insert in other
programs. To do this, you must convert the lines into a text me, then insert them into
other programs by using EXEC as descnbed above. Use the OL'TPL-r• statement to
send console output to a text me instead of to the video saeen. If you then use UST, all
the output is written to the text file.

The resulting text file may be edited with any Apple ncs editor that accepts an ASCII
file. After editing and saving the text file, you can use EXEC to read the edited program
back into memory, and save the program from memory into a program me.

Suppose that you want to save lines 20 through 150 of a program swting at line 10 in a
text ille name Goodlines. First load the program, then type the following:

) OPEN "Goccili.nes", F!LTYP•TXT FOR OOTPOT AS t3
l OOTREC•O : !NOENT •0
lOOTPOT t3 ~!ST 20 - lSO : OOTPOT tO
l CO'l'REC•80 : !NOENT •2
l c:.cst t3

This creates a te."Ct f.Ue that you can insert into other programs with the command

EXEC Gocdli.nes

Chcpter 1: Introduction To Apple IIGS BASIC

Chapter 2

Tools of Your Trade

Variable types xx

Integer vuiables xx
Double-Integer variables xx
Reals XX

Strings XX

Reserved words and variables xx

Arrays xx

The DIM statement xx

Statements xx

Expressions xx

Arithmetic Expressions xx
Arithmetic operator precedence xx

Logical expressions xx
Logical operator precedence xx

Functions xx.

String Functions xx
The LEN funaion xx
The STRS function xx
The CONVS funaion xx
The VAL funaion xx
The CHRS function xx
The ASC funaion xx
The HEXS function xx
The T.E.I\. funaion xx

23

The ERR1'X'TS function xx
The SPACES function xx
The REPS function xx
The PFX.S function xx
The UCA.SES function xx
The !.EFT$ function xx
The RIGH!S function xx
The MID$ function xx
The INSTR function XX

The SUBS function xx
Numeric functions xx

The SIN function xx
The COS functions xx
The TAN function XX

The ATN function xx
The ~'T function xx
The RND function xx
The SGN funcjon :oc
The ABS function .:oc
The SQR function xx
The EXP, EXPl, and EXP2 functions xx
The FIX function xx
The LOG, LOGl, LOG2, and LOGB% functions xx
The NEGATE function xx
The ROL"ND function xx
The SC.UB function x:x
The CONY& function xx
The CONY function x:x
The CONYS function lCX

The CONV0/0 function xx
Miscelaneous functions xx

The B1N function xx
The FILE function xx
The JOYX and JOYY variable xx
The PDL function xx
The PEEK function xx

Defining your own functions x:x
The OEF FN statement xx
Using a defined function :oc
Remarks about defining functions

24 Chapter 2: Tools of Your Trode

This chapter describes the tools that Apple nos BASIC provides for effeaive
information handling. Here are some termS that you should know before continuing:

• A variable is a container to store a value. It can be thought of as a box that can hold
a single value. Variables have limits on the types of things they can contain (just as a
box can contain only things of a certa.in size). Also, there are certain tasks for which
some variables are better suited than others; for example, a filing cabinet is not a
suitable place to store fruit, but a wooden crate may be.

• Variables are referred to by their names. The box in the example above might be
labeled junk; the fruit crate could be labeled apples2. Both junk and apples2 are
legal variable names. A variable name is a sequence of characters beginning with a
letter and followed by from 0 to 29 additional letters, digits, or periods. lowercase
letters in variable names are considered equivalent to their upperc:a.se counterpans.
For example, the names junk and JUNK refer to the same var:iable.

• Not all possible names can be used. Some reserved words are used by nos BASIC
to refer to the language's statements and funaions.

• A constant is an unchanging, or fJXed, value. There are two kinds of constants in
BASIC: numeric and string. A numeric constant is a value written as a number; a
string constant is any sequence of charaaers enclosed in quotation marks. For
example, 3.14159265 is a numeric constant; •dangle• and •463• are string
constants. The numeric constant 463 and the string constant •463• do not represent
the same v:&.lue.

V cricble types
There are six variable types in Apple nos BASIC: single-precision reals, (generally
referred to simply as reals), double-precision reals (called double), integers, double
integers, long integers, and strings. The first five types represent numbers of various
kinds, the last type represents sequences of characters.

The type of a variable is determined by the last character of its name: $ for string,
• for double precision, % for integer, C for double integer, and & for long integer. In
the absence of any of these special trailing characters, the variable type is considered
to be real (single precision) by default

Here are examples of names of the six variable types:

Table 2-1

Name

Myname$
Len;-t.h
:Siqnum-t
Ma.:ble~i!

Type

string
real
double precision
integer

Variable types 25

G:iladdress@ double integer
:..iqht. Years& long integer

Simple variables are aeated when they are fJrSt used in a program. When BASIC sees a
variable name in a statement, it fU'St checks to see if it already has a variable with that
name. If it fmds the name, it knows where in memory to fmd the value stored in the
variable.

If BASIC doesn't fmd a simple variable matching the name already in memory, it
immediately aeates the new- variable. It places the new variable name in the directory
of variable names so it can be found later, then fmds free space in memory to store the
value that the variable will contain. It also notes the type of the new variable.

For numeric variables, BASIC stores the value 0 in the variable; for string variables, it
stores an empty, or null, string in the variable. .

Integer voricbles

Generally, an integer is any positive or negative whole number without a decimal
point. IIGS BASIC supports three sizes of integer variables and converts integer
constants in a program into four internal binary formats when an integer constant is
found in a program statement. The numbers 3. -3. and 20,000,167 are examples of
integer constants.

The fU"St, or smallest size, intege::s are usually referred to as integers without any
quaiificatton; you should think of them as word integers.

An integer variable name must end with a percent sign (%). For instance, I% is the
name of an integer variable. Integer variables can store values up to five digits long,
from -32768 to 32767. Attempting to assign a value beyond this range to an integer
variable generates the message

?OVERFLOW !RROR

Integers are displayed without leading zeros (with a leading minus sign if negative),
followed by up to five digits without a decimal point.

Integers are useful when fractional partS of numbers are not needed. They can also be
used to speed up some cypes of alculations where real numbers are not required, and
they take up significantly less space in memory.

26 Chapter 2: Tools of Your Trade

Double-Integer variables
Double integers are simila.r to ordinary integers, ~cept that they may be up to ten
digits long and they require twice the storage space of single integers. They can be
mixed in arithmetic expressions with regular integers or reals, but some loss of
precision may occur, depending on the range of the .result. Double-integer variable
names must end with an at sign (C). A double-integer value can range from·
2147483648 to 2147483647. Exceeding this range causes the message

?OVER!'I.OW ~RROR

to be displayed

long-integer variables
Long integers are similar to ordinary integers, except that they may be up to 19
digits long. They can be mixed in arithmetic expressions with regular integers or reals,
but some loss of precision may occur, depending on the range of the result. Long­
integer variable names must end with an ampersand (&). A long-integer value can
range from ·9223372036854775807 to 9223372036854775807. Exceeding this range
causes the message

?OVERFLOW ~RROR

to be displayed

Long integers are displayed without leading zeros (with a leading minus sign if
negative), followed by up to 19 digits without a decimal point. ·

Many types of financial programming could profit by using long integers and doing all
calculations in pennies. The decimal point could be inserted later when reporting
tesults by using the SCA.I.E function, described later in Chapter 3.

Reels
Reals are any positive or negative number within the allowed range. The allowed range
varies depending on whether the real type is single precision or double precision.
Unlike integers, reals can have a fraaional pan. The numbers 3, 33, 3.3, ·3.3, 3., -
3.0, .3. and -.3 are examples of real constants. A numeric constant with a decimal
point is alw:lys of type real, even if it has only zeros to the right of the decimal point
For example, 3. is a real constant. Constants with more than nine digits and any
constant with either a decimal point or an exponent remain as characters and are not
tokenized when program lines are entered into a program.

Variable types 27

All numbers within a selectable range are printed in conventional or fixed-point
notation (also called flxed format) by the PRINT statemenL For example, 1, +1, -1.,
3.14, 999.999, and -0.2 are real numbers expressed in fixed-point notation. The limits
of the range are set by the modifiable reserved variable SHOWDIGITS. The default
value of SHOWDIGITI is 7.

The SHOWDIGrn variable conuols the binary to .ASCI conversion of all numbers
output by PRINT, including double or long integers. The default setting will format
numbers less than 107 and greater than or equal to 1o-7 in f12d format; this is the
nominal precision for single real numbers.

When fixed-point notation does not represent the real number accurately, BASIC
converts it to scientific, orE (for exponent) notation. The number .0000001 will print
in fJXed format, but .00000012 will print in scientific notation (as l2E -6), since a
significant digit would be dropped if only seven digits were shown.

You can enter from the keyboard any real number within the allowed range in
scie:ltific notation. For example, you could type 5.3El2 to represent 5.3 times 10
raised to the rwelfth power. When a number is formatted in s~entiflc notation, trailing
zeros are not displayed in the mantissa of the number, even if the result is fewer digits
than the value of SHOWDIGITS. Here are examples of fJ.Xed-point notation versus
scientiflc notation.

Table 2·2

Fixed-point notation

300
1320
.44
-.033
1000000000000

Scientific notation

3E+2 • 3•(10A2)
3.2E2 • 3.2•(lOA2.)
4.4E-1 • 4.4•(10A-l)
-3.3E-2 • 3.3•(10A-2)
1E+l2 • t•(lOA12)

Apple IIGS BASIC considers a single-precision real whose absolute value is less than
1.5E-45 as equal to zero. Double-precision reals with a value smaller than S.OE-324 are
considered equal to zero.

When BASIC displays a real, it displays SHOWOIGITS digits, excluding any exponent.
Any signiflcant digits beyond the value of SHOWDIGITS are rounded off. Leading
zeros to the left of the decimal point and trailing zeros to the right of the decimal point
are not displayed. The decimal point and SHOWDIGITS digits are always displayed,
even if the fraction is zero.

Single-precision reals must be within the range of -1.7E38 to 1.7E38. Double precision
reals must be within the range of -1.7E308 to 1.7E308. If you enter a number outside
those ranges, the message

'OV!:RF!.OW ::RROR

will be displayed.

26 Chcpter 2: Tool$ of Your Trode

Strings

A string is a sequence of characters enclosed within quotation marks. String variable
names must end with a dollar sign ($). Strings may contain from 0 (the null string) to
255 characters. The number of c:haraaers in a string is referred to a.s its length. Strings
are not fixed in length; they may grow or shrink a.s necessary.

Strings must be bounded by quotation marks, but they can not contain quotation
marks. For example, the statement

PR!N::' "Wha~ does "'FOO"' mean?"

prints

What does 0 mean?

'Ibe quotation marks cause BASIC to assume that FOO is a real variable 'With a value of
0, since it has not been assigned a value. However, strings can contain single
quotation marks; the statement

PR:N-: "'What cioes 'FOO' mean?"

will be printed a.s it appears.

If you need to print quotation marks, you can use the CHRS funaion 'With the ASCII
code 34 to produce them. For example, this statement will print with quotation marks;

PR::N'!' CHRSC3~l;"'One sma:..1 step for a man ••• ";CHRSC34l

The CHRS function is described in detail in the section •string Functions" later in this
chapter. ·

When a program is run, all string variables initially contain the null string.

Reserved words end vcricbles
Some names cannot be used for variables because they have special meanings for
BASIC. For example PRII\"'T, HOME, and OPEN are reserved words in BASIC; they
cannot be used as variable names or line labels.

If you attempt to use a reserved word, you will see the

?SYN:'AX !:RROR

message

One group of BASIC reserved words are known a.s reserved variables. The reserved
variables are

KBD

Reserved words end voriobles 29

EOF JOYY

ERR PDL9

ERRTOOL SECONDS@

E.UI.L'l PROGNAM$

FRE DATES

TIMES

Your program can refer to the values of these variables, but you cannot assign values to
them. For example:

?RINT !:RRL:N

is a legitimate statement, but

!RRL!N•50

is not.

You can assign values to BASIC's modifiable reserved variables

HPOS

VPOS

INDENT

USTTAB

OUTREC

PREFIX$

PROGRAMS

SHOWOIGITS

Chapter 4, •controlling Progom Execution, • explains how to use assignment
statements to change the values of these reserved variables. An alphabetical list of all
BASIC reserved variables appears in Appendix C, "Reserved Words. •

Arrcys
An array is an ordered collection of single variables, all of the same type. The name
of the whole collection, called the array name, can be any legal variable name. The
last charaaer of the name determines the type of all the variables in the array.

In addition to the normal types, a special type of array, called a stnlcture, is
supported by llGS BASIC. The type charaaer that defines suuaure arrays is the
exda..mation point (!), as in DRECORD!. The individual variables in a suuc:ure are
bytes. A struaure variable is treated as a short, unsigned integer in a numeric
expression, with values from 0 through 255. Suucrures may only be defined with the
DL\1 statement Cas discussed in the next section) and are not allowed as simple
variables.

30 Chopter 2: Tools of Your Trode

The individual variables (or elements) within an array are numbered, starting with 0.
To refer to any element within an array, you specifr the name of the array, followed by
the number of the element enclosed in parentheses. For example:

PR.IN'l' AR CJl

displays the contents of element number 3 in the array named AR, and

PR.IN'l' PRIC:£5 Cl4il

displays the c:ontents of element number 147 in the array named PRICES. The
numbel:s in parentheses following the array name are called the array's subsaipt. The
subsaipt spec:ifleS one unique element within the array.

An array an have three or even more dimensions. The number of dimensions is the
number of subscripts needed to specify an individual element within it. A one­
dimensional array an be viewed as a single ·list of variables, one after the other in a
line. The variable name for such an array needs only one number to specify each
variable. For example, a one-dimensional array named Hdoz with six elements
includes the elements

Bdoz 10), Hdoz c:J, Bcicz C2l, Hcioz 13), Bcioz l~l, Hcioz C5l·

Note that the largest subsaipt value is one less than the total number of elements in
that dimension of the array.

In a two-dimensional array, two subsc:ripts are needed to specify an individual
element. For example, a two-dimensional integer array named Do/o might include the
elements

D' CO, Cl

D' c C, :J,
0\(0,2),

D'C:,Ol,

D' I:': l,
D\ c:, 2 l,

D' C2, 0),

Dtt2, :.>,
D\12,2)

D%(2, 1) specifies the element in the third column and second ro"''.

Here are some examples of arrays:

Table 2·3

Array Type

Integer
Double integer
long integer
Real

Dimensions Element referenced

4th column, 3rd row
44th element
78th column, 1st row
200th element
44th element

Fudge%(3,2)
Addrs@(44)
Frotz&Cii,O)
STATS(200)
Bicr-(300)
MumbleS(7,3,1)
MYRec!(23,10)

Double real
String
Suucrure

2
1
2
1
1
3
2

8th column, 4th row, 2nd plane
24th column, 11th row

Arrays 31

The DIM statement
To aeate an array, you must fust tell BASIC the maximum number of elements and
dimensions you want the array to accommodate. To do this, you use a DL'\1 (for
dimension) statement. For example, the statement

DIM Mincl' (i , 2 , 3 l

aeates an array named Mind% with three dimensions, with the fust subscript ranging
from 0 to 7, the second from 0 to 2, and the third from 0 to 3. The charaaer %
specifies that this will be an integer array.

Remember that the list of dimensions for all arrays begin with subscript number 0, so
the number of elements in each dimension is always one greater than the greatest
subscript value. Thus, the number of elements in the array Mind% is equal to
C7+1)x(2+l)x(3+1), or 96.

Before you dimension any large arrays, you must expand the data segment so enough
memory is available to accommodate the size of the array. The data segment is
expanded by using the ClEAR statement with the -size option, as desc:ibed in Chapter
1 and in more detail in Chapter 7.

More than one array can be defl.ned with a single DIM statement by separating the
arrays with commas. For example:

DIM L.iqh1:,(i8,9), Sulbs$(2,451, Lan1:ernst<9,2,8), LY<l6)

creates an integer array named Light%, a string array Bulbs.S, a double-precision array
Lanterns•, and a real array LY.

Subscripts can range from 0, whic."l is always the flJ'St element of each dimension of the
array, to a maximum value of 32767. Subscripts may be any integer or real expression;
however the resulting value is converted to an integer before the particular element is
acrua.lly accessed.

If you assign a value to an array element before defming it with a DIM statement,
BASIC automatically creates an array having 11 elements per dimension, with
subscripts numbered from 0 to 10. For example, when the statement

LZ'!' n!S (0, 0, 0) • 2 9

is executed, BASIC defmes an array 'I'MS, just as if the statement

:lIM l'MS (l 0, l 0 , l 0 l

had preceded the LET Statement.

If the statement

?R!NT ;:,,(;.a,:.OOPSl

:32 Chapter 2: Tools of Your Trcde

·.

is executed before the array D& is defined, a zero is displayed. Unlike other BASICs,
nos BASIC only automatically defmes the dimensions of an array when an assignment
oc:c:urs, not when a reference occurs. A dummy zero is returned for all array
zeferences, regardless of type, if the array has not been dimensioned.

If the value of a subscript refers to either a nonexistent dimension or a nonexistent
element (one that is greater than the highest numbered element in a given
dimension), the

?BAD SOBSCR!P'! ERROR

message is given. In the example below, both of the statements after the DIM
statement will cause this error.

} D!M RealArray (l, :Z l l
) PR!N'!' RealArray Cl, 3)

>PR=N': Rea.lA:ray(l,.l,Ol

Stotements

ID!M statement ciic:! not incluc:!e 3 l
(DIM ciici not creat.e 3 ciimensions)

Statements can be used in either immediate or deferred execution. Immediate
statements have no line number or label, and they are executed immediately when
entered. Deferred statements have line numbers and they may have a label, and
are stored in memory Cas put of a program) for later execution.

A list of statements may share one line number. In this case, adjacent statements must
be separated by a colon (:). The last statement in the list must end with a return. This is
called a statement list. For example, the following are both legal statement lists:

No deferred line, statement, or statement list may exceed 239 ·characters. After
tokenization, a program line, including the line number and 4 overhead bytes, may
not exceed 255 charaae!S plus a label of up to 30 charaaers.

Expressions
There are three kinds of expressions: arithmetic, string, and logical. An expression
can be a single constant or variable, or it can be an elaborate mathematical grouping

. of operators and operands. Operators are symbols representing mathematical
operations. Operands are the variables and constants that operators work on. For
example, in the expression 2+3, the operands are 2 and 3 and the operator is the ~
symbol.

Expressions 33

Arithmetic expressions
The operands of arichmetic expressions an be teals, doubles, integers, double
integers, or long integers. There are ten arithmetic operators:

Table 2-3

Symbol Mec~ntng

+ Unary plus
Unary minus

" Exponentiation
• Multiplication
I Division
DIV Integer division
MOD Modulo
REMDR SA..'lEnc remainder
+ Addition

Subuaction

Arithmetic operator precedence

In a simple expression like

4+8/2

bampte Value

+5 +5
-2 -2
2"4 16
4•6 24
5/2 2.5
7DIY 5 1
7MOD 5 2
5 REMDR 3 -1
4+7 11
9-2 7

you c:a.n't tell whether the answer should be 6 or 8, Wltil you know the order (or
precedence) to carry out the arithmetic operations. Your Apple llGS computer gives
the answer as 8 because it follows these rules of precedence:

1 . Any part of the expression enclosed in parentheses will be computed first,
according to the following rules. Sets of parentheses grouped one inside another
are evaluated from the inside out. First the innermost set is evaluated, then the
second innermost, and so forth. For example, the e."'tpression 2•(4+3) is equal to
14, while 2•4•3 equals 11.

2. When the unary minus sign is used to indicate a negative number, for example:

-3+2

your computer will fust apply the minus sign to its operand Thus -3+2 evaluates to-
1. It is perfectly legal to use the W1atY plus sign, but it is always ignored as an
operator. For example, the expression

+(-4)

evaluates to 4, not +4.

3. After applying a unary plus and minus sign, your computer does e."'tponentiation.
The ex;:-~ssion

4•3A2

Chopter 2: Tools ot Your Trade

is evaluated by squaring 3, and then adding 4. When there are a number of
exponentiations, they are done from left to right, so that

is evaluated by cubing 2, and then squaring the result

4. After all exponentiations have been calculated, all of the multiplication and
division operations a.re done, from left to right The multiplication and division
operators have equal precedence. For example:

2V6/2

evaluates to 2.

5 . Ahl!r multiplication and division operations have been calculated, DIV, the integer
division operator, evaluates the integer quotient of the division of the first operand

· by the second For example:

-; o:v 2

evaluates to 3.

·6. After DIV operations :ue calculated, the MOD and REMDR operations a.re done,
left to right MOD evaluates the integer remainder of the division of the fmt
operand by the second. For example:

i HOt S

evaluates to 2. REMDR, the SANE (Standard Apple Numeric Environment)
remainder operator, returns a remainder of the smallest possible magnitude. The
SA.l\,'1!: remainder function differs from the MOD function; its exact definition is
included in Appendix K, •SAl\TE Considerations. • MOD and REMDR have equal
precedence.

i. All additions and subtractions are done last, from left to right. Addition and
subtraction have equal precedence.

Logical expressions

Logical expressions, also called relational and Boolean expressions, are similar to
arithmetic expressions, but use additional operators. Where an example of an
mthmetic expression might be 2~2. 2•2 is a.n example of a logical expression. The
value of the first expression is 4, while the value of the second expression is true
because 2 does equal 2. l.ike'Wise, the value of the logical expression 2•3 is false
because 2 does not equal 3.

Since BASIC doesn•t understand the meaning of truth as such, but only the value of
numbers, true and false have been assigned the integer values 1 and 0, respectively.
Thus the expression 2•2 returns an integer value of 1 to represent true; 2•3 returns an
integer value of 0 to represent false.

Expressions

.~y arithmetic expression with a nonzero value has a truth value of true. Any
arithmetic expression with a value equal to 0 has a truth value of false. For example, the
logic expression 2+2 has the truth value of true and returns an integer value of 1.

• There are eleven logical operators, as described below:

Table 2·4

Symbol Meaning bample Value

- Equal to 3•3 True
< Less than 3<1 False
> Greater than 7>4 True
<• or •< Less than or equal to 5<•4 False
>• or •> Greater than or equal to 8>•5 True
<> or >< Not equal to 4<>4 False
<•> Ordered (vs unordered) 4<•>NaN False
A...'lD Conjunction SANDO True
OR Inclusive disjunction 80R3 True
XOR Exclusive disjunction 8XOR3 False
:--TOT Negation NOT4 False

logiccl operator precedence

The precedence of ope!·ators in logical expressions is listed below in order of
execution from highest to lowest priority. Successive operators of the same priority are
exeOJted from left tO right.

()

!JC'l'

9 I

J::::v
~00 REMOR

ANO
OR lCOR

Here are some additional examples of logical expressions, all true:

36 Chapter 2: Tools of Your Trcde .

NO': (4•5}

(3-::.J OR CNO'!-~ll

5 < > 3 AND I 6 OR ~ }
12•2'
-2
-(2~2}

NO'! C AND 6
2•3 • 3/2
9.3
C3.4Hl • ll.'7Ci ~ 3.414)

- 12. 6)
3 • -(2.5-i)
3<>234 H
33 MOt i

Be careful when writing arithmetic expressions. The expression 3<2 is false, and the
expression 2<1 is also false, but the expression 3<2<1 is true! This is because BASIC
first tests the expression 3<2, and fmds it false. False has the integer numeric value 0. It
substitutes the value of 0 for 3<2. The expression evaluator then tests the expression
0<1, which is true. The last truth value found is assigned to the expression result, in this
case the integer 1.

It is possible to use logical operators in string expressions. For example, "alpha" <
"beta" is true.

The ASCn values of the strings to be compared are tested one character at a time, and
the fl.TSt pair of nonidentical characters determines the ranking of the strings. (See
Appendix A • ASOI Characters Codes, • for a table of these codes and their numeric
values.) While simple comparisons of uppercase leners present no problem, the result
of comparing mixed-case leners and digits is less straightforward. ln every case, the
decision will be based on the ASCn code values.

Here are some examples. These string logical expressions are all true:

.. A''<"E"

.,A"<"AA"

.. Z ''>"An: .iciises":.a.t.: ishmen-:.ar ian ism"
"An~!"<"An~id~ses~ab~~shmen~a=ianis~"

"'A">"C"
"a">"A"
"•" <">"

The Ordered operator

Triple comparisons, such as >•<, <•>, and <>•, are legal construCts in Apple
DGS BASlC. All the combinations are treated as the same operator, the Ordered test,
which tests for a relationship peculiar to IEEE Onstitute of Electronics and Electrical
Engineers) numerics,_ as implemented by SANE CSA.NE is further discussed in
Appendix K and described in detail in the Apple Numerics Manual.)

Expressions 3i

Two mathematical concepts are supported by SA.'JE to minimize problems created by
representation of numbers by a computer. These concepts are internal
representations for:: inrm.ity and the concept Not a Number, or NaN. Most BASICs
do not support representations for these concepts in real numbers. Thus, in
ncs BASIC, when you try to divide by zero, infinity is returned as the result.

The concept of NaN is more complex than infinity, but generally Na.~.'ls are generated
as the result of impossible or meaningless operations. The simplest example of a Na..l\1
is the result of trying to take the square root of a negative number. Some other
examples are o•INF, (+INF)-(+INF), 0/0, and X MOD 0; all of which are meaningless
operations.

ncs BASIC generates a result of NaN if it encounters these and other impossible
operations during expression evaluation. If you then assign the expression result to a
real variable, that variable will not have a numeric value, but a concept value instead.
The Ordered test checks to see if both its operands are numeric values, that is that
neither operand is a concept value. The <•> operator returns true if both operands
are numeric representations and false if either operand is a Na.~.\l.

A computer cannot always represent the exact mathematical value of a number. An
example of this is the value one-third, (1/3). This number is called a repeating
deci.mal, and it is represented in binary as an approximation of the value 1/3 to a finite
amount of precision. Thus 1/3 is represented as .33333333333333333333000 when it is
calculated by BASIC.

Moreover, when the expression 1/3 is assigned to a single-precision real variable,
some precision is lost and the value represented becomes closer to
.333333343267440795 than to 1/3. As you can see, the fU"St seven digits are correc:, but
the eighth and later digits are noc, and the value is slightly larger than 1/3.

This loss of precision also occurs if the value is stored in a double-precision variable.
The e."tpresssion 1/3 becomes closer to the value .333333333333333331483 when
assigned (with the LET statement) to a double-precision real variable.

These differences in precision between an expression result (19 to 20 digits of
precision) and the precision of variables 0 and 15 digits) can cause problems if you
compare an expression to a variable. Thus, the statement

1000 IF At•l/3 TRi:N -

will not be true, even if A• W"as assigned the value of the expression 1/3.

The loss of precision caused by assignment to a variable must be taken into account
when comparing variables with expression results. You can round an expression result
to the precision of a variable with the CONV and CONV• functions to eliminate this
type of problem in the logical expressions of your IF statements (see the description of
lF in Chapter 8).

38 Chopter 2: Toots of Your Trade

Functions
Most of the programs that you will write in BASIC will use a relatively small number of
tools to solve a large number of different problems.

For example, many scientific and engineenng problems require the use of logarithms
or trigonometric functions for their solution. You could probably solve these with the
use of tables built into your program, or with some equally tedious means, but
nc;s BASIC includes a set of tools, called functions, to make these calculations easier.

A function takes one or more expressions, called arguments, performs some
defmed operation on them, and returns a single value. A function's arguments are
arithmetic expressions, except in string functions (desaibed later in this chapter in
the section ·string Functions-, Arguments are enclosed in parentheses following the
function name. The returned value is substituted for the function name in the same way
that the value of a V2riable is substituted for the variable name when used by a
program.

A function is not a statement itself, but is used as part of a BASIC statement Functions
simply return values; statements tell BASIC what to do with the value returned by the
function.

You can either use the funaions built into Apple DGS BASIC, or you c:a.n defme and use
your own funaions. 1be functions built into BASIC perform certain standard
operations, such as Uigonometric functions, removing fractions from real numbers,
finding the absolute value of a number, and so on.

Values returned by functions have types, just as variables and constants have types. All
built-in string functions return strings. Most other functions return numbers of type
real, but some functions return integer or double-integer results. For example,
CO:r-..'\1%, COl\-vC, and CONV& return regular integers, double integers, and long
integers, respectively. nc;s BASIC allows you to freely mix the numeric functions of all
types in numeric expressions without generating any errors. However, mixing
fu.naions can cause a loss of precision if used incorrealy.

You can assign a real value <returned by a function) to an integer variable, provided it
is within the range of -32768 to 32767, since reals are automatically convened to
integers by BASIC for this purpose. ·

For example, the INT funaion rounds a fractional number to the next lowest whple
number (real):

> x--3. 3 : Y•i. 95
) PR!N:' INT IX), IN:' !Yl
-4 ,

This is equivalent to using

> x--• : '!•i

Functions 39

When a function is included in an expression, BASIC first returns a value for the
function, and then evaluates the rest of the expression using the function result. For
example, BASIC treats

W:!O'l'S•3.3
A•S•!N'l'<W:~:Rl•3

as

II you want to use or display the value returned by the function, you must include
statements in your program tO that effect. For example, if you want to display the sine
of e, you must first use the SIN function, and then use a PRINT statement to display the
returned value:

)!:•2.718
l PRIN'!' S!N <El
. u:oJs
)

String Functions
Not all functions operate on numeric arguments; some of them work on strings. A
string is a sequence of characters and can exist in three forms: as a string constant
enclosed in quotation marks, as the content of a string variable (a variable whose
name ends with the S charaaer), or as the value of a string expression.

A string expression's operands are strings and it returns a string value when evaluated.
The only operator allowed within a string expression is the concatenation operator, ... ,
which joins strings together. Here are three examples of string e."tpressions:

Table 2·5

E.ltprellion

Message.S
Message.S+.123" .
•Ap"+"ple"+" llGS BASIC"

Value

Whatever has been assigned to MESSAGES
Value of MESSAGES with "123" appended to it
"Apple llGS BASIC"

An expression having strings as operands but containing any operators other than + is
a logical expression, rather than a string expression. For example, the value returned
by

MSGl S > MSG2 S

is not a string, but an integer with 0 for false or 1 for true.

A string containing zero charaae:'S is called a null string md has a length of 0. A null
string is written "". For example the statement

40 Chopter 2: Tools of Your Trode

J AS•.,"

assigns a null string to AS.

The names of BASIC string funaions that return string values end 'With the S character.

The LEN function

lEN returns an integer value equal to the length of the String expression, in the range of
0 to 255. For example: ·

) P RINl' l.l:N I" ABCD" l ..
J BS•"Farm" :PR!N: l.l:N !BS+"Bouse"l
9

If the string expression contains more than 255 characters, the message

?S:'RING TOO LONG ERROR

is displayed

The STR$ function

STRS evaluates a given arithmetic expression and returns the value as a string. For
example:

J PR:~: S:'RS !:25/3)

JPR:N: S:'RS!lOOOOOOOOOOOJ•"More"
l:E-:lMcre

The CONV$ function

CONVS evaluates any type of argument and returns a string resull If the expression
result is a real type, the string result will be the string that would have been generated
by the P~"T statement If the argument is a string expression, no conversion is
performed.

If the expression result is of type integer, COJ\'VS always returns a flXed-point
formatted st.-·ing of 1 to 19 digits, regardless of the value of SHOWDIGITS. This
treatment of integer results is different from the STRSC) function. Notice the different
output from STRS and CONVS in this example:

JA,•ll2233445566ii8899

) PR::N': S'!'RS CA' I, CONVS CA' I
. l.l2233.;E+li ll2233H5566ii8899

Functions .: 1

The VAL function

VAl. evaluates a given string expression and returns the value· as a real or an integer
number. For example:

)PRINT lO•VAL<":.3E4"l
130000
l PRINT VAL (":3"+"ii")
l3ii
)

If any character of the string e."tpression value evaluated is not a legal numeric
character (leading spaces are acceptable), the message

?TYPE MISMA'l'CE ~RROR

is displayed.

If the absolute value of the number represented by the value of the string e.~pression is
greater than 1.7E308, the message

?OVERFLOW !:RRCR

is displayed.

If the string expression value contains more than 255 charac:ers, the message

?S':RING TOO LONG !RROR

is displayed.

The CHR$ function

CHRS takes an arithmetic e.~pression as an argument and returns a one-character
string corresponding to the A.SCll value of the evaluated arit.l-unetic e."tpression. For
example:

!PRINT CERSC66.8J

c
) RS•" 68": PRINT CERS (VAL (RS l l

0

The value of the arithmetic expression is rounded to the nearest whole number if it is a
real. It must be in the range 0 to 255, or the message

?ILLE:GAL QOANTIT'! ERROR

is displayed (See Appendix .-\., • ASCll Character Codes. •)

42 Chapter 2: Tools of Your Trace

' X
'-·

The ASC function

ASC returns the ASCD character code corresponding to the fust character of the given
string expression. If the string expression value is a null string, then the value -1 is
returned. For exunple:

) PRlN'r ASC: C"BEEP"l
6E
) dS••sEEP" : PRIN'r ASC !dS+"S"l
60

The HEX$ function

HEXS returns as an eight-character string equal to the hexadecimal (base 16), c:alled
hex, value of the given arithmetic expression. For example:

l PR!N':' .REXS (7801
OOOOC30C
l PR:N':' HI:XS C-10:24)
:::::::r:oc

Jbe value of the given arithmetic: expression is rounded down to the nearest whole
number if necessary. It must be in the decimal range of -2147483648 to +2147483647;
otherwise, the message

.is displayed.

The TEN function

"'I'£N returnS the dec:imal (base 10) equivalent of the last eight or less characters of the
given string expression. The value returned will be in the range of -2147483648 to
•2147483647, as a double integer. For example:

l PR:N:' =.E:N ("'tiJOC"}
iBC
l PR:N:' ':I:N I"CCCC"l
S.242B

) PR:N':' "!'EN I"'!"::"ITCCCC" l
-l3lOS
)

If the fliSt c:ha.raaer in an eight-character hex number is a hex digit 8 or greater, then
the result of the funaion will be negative, since the leftmost bit of the number is a l.
The trailing eight or less characters of the value of the given string expression should
represent a hex value.

Functions .43

The characterS of the suing are scanned from last to fU'St and digits and the letters A
through F (or ~ through f) are considered part of the hex suing to be converted until a
nonhex digit is encountered. 1be hex suing may h~ve zero to eight hex digits. If no
hex digits are found in the suing. the value zero is returned.

The ERRTXT$ function

ERR'IXTS Wce5 m arithmetic expression, in the range of 1 through 255, and returns a
suing. 1be text of the string is copied from the error mess~ge ~les within IIGS BASIC.
'The ugument is the error number of the error message, as defmed in Appendix B,
~or Messages. • If the value of the argument is larger than the last defmed BASIC
error number, the text PROGRAM is returned. Upon initial release, IIGS BASIC has
defined errors 1 through 88.

You can c:onstrua ~string exactly like a BASIC error message like this:

:.000 U:'!' EMS • "?"+ERRTX'!'S <6i) +"ERROR"

The SPACE$ function

SPACES returns a suing of spaces with the length given by the argume:'lt, an arithmetic
expression. 'The value of the expression must be in the range of 0 through 255. If the
value is zero, a null suing is rerumed.

The REP$ function

REPS returns a suing composed of the flrst character of the given string argument,
repeated the number of times given by the second arithmetic argument. For example:

l ?R:~T REPS<"-", 40)

'The value of the arithmetic expression must be in the range of 1 through 255, or the
message

?!I.I.ECAI. QCANTIT':! ERROR

.is displayed.

The PFX$ funcflon

PFXS is a string function that rerums a suing with the value OJrrently assigned to the
Proooss 16 preflX given by the numeric argument. 'The argume."lt must be in the
range of 0 through 8. ProOOS 16 supportS prefaes 0 through 7, and PFXS will return
the read-only boot-volume name for PFXS(S).

PFXS will return a null string if the requested prefl.X is not defmed..

Chapter 2: Tools of Your Trade

The UCASE$ function

UCASES is a string funaion that shifts all the lowercase letters (a through z) in its input
string argument to upperc:a.se GA through Z) ~d returns the string result

The LEFT$ function

LEFTS returnS a string composed of the leftmost characters of the given string
expression. The length of the string returned is defined by an arithmetic expression
that immediately follows the string expression in the I.EF'I'S argument list. For
example:

Apple
lPR!N! ~EF=sc•sparklinq~,J>

Spa
)

If the value of the arithmetic: expression exceeds the length of the string expression
value, all the characters of the string expression value are returned.

If the string expression value contains more than 255 characters, the message

?S'I'R!NG 'I'OO WNG ERROR

is displayed. The value of the arithmetic expression is rounded down to the nearest
whole number if necessary. It must be in the range of l to 255, or the message

is displayed.

The RIGHT$ function

lUGHTS returns a string composed of the rightmost characters of the given string
expression. The length of the string returned is defined by an arithmetic expression
that immediately follo'WS the string expression in the RIGHTS argument list. For
example:

lPR!N'!' R!GB'I'SC~Applesk.in" ,. •iiare", Bl
sk;.nwa:-e

l BS•R!GB'I'S ("Frui -:.:Ca~ .. , 3 l PR!N! BS

:Ca~

If the value of the arithmetic expression exceeds the length of the string expression
value, all the characters of the string expression value are returned.

If the string expzession value contains more than 255 characters, the message

?S'I'R!NG 'I'OO WNG ERROR

Functions .as

is displayed. The value of the arithmetic expression must be in the range of 1 through
255, or the message

?ILLEGAL QOANT!T':! ERROR

is displayed

The MID$ function

MIDS returns a substring of a given string expression. You must specify exactly where
in the value of the string expression the substring should begin by following the string
expression with an arithmetic expression. For example, if you want to retrieve the
substring keeping from the string Bookkeeping. use

PRINT MIOS("9ookkeepinq",Sl

because the fll'St character in keeping is the f.Lfth charaaer in Bookkeeping.

You may optionally specify the exaa number of characters to be retrieved from the
string expression value by including a second arithmetic expression. For e.umple,.if
you only want the four-character substring keep from Bookkeeping, use

?RINT MIOS("9ookkaepinq",5,4l

because keep is four charaaers in length.

If the value of the first arithmetic expression exceeds the length of the string expression
value, then a null suing is returned. If the value of the second arithmetic expression
specifies a greater number of characters to be retrieved from the string e."<pression
value than exist, all of the characters from the position specified by the value of the
fu-st arithmetic expression to the end of the value of the string expression are returned.
For example:

?RIN': MI::lS (AS, 255, 255 l

will display one character if the length of AS is equal to 255; otherwise, a null string is
displayed.

If the String expression value contains more than 255 characters, the message

?STRING TOO LONG ERROR

is displayed. If the value of either arithmetic expression is outside the range of 1
through 255, then the message

'? II.l.EGAL QOANTI!':! ERROR

is displayed

The program below is an example of the use of MIDS function. Try to figure out what it
will do, and then run it:

46 Chopter 2: Tools of Your Trade

:05 AS•"A3CD"
25 FOR Loopl • l TO 4
35 FOR Loop2 • ~ TO 4
<5 PRINT MlDS!AS,Loopl,Loop2l
55 NI:X'! Loop:!
E5 Nl:X! Loopl

The INSTR function

Il\"S'TR returns the position of the beginning of a specified substring within a given
string. For instano:, if you want to know wheze the substring at is in the string Rain in
Spain on the plain, use

J PRINT .lNSTR ("'Rain in Spain on 'l:he Plain", "ai" l
2

The fu-st occurrence of ai is at character position 2. The substring can be the value of
any string expression. Note that ai occurs at two other places within the string. To fmd
their positions, you must include an optional arithmetic expression after the string
expression to begin the string search at a position other than its fu-st character. For
example:

J FR::i:N': !NSTR c "'Rain in Spain on 'l:he pls.ir.", "ai", 9 l

The arithmetic expression (9 in the example) specifies the character position at which
the search should begin. If no arithmetic expression is specified, the search begins
with the first character position of the string expression. If the substring is not found
within the string expression, the value 0 is rerumed

If the arithmetic expression is greater than the length of the string expression or less
than 1, then the message

'?::..:..EGA!. QOAN': !':'Y ERROR

is displayed

The SUB$ function

S"UBS lets you replace any part of a string with a specified substring. The string to be
changed can be any string variable, and the substring may be the value of any string
expression. You must specify the fu-st character in the string to be changed by
following the string with an arithmetic expression. For example:

lFS•"Hardware" : SOBSCFS,ll•"Sot~" : PR!N': FS
Sof-:wa:e

Functions Ai

In this example, the new string Soft replaces part of the string Hardware contained in
the string variable FS. The replacement begins at the fust character of FS, and
continues until all the characters of the substring Soft have bee."l placed in position.

You may optionally include a second arithmetic expression to specify the number of
charaaers in the substring to be used in changing the original string. For example:

IFS••Rarc:lware" : BS•"Sott" : SOBS<FS,l,2l•BS : l?RI~T FS
Sorc:lware

Here are some additional examples of the use of the StJBS function:

lAS•"ABC~EFG":BS•AS:CS•BS:DS•CS:!S•OS:FS•£5

I SOBS <AS, 3) •"••" :PRINT AS
AB••!FG
l SOBS <BS, J, ll •"•'": l?!UN'! 3S
AB•DEFG
ISOBS<CS,3,l00J•"•••:PR:~T CS

AS••••••••••••
JSOBS<ES,l,9l•"•••••••••":PRINT £$
AS•••••••••
lSOBS<FS,3,2l•"•••••••••":PR:NT FS
AB••!FG

Numeric functions
:'-iumeric functions may be used in either immediate or deferred e."Cecution. The
argument to all numeric functions must be an arithmetic expression, e."Ccept for the
SCALB function. Two additional functions, .AJ.'It: and COMPI, are described in
Chapter 8.

All floating-point arithmetic in GS BASIC is done with 64-bits of precision using
SANE). This sets limits on the accuracy of the results returned by numeric functions.
For most work. the potential rounding off errors generated will not be a problem (or
even detectable), but you should be aware that there is a limit More information can
be found in Appendix K, •SANE Considerations, • and in the Apple Numertc.s
Manual.

The SIN function

SIN rerums the sine of an angle given in radians. For example:

I PRI~T s:~ <2 .1l8l
.4::.038

Chopter 2: Tools of Your Trode

The COS function

COS returns the cosine of an angle given in radians. For example:

) PR!N'! COS ll.Sill
-2. 03fii3:t-0<4
)

The TAN function

'I'A.~ returns the tangent of an angle given in radians. For example:

) PR!N'! '!AN 13 .141)
-s. 92 6.SJ:t-o.c

The ATN function

A~ returns the arc tangent, in radians, of the given argument The value returned
represents an angle in the range of -pi/2 to +pi/2 radians. For example:

) PR:N: A'!'N I. :3<456)
.332iS

>

The INT function

D\'T returns the largest whole number value less than or equal to the argument value.
For example:

J?R:N: :N':I3.3J

JX•:N:'I-3.31 : PR:N: X
-4
)

Notice that we said whole number, not integer. 11lis is because the Il\"T function
ac:rually returns a real number (note the decimal point and trailing 0 in the examples
above).

The RND function

Rl'I."'D returns a random real positive number less than 1. It generates a new random
number each time it is used if the argument value is greater than zero.

Functions 49

If the argument value is negative, R.""'D generates the same random number each time
it is used with the same argument. If a given negative argument is used to generate a
random number, then subsequent random numbers generated with positive
arguments will follow the same sequence each time. A different random sequence is
initialized by each different negative argument. This is particularly helpful in
debugging programs that use R.~.

If the argument value is 0, RND returns the most recent previous random number
generated (the ClEAR and NEW statements do not affect this). Sometimes this is easier
than assigning the last random number to a variable in order to save it. For example:

JlO :NPOT X: PRIT RND<XJ;" ";RND!Xl;" ";RND<Xl: ::OTO 10
lRON
?3
.'73643 .214'79 .53'754
?3
.23458 • 65986 .54193
?-4
• 95'754 .95754 • 95'754
?0
• 95754 .95754 • 95754
?
?BREAK :!J lO
)

For example, to get a random whole number, between 50 and 100 inclusive, combine
the INT and RND funaions in one expression:

PR:NT INT CRND (8) •Sll +50

The SGN function

SGN rerums -1 if the argument value is negative, 0 if the value of the argument equals 0,
and 1 if the argument value is positive. For e."'tample:

l PRINT SGNC-2341
-1
!PRINT SGN<2496+234J
l
l PRINT SGN <5E4-SE41
0

The ASS function

ABS rerums the absolute value of the argument~ in other words, the value of the
argument if it is positive, 0 if the value is zero, and the negative of the argument value if
it is negative. For e."'tampte:

SO Chapter 2: Tools of Your Trcde

lPRIN! ABS C34Sl
345
l PRIN~ ABS C24-363l
3:!9

The SQR function

SQR returns the positive square root of the argument value. For example:

l PRIN'l' SQR C3"2+4"2l
s

lhe EXP, EXPl, and EXP2 functions

EXP raises e (to 6 places, e•2.718282) to the power indicated by the argument value.
For example:

l PR:N': EX? I 3 l
20.0855
)

EXPl raises e to the power indicated by the argument value minus one. EXPl(.x)
acc:wately computes eX-1. If the input argument xis small, then the computation of
EXPl(x) is more accurate than the straightforward computation of eX-1 by
exponentiation and subtraction.

EXP2 raises 2 to the power indicated by the argument value.

The FIX function

FIX returns the integral portion of the value of the argument, truncating the fraction of
the absolute value of the argument. FIX differs from D\"T in that FIX does not return the
next lower number for a negative argument. FIX is equivalent to the statement
SGN(x)•I:r-.."T(ABS(.x)). For example:

lPR:N: ::xc3.3.33>,:::xc-3.333>
3-3

lhe LOG, LOG2, and LOGe•:. functions

l.OG returns the natural (base e) logarithm of the argument value. For example:

lPRIN! 1.0Gl20.0BS53l
3

Functions Si

1.0Glzenuns the natural logarithm of one plus argument value. LOG1(.x) accurately computes
LOG 1(1 +x). If the input argument xis small, then the computation of LOG 1(1 +x) is more accurate than
the straightforward computation of LOG 1 (1 + x) by adding x to 1 and taking the natural logarithm of the
resulL For example:

l PRINT LOGl C20. 08553 l
3.04858"7
)

LOG2 renuns the base 2 logarithm of the argument value.

l.OGB% returns the binary exponent of the argument value as a signed integer.

The NEGATE function

Negate returnS the value of the negative arthmetic expression. This seemingly simple
function is included due to the presence of the specialized SM"E data type
representations for infinity and NaN results, which are returned as the result of a
meaningless calculation, such as -0/+0. You should use NEGATE rather than -1• the
arithmetic expression to properly negate floating-point values.

The ROUND function

ROtJND returns the integral value nearest the value of the arithmetic expression,
according to the rounding direction of SAJ.'l'E settings. ROL~ should be used in place
of the common INT(arithmetic expression+. 5), because it will return a result
consistent with the other capabilities of S.A..'l'E.

The SCALB function

SCALB is a two-argument function whose flrst argument, a single-integer e.-cpression is
used as a base 2 scale factor for the value of the second argument. SC.-\.LB scales the
arithmetic expression by 2 to the power of the single-integer expression, effectively
returning the operand shifted left or right in the binary places specified by the single­
integer expression. For example:

I PRINT SC:ALB C4 ,lOl : REM 10 • 2A4 • 160
l60

LOGB% is related to SCALB, returning the single-integer expression for a given
arithmetic expression.

The CONY& function

CONY& evaluates the given argument -and returns a long integer value. For e.-campie:

S2 Chapter 2: Tools of Your Trcde

) PR!N:' CONV• !21 iS-i 954 l
-5ii6
l PR!N~ CONV' ! .. 4 .2H"l
4

)

If the argument is a string, then the effect is the same as using VAl followed, by
CONV& (the VAL function is descnbed ealier in this chapter, under the heading
•string Functions"). The value rerumed must be within the r:a.nge of
922337203685775807 to -9223372036854775808 (-9223372036854775807 from the
keyboard), or the message

?OVERFLO~ ERROR

.is displayed

The CONV function

COJ'\"V evaluates the argument and returns a real value. The value may be assigned to a
regular integer. The conversion from real to integer is automatic in the latter case. If
COJ'\"V is used with a string expression, the effect is the same as with the VAL function.
For example:

l Ca•23~23-< : B••52.352.3 : PRINT CONV CR,-G, l
289289
)

The CONV@ function

COJ'\"Ve evaluates the given expression and returns a double-integer value, rounding
off to the nearest whole number. The value must be within the range of -2147483648 to
~2147483647. For example:

lPR!N~ CONV@(l23456i89.l2l
:23456789
)

The CONV% function

CO:!\"V% evaluates the argument and returns an integer value, rounding off to the
nearest whole number. The value rerumed must be within the range of -32768 to 32767,
or the message

?OV!:RFLO~ ERROR

is displayed. For example:

Functions 53

424
l A'•76S6 : Bi•364 : PRINT CONV' (A,/!')
21
)

Miscellaneous functions
1b.is section desaibes some ."-pple ncs BASIC functions that c:antlOt be classified as
string or numeric, These miscellaneous functions have a wide range of applications.
Some use argumentS not allowed in most functions, and some allow optional
argumentS.

Other BASIC functions are described in Chapter 7, •Advanced Topics, • or in Chapter
8, •BASIC Reference. •

The BTN funeiion

BTI-l returnS the state of the three sense inputs CS.EOC061, 62, and 63) as 0 or 1. Various
devices, such as the buttons on paddles or joysticks and the Apple and Option keys,
can control the state of these inputs.

The FILE funcffon

~ returns the value 1 if the me given by the fJJ"St argument, a pathname string
expression, exists or the value 0 if the flle does not e."'tist If any error other than FILE
NOT FOUND is encountered that error will be displayed. If the optional second
argument, Fil TYP• ffietype, is not specified, a result of true will be returned for any
me .type. The syntax for the FILE function is:

F:L:t <aazpr (, FII.'l'YP• 'l'XT. SRC. BCF. ~:)

Where sexpr is a suing expression and ubexpr is an unsigned byte expression.

If the me type that you specify is not the same as the ffie's acrual type, a

?FIL:t ':'nit ERROR

message will be displayed.

The reserved variable AUXIDO will contain the subtype from the directory entry of the
file. The function FILTYP(O) will return the ffie type of the flle.

S4 Chapter 2: Tools of Your Trode

'The JOYX end JOYY variables

JOYX is a function that reads two of the four game paddle inputs (if they are plugged in)
specified by the integer argument. The integer expression must result in a number
from 0 to 2, otherwise an

?IL~GAL QOANTIT~ ERROR

message is displayed. JOYX returns the value for the paddle given by the expression.

ln addition, the zeserved variable JOYY is set with the value of the paddle unsigned
byte expression~ 1 when the JOYX function is called. This function eliminates the
interaction between paddles due to the coupling of the hardware one-shot timers by
timing both paddles .in parallel. Both JOYX and JOYY return a result with 8 significant
bits.

The POL function

PDL reads the position of the game control paddle (if it is plugged in) given by the
argument, a number from 0 to 3. PDL returns a value in the range of 0 through 255. The
reserved variable PDL9 will return the 9-bit result calculated by the prior execution of
the PDL function.

The PEEK function

PEEK reads a byte from memory at the address given by the integer expression and
returnS an unsigned integer in the range of 0 through 255. The integer expression must
be a positive integer less than 224. Care should be exercised in using PEEK, since
improperly reading many I/0 devices and control registers can crash the system.

Programmers concerned about writing programs that will run on newer versions of the
Apple n product family should avoid the use of the PEEK function because it contains a
hard-coded address that may not be supported in the future. PEEK is provided for
those who want to build noruransportable, locked-in programs.

Defining your own functions
You ca.n define your own functions to perform operations that are not provided by any
of BASIC's built-in functions. Once a function is defmed, it is also available in
immediate execution, as long as the defining program is still in memory and the
program containing the DEF FN statement has been executed but has not been edited
or expand with new lines. A user-defined function may not be defmed in immediate
mode.

Defining your own functions 55

If your program defines a user function and a OiAIN statement calls a new program,
the old functions are discarded and the new program may not use them. If you try to

do this an

?UNDE!'' 0 ?ROC /FUNC'!'!ON ERROR

message will be displayed.

The DEF FN statement

The DEF FN statement is used to let the user defme simple functions. The name of the
function and its parameters must follow the reserved word FN. The parameter list
consists of one or more simple variables enclosed in parentheses and separated by
commas. Parameters named in a DEF FN statement are isolated from variables with
the same names used elsewhere in a program. The statement must conclude with a
defining expression.

Simple functions can be of any type, including string functions and a function can
have one or more parameters, including string parameters. The parameter variables
are allocated in a separate, temporary local symbol table when a function is used and
discarded after the expression is evaluated. The syntax for a simple function definition
is

DE!' FN name cpara~j~~l • arithmetic expression
o: DEF FN name% (paraml~~~) • arithmetic expression
or DEE FN name@ (paramlj8e) • arithmetic expression
or DEF FN name• (par~~~e) • arithmet~c expression
or DEF FN name+ (paramli~~) • arithmetic expression
or DEF FN nameS (paramlj8e) • strinq expression

The defming expression may be any legal arithmetic or string expression, as shown
above. The defming expression may contain the parameters as well as any other
integer or real variables. The type of the expression must match the type of the
function.

For example, this statement defines a function named RECIP, with X as the argument
and 1/X as the defming arithmetic expression:

ISS OE:F FN RE:C:? !X) • :.;x

Here are some more examples:

l lO DE!' FN MINOS CXl • -ABS CXl
120 OEF FN SWOROE0.4<Cl • :::NT<RNOC3l•lOOI
130 OE:F !'N MSBYi.MATtCOE:Ot,:"l • OE:Dt•LOGC331-ABS!F\I
J40 OEF FN !:NOS$(A$,!$,Sti•LZF'!'$(A$,Sti•RIGHTS<BS,Stl

In addition to the single-expression functions described here, GS BASIC also supportS
multiline numeric (but not string) functions and procedures. These advanced
programming tools are described in Chapter 7, • Advatlced Topics."

56 Chopter 2: Tools of Your Trcde

Using a defined function

Once a simple funaion has been defined, you can use it anywhere that an arithmetic
expression can be used. After you enter function defmition.s in a program, the
funaions are still not available to be used until the program is nm.

When a RUN or CHAIN statement is executed, the entire program is scanned for DEF
statements (referred to as a DEF scan) and a special entry is made in the variable table
for each DEF funaion in the program. 'This entry contains a pointer to the parameter
list in the DEF statement; the pointer is used when the funaion is referenced.

Using (or referencing) a funaion requires that its name be preceded with the reserved
word FN. Here is an example of how you might use the Minus funaion:

) 20 A • FN Mi.nus 121

In this example, the real varia.ble A is assigned the value -2.

Here is another example:

If the value of A was -2, then -24 would be displayed on the screen.

Remarks about defining functions

The defming expression used to defme a funaion can refer to any real or integer
variable and any or all of the parameters. For example, consider the following
sequence:

) ! 3•3
);.C :>E:: !'N FooCA)•JI.•C

) ·" PR:N':' FN .Foe C:S) REM c:iisp.:..ays C because C is uncie!inec:i
l 2C C•5 : REM C now exis~s anc:i equals 5. 0
)2! PR:N':' FN FooCB) : REM c:iisplays l5

The parameters to the function need not appear in the defining expression. In this
case, the .function's argument, B, is ignored in evaluating the expression.

When a funaion is referenced, the value of an argument is assigned to the parameter
in the parallel position. Even if a parameter is not used in the defming expression, the
argument in a reference will be evaluated and assigned to the parameter, so it must be
something legal.

For example the formal argument Zilch in the next example is real, even though it is
not used in the expression:

l lO Dtr FN BAZ !Zile.hl •2.•2

Functions may not be defmed more than once in a program.

U a function is used .in an immediate statement before the program containing the DE.F
F!' statement is run, the

Defining your own functions

?OND!F' D ?ROC/FONC':ION !~ROR

message is c:lisplayed.

The entry made by the DEF scan (of a Rti'N or CHAIN statement) for each DEF FN
statement uses 1 byte per character in the function name, 2 overhead bytes, and 6
bytes for information about the function as follows: a byte containing the parameter
count, 3 byteS for program relative offset, and 2 byteS for the DEF statement line
number.

58 Chopter 2: Tools of Your Trcde

Chapter 3

Entering, Displaying, end
Formatting Dote

Displaying text on the screen xx

The PRD\ "T statement xx
TAB and SPC specifications xx

Entering dote xx

The INPtrr statement xx
Entering numbers xx
Quotation marks and commas in string input xx
Null strings x:x

The GETS Statement xx

Storing dote within your program xx

The DATA and READ statement xx
The RESTORE statement xx

Formatting Information xx

The PRD\"T USmG and PRD\'T# USING statements xx
The IMAGE statement xx
Output format specifications xx

String specs xx
Literal specs xx
Numeric specs xx

The Fixspec xx
The Scispec xx
The Engrspec xx

The SCALE function xx

59

This chapter desaibes the tools that are provided by Apple ncs BASIC for entering,
displaying, and formatting data.

Your computer's keyboard and display screen are collectively termed the console.
Console I/0 statementS allow you to conuol when, where, and how specific charaaers
are displayed on the screen or read from the keyboard.

The saeen is divided by five 16-character-wide tab fields. If you have typed or printed
a character at the last c:ha.ra.c:ter position of tab fields one through four, tabbing will
move the cursor to the beginning of the second field following that c:haracter.

If the text window is less than 80 characters wide, tabbing may send the cursor down
one or more lines.

Displcying text on the screen
The PRINT statement is used to display text on the screen. TAB and SPC specifications
provide further control over the appearance of the display .

. The PRJNT statement
To display text on the screen, follow the reserved word PRINT with a list of the items
that you want :o appear. The item list can indude any expression, comma,
semicolon, or TAB or SPC specification. (TAB and SPC are disOJSSed in the next
section.)

BASIC evaluates the expressions in PRI!'o.,. statements and displays their values in
sequence. A PRD.'T stateme!lt without an item list causes the C'.J.tSOr to move to the
beginning of the next screen line.

If a comma separates rwo expressions, a tab space separates their values on the screen;
if a semicolon separates them, the second value is displayed after the fltSt, with no
interVening spaces. For example:

) i'R:::.~T ":::n"; "divisible"; 543, S98/iS4. 42
:nc:livisible543 .792662
)

You can follow .the last expression in a PRINT statement with a semicolon. comma, or
nothing. If there is nothing after the last expression, the cursor moves to the beginning
of the next screen line. A comma causes the cursor to move to the next tab field, and a
semicolon leaves the cursor in the position immediately following the last character
displayed (suppressing carriage rerums).

Here are a few examples of PRINT statements:

60 Chopter 3: Entering. Olsploying. ond Formatting Octo

)PR~N'!' "'X"
X
) X••:5 : PRIN'! X'
:s
!PRINT ~0, 20
1C2C
lPR~N'l' ~0;" "': 20
~020

)AS••Apple" : PRINT AS
Apple
lAS•"johnny" : BS•"'Apple•
Johnny Appleseed

Warning:

CS•"seec!" PRINT AS; " "; BS; CS

If you don't use either commos or semicolons to seporote expressions In o PRINT
statement. BASIC will cttempt to flgure out where one expression ends end the
next one begins. If It succeeds. the effect is the some os using o semicolon. If it
doesn't succeed. either c ·

?SYN':AX ERROR

messoge oppeors. or the wrong volues ore dlsployed. You should use the
semicolon to ovoid contusion.

•) Note: The statement

) PR!l\~ AS+BS

will give

?S:'R:NG ':OC l.ONG ERROR

message if the combined length of the two strings is greater than 255 characters.
However, you can display the apparent combined string using

l PRIN'!' AS; BS

without worrying about its length.

When you are entering PRn\'7 statements into a program, you can use a question mark
instead of the reserved word PR.Il\"T Cit lists as PJID..'T). You don't save any memory by
.using abbreviations, only typing time.

TAB and SPC specifications
You can insert spaces into text displayed by a P~'T statement by putting a TAB or
SPC specification into ,Ple PR.Il\"T statement

A TAB or SPC can be inserted immediately before or after any expression, comma, or
semicolon in .a PRI!\"T statement's expression list

Displaying text on the screen 61

TAB and SPC are followed by an arithmetic expression enclosed in parentheses. The
integer value of the expression following the word TAB defmes the number of spaces
from the left margin of the text window to begin printing text. If you specify an
expression that is less than the number of 'the current print position, no spaces will be
inserted before the next c:haraaer to be printed.

The integer value of the expression following the word SPC defmes the number of
spaces to be inserted after the c:haraaer last printed Examples of the use of 'I'AB and
SPC are given below.

!PRINT "Gre&~"; TAB(9); 347
Great: 347
>?R!N= "Oncerhancec•; TAB<Sl; 553
tlncerhancec553
l?RINT "A"; SPC(l); "9"; SPC<2l; "C"
A B C
!PRINT "~"; TAB(S);
.0 !: F

"'~'"• - , SPClS); "F"

Each SPC statement is limited to a max;mum value of 25;, but you can insert as many
spaces as you need by suinging together a se:ies of SPC statements like this:

!SPCl250JSPCl1391SPC<2551

~ Note: The Plm'o'T ... USING statement gives you greater control over the display of
text on the screen. See the section titled, "Formatting Wormation" later in this
chapter.

Entering dote
You use the INPu"T statement to enter numbers or text and the GETS statement to
assign a keyboard c:haraaer to a string variable in a program.

The INPUT statement

INPUT accepts nwnbe%S or text typed at the keyboard and assigns them to variables
specified in the INPUT statement. For example, if you wanted u.se."S of your program to
input their age in years, you could use

20 PRINT "!nt:er your aqe in years"
25 INPOT AGE

When INPu"T is executed in this form, BASIC automatically displays a question mark
on the screen and waits until the user types something. For ex:s "''lple:

62 Chopter 3: Entering, Olsploytng, end Formot11ng Octo

l RON
En-:.er your aqe .in years
'?38)

You may optionally include a string in an mPu'T statement, like this:

2C lNPOT "Enter your aqe in years"; AGE

The optional string must be a sequence of c:haraaers in quotation marks, followed by a
comma or semicolon; it cannot be a string variable or expression. When you use an
optional string, it is displayed exaaly as you specified; BASIC does not add a question
mark, spaces, or other punctuation after the string. You can include only one optional
string.

After the optional string, you must include one or more variable names, separated by
commas, like this:

~CCC !NPO'!' "'Please ~ype three words"; AS, BS, CS

D\"PL"T expects you to type a number for ~ch numeric variable and a string for each
string variable in the mPL'T statement. The numbers and strings are expected in the
same order in which the variables occur in the statement

The numbers and strings that you type in response to an INPlJT statement must be
separated from each other by commas or by pressing Return. If you use Return and
another number or string is still expected, BASIC will display not one, but two
question marks on the next screen line. The input numbers and strings are assigned to
the variables in sequence. For example:

:ooc !NPt'':' "P.:..ease 'type !our numbers: ";J.,B,C,~

Tills statement expects you to either· enter four numbers separated by commas like
this:

lOO, 200, 300, ~00 (followed by Return)

or by returns, like this:

P.:.ease 'type four numbers: lOO
'?'?200
?'?300

You can halt execution during an mPL'T statement by pressing Control-C any time
before you press Return. BASIC will recognize the Control-C immediately and discard
any input entered before Control-C was pressed.

Entering dare 63

Entering numbers

For arithmetic variables, INPu'T will accept only numbers. Remember that the plus
sign, space. hyphen. period. and E characters are all legitimate partS of numbers.
Any leading or trailing spaces in numbers are ignored, but embedded spaces are not
allowed.

Input that is not a legitimate number (such as a string or a return) will cause the
message

?REE~'l'ER

to be displayed. and BASIC will reexecute the ~"Ptrr statement from the beginning.

If an input number is not the same type as the corresponding variable, it will be
automatically converted to the same type; if necessary, the number will be rounded.
For example:

l 5 !~P'J'!' CO'

l 10 PRIN'l' G%
l R'JN

?6.87 .,

Quotctfon mcrks end commas in string input

Quotation marks and commas in string input are handled differently, depending on
the position of the string variable in the rr-."PtJT statement to which the string will be .
a.ssi gned.

If the string variable is the last (or only) variable in the INPu'T statement, any
quotation marks or commas are created as ordinary charac:ers in the string.

If the string variable is not the last variable in the INPt.'T statement, the comma and
quotation mark characters are created specially. The comma separates strings in the
same manner as it separates numbe.rs. By enclosing a string in quotation marks, you
can include commas in it without affecting the spacing. The quotation marks are not
considered part of the string.

The dosing quotation mark of a string can be omitted if the Rerum key is used to end
the string. If a quotation mark is not the fU'St character typed, then a quotation mark
can be included anywhere else in the string without being created specially. Here are
some examples of the e.ffeas of quotation marks: (remember that a program can be
halted by typing Control-C as response to an INPtJT statement):

Chopter 3: Entering. Olsploying. ond Formott1ng Octo

J l 0 INP'J':' XS, YS
J RON
?~s, is
is is
?"!.s, ".is is, "is
?REENTER

?"is", 'is •
is 'is •
?is", is•
is" is"

?REENTER
?is"", is
.is"" is""
? .. is"", "is
?REEN':ER

PRINT XS, YS

?"is,~sn·~~, •is,isn't"
~s,.:..sr.'-:. .. is, isn't"

7PROGRA!-: !N':ERROP':ED IN l 0

Null strings

GO'!O lO

If the user simply presses Rerum key, without typing any characters, when a string
response is expeaed, BASIC interprets the response as a null string.

•!· Note: Press;ng the Control and Option keys in combination "With a lener key will
pass the control code character to BASIC as an input character.

The GET$ statement
GETS is used to assign a single alphanumeric character from the keyboard to a
specified string variable in your program, without displaying it on the screen and
without requiring that the Rerum key be pressed. The specified variable must follow the
reserved word GETS. For example:

) ::. OC PR!N':' "Press any key";

l 11 C Gt':'S PRESSS
) 12 C PR!N':' ". YolJ pres seci ~he "; P!U:SSS;" key!"

) 130 GOTO 100

Note that GETS, unlike the GET statement in Applesoft BASIC, does not allow you to
use a numeric variable; you can only use a string variable "With GETS.

Entering doto 65

If you want to use GETS to input numbers, you must get a string variable, and then
conven the resulting string to a number with the VAL function (as desaibed in the
•string Functions• section of Chapter 2). In most cases, it is more convenient to use
the INPL'T statement for number.

You can only use the GlrrS statement with deferred execution.

Warning:

If you dlsplcy the volue of c stnng vcncble thct contclns c control chcrccter.
11'\ct control chcrccter con effect opercffon of the .CONSOLE device driver. For
excmple. If you pressed Controi-L cs c response In the program example obove.
11'\e text screen would be clecred when line 120 dlsplcyed PI<ESSS.

<- Note: If a program that uses GETS is called by an EXEC file, the input for the GETS
statement will be taken from the EXEC file instead of from the keyboard.

Storing dote within your program
The DATA and READ statemenrs allow you to store data within a program itself. The
RESTORE statement can be used in conjunction with the DATA statement. Although
these are not actually console VO statemenrs, they are included here because their
effea is similar to that of INPUT and GET statementS.

The OATA and READ statements

The DATA statement is used to provide a list of data elements to be read by a READ
statement. DATA statementS do not have to precede READ statementS in a program.
Data e!emenrs can be strings, reals, integers, double integers, and long integers.
String data elements do not have to be bounded by quotation marks. For example:

) l220 DATA WHEN, S, -4. "EQCALS", l.OOO

The DATA statement can only be used in deferred execution, or an

?!LI.EC:Al. DIRECT ERROR

message appe3r5.

A dala element Ust consists of all of the elements in all of the DATA statementS in a
program. READ statements are used to read from a data element list and to assign the
values to variables. When BASIC executes the fll'St READ statement in a program, it
assigns the value of the fll'St data element in the list to the fll'St variable in the RE..u)

statement. The second variable in the RE.W stat....nent (if there is one) is assigned to
the second element in the data list. and so on. For example:

Chcpter 3: Entenng. Olsplcylng. end Formctffng Dote

J30 READ AS, Bt, C,, DS, E
)4C PR!N'!' AS;" •;B'; C';"' ";OS;" ";E
) SOC :>A=A When, S, -.(, •Equals", l. 000
l RON
When 5-~ Equals l.OOO
)

Data elements a.ssigned to arithmetic vuia.bles generally follow the same rules that
numbers assigned to arithmetic va.ria.bles by INPUT statements follow.

If you use Conuol-C as a data element, it does not halt exe01tion of the progra.m, even
when it is the first c:h.a.ra.aer of a.n element With this exception, data elements read
into suing variables follow the rules for l]'l.j'"Pti'T responses assigned to sUing variables:

t:i Either Utera.l or quotation-mark-enclosed (quoted) strings may be used

::: Quotation ·marks appearing within 2 quoted string cause the

?SYN:'AX ERROR

message, but all other characters, including commas, are accepted as characters in
that string.

::: The colon and comma are accepted only in quoted strings.

c Control-M (the Return character) is never accepted as a data element

If a READ statement anempts to a.ssign a string data element value to a.n arithmetic
variable, a

?SYN'!'AX l:RROR IN 99999

message appear:s, where 99999 represents some valid line number.

In reading a data element, BASIC assigns a value of zero or null string (depending on
the variable's type) under a.ny of the following conditions:

::: A col'l'Ull2 is the fust character (excluding spaces) following the reserved word
DATA.

= There is no d2ta element between two commas.

~ The last charaaer in 2 DATA statement is a comma (when the comma is being read
as 2 data element).

For example when this statement is read

:oc DA':11 ,

it can result .in up to two element assignments consisting of zeros or null strings.

When variables in a READ statement have been assigned values from the data element
list, BASIC leaves a data list pointer immediately following the last element read.
The next READ statement exe01ted (if a.ny) begins using the data list from the pointer
position. A RUN, CLEAR, or RESTORE statement moves pointer back to the fU"St
element in the data list.

Storing dote within your progrom 67

'When all of the elemenrs in a DATA statement have been read, the pointer moves on
to the next DATA statement with a higher line number, and reading continues with the
flrSt element listed. An attempt to read past the end of the data list produces an error
message. For example. you might see

?OOT OF DATA ERROR IN 3400

When 3400 is the line number of the READ statement that asked for additional data.

In immediate execution, you an only read elemenrs from DATA statements in a
prognm that is c:urrently in memory that is, one that has been typed in, loaded, or
run. If no DA'IA statement is in memory, the message

?OOT OF DATA ERROR

is displayed. Execution of a READ statement does not reset the data list pointer back to
the first eleme..'lt in the data list after BASIC reads the last element in the list.

<0- Note: You annot follow DATA with any executable statemenrs on the same
program line. Anything following a DATA statement until the next line number is
considered to be part of a data list.

The RESTORE statement

RESTORE moves the data list pointer back to the beginning of the data list. This allows
you to read the same data more than once. You can use the optional parameter, a line
number or label, to set the data list pointer to the beginning of a DATA state:nent
anywhere in a program. The line number or label you use must be the line number of
an existing line; otherwise, the message

will be displayed. After a RESTORE line number is executed, the data element list is
read forward through all the DATA statements with the given and higher line numbers.

formcffing informction
Apple IIGS BASIC provides several tools for formatting its output. You can use the
PRINT USING and PRINT• USING star.emenrs with a variety of specifications to produce
different formats.

68 Chapter 3: Entering. Olsplcying. end Formcttlng Dote

The PRINT USING and PRINT# USING statements
PR.Il\"T USING allows you to control the format of information displayed on the screen,
and PR.Il\-r' USING controls the format of data written to files. We will refer to these
statements collectively as P~"T(#) USING. Both statements work with either numeric
or string data..

Printing fields, defined by format specifications (called specs), outline the way that
information is formatted.

Specs an be included with the PR.Il\"T(#) USING statement in the form of a string
expression, or they may be part of an IMAGE statement elsewhere in the program that
the PR.Il\"'!(•) USING statement references. They appear as codes of letters, numbers,
and/or symbols. When the specs are used in an IMAGE statement, the PR.Il\"T(#)
USING statement must include its line number. Here are some examples of P!mi."T
USING statements.

llC PRINT OS!NG 100; AS, B,, C
l l 00 !MAGE 6A, Sf, i. 6ZU

)~ BS•"6A, St, t.6Z4E"
llO PRINT OS!NG BS; AS, B,, C

)lO PRINT OS!NG "6A, 5t, f.6Z4E"'; AS, B,, C

All three of these examples do the same thing-they display the values of the variables
AS, B%, and C, formatted according to the specs supplied by the user. The types of
BASIC format specs and how to use them are described later in this chapter.

Note that the commas in a PRL'\'T (•) USING statement expression list simply serve to
separate the expressions they do not cause the cursor to move to the next tab field, as
in a PRI1\"T statement item list However, a semicolon at the end of the expression list
suppresses a carriage return, just as it does with P!mi."T.

If the number of expressions .in 'the expression list exceeds the number of specs as in
> l o PR:rllo~ us:rNG, BASIC will use the spec list again from the beginning until all the
expressions have been evaluated and used. A single spec will be used by all
expressions in the list 1bis means that if you have a number of values to be displayed
using the same spec, you. only have to write the spec once.

The following errors can occur when a PRI!\"T(•) USING statement is executed:

If the USING clause references an IMAGE statement, and the IMAGE statement does
not exist, the

?ONDEF'D S'!ATEMENT ERROR

message is displayed

!:j If the USING clause references a string variable or contains a string, and the string
value is null, a

Formott1ng lnformotion 69

?SYNTAX ERROR

message appears. An L\1AGE statement that does not contain specs will result in the
same error message. When a syntax error occurs in an L'viAGE statement, the
message gives the line number of the PRINT(•) USIN'G statement, not that of the
IMAGE statement.

c If the type of an expression does not match the type of its spec (for example a string
expression with a numeric spec) a

message is displayed

The IMAGE statement
An IMAGE statement contains a sequence of specs separated by commas. Eacb. spec
corresponds to an expression in a PRINT(•) USIN'G statement, and controls the
printed or displayed format of the expression value. (An exception is the literal spec,
which does not correspond to an expression.)

You can use the L\1AGE state:nent only with deferred execution, and it must be the
only statement on the line. Here is an example of an L\1AGE statement with three
specs:

10 !MAGE •St. 3t, lOX, -t .SHE

The following example show the output generated by the IMAGE stateme."lt in line 10
with two specs:

!0 IMAGE -Ht. H4, 3"."
100 PRI~T :JS!NG 10; l.S, 3.14159, 172.9, S
) R.ON

• 1.500 •.•• 3.142 ••. +172.900 •..• s.ooo ...

Output formct specificctions

There are three kinds of fortr1at specs:

• String specs control the format of string values in a PRINT(•) USIN'G statement.

• Uteral specs insert one or more spaces, line returns, or copies of a specified
string into the text displayed by the PRL.VI"(*) USIN'G statement

• Numeric specs control the fotn'l2t o~ a numeric value displayed by a PRI:-."T(#)
USING statement Numeric specs can be flXed-point, scientific notation, or
engineering notation.

70 Chcpter 3: Entering. Dlsplo)llng. and Formatting Data

String specs

A suing spec defmes the fteld format and width for a string value, and specifies
whether the string value is to be left-aligned, right-aligned, or centered within the
field.

1be codes are as follows:

A left-aligned
R Right-aligned
C Centered

If the string has fewer c:ha.raaers than the field allows, the empty positions are filled
with spaces.

You can set the width of the field either by spec:i.fying the number of c:haraaers to be
used in the field, or by preceding the spec with a positive integer equal to the length in
c:haraaers of the field. For example, a six-charaaer, right-aligned field could be
defmed either by RRRRRR or 6R. The specs 9C and CCCCCCCCC produce the same
result: a nine-character field "'Nith its text centered in the field These numbers are
called repeat factors. a repeat factor can be any positive integer from 1 through 255.
It affects only the single charaaer immediately following it ('Ihus, SAA or ASA means
the same thing as 6A. A repeat factor greater than 255 causes an

'!Il.UGAL QOAN':I'!'Y ERROR

message.

Here's an example of using string specs to format string output into three columns:

10 I~Gr l5A, 15C, lOR
:: PR!N'!'
:.oc PR!N': tJS:NG lO;"COMPOSER", "':'!':'!.!", "KEY"
2CC PR!N'!' OS!NG 10; "GRINSZ", "SONA:"A FOR HARP", "F SHARP"
300 PRIN'! DS!NG lO; "RIBB!:!'::'", "WA'!":tR SONG", "! !":i..A':'"
~ 00 PRIN'!

The IMAGE statement in line 10 defmes three fields: a 15-c:haraaer field with a left­
aligned string in it, a 15-chara.cter field with a string centered in it, and a 10-c:haraaer
field with a right-aligned string in it Note that these add up to 40 charaaers, so they
will fill one half of a line on the screen. This program runs as follows:

l RON

COMPOSER
GR!NSZ
R!BBI'!"':

SONATA FOR HARP
WA'!':tR SONG

F SHARP
E Fl.A:

1f a string value exceeds the length of its faeld specification, BASIC truncates it For
example,

changing the string spec in the program fragment above to

Formatting information 71

>10 IMAGE SA. SC. SR

has the following effect:

>RON

COMPOT:TI.,E KE~

GRINSSONA':F SHA
RIBBIWATERE FLA

Uteral specs

A literal spec does not format the value of an expression; instead, it insertS spaces,
line retum.s, or a fixed sUing into the output. The codes are as follows:

X
I

For example, the spec

4X

Prints a space
Prints a line rerum
Encloses a literal suing to be printed

inserts four spaces into the output, and the spec

2/

inserts two line returns.

When you place a repeat faaor in front of a literal spec string, it affects the entire
suing. For example, the spec

3"A.3"

inserts

ABABAB

Separate spec values are necessary for each type of insertion. For example, two spec
values are needed to insert three spaces followed by five asterisks:

Jx.s•••

Numeric specs

You can format a numeric value, regardless of its type, in fixed-point, scientific, or
engineering style. There is a separate kind of numeric spec for each of these formats.

All three numeric formats use the following digit specs:

72 Chc;)ter 3: Entering. Olsptcying. ond Formottlng Doto

• Reserves one numeric digit position and suppresses leading zeros.
& Reserves a position for a digit or comma (at least five digit positions

must be reserved to the left of the decimal point).
Z Reserves one numeric digit position and prints leading zeros.

The flxspec: The fJXed-point specification, called flxspec, controls the format of
fJXed-point numbers. Fixed-point numbers are any numbers displayed without
exponents, including integers, long integers, and real numbers.

In addition to the digit spec charaaers, the fixspec uses the following dw'acters.
(Note that if Z is used, SS, -.and- may not be used.)

$
• •

Reserves a charaaer position for number sign
Reserves a position for a minus sign if the number is negative
Resetves a position for a dollar sign ($)
Prints asterisks instead of leading spaces

ss

Reserves rightmost positions for a number sign and dollar sign (if any)
Same as -, except the sign i.s printed only if the number i.s negative
Reserves leftmost unused position for a dollar sign and number sign (if any)

Here is an example of a simple flxspec appearing in a PRTh"T USING statement:

lPRIN! USING .. +tU.tU"; :3.H159

* 3.142

You can use repeat factors with all the digit-spec characters. The • character reserves
one numeric digit position. leading zeros (if present) are replaced with spaces. For
example:

l PR:N': US:NG "+6.f. 3t .. ; 09999

- 9999.00C

A Z reserves one numeric digit position, just like a •, but prints leading zeros. For
example:

lPRIN': USING .,+6Z.:3Z"; 09999

*009999.000

An & character reserves one position for a numeric digit or comma. Commas are
insened after every third digit left of the decimal point, and they are included in the
character count: leading zeros are replaced with spaces. At least five digit positions
must be reserved to the left of the decimal point when using &. For example:

lPR!N': 'JS!NG "'•U.3,"'; 09999
~ 9,999.000

The examples above all show a decimal point with digits to the left and to the right
However, you can also specify no decimal point, a decimal point with nothing to the
left., or a decimal point with nothing to the right Remember that integer expressions
can have no fractional pan. lf you specify a fucspec with a fractional pan and apply it to
an integer expression, only zeros will appear to the right of the decimal poim, unless
you use the SCALE function (described later in this chapter).

Formcffing Information 73

BASlC will round off the value to be displayed, if necessary, to fit the number of digits
specified to the right of the decimal poinL However, if the number exceeds the
number of digits specified to the left of the decimal point, the entire field is filled with
exclamation points.

·:• Note: You can mix the digit spec charaaer.; &, •. and Z in a spec list, but those
appearing to the left of the decimal point yield to the charaaer with the highest
precedence. The.ir order of precedence is&, •, Z. If an & appears, the formatted
output will have commas inserted and leading zeros suppressed.

In all the e.umples of flXSpec:s so far, we have shown a +, which reserves a position for
the sign of the number. The + causes the sign to be printed in all cases. A- causes the
sign to be printed only if the number is negative; a space is printed with positive
numbers. The sign of the number can also follow the last digit.

For financial output, use a S to reserve a charaaer position for a dollar sign. A pair of
asterisks c-) causes asterisks to be printed instead of leading spaces when there are
unused digit positions in the output field. For example:

l ?!UNT 'JS!NG "••+6i. 3t"; 09999
···9999.000
l?R!NT 'JS!NG "••S6i.H-"; 09999
•••$9999,000
l PRINT CS!NG "+S6t.2t"; 09999
• $9999.00

Note that the .. must be the flt'St spec in the fixspec. Also .. cannot be used along with
Z because Z leaves no unused digit positions.

-> Note: If you do not reserve a character position for the sign, and the value in the
PRINT(•) USING statement is negative, the sign will be displayed in the rightmost
unused character position. If there is no unused position, the entire field will be
filled with exdamation points, indicating that the number of digits exceeds the
number of places specified for them. Therefore, most numeric specs should
include a charaaer that reserves a position for the sign.

You can print the dollar and number signs in the rightmost position by using SS or +•,
or in the leftmost position by using -. For example:

l PRINT OSING '"$.$+6t .3t'"; 09999
$+9999.00
l PRINT OSING "++6#. Jt"; 09999
+9999.00
l PRINT OSING '"S--6t. 3t"; 09999
$9999.00+

You can also place the sign of the number at the end of the fLXSpec to have it appear
and the end of the output:

l ?!UN! OSING "SS6i .Jt+'"; 09999

s 9999 •. 00+

74 Chapter 3: Entering. Displaying, ond Formatting Dote

Because Z prints leading zeros, taking up all unused positions, you cannot use it with
$$, •• ' -' or -, which shift characters to the right, displacing any spaces. nne
spaces remain to the Je.ft of the field so that its width does not change.)

The best wzy to learn about using fixspec:s is to experiinent with various formats. Here
is a program that can help:

! REM !iumericSpecTes~er

10 I!iPOT •tn~er desired spec: "; SPECS
lS 0~ ERR PlUNT ·~ou en~ered a bad spec, try ac;ain!" GOTO 10
20 F•100C:PRINT
30 X•1: GOSOB 100
40 X•l2: GOSOB lOO
SO X•123: GOSOB 100
60 X•1234: GOSOB 100
70 PRINl: PRINl " Spec was: .. SPECS: PRINT ,
80 GOTO 10
100 PR!N'! OS!NG SPECS; X· • , . PRIN'!' ,X
llO PR!NT OS!NG SPECS; -X;: PR:NT ,-x
12 0 PR:N': USING SPECS; X/F;: PR!N'! ,X/F
l3C 'PRINT USING SPECS; -X/F;: PR!N! ,-X/F
200 RE'!''ORN

The NumericSpecTester program first asks you to enter a spec from the keyboard It
then displays two columns of numbers. The left column lists values displayed
according to the spec you entered, while the right column contains the same values
output by a PRil\i' statement using no format statement You can also use this program
to study scispec:s and engrspec:s, which are described in the next section.

The $$c:ispec:: The scientific-specification, called sclspec, formats numeric output in
scientific notation. The scispec is simpler than the fJJCSpec; it has only either one digit
or none to the left of the decimal point The number of digits to the right of the
decimal point is defmed by • characters, either stated explicitly or by using a repeat
faaor. The lener E defmes the exponent position, and you can use a repeat faaor with
this c:haraaer as well. You must allow either three or four character positions for the
exponent. For example:

)PRINT 'CSING "'+t.·U"I:"; 3.1415926
+3.l<G16I:+OO
>PR:N'! OS'!NG ••.4UI:"; 3.l415926
•.3l42I:+Ol

When the spec c:alls for one digit position to the left of the dec:ima.l point, the fll'St
significant digit of the value is placed there; when there is no digit position to the left of
the decimal point, the most significant digit is placed to the right of the decimal point.
1n either case, the exponent is then calculated to make the displayed value correct.

Formctt!ng lnformction 75

Notice that with four character positions for the exponent, only two are available for
the exponent's digits; with three character positions for the exponent, only one is
available for the exponent's digit. If the alculated exponent will not f1t in the available
space, the entire numeric field is filled with exclamation points.

The letter Z can be used instead of • in a scispec, but the e.ffea is the same. ~oce that if
the sign is not explicitly specified in a scispec, the sign of the value will only be printed
if there are enough available character positions and the value is negative.

The engrspec: The engineering specification, called eng:rspec. is closely related to
the scispec. It forces the exponent's value to be a multiple of 3. and has a maximum of
three digit positions to the left of the decimal point.

You can use either a • to replace leading zeros with spaces or a Z to print leading zeros.
For example:

l PRINT t:JSINCi "+Jt. 4t4E"; 1729
+ l. 7290!!+03
)PRINT t:JSINCi "+3Z.4ZJE"; 1729
+01.729!!+3

The SCALE function

SCALE is used in conjunction with PRINT C•) USlNG to shift the clecima.l point of a
displayed value to the left or the right. SCALE uses two arithmetic expressions as
arguments. The fust argument deflnes the number of places to the right Cor left. if
negative) that the decimal point should be moved. The second argument is the actual
numeric variable to be output.

SCALE takes ten raised to the power equal to its first argument and multiplies that by
the value of its second argument If the fltSt argument value is S and the second is equal
to 22435, the value output will be equal to 22435.0E5 in the format specified by the
PRINT(•) USING statement. For example:

lA,•12345678901234567
JPRIN'r t:JSINCi "$$20,tt";SCAI.:tC-J,A'l
512.345.678,901,235 (No1:e rou.ncU.nq of cen1:sJ

SCALE enables GS BASIC to handle alculations in cents using long integers, and then
to output the results with the decimal point positioned to indicate dollars and cents.
You can take the same charaaers given in the example above and, with a slight
change, convert cents to dollars:

lA,•l234567890l234567
>PRINT t:JSINCi "SS.206.U";SCA.U:C-2,A'l
5123.456.789, Ol2. 345.67 CNo1:e cen1:s l

The fltSt SCALE argw~t must be in the range of -128 to 127, and the resulting
exponent of the value must be between -99 and +99, or the

76 Chcpter 3: Entertng. Olsploylng. end Formcttlng Octc

!..L UO!+OLUJOJUI 6UJ,U0l.UJO:I

Chapter 4

Controlling Program Execution

Assl;nmebt statements xx

The reserved word LET xx
The reserved word SW AF xx

Remark statements xx

The reserved word REM xx

Branc:hln; xx

Unconditional branching xx
The GOTO statement xx

Conditional branching xx
IF ... TilE!\" Statements XX

ElSE clauses XX

Multiline IF ... 1HEN ... ELSE statements xx
Nested conditional statements xx
Conditional statement considerations xx

Looping xx

FOR ... NEXT statements xx
STEP clauses xx
Do ... WHILE ... 't.r.\o'Tll. statements XX

The reserved verb U!\"TTL xx
The reserved verb WHILE xx
The reserved verb DO xx

Subroutines xx

GOSUB statements xx
RETIJR.l\. statements xx

79

POP statements xx

Computed branching xx

ON ... GOTO statements XX

ON ... GOSlJB statements xx
ON KBO and OFF KBO state:nent xx
The reserved variable KBD xx

Handling errors xx

ON ERR and OFF ERR swements xx
RESUME statements xx
The reserved variables ERR and ERRI.ll'l xx

Error-recovery strategies xx

60 Chopter 4: Controlling Progrom Execution

This chapter describes the statements and funaions supplied by Apple llGS BASIC to
help you control the path of execution of your programs. Even a shon program will
use one or more of the items described here, and a large program might use all of
them.

Assignment statements
You use assignment statements to assign the values of expressions to variables.
The variable to the left of the equal sign is assigned the value of the expression on the
right side. For example:

)R.i.pple•5·~~l/2

) PR:N'!' Ripple
10

The following are examples of assignment statements:

l!V,•9•PM'!
l DS.J0.•2302.;
) 10 BodyS <Arl!'., Legl•"Bone"
llC Reassurinqworcs•Comfor~inq-12

You c:an use variables and expressions of any type in an assignment statement
However, if the type of the variable on the left side of the replacement sign is different
from the one on the right side, type conversion must occur. BASIC automaticallv
convens integer and real variables and numeric expressions, but you must handle
string-numeric cases explicitly. A string expression may not be assigned directly to a
numeric variable or vice versa. (See the section titled •Functions" in Chapter 2 for an
explanation of type conversion funaions.)

The reserved word LET
LET may optionally precede an assignment statement. For example:

lLE'!' Benry•Fa~hero;.Jack

Although the reserved word LET is not required, it can make a program listing
somewhat easier to read and understand. If the variable on the left side of the equal
sign is a string variable, the expression on the right must be a string expression. If the
variable is a numeric variable, the expression must be a numeric or logical
expression. Otherwise, you will see the message

?'!'YPE M!SMA'!'CE ERROR

•:• Note: You can make only one assignment per statement For example, the
statement

Assignment stotemems 81

)A•B•O

does not assign the value 0 to both A and B; instead, BASIC evaluates the logical
expression B-o and assigns the result to variable A. (See the disOJSSion of logical
expressions in Chapter 2.)

The reserved word SWAP
SWAP exchanges the value stored in one variable for the value stored in another. The
names of the twO variables whose values are to be swapped must follow the reserved
word SWAP. For example, the statements

JA•4 : B•8 : C•A/B

store the value .5 in variable C. But

JA•4 : !•8 : SWAP A,3 : C•A/B

stores the value 2 in variable C.

You can use string, integer, double-integer, long-integer, and single- or double-real
variables with SWAP, but both of the variables to be e."tdunged must be of the same
type. If the two variables are not the same type, a

?T'!P!: MISMATCS E:RROR

message appears.

Remork stotements
Since programs are not written in natural languages such as English, they are not
always easy to understand Remarks clarify the purpose and methods of your
programs. Use them ge.'lerously to allow other programmers to maintain your
programs, as well as to remind yourself what your programs are supposed to do and
how they do it.

The reserved word REM
REM allows you to insert remarks into your program. BASIC ignores everything in a
program line following the reserved word RE..\1, but carries this text along with the rest
of the program. For example, if you type:

:U:M Munqe !!AS!C : Bake Apple : Inverse : ?R:"ST

82 Chapter 4: Controlling Progrcm Execution

BASIC will not execute any of the words or statements following the reserved word
REM. You can tell that this is so by entering reserved words in lowercase; executable
reserved words are displayed by the BASIC UST command in uppercase.

1be reserved word REM must be the first thing in a sratement, or BASIC will not treat it
as a remark. For example:

) BPOS REM arkably Tall Builciinc;s

is not a legal statement; however, the statement:

) RE~ BPOS kyscrape:r

isleagal.

l.ike aD other statements, REM statements must not exceed 239 charaaers in length. If
you comment your programs heavily, use several REM statements in successive lines.

Branching
A program is said to branch when it does not execute the next higher numbered
statement in sequence but, jumps to some other line instead. There are two kinds of
branching:. conditional and unconditional.

Branching in GS BASIC can be by reference to line numbers, and programs can get
quite confusing if you are not careful. Because line numbers alone are not very
meaningful, BASIC allows an optional label to be included on any line in your
programs, and those labels can be used in place of line numbers in branching
statements. It is good program.ming practice to give only the beginning line of a
related group of statements a label-one that is desaiptive of the function of the entire
group.

Unconditional branching
A statement causing program execution to branch each time it is executed, under all
conditions, is known as an unconditional branch.

The GOTO statement

GOTO causes execution of the program to jump to the beginning of a specified
statement list. You specify the statement list to which execution should jump by
following the reserved word GOTO with the line number or label of the statement list.
For example:

Branching 8~

110 PRINT lO
120 PRINT 20
130 PRINT 30

I 4 0 PGME:NC:
ISO PRINT SO
JRON
!0
40
so
20
30

: GOTO PGMEND

: STOP
PRINT 40

: GOTO 20

?ROGRAM INTERRUPTED IN 30

I

Most versions of BASIC begin at the lowest line number and search sequentially until
they fmd the desired line. Apple IICS BASIC uses a more expedient method If the line
number referenced by the GOTO statement is greater than the number of the GOTO, it
begins searching at the cum:nt line; otherwise, the search begins at the start of the
program. _However, a if a label is used, Apple ncs BASIC always searches the entire
program.

If the line number given in the GOTO statement does not exist, or if there is no line
number given, you will see an error message. For example, the message

'?lJNDEF'D STAl'E~Nl' ERROR IN 5293

me2nS that 5293 is the line number of an erroneous GOTO statement. Immediate
execution of a similarly illegal GOTO statement such as

l GOl'O 45

when there is no program in memory will generate an

'?ONCEF I 0 STATE~N'!' ERROR

message.

Conditionol bronching
A statement causing prognm excecution to branch only under certain conditions is
called conditional branching.

84 Chopter 4: Controlling Progrom Execution

IF ••• THEN statements

:U: statements allow the order of execution of statements to depend on the truth value of
a logical expression. The IF statement must include both a logical expression to be
evaluated and instruaions for BASIC to follow if the expression is true. If the
expression is false, execution passes to the next program line beyond the entire IF
statement in the program, and BASIC ignores the instruaions given in the IF
statement.

1be logical expression to be evaluated must follow the reserved word IF, and the
instruaions must follow the reserved words nn::N. BASIC also allows the verb GOTO
to be used in place of the words nmN, but GOTO must be followed by a line number
or a label; unlike ntEN, GOTO m2y not be followed by a statement.

BASIC also allows you to follow 1HEN with a line number or a label in addition to a
statement list. For example:

l l CSJO !F A•-4 ':BEN PR.!N':. R.EPOR.'l'
l JiOC !F KP+BE GO'l'O 3785
) 100 !F G& MOt F& >2 GOTO l2l

In an IF ... iHEN statement, the niEN or GOTO can be followed by any line number
to which execution should branch or a statement list for BASIC to execute. For
example:

>IF 0 THEN PR.INT l
)SO IF 2+2 THEN 2SOC
) •-;-.. S/<4>•17 • NO'! 2 TBEN GOSOB JOOC : !NVERS!
. ·~ I •• :..anq-waqe•Ge::-mar. ':BEN PR!N':
Sneezes • Sneezes • :

"Ges'Unc:ihei':" :

l :c !F :..anquaqe•Enqlish THEN PR.!N': "Bless yo~.:!"

Sneezes • Sneezes • l

These are all equivalent statements:

) IF G•5 '!BEN 200
) IF G•5 GO':O 200
l !F G• 5 '!.BEN GO'IO 2 0 0

ELSE clauses

PR!N': "Hi"

The ElSE clause of the IF statement allows you to specify instruaions for BASIC to
execute if the truth value of the logical expression is false. In other words, when the
expression is false, instead of having execution pass to the next line after the IF
statement, you can have BASIC execute some other instructions.

The instruaions following the reserved word ElSE can be a line number to which
execution should branch or a statement list to execute. If the logical expression is true,
BASIC will skip the ELSE clause and any statements following on that line. For
example:

Bronching es

l IF X•l '!'REN "r•2 : ELSE Y•3
) IF 3<~L5 THEN ?L5•-PL5 : ELSE NORMAL : GOTO 376
)718 T~X'!' : IF NOT Y THEN 3200 : ELSE TEXTPORT l,l TO 4,4

: GOTO 457

and

) 10 I: 0<5 THEN PRINT lOl : ELSE PRINT 100

>20 IF 0>5 THEN PRINT 201 : ELSE PRINT 200

l RUN
lOl
200

BASIC treats an ElSE clause that does not immediately follow an IF ... niEN statement
as if it were a ~'\1 .sutement. For example, BASIC would ignore the line

) ELSE Wha~ever you wan~ ~o remarlc a.bou~ !\ere!

Multiline IF ••• THEN ••• ELSE statements

IF statements with long statement lists in either the niEN or ELSE clauses may not fit
on a single program line. In GS BASIC you can separate an IF statement into two or
three program lines by breaking it at the 'I'HU'T or ELSE verbs. For e."tample, the
statement

or

l 00 IF R'!"'!P•7 THEN PRINT "NA~.E: "; RNAMES
1:.0 ELSE PRINT "WRONG RECORD TYPE:"

~00 IF R'l'YP•7
2l0 '!'SEN l?RINT .. NAME:'";RNAMES
220 E:LSE PRINT "WRONG RECORD TYPE:"

will exerute as if it had been written on a single line.

The IF statement can be continued on the next line of a program only if the
continuation lines begin with the verb 1EDl' or ElSE. Furthermore, any line
beginning with THEN or ELSE that directly follows an IF state."'lent is always treated as
part of that .sutement. Note that the continuation of an IF statement only occurs at line
boundaries, not at statement boundaries within a program line.

The next section discusses IF statement nesting, which can be done within a multiline
IF statement. Remember that the line continuation must always occur at the THEN or
ElSE verb of any IF statement, no matter how deeply nested. ..

By combining multiline IF and nested IF statements, you can build an IF Statement that
spans many program lines. Although it may appear that you can branch into the
middle of an IF statement, you cannot do this; since, the TiiEN and ElSE clauses act
exactly like ~\1 statements unless they are e."tecuted by an immediately preceding IF
statement.

86 Chopter 4: Controlling Progrom Execut1on

Nested conditional statements

The statement list following a TiiEN or ELSE clause or continuation line can contain as
many additional IF ... THEN or IF ... nlEN ... ELSE statements as the 239-character
limit will allow. Conditional statements contained inside other conditional statements
in this manner are said to be nested. ln these cases, BASIC matches each ELSE with

·the most recently encountered and unmatched ni:EN. For example:

) IF INNING•9 AND 'l'EAM•BOME 'l'BEN IF MEN. ON. BASE:•3 'l'BEN PRINT ".bun~"

: ELSE PRINT "'swinr; a~ i~! ! "

In this example, the ELSE clause goes with the second nrEN, which is the one most
tecently unmatched. As another example:

) IF toothache THEN IF cientist is on vacation 'l'RtN suffer
: ELSE cal.l !or appointmen~ : ELSE smile!

This example could be organized into multiple lines, as follows:

1000 !: toothache
1001 THEN IF cien-:.is-:. is on vacat;.on
1002 'l'RtN su!!er
1003 ELSE: cal.l tor appointment
:. 00~ ELSE .smile!

Conditional statement considerations

The following IF statements have legal logical expressions:

J:F l<2 ~HEN PR!NT ·~up"

J :i:F C THEN PRINT "Nope"
l!F A<E TEEN PRINT "!up" : E~S! PRINT "Nope"
l :r .. A"<"B" TEEN PRINT "Yup"
l !F l-+2•Z THEN PRINT "Maybe so" : ELSE: PRINT "Hay.be no~"

Unlike in most other versions of BASIC, the following IF statements are also legal in
Apple DGS BASIC:

l IF "Free" THEN PRIN':' "'Fred"
l IF KARENS THEN PRINT "Free's friend"
) :r "Free! ·~KARENS THEN PRINT "Free 'r. Karen"

Normally, a logical expression can be either a comparison of arithmetic expressions
or a comparison of string expressions. It is important to remember that logical
expressions reduce to a truth value of true or false, represented by an integer value of 1
and 0, respectively.

It is legal to substirute a single arithmetic expression for a logical expression. However,
you can only substirute a single string expression for a logical expression in the
conditional expression of an IF statement.

Branching 87

All BASICs standardly treat the value of an arithmetic expression as true or false or
nonzero or zero. GS BASIC has similar rules for suing expressions. It recognizes a
string result and uses the length of the string, a number from 0 through 255, as the
logical result. A length of zero has a uuth value of false and a nonzero length has a trUth
value of rrue. ·

Thus, IF string TiiEN is an .intuitive language extension, and it funaions the same as if
you used the U::.~ function (described in the ·sUing Functions• section of Chapter 2).
For example:

l ZF U:N (KARENS) THEN PRINT "Karen exis~s!"

: ELSE i'RINT "No Karen"

An IF without a matching nlEN or GOTO generateS a

?SYNTAX ERROR

message.

ELSE must be preceded by a colon whe:1 it follows a nreN clause on the same program
line. For example:

:00 IF X•l2 !SEN :000 : ~~SE 2000

However, ElSE need not be preceded by a colon whe.'l it begins a separate line in a
multiline IF ... TiiEN ... ELSE statement, as follows:

200 IF MinnovS•FishS !.HEN Ansver•True
2l0 ELSE Ansver•False

Looping
Looping is the process of earring out one or more operations repetitively. Loops can
be divided into two general types: those operating a determined number of times and
those operating either as lcmg as a specified condition is true or unttl a specified
condition is true. The rllSt type uses the FOR ... NEXT structure described below. and
the second type is accomplished with the WHn.E ... 'L'NI1L or the DO ... tJl'I!II. loop
statements, described later in this chapter.

FOR ••• NEXT statements

The verbs FOR and NEXT allow a group of statements to be executed a specified
number of times. The FOR statement defines the beginning of the statement list
making up the body of the loop and sets the number of times it is to be e."Cecuted, and
the ~ statement defines its end. For example, if you wanted to display the numbers
1 to 5, you might write a program like this:

88 Chopter 4: Controlling Progrom Execution

l lC Number•l
l 20 PR!NT Number
l 3C NuiiiDer•Number~:. : IF Number<E 'l'BEN 20

Alternatively, you could use the FOR and NEXT statements like this:

)10 FOR Number•l TO S
) 2 0 PRINT Number
l 30 NEXT Number
)RON
l
2
3
4

s

1n line 10, the control variable Number is assigned a beginning value of l and an
ending value of 5. The NEXT statement in 1i:me 30 of this program functions the same as
the statementS in line 30 of the previous program. It increments the value of Number
by 1, and then checks to see if the value of Number is greater than the ending value that
was specified in the FOR statement.

If the value of Number is less than the ending value, execution loops back to the
statement immediately following the FOR statement (line 20). If the value of the
control variable is greater than the ending value, execution continues with the next
statement immediately following the NEXT statement.

The control variable can be any type of numeric variable, either real or integer. but it
cannot be a string variable. The beginning and ending values assigned to the control
variable in the .FOR statement can be the result of arithmetic expressions. For
example:

l FOR Repea-:t•':•U-FE/D•NO'! R "':l'D :54•5/F.J : NEXT Repeat'

is perfealy legal, if somewhat obscure.

BASIC supports five types of numeric variables, single- and double-precision reals,
and regular, double, and long integers. The initial value, limit value, and optional
inaement value of a FOR loop are all converted to the type of the control variable
when me FOR statement is executed. The conversions are performed as if the FOR
statement were writr:en like this:

J.O !'OR H • CONVt Cinitl 'I'O CONV' (limit) STEP CONV' !increment)

A similar Statement could be written if the control variable were I, I•, IC, or 1& by
substituting the functions CONV, CONV•, COl\TV@, and COl\TV&, respectively. These
forced conversions (type coercion) allow maximum speed during the NEXT addition
and compare operations.

Looping 89

Due to these coercions, a FOR loop with a regular integer conuol variable will execute
up to six times faster than a real or long-integer control variable. Double-integer
loops will operate up to three times faster. This design allows for speed optimization,
but it c:rear.es a restriaion.

A FOR loop with an integer control variable cannot have a nonintegral initial, limit, or
inaement value. It one is used, it will be rounded to the nearest whole number by the
FOR statement, and the rounded result will replace the value given during loop
exeOJtion. 'Ibi5 rounding .i.s done without any v.raming or error message.

FOR ... NEXT loops may contain other FOR ... NEX'T loops; loops contained within
other loops are said to be nested. For example:

J!O FOR Rowt•l TO 3
)20 FOR Column•2 TO 3
l 30 PRINT Row, Column
l 40 NEXT Column
l 50 NEXT Rowt

:-.lested FOR ... NEXT loops will align with the other statements when you enter them Cas
shown above), but they will be indented when displayed by UST. For example:

> l.IS"!'
lO FOR Row•l TO 3
20 FOR Column•2 TO 3
30 PRINT Row. Column
40 NEXT Column
SO NEXT Row

~otice that the ~ statements are lined up underneath the matching FOR statement,
the inner loop is indented, and the body of the inner loop is indented again. The
number of characters for each indentation level is controlled by the modifiable
reserved variable INDENT, as described in Chapter 1, in the section titled •The
reserved variables INDENT and Ou-rnEc.·

NEXT statements an contain as many variable names as you would like. For example:

l EiO FOR Loopl•l TO 4 : FOR Loop2•4 TO SS
l 70 FOR Loop3•-4 TO SS

l 8 0 NEXT Loop3 • Loop2. Loopl

1be fust conuol variable given in the NEXT statement must be the same as the one
named in the most rec:ently executed FOR statement; the second contrOl variable
given must match the second most recently executed FOR statement, and so on.
Incorrealy matched FOR and NEXT statements cause the message

?NEXT WITBOOT FOR ERROR

to be displayed The following example contains incorrealy nested loops:

190 FOR A•l TO Tt
llOO FOR !•l TO 43
l 1:0 NEXT A. 3

90 Chcpter 4: Controlling Program Execution

The FOR statement scans forward in the program, searching for the matching l\'EXT
statement before the body of the FOR loop is executed If the NEXT statement is not
found, the message

'?FOR w:'!'BOU'!' NI:X': ERROR

will appear. This look-ahead scan properly accounts for nested FOR ... NEXT loops
when locating the matching l\"EXT statement, but it only c:onsiders NEXT verbs that
begin a Statement. A NEXT verb embedded in the niEN or ElSE clause of an IF­
statement is ignored This allows a FOR statement to have more than one NEXT
statement. Some additional details on the look-ahead matching are desaibed in
Chapter 8, •BASIC Reference.·

STEP clauses

FOR statements may optionally include a STEP clause, allowing you to specify the
amount to inc:remeru the control variable with each iteration of the loop. For
example:

) FOR EY'!':E:•2 TO lO S'!'EF 3 : PR:NT B"l"':E : NEXT BYTE:
:2
s
8

If you do not use a ST.EP clause, the control variable is inaemented by 1, by default,
when the following NEXT statement is executed You can use any arithmetic
expression to specify the value to inaement the control variable. If the control
variable is any type of integer, the value of the arithmetic expression will be rounded
to the nearest integral value by the implied type conversion.

If you specify a negative value in a STEP clause, the loop counts backwards. For
example:

)FOR ~oop-10 TO ~ STEP -2 : PRIN'!' Loop : NEXT Loop
lC
8
E
4

2

If there is a negative increment value in a STEP clause, and the value of the control
variable is less than the ending value after it has been inaemented by a NEXT
statement, execution passes to the statement following the NEXT; in other words, the
loop is terminated when the NEXT statement is reached. For example:

) FOR l.oop•l 'l'O l C S!:tF -2 : PR:N'l' Loop : N:tX': Loop

:.

Looping 91

If the increment value is 0, the contrOl vuiable is inaemented by 0 each time a ~
statement is executed. This means that the value of the control variable will never be
greater than the ending value, and the statements between FOR and~ will be
repeated indefinitely (unless the ending value is less than the control variable at the
start). This is known as an infinite loop. The only way to stop the looping is to press
Control-C.

-> Note: The control variable is incremented and compared to the ending value only
when the NEXT statement at the end of the FOR ... NEXr loop is executed. This
means that the statements between the FOR and NEXT are a/ways executed at least
once.

A :-tEXT statement without a specif.~ed control variable defaults to the control variable
given in the most recendy executed FOR statement still in effect, and it executes faster
than one with a specified control variable. For example:

)FOR G6•4 TO REV3/2l : NEXT

If there is no FOR ... NEXT loop in effect, executing a NEXT statement generates a

?NEX':' WI'!'B:OCT FOR ERROR

message. The same message is displayed if the control variable specified by a ~""EXT
statement is different than the control vuiable given in the most recently executed
FOR sute."'lent.

Nesting more than nine FOR ... NEXT loops inside one another results in the message

?STAC!< OVERFLOW ERROR

If a deferred execution FOR statement is still in effect, an immediate execution)..""EXT
statement can cause a jump to the deferred e:recution program, where appropriate.

00 .•• WHILE ... UNTIL statements
The verbs DO, WHII.E, and u'Nl"II. can be cc. nbined in six useful combinations co
create conditional looping logic similar to FOK ... NEXT loops. WHILE ... UNI1lloops
do not have explicit control variables like FOR loops, but they do have a body of
statements that can be executed repeatedly. An e. -ample of each general type is show
below:

100 00 : s~a~emen~s _ : ONT!!. GH > 29
14000 WHII.E GH >• 299: s~at:ement:s - :O"NT!

550 00 : st:aeement:s : WHII.E t:wqy > 11 : lllt:at:ement:s : ON':'II. .
The type in the fl.rst example is called a DO ... UNTIL loop, the type in the second
example is called a WHILE ... L'Nl"II. loop, and the last example is called a DO ...
wrm..E ... UNTIL loop.

92 Chapter 4: ControlllnQ Program Execution

'·

The reserved verb UNTIL

Ul\'TIL is used in conjunaion with DO and/or WHn.E to create various types of
conditional loops. The verb UN"I'IL marks the end of the loop consuua and can be
used with or without a logical expression.

If you use UNTIL without a logic:::al expression, it loops back to the most recently
executed DO or wrm..E statement COO takes precedence if both a DO and a WHILE
·precede the UN'I'IL). When you use a logical expression, UN'IU. loops back if the
expression .is false (zero) and proceeds to the next statement if the expression is uue
(nonzero). Thus, a DO .•. tJ?I.'TIL loop always executes the body once and continues to
loop until the condition becomes uue. If the condition is true when the DO is fust
executed, the body of the loop will be executed only once.

You can consuua an infinite loop with a DO ... Ul'o1"fll statement by omitting the
logical expression following the reserved word t.n-."''''l.. DO and t.n-."'m need not be on
the same program line. A DO ... tJ?I.'TIL loop displayed by the UST command is
.indented, like a FOR ... NE'XT loop.

You can easily duplicate the WHILE ... WEND or REPEAT ... Ul\'Tn.. constructS
implemented by other versions of BASIC with WHILE ... Ul\"'U. statements by simply
including or excluding the logical expression. Furthermore, you can use the WHILE ...
Ul\"""''L construct in new combinations. The following common combinations are
possible:

Apple nos BASIC loop consuua

WE!~ ~expr : _ seatements - : UNTIL lexpr
wE!~! lexpr : - statements - : UNTIL
WE::Z : _ seaeement•·- : ONTIL lexpr
DC : _ statements - : ONTIL lexpr
WE!:Z : _ sea:emene• - : UNTIL

Common name

WHILE ... t.n-.1"fll
WHILE ... WE.l\ID
REPEAT ... t.n-. "TTL
00 ... t.n-."TTL
infinite loop

ln addition, there ate two DO .•. WHILE ... t.n-.'Tn.. constructS:

DC : seaeeme.ne• : WHILE lexpr =- .5tatamene• -:UNTIL
DO : 6'taeemene• : WH!I.E lexpr =- statements -:UNTIL lexpr

ln a DO ... 'WHilE ... tJ?I."'m loop, BASIC alway.s executes the statements before the
WHII.E and con.timonal/y executes the statements after the WHILE. nus effectively
separates the body of the loop into two parts; the preflX part is unconditionally
executed at least once, and the conditional part may be executed zero, one, or more
times.

Ul\"Tn. examines the control stack for the Wl:fii.E information. If it cannot fmd a prior
DO or WHILE statement, the message

?ON"!'!!. w/c W£!:..1: !:RROR

appears.

Looping 93

The reserved verb WHILE

The verb WHILE marks the beginning or midpoint of a loop construa and can be used
with or without a logial expression. Using WHILE between 00 and UN"IU without a
logical expression is a meaningless (although valid) construct.

If you use WHILE without a logic::al expression, it behaves as if a true expression were
present. When you use a logical expression, WHILE executeS the following statements
if the expression is true <nonzero), and skips to the statement following the u"NTTL if the
expression is false (zero). The logical expression in the matching TJNI'Il statement
does not influence the behavior of WHILE.

WHILE searches forward in the program for a matching UN1U and will display the
message

ifBILZ w/o ONT!L ~RROR

if the tJNTIL is not present.

The reserved verb CO

The DO statement defines the beginning of a DO ... t.JNTIL loop or a
DO ... WHILE ... t.JNTIL loop. The DO statement does not look ahead for the CNTIL
statement, but an intervening WHILE statement will search for a matching tJN!1L
Statement.

Since 00 doesn't look ahead, a DO ... UNTIL construa may have multiple t.."NTII..
statements, some of which are conditionally executed within an IF statement. A DO ...
t.JNTIL loop with multiple t.JNTIL statements must be carefully coded so that one
conditiorlal UNTIL statement doesn't lead to another unconditional UNTIL statement.
When this occurs, the message

?ON'!'::.. w/o ifB!!..E: ERROR

appears.

Subroutines
A subroutine is a group of statements that perform some specialized or frequently
~peated wk. BASIC allows you to include a descriptive label on the beginning line of
a subroutine so that your programs can reference the subroutine by name instead of by
line number. Such labels make your programs much easier to understand.

nc;s BASIC supports another type of subroutine, called a procedure, which is
described in Chapter 7, • Advanced Topics. •

94 Chcpter 4: Controlling Progrom Execution

GOSUB statements
GOSUB causes BASIC to branch to a subroutine. You must follow the reserved word
GOSUB with the line number or label of the fU'St statement in the subroutine. When
BASIC exe01tes a GOSUB statement, it places a pointer to the statement immediately
following that statement it places at the top of a list of pointers, called a Control
Stack. then uansfe:s exe01tion to the line number given in the GOSUB statement

If the line number or label given in a GOSUB statement does not conespond to an
existing line in the program, BASIC displays a message. For example

?ONDEF 'D S'!A'l'!:MENT ERROR IN 7 4 6

means that line 746 contains an erroneous GOSUB statement

RETURN statements
RE"'"UR.."': has no parameters when paired with GOSVB. In executing a R.ETtJID.:
statement, BASIC removes one pointer from the top of the Control stack and branches
to the statement indicated by the pointer. 'This is normally the statement immediately
following the most recently executed GOSUB statement. For example, in this
program:

l lO GOSOB :200
l 2 0 PRIN: •Back"
)30 I:Nt
; 200 RI:~ '!'he subro~::~ine goes here
) :2:::; R!::'ORI'

line 10 places a pointer to the next statement (line 20) on top of the Control stack, and
branches execution to the subroutine at line 200. After line 200, execution transfers to
line 210, where the RE'I1.JRN statement causes BASIC to remove the top pointer from
the control Stack and branch to the line indicated (line 20).

Here is another example of GOSUB and R-~ statements:

) lO PR!N': "Now execu1;.ing subrou1;ine lOC"

l 2C GOSOB lOO
l3C PRIN: "Hello again"
l4C ENC
llOC PR!N'!' "Subrou~ine lOC speakinq"
l :10 RE'!'ORN : RE.M l..ine 30 will now be executed.

A program can have nested subroutines (subroutines calling other subroutines) up to
about 40 levels deep. If GOSUB statements are nested more than about 40 levels, the

?S'!'ACK OVERF!..O~ ERROR

Subroutines 95

message is given.. For enmple, here is a program with subroutines nested three levels
deep:

I 10 CiOSOB 100
I 20 END
ISO CiOSOB 200
) 60 RE':ORN : REM !ranch to 120
l 100 CiOSOB SO
I 120 RE':ORN : REM !ranch to 20
) 200 RE':ORN : REM Branch to 60

Note that the BASIC staremeru Rm..TRN is not the same as pressing the Rerum key. The
RETti'RN associated with subroutines is a normal BASIC statement, and the word is
spelled out.

If BASIC attempts to execute one more RETURN statement than it has encountered
GOSUB statements, the

?!U:':ORN WI'!'BOOT CiOSOB ERROR

message is displayed

POP statements
POP allows you to jump out of one level of subroutine nesting.

When a POP stateme:lt is executed, BASIC removes (pops) the cop pointer from the
program stack and disards it, without causing execution co branch anywhere. When
BASIC encounters the next RETIJR."l' statement after a. POP statement is e."tecuced,
instead of branching to the fust statement beyond the most recendy e."Cecuted GOSt:B,
it branches to the first statement beyond the second :nest recendy e."CeC'.lted GOSt:B.

If a POP state.me:u is executed before a GOStiB has been encountered, or if more POP
statements and RE'I'tl'R."l statements are encountered than GOSL"B statements, BASIC
displays the message

?RE':ORN WI'!'BOCT CiOSOB ERROR

because more poinrers have been removed from the stack than were placed on it.

Here is an example of the use of POP:

96 Chopter 4: Controlling Program Execu11on

!NEW
llO GOSOB 100
120 P~!N! •Enc of proqramft
l 30 END
l 100 RE~ This subroutine has no U'!'ORN statement
) 110 P~IN! "Subroutine 100 apeakinqft
1120 P~N'!' "About to branch to subroutine 200ft
l 130 GOSO! 200
l 14 0 REM This l.ine is never executed
l 200 l'~IN'! "SW,routine 200 apealc!.nq"
l 210 P~!N'!' "Peppin«; to avoid returninq to line 14 0"
l 220 POP : REM Removes pointer to line l4 0 from stack
J 230 RE'!'O~N : REM Execution nov resumes at l.ine 20
!RON
Subroutine 100 apeakinq
About to execute subroutine 2 00
Subroutine :zoe spealcinc;
Peppin; to avoid returninq to line 140
Enci o~ prot;ram

Computed brcnching
Many programs require a different set of operations for each possible value in a range.
Computed branching allo'WS you to tailor yow program to respond to a number of
possible conditions.

ON ••• GOTO statements
ON ... GOTO statements are used to specify different program branch points, based
on the value of an arithmetic: expression. The arithmetic: expression must follow the
zeserved word ON, and the line nwnbeJS or labels to which execution should branch
must follow the reserved word GOTO. For example:

llOOO ON X GO'!'O 100, 10. 300, 40, P~!N!.REPO~T

If X•l, execution branches to the fust line in the list of numbers Oine 100); if X•2,
execution branches to the second line in the list Oine 10); if X•3, execution branches
to line 300 (the third line in the list); and so on. Remember that you can use a label in
place of a line number to make your programs more readable.

The value of the arithmetic expression must be within the range of 0 through 255, or
you will .see the messa~

? ::.::.EGA::. QOAN: !'.:'Y E~ROR

Computed branching 9i

If the value of the arithmetic expression is 0 or greater than the number of line
numbers or labels given in the ON ... GOTO ·statement, BASIC ignores the list of line
numbers, and execution continues with the next Statement in the program.

ON -· GOSUB statements

ON -· GOSUB statements are identical to ON ... GOTO statements, except that the
line numbers or labels following the reserved word GOSUB must reference subroutine
enuy points. For example:

11000 ON X GOSOB 1000, 2000, 3000, INI'r.DISK

When BASIC executes a REruRN Statement within the subroutine, execution branches
to the statement immediately following the ON ... GOSUB statement.

& with ON ... GOTO swemenrs, the wlue of the arithmetic expression must be within
the range of 0 through 255, or you will see the message

?ILLEGAL QOANTITY ERROR

If the value of the arithmetic expression in the ON~ .. GOSUB statement is 0, or greater
than the number of line numbers or labels given, BASIC ignores the list of line
numbers, and execution continues with the next statement in the program.

ON KBO and OFF KBO statements
ON KBD causes BASIC to execute a specific statement list immediately when any key is
pressed. 1be Statement list to be executed must follow the reserved word KBD.

After an ON KBD suteme::u has been e."tecuted, BASIC continues e.""tecuting the
progD.m normally-but as soon as any key is pressed, execution branc."les back to the
most recently executed ON KBD statement. Then the Statement list pointed to by the
ON KBD statement is executed.

BASIC treats the branch to the ON KBD statement list as a GOStJB statement branch to
a subroutine, so the prognm segment that ON KBD causes to be executed must end
with a RE!t.JRN statement. To enable ON KBD to handle more than one keystroke, the
last statement in the list should be another ON KBD statement. For example:

10 ON KBO GOTO 100 : REM 'GOSOB 10' when any :.tey is p:r:es.seci
20 PRI~T •. •; : REM Print: pe:r:iocis while not: h&ncilinc; lcey-st::okes
30 GOTO 20
100 PRI~T KBD : REM Display t:he ASCII value of :!\e key p:r:esseci
llO ON KBC GOTO 100 : REM Reen~le ON KBC l:le!o:r:e R!'!'ORN
120 R!'!'Otw : REM Proqram cont.inues execut.inq wherever !:: vas

11lis program displays rmny periods, and whenever a key is pressed, BASIC e.""tecutes
the instructions in the ON KBD sr.atemenc.

98 Chapter 4: Controlling Program Execution

BASIC forgers the last ON KBD statement a.s soon as a key is pressed, even before it
executes the statement list in the ON KBD statement. This is why the program above
includes another ON KBD statement in line 110. BASIC also forgets the last ON KBD
statement exe01ted if the program returns to immediate exeCltion.

Execution of an OFF KBD statement causes BASIC to forget the last ON KBD statement
that w:as exeo,reci

An ON KBD statement must be executed just prior to the Rrn.JRN statement, or a

?STACie OVERFLOW ERROR

message may appear.

+ Note: When ON KBD is in effea, you cannot halt the program by pressing Control­
C because it is treated like any other keysuoke. However, the ON KBD statement
could cause a branch to a STOP or END statement if a control-C is pressed.

The reserved variable KBO

Apple nos BASIC allows you to read, but not write to, its reserved variables. KBD
contains the AScn value of the last key pressed (see Appendix A, • AScn Character
Codes"). When you use the reserved variable KBD in an ON ... GOTO or ON ...
GOSUB statement, you must enclose KBD in parentheses, so that BASIC will not
confuse it with an ON KBD statement. For example:

l ON CK!!Dl -6~ GO'l'O 100,200,300

Handling errors
Apple nos BASIC provides several tools that allow your programs to handle
anticipated errors. 'These are especially useful if other people will be using your
programs.

ON ERR and OFF ERR statements
ON ERR is used to force BASIC to let your program handle any errors that might occur.
When an ON ERR statement is not in effect and an error oc:c:urs during deferred
execution, BASIC ciisplays an error message on the screen and halts exe01tion. ON
ERR is typically used to give a more informa.tive error message or to provide the user
with a chance to avoid causing another error. The ON ERR statement should not be
used a.s a tool for finding errors in prognms. (Use the TRACE statement, described in
Chapter l for this.)

Handling errors 99

A statement or statement list must follow the reserved variable ERR. Execution
branches to the subroutine referenced by the satement list whenever an error is
encountered; BASIC does not display irs error message or halt execution.

for the ON ERR statement to be most effective, it should appear near the beginning of
the program (BASIC must exealte it before it can use it). Ezrors that oco.u before an
ON ERR statement result in BASICs normal error responses.

If a program contains more than one ON ERR statement. only the most recently
ezealted one will be used.

OFF' ERR cancels the most .recendy executed ON ERR statement. 1"here are no
parameters or options a.ssoc:iated with this statement. ~ an OFF' ERR statement has
been executed. BASIC resumes displaying error messages and halting execution in
response to an error, just u it did before the ON ERR mremenr w:as executed.

Wamlnc;:
The stctemen1s tnct ON ERR ecuses to be executed must themselves be free of
errors. or on endless lcop may result. You ecn hclt the endless lcop by pressjng
Control-C. (Con1rol-c is hcndled sepcrcteiy by the ON BI<EAK stctement.) Foro
complete list of BASIC errors. see Appendix B. "Error.·

The following progr.un illustrates one simple ~Y to use the ON ERR swement. In chis
example. the computer is expecting the user to enter a m1mber. 1be error-handling
swemenrs are executed if a letter or word is typed instead.

lO REM S:XAMP~ OF nROR l!AHDL!NG
20 ON S:RR C:CS'C'B 1000

30 INPOT "Please eype a s~nqle number beeween l ana 100 ";X
40 rRINT "T~• number you eypea was ";X
SO !:NC

100'0 :U:M S:RRCR I!ANCL!NG S'C'BRCOTINE

lOlO PRINT : PRINT "I •m very sorry, bue on.ly a number vil.l ao. rlease -:-:y aqai:L"
1020 RE':ORN

RESUME statements
If your error-handling routine ends with a RESUME sw.emem, execution will begin
again at the statement where the origical error occurred. In addition to RESUME with
no options, you can execute RESUME NEXl' in your error-handling routines.

RESUME NExr skips the mremenr that caused the error a.nc:1 rel1lmS contra! to the ne.u
statement within the prcgr.un. Using RESUME NEXT requires care to ensure that the
prcgnm will function in a useful manner when a given statement is ignored. You can
conuo! this behavior by only using RESL"ME NEXT for specific cases in your progr:un
and checking for them by e=mining the reserved V2riable ERRI.IN, described below.

100 Chc:pter 4: Controlling Program Exec:u11on

Apple nos BASIC ignores any RESUME statements that .it encounters until an error
oecws. If you uy to use RESUME in immediate execution, an

?!!.:l.EGAL DIJU:e'l' ERROR

message appears.

Wamlng:

ON ERR subroutines using RESUME must be error-free. Errors In your error routines
may lock up your system. If this happens. you will have to reboot BASIC. and
anvfhlng In memory will be lost.

The reserved variables ERR and ERRLIN
When BASIC enc:ounrers an e~ror, it assigns the reael"'ed variable ERR a eode number
corresponding to the type of the deteaed error. You can then refer to the reserved
variable ERR to determine what kind of error occ:urred. For a list of these codes and the
corresponding error messages, see Appendix B -uror messages.•

Your eJTOr-handling routines c:alled by an ON ERR statement c:an check the reserved
variable ERRilN to determine which line eomained the error.

+ Not~t: Because multiple Statements may appear on a single line, ERRI.IN does not
dete.rmine eualy which Statement caused an error. It is advisable to place only one
statement per line whe%e errors are most likely so that you can see exaaly which
Statement caused the error.

Error-recovery strategies
You c:an ask an ON ERR statement to execute any lepl BASIC statement For example,
you c:an use the reserved variable ERR in an ON ... GOSUB statement to handle the
individual eJTOrs that can occur. Each subroutine could handle the particular error
conditions in the most appropriate manner. When the subroutine returns, the last
statement in the ERR statement list could be a RESUME statement

UnfortUnately, the concept of restarting statements (using RESUME) in a program is
often not a very practical approach to error handling. For example, if the user has
entered a f.Uename that doesn't exist, using the RESUME statement to return to an
OPEN statement, after issuing a

TI~ NO'l' FOOND ERROR

message, will just cause the same error to oecur again.

Error-recovery strategies 101

A large program will probably need many ON ERR statements for different
c:irc:umstances; there is seldom one generalized approach that an work effeaively in
all enor-handling contextS. You should use ON ERR whenever you expea an error
during a specific aaivity within a program and treat unexpeaed errors elsewhere in a
program as major problems that requite the program to restart everything from a well­
defined beginning point.

When an unexpeaed enor oc:curs, you should attempt to preseiVe any user data that
you can by deleting half complete changes to linked tables or files and closing any
open disk files to enswe that the data in disk buife:s is written to the media.

102 Chapter 4: Controlling Pfogrom Executton

Chapter 5

File Handling

Filenames xx

The PREFIX command xx
The modifiable variable PREFIXS xx

Creating 111• xx

CREATE swements xx

Manipulating ftles xx

The CATALOG command xx
D'EI.:ETE statements xx
RENAME statements xx
lOCK and UNLOCK statements xx

File types XX

Opening and closing n ... xx

OPEN statements xx
'nle FOR options xx
The Fn.TIP- option xx

O.OSE Statements XX

Acceulng text and character flies xx

The INPL'T• statement XX

The OL "'''Pt.."T statement xx
The PJID..'T• statement XX

Acceulng data fll• xx

The REA!).- statement xx
The WRITE• statement xx

103

s.quentlal and random ace ... xx

Sequential access =:
Sequential access considen.tions u

Random acces.s =:
Random acczss considen.tions u

Ale statements and funetlona xx

'The ON EOP• n:arement u
'Ibe OFF EOF• statement u
'Ibe reserved variable EOF u
'Ibe EOFMARK funaion u
The P'ILE funaion =:
'Ibe mT'iP funaion JICII:

'Ibe m' function u
'Ibe REC function xx

An example of a tile l/0 xx

104 Chapter 5: file Hcndllng

1'his chapter explains how to use devices and files with Apple DGS BASIC. You should
read the chapter in your Apple IICS Owners Guide dealing with files to understand files
in general and the te:minology desaibing ProOOS files, volumes, and pathnames.

Apple DGS BASIC trea.ts each peripheral device conneaed to your computer as a rue,
including the keyboard, screen, printer, and disk drives. This means that there need
be only one method of doing input or output for all the different peripherals
c:onneaed to your c:omputer. Files on disk volumes are referred to as cllsk files, and
files on nonciisk devices are refened to as cbaraaer mes.
BASIC is designed to support a total of 32 character or disk files. Three of these files are
dedic:a.ted to fixed purposes: file -o is used for the .CONSOLE file (consisting of the
keyboa.rcl and the 80-c:olumn text screen display), file -30 is used by the EXEC
statement, and file -31 is used by the CAT, CATALOG, and DIR statements.

ProDOS 16 version 1.0 c:u.rrently allows you to have a maximum of six disk files open at
one time, plus one :EXEC file, for a total of seven disk files. Although ProOOS 16 allows
eight files open at one time, BASIC reserves one for the TYPE, CATALOG, INVOKE,
and IlBRARY swemerus. If you open eight disk files, and then uy to use one of these
sta temenrs, you will see the message

:?IN':/F'CB/VCB '!'BL F'OLL ERROR

indicating that the PCB (file control block) table is full.

+ Note: Apple DGS BASIC aaua.lly allows up to 29 open disk files. A future v=sion of
ProDOS that supports more .simultaneously open files will let you take adwnta.ge of
this capability.

Filenames
To use any given file, you must refer to it by its Jocal filename or patbname.

Loc:a.l filenames can be any sequence of 15 or fewer letters CA through Z), digits, or
periods, beginning with an alphabetic character. They may not begin with a slash
character (/) or contain spaces.

The local filenames of c:haraaer devices always begin with a period(.). For instance,
.PRIJI.o"''E:R, and .COl\'SOI.E are the filenames assigned by BASIC to refer to the slot 1
device, and the slot 3 device (the text screen and keyboard), respeaively.

Pathnames may be up to 128 c:hara.aeiS in lengdL 1be Apple /JGS Owner's Guii:Je
desaibes pa.thna.mes in detail.

+ Note: You can refer to a specific disk drive by using the device names .D1, .02,
.D3, or .04 as a pa.rtW pathna.me. The name .Dl will always refer to the drive that
coruained the boot disk, although the boot disk may not still be in that drive.

Filenomes 105

Diskettes get their volume names and root directories when they are formatted. To
format diskettes, you can wse tbe INl"I' command, desaibed in Chapter 8.

To create BASIC program files, you must wse the SAVE statement To create BASIC text
files, data files, or subc:iiteaories, you must use the OPEN or CREATE swemenrs.

The PREFIX command
The PREFIX c:ommand allows you to display and set the eight prefixes supported by
ProOOS 16. The current .settings for all the prefixes an be displayed if you type

PREF!X ?

The display will look something like this:

0 /GSBASIC/
l /GSBASIC/
2 /GSBAS:C/SYST!:M/t.!3S
3
4

5
ii
i /GSBAS:C

You an view the current value of any individual prefix by following the rese:ved word
PREFIX with a parameter of a single digit from 0 through i: BASIC will then dispiav the
that preflX value on the next line of the saeen. PREFIX an be used 'Without the digit or
the ? options to display the v:llue of prefix 0.

You an also change any of the eight prefixes using the PREFIX command by following
the -~ed word PREFIX with a digic, a space, and the pathname of the direaory to
set into the specified prefix.

To set preflX 0 so that you an wse pattial pathnames to refer to files, assign a pathname
to it with the PREFIX command. For example:

l ?REFIX 0 /Personnel/Colllllunicaeion/Ineern&l

After you have set the preflX, you can refer to files by using either pattial pathnames or
local filerwne:s. If you wish to access another disk and override the prefix, use a full
pathname.

+ Note: When you boot .-'\.pple Business BASIC, refix 0 is automatically set to the
volume name of the diskette that was used to boot the Apple IIGS BASIC interpreter.

PreflX 7 saves a special pwpose for BASIC, and its value is changed by the LOAD,
SAVE, SAVE AS, RL'"N, and OiAIN commands.

106 Chapter 5: File Hondllng

'
'···--·

The modifiable reserved variable PREFIX$
Pa.thnames starting with any character other than a period, digit, or a backslash (that
is, partial pathnames) are interpreted by BASIC as the contents of the modifiable
reserved variable PREPIXS (which is the same as Prefix 0) conc:arenated with the partial
pa.thname emered.

A pathname beginning with any alphabetic c:haraaer is a partial pathname that refers
to a file defmed by the contents of PREFIX.S plus the partial pathname supplied. A
pathname beginning with a I is assumed to be the complete pa.thname of a file. A
prefix beginning with a digit is a partial pathname that refers to a file ciefmed by the
contents of prefix n plus the partial pathn.ame supplied.

Creating files

CREATE statements
You use CREATE to make root directories, subdirectories, text flles, data flles, and any
other fJJe types. You must specify the file's name and type in the CREATE statement.
The reserved word CREATE is followed by the ne-w pathoame, a comma, and the
reserved word Fn.n'P- plus a file type reserved word. The following are the file types:

Table 5-1

Reserv~ word

TEXT, TXT, or SRC
BDF or DATA
DIR or CAT

Type

Text flle
Data .file
Subdireaoy

For example, to aeate a text file c:a.Iled APPLEPIE on a diskette whose volume rwne is
PIES, you would type

CREATE "'/Pies/Applepie", Fil.'!'YP• 'l'EX'!'

Remember that you can use any of the eight prefixes maintained by ProDOS by leaving
off the initial backsb.sh of the partial pathname. For example,

l PREFIX 5 /PIES .
l CR!:A'!'E 5/Applepie, F!l.TYP• '!'X'!

causes the full pathname to be /PIES/ APPLEPIE. The statement

l CREATE Fru.!.~pies, CA'!'

Creot1ng tiles 1 07

ae:ues a subdireaory alled Pruitpies (using the prefix specified in prefix 0 as the first
part of the pathname) that can contain riles.
You can specify the size of each record in a file by appending an arithmetic expression
to the CREATE argument lisL CA record is a sequence of bytes storing data or text.)
The record size is required only for random-access files (described later in this
chapter), and it must be in tbe range of 1 through 32767 CBDP files must be in the range
of 3 through 32767). For example:

>CREAl'! Aetache, n:xl', 4096

ae:ues a file with the leal filename AIIache, having records of 4096 bytes each. If you
do not include a record size expression, the files record size defaults to 512 bytes.
When creating .subdi.reaories, the arithmetic expression is not allowed.

An attempt to create an already ai.sting file generateS a

1DUPLICATE FILE ERROR

message.

As a convenience in immediate exeOltion, you can enter the pathname direc:ly in
CRE.'\.TE and OPE.'l statements rather than as a string variable or as a literal enclosed
by quotation marks. For example, in immediate exeOltion, the statements

lCREA1'E /Foo/Fiqht:er, FIL1'YP• BDF

and

l CREAl'!: "/Foo/Fiqh'l:er", FILl'YP• !OF

are equivalent. In defen-ed mode, the quotation marks are required. ~oc using them
results in the message

:''::":!':?!: MISHA':CR ERROR

Mcnipuloting files
BASIC provides several statements for direaly manipulating fJles. By using these
statements, you can see what files are on a volume, remove unwanted files, rename
files, and lock and unlock files.

108 C~ter S: Rle Hondllng

The CATALOG command
CATAlOG displays a listing of a root direaory or subdireaory specified by the
pathrwne following the reserved word CATAlOG. If the specified patbname is a
diskette volume name, the names of all files in the diskette root direaory, as well as
thote of any Nbdireaories of the root direc:EDry, are displayed.. Por example, to see a
catalog of a diskette named APPI.El, enter

CAl'Al.OG /Applel

If the pathrwne specified is a diskette subdireaory, the names of all files in that
subdirectory are displayed. Per example, if .APPLEXIND is a subdireaory, the
statement

) CA'!'A!.OG /Applel/Applekinci

will list the names of all the files that it conta.ins.

· If you specify a partial pathname as the CA TAI.OG argument, the prefJX stored in
prefix 0 is used. If you specify a single digit from 0 through 7, that prefix is used.

CAT is a short version of the CATALOG comn:wld. It displays the first 40 columns of
the 80-column display senerated by CATALOG. This shorter display generally
contains the most useful information from the longer display.

The CATAlOG and CAT display information includes a three-character file type field
labeled 'IYPE in the title line. BASIC displays more than 6o of these predefined file
type desaiptors from an internal table. A complete list of file type desaiptors (and
the associated value of the fue type attnbute as stored in the direaory entry) is
presented in Appendix J, ·common File Types.· File types are also discussed in de~
later .in this chapter.

DELETE ..statements
D:EI.ETE statements are used to remove the subdi.reaory or file specified as its
argument. You c:an remove a subdireaory only if all the files in it have been deleted. If
the last flle in a root directory is deleted, the empty root direaory will still remain. For
example, to delete a file named BUlan~ in a root direaory named Tree, you would
enter

DE:::..E'!'I: /Tree/Banana

A number of errors c:an occur when improper pathnames are used with the D'ELETE
statement. They are summarized below.

Manipulating files 1 09

Table 5-2

Meaage

?VOLUME NOT FOOND ERROR
?PATH NOT FOOND ERROR
?FILE NOT FOUND ERROR
?FILE LOCXED ERROR

?WRl:'l'E PRO'l'EC'l'ED D.ROR
?FILES OPEN ERROR

RENAME statements

c:au..

Volume name given does not exist.
Subdireaory does not exist.
Loal file name given does not exist.
Subdirectory contains IDes, or specified me, is
locked.
Diskette is write-protected.
The requested file is now open.

RENAME is used to change the names of volumes, subdireaorie.s, and local rues.
REN~\iE's argument list is composed of the old pathname, followed by a comma,
followed by the new pathname. For example:

l :U:NAME /F:oppy2/Animal.s/Doqs. /!"loppy2/Anima1.s/l'iqs

changes the name of the file Dogs in the subdireaory Animals of the diskette with the
volume name Floppy2 to Pip.

If the second parbn:ame specified indiotes a file that already exists, the item is not
renamed, and the

?!:)CP!.!CAT!: PAT!INAME ERROR

message is displayed.

Remember that using pref"aes reduces the length of the pathname you must type.

You cannot use the REN~\iE statement to aeate a file or subdireaory, only to rename
an existing one. Use the OEA'IE stuement to make new files and root direaories.

A leal filename or subdireaory may not be dl.anged to another volume name. For
example:

!RENAME /Thisaisk/Tveealedee/Filel. /Tha~disk/Tweealeaum/File2

will cwse tbe message

?SAD PAT!l ERROR

LOCK and UNLOCK statements
LOa prohibits writing to, saving, or deleting the me named as its argument. Locked
files are shown with an asterisk to the left ot their flle type whe.-1 cataloged. You can lock
subdireaorie.s, but not volume names.

110 Chapter 5: File Handling

You cannot delete, rename, change, or save a locked me until you have unlocked it
with the UNlOCK sw.cmeru. 1be reserved word UNLOCK must be followed by the
flle's name.

To protea all the files on a diskette, you c::a.n place a write-protect tab over the 'Write­
protect cutout on the upper right edge of the diskette.

File types
Your most useful programs are likely to be those that read from or write to files. 1be
two types of files that your programs will be using are text and data files. Text files
contain only text in the form of c:har:laers and strings of charaaers. BASIC
automatic:ally converts numeric information stored in text files into string form.
BASIC also automatic::ally converts a string representing a numeric value to be assigned
to a numeric variable when read from a text file into the proper form.

Reading from or writing to a file is referred to as accessing the file. A single access
operation usually affects only a portion of the data or text within the file being
accessed

1be type of a. file is determined a.t the time that the file is created., eiiher by assignment
with a CREATE statement or by the FII.TYP- option given with an OPEN# statement.
You c::a.n change a me type by using the m TYP• option of the RENAME command., as
descnbed in Chapter 8.

Opening end closing files
Before you c::a.n access a file, you must open it, and you should close it after you are
finished with iL BASIC is designed to allow up to 29 open disk files, however
ProOOS 16 version 1.2 allows you to have only up to seven files open at the same time.

OPEN statements
OPEN is used to open files for access, and must precede any fDe VO statements
accessing a given me. The minimum required arguments followin.g OPEN are the flle's
pathname, a comma, the reserved word A$, and a flle reference number. If you are
opening a new flle, you must also specify the file type using the FII.'!YP• option
(described in this section).

Opening ond closing flies i i 1

"The file reference mtmber is used in all subsequent l/0 st2remenu to refer to the file
while .it is open. It an OPEN statement conrains a file reference number that is alre:ldy
in use, BASIC automatially doses the fU'St file with that number. You can use any file
reference number from 1 through 29, but you are limited to seven of these for disk files
by Pro.DOS 16 version 1.2.

+ Note: A useful convention for using file reference numbers in BASIC programs
.might be to assign character (device) files, such as .PRINI'E:R and 'v10DE.~. flle
references num.bers that are the -same as their slot number (1 through 1), and to
assign open disk files file reference numbers from 10 through 29.

Here are some examples of OPEN star.emenrs

OPEN Door, AS t22
OPEN •Wind.ow•, ASJlO
OPEN .?RIN'r!:R, AS tl
OP:::N .!'!OOEM, AS t2

A.s a convenience in immediate execution. you can enter the pathname direaly in
OPEN statemenrs, ~ther than as a string variable or a literal enclosed by quotation
marks. For example, in immediate execution, the statements

!OPEN/Fpp/Fiqh~er, FILTYP•BDF

and

JOPEN•ffoo/Fiqh~er•, FILTYP•BDF

are equivalent.. In deferred mode, the quotation marks are required. It you do nee use
them. you will see the message

"?TYPE ~ISMAl'C::! ERROR

The FOR options

It the comma after the pathna.me is followed by the reserved words FOR INPUT, the file
is opened as a read-only 1ile. which annot be written to. For e%ample:

l OPEN OBMS. INDEX, FOR INPtJ'r AS tl2

It the comma after the pathname is followed by the reserved WOI'ds FOR OUTPu"T, the
IDe is opened as a ""''ite-onjy 1l1e, which cannot be read from. For example:

l OPEN SESSION, FOR OOTPO'r AS tlO

"The FOR APPEND option is a ~ of FOR OUTPur, and it is used in sequential
access (explained later) co allow PRINTllt or W'Rmllt statements to append new
information to the end of an existing file without disturbing any of irs data. For
example:

l 2500 OPEN LADDERS, FOR APPEND AS +l .

112 Chc;:lter 5: FUe Hcndllng

If you do not specify a FOR option, the file is opened with the default option of FOR
UPDAT£. A file open for update can be both read from and written to if the file type
(disk or c:hanc:ter) supportS such access. For example, you cannot read from a printer
device, so .BASIC automatic::ally opens a 'Write-only fUe for it.

The FILTYPE• option

The OPEN seu:rnenr also has a m"IYP- option that allows you to specify the type of
f"lle.

The reserved word FILTYP• follows the comma alter the OPEN pathname and
precedes the FOR option (if there is one). 'Ibe file type desaiptors that can follow
Fn.'IYP- are TXT or 'IECI', SRC, BDF or DATA, and DIR or CAT.

• ProDOS 16 _suppol'tS mote than 60 file types, even though only a few type desaiptors
are explicitly supported by the m"IYP- option. You can selea any of the remaining
file types by using a numeric expression alter the reserved word m TYP-. The value of
the expression must be in the range of 0 through 255; otherwise, the message

n:.:.tGAl. QOANl':'l"Y tRROR

will appear.

Important:

When you are opening a new ftle. you must Include the FILTYP- option 1o tell
BASIC whet ftle type to use when It performs the Implied CREATE operation. If you
attempt to open c nonexistent ftie without uslnQ the FILTYP• option. you will see
1he messcge

'?F:U NO'!' FOOND tRROR

Also. If you use the FIL iYP• option when openinQ en existing file. and that ftie has
c 1Ue type different from the one you speclfted. the message

'?FII.t '!'YPt tRROR

will be displayed.

+ Note: Programmers famil.ia.r-with Business BASIC on the Apple I II should note that
DGS BASIC does not support type.less open and flrst operation of disk files. You
must decide what type a file will be when it is opened, and you are restriaed to using
the proper l/0 statement for that type (either TEXT or DATA).

1bis programming convention would be particularily useful if it were followed by all
authors of public domain software, since it would make nos BASIC programs easier
for others to understand

Apple DGS BASIC also provides two additional forms of OPEN that support advanced
programming techniques. One of these is desc::ribed in Chapter 8 under ·oPE.'N, • and
the ether is disQlSSed in Chapter 7, in the seaion •opening a Wmdow File.•

Opening and closing flies 113

CLOSE statements
Before the end of your programs, you should use a C.OSE statement to close all open
files. Also, any files closed during program execution must be reopened before you
an access them again. Each. time a file is opened, even if it was used euller in the
same propm. BASIC treats it as a new file.

1be C.OSE verb is used in twO ways. The 1h3t option is C.OSE, followed by a • and the
file reference mlmber. 1bis doses the me with the given file reference number. The
file number argument an be a constant an expression with a value in the range of 0
through 30; any other values will gene:are the message

:!I..L:tGA.t. QOANTI'!'Y ERROR

Warning:
C:oslng me -#0. the .CONSOLE tile. from lmmedlcte mode will disconnect BASIC
from the console. ond you will have to reboot your system.

ClOSE, without me file number option closes all files (1 through 29) that are open
when the statement is executed. (The LOAD, CU:.o\R, ~. and Rt:N statements also
dose all open files; the CHAIN srarement does 1lDt close any files.)

The C.OSE statement doses an open window file by issuing the Window Manager's
OoseWindow function call.

Accessing text end eharceter flies
You can access both text files and c:haraaer (device) files by using the same set of
BASIC L'O statements: INPL,-•, PRINT.-, and PRINT• USING. You must use a different
set of L'O statements to access BASIC data files a:ll."''YP•BDF), as described later in
this chapter.

The INPUTI statement
INPUT• reads a line of text from a .specified file into the input buifer and proce:sses the
input rext using its list of variables. In this caueu, a lme is any sequence of AScn
c:h.a.t:laers, up to 255 c:h.a.t:laers long,~ by a rerum charaaer. If INPL,.,.
does not fmd a rerum c:h.a.t:laer after reading 255 c:h2r.laers, it appends one to the
buffer and processes the input 'as a line.

11 A Chcpter S: Flle Hcndllng

The reserved 'W'Ord INPUT• is followed by the me reference number of the file to be
read from, a semicolon, and a variable list, with c:ommas separating the variables.
Optionally, you an specify a record number· to be read into the input buffer by
following the file reference number with a comma and the record number (as an
arithmetic expression).

Here are some eu.mples of INPUT• mremenrs: ·

llNPtrrt 2; Payment\. areaaes
>INPtrl'f 8, 34; DGCOl, DGC2l. DGC4l

INPti'T• autOmatically performs any necessary string to numeric type conversions
(similar to the V .Al funaion desaibed in Chapter 2.) to store newly read information
iDio the numeric variables in the variable list. If therde are not enough da.ta in the
buffer to satisfy the entire variable list, the file will be read again as necessary to
compleu: the list.

If INPul'• is reading to a numeric variable from a random-access (file descnbed later
in this chapter) and the record being read from is either empty or contains only non­
numeric information, a

?'!'l'Pl: M:SMA'!'CE l:RROR

message is displayed.

BASIC allows an INPL.,., statement with no variables in the variable list, but such a
statement does nothing.

You can use the OPE!'\ statement to access a direaory or subdireaory, just as you
would to access a text file. Thus, you could use INPL"'T• statements to access a direaory
and obtain, one line at a time, the same information displayed by the CA T.AlOG
statement. BASIC converts the next direaory entry into an 80-charaaer text line each
time input is .requested from a direaory file.

If an n.,."Pt.'T• statement calls for a numeric variable, but the input buffer does not
contain numeric data, BASIC will display a

?'!'YPl: MlSMA'!'CB ERROR

message. If the input buffer contains numeric characters followed by nonnumeric
chataaers in that line, the numbers are accepted, the other characters are discarded,
and BASIC displays a

?EX'!'RA :GNORED

warning message.

Accessing text ond chorocter files 11 S

The OUTPUTf statement .
Normally, BASIC sends all its output, such a.s error messages and prompts, to the
video saeen. If you want to red1rec:E output to another file, perhaps to get a record of
a program's output, you can uae an OUTP'UT~~t statemCnt.

Oll1l"UT~~t redireas screen output to a spec:ified file. BASIC will send all PRINT, UST,
!RACE (.but not TRACE TO •), and CATALOG statement output to the specif"~ed file,
but error messages and keyboard input are still echoed to the screen. You specify the
file used for output by il3 file reference m1mber (set by an OPEN statement) following
the reserved word Otj''Il''UT~~t. For example:

l OC':PtJT t5

will send output to file -s
If there is no file open with the given file reference number, BASIC displays the
message

?F!:.E YCT . 01?:5:~ ERROR

II the me specified is not a file that an accept characters, B.t\SIC displays the message

?'!'"!P!! HISMA':C:S ERROR

To resume normal screen output, type

) OO'l'PU'l' t 0

and BASIC will· again display ch.araaers on the saeen.

The TRACE statement should not be used with the O'UTPL'T• statement. t:se the
TRACE TO • option, discussed in Chapter 1 in the section •Debugging Programs, • to
direct trace output to a c:haraC'.er or disk flle.

+ Note: INPw'T prompt strings will be sent to the file specified in the OL"TPL"'T•
statement, not to the screen.

The PRINT# statement
PRINT~~t writes ten char.lae:s to files in the same way that PRINI' wrir.es information to
the screen. PRINT• is followed by the flle reference number, a semicolon, and a list of
expressions sepanted by commas. Optionally, you an specify a record number by
following the tile reference number with a <emma and the record number. In this
a.se, BASIC will start writing information to the me at the beginning of the specified
record.

Here are some examples of PRThiT~~t statements

1 16 Chopter 5: File Honc:lllng

lPR!'NTt l: W$(0,0,0), l.Er!SCWSCO,O,lll
) PRUi"l't 10* 4755; AH24. :U/43, R\

PRINT• automatic::ally performs any necessary numeric-to-string type conversions
and u:a.nsfezs the ten cbaraaers to the file. Numbers are formaaed in either faed­
poini or .Dealing-point notation, according to the same rules used by the PRINT
statement (that is, SHOWDIGri'S conuols tbe format of numbers generated by
PRINT•).

You can use me SPC specific2tion wilh PROO"• statements in the same way that you use
them with PRINT statements (See the -rAB and SPC Specifications• section of
Chapter 3 for details.)

Wamln;:
Although PRINT# allows commas In place of semicolons (os PRINT does). they
mcy cause unexpected breaks to appear In 1he output beeause flies hove no
tab positions. You con also use 1he TAB speel1\eo11on. but It too may cause
s1Tonge results. Anofher allowable. but not recommended. practice is to run
some expressions together without commas or semicolons.

ibe PRINT• USING statement, which conuols the format of text c:haraaers sent to a
file, is described in detail in Chapter 3, in the '"Formatting Information• section.

Accessing date files
READ• and WRI'TE• statements are used for accessing BASIC data CBDF or DATA)
files. :Oata file access is much faster than text flle access because no text-to-binary
conversion is required 'The advantage of a text file is that it allows you to use PRI!\'T•
and INPt.i'T• Slatements, which are usually the most convenient way to handle text
.input and ou~

The READ.f statement
R£AI)# gets .information from a data me, specified by its me reference number.
Optionally you can include a record number to specify a panicular record for BASIC
to start with in a random-access file. A variable list following the file reference number
(and optional record number, if included) defmes where to put the information being
read. For ezample:

>REAOt i: P1pl, P~p2

l REAOf 8, 54; Twelve,. S'trcnq' C2l

If you specify a record number, the fll'St field in the specified record in the me is
assigned to the first variable in the READ• statement.

AeeesstnQ data flies 1 17

BASIC stores the information in a BDP file one variable at a time, in binary for
numeric variables and as a string for string variables. Each variable begins with a tag
byte that defines both the type and size of the binary or sUing information that follo-ws.
Each variable (also c::alled a field) must r.tt entirely within a :ecord; a rJeld may not
span a record boundary within the file.

When BASIC opens a BDF file, it alloca.tes a record butrer, where all file input or
output is aaually done first, then it transfers the entire :ecord to or from the disk file
media. BASIC only does the aaual reading or writing of records when necessary, not
for every READ• st:j!Tement.

READ• automatically performs any type conversions needed for numeric data.
However, it does not autom:arjo 11y perform type conversions between numeric data
and sUing variables (and vice versa), and an atrempt to :e:ad a sUing with a numeric
variable (or vice versa) resu1a in a

'?T'!P!: MISMATCS E:RROR

message.

The following table c:lefines the conversion limits of the READ• statement.

Variable to data field type

Real to:
Real
Double real
Integer
Double integer
Long integer
String

Double real to:

Integer to:

Real
Double real
Integer
Double integer
Long integer
String

Real
Double real
Integer
Double integer
Long integer
String

118 Chopter 5: Fll~ Hondllng

Result

OK
OK, with possible loss of accuracy
OK
OK, with possible loss of accuracy
OK. with possible loss of acc:uraq
TYPE MISMATCH ERROR

OK
OK
OK
OK;
OK, with possible loss of accuracy
TYPE MISMATCH ERROR

OK in the range of ±32.'1{, else OVERFLOW
OK in the range of ±32K. else OVERFLOW
OK
OK in the range of :t32K, else OVERFLOW
OK in the range of ±32K. else OVERFLOW
TYPE MISMATOi ERROR

-

Double integer to:
Real
Double real
Integer
Double integer
Long inteser
String

Long integer to:

String to:

Real
Double real
Integer
Double integer
Long integer
SUing

Real
Double real
1nleger
Double integer
long integer
Su.ing

ibe message

?F::.E l'YPE ERROR

OK in the range of::t2E+9, else OVERFLOW
OK in tbe range of ±2E+9, else OVERFLOW
OK
OK
OK in the range of ±2E+9, else OVERFLOW
iYPE MISMATCH ERROR

OVERFLOW ERROR if more than :9E+18
OVERFLOW ERROR if more than :9!+18
OK
OK
OK
!YPE MISMATCH :ERROR

!YPE MISMATOi ERROR
TYPE MISMATOi :ERROR
TYPE MISMA TOi :ERROR
TYPE MISMATOi :ERROR
iYP! MISMATOi ERROR
OK

is displzyed if 'YOU mempt to use the READ- statement with a file that is not a BDF Cor
DA '!A) flle. ("!he r.ue type desaiptors BDF and DATA are synonyms for the same
ProDOS file type attribute.)

The WRITE# statement
WRl"re_. sequentially writeS the binary value of each variable or constant in its
expression list to a field in a specified data file. Follow the word WRI'I'E• with the file
reference number, a semicolon, and a list of expressions separated by commas.
Optionally, you an specify a record munber for BASIC to begin with by following the
file number with a comma and the record number. If you specify a record number, the
value of the first expression in the expression list is written to the first fleld in the
specified record Otherwise, records are written sequentially.

Here are some examples of WRm• statements:

>WR::'Ef 3: Major,, Mi..nor,, Xlow
)WR::'Et 4, ll; Map<l,3,5,7,9l

WRITE# 119

Each field in a data file consists of a tag byte that defines the type and si2l: of the
information in that field, followed by the value information. Eac:.."l field is just large
enough to contain the tag byte and the binary or suing data, and so the fields are of
variable length. Any specific type of numeric field alwa)'3 has a flx.ed length, and a
string field has a variable length.

WRI1'E# does not perform numeric.ro-string conversions while transferring
information from the expressions to the file, it just writes a binary image of numeric
data to the me.
If a file record lacks enough room for all the fields being written to it, the extra flelds
will be written to the next record ~ore that writing any new data to a record will cause
the old data in that record to be lost.

If you try to write a data r.Jeld to a file that is longer than the file's record length., BASIC
displa)'3 the message

".?OUT OF OA:'A !:RROR

Important:
Note thot the usuol rules for determining the type of on excresslon result ore In
effect. An expression mcy hove on Integer. o doucl.;nte<;er. o long-integer. or
on extended-prec:lslon reol result. Whatever type on ex;:>resslon returns, that
1ype will be wrttten to ttle file. except on extended-prec:sion result will be
converted to o double-precision real. ond then wr1tten.

If you wont to ensure thot o gtven 1'1eld In o record Is o spec!f!c: type. you must
use o vortoble lnsteod of on expression. or force the expressjon result to the
required type with one of the CONY tunc:tions. For example:

lffRI':!: •1:~~-+l

writes on Integer.

lWRI':!: il;~~ ... L23

wrttes o double-precision reol.

Sequenticl end rcndom cccess
1bere are two wa)'3 to access text and data files on a disk: sequential access md
random acc:rss. Sequential access is like reading a book; accesses begin at the front
of the file and continue on toWard the end Random access requires that the me be
made of equal-sized records, and it ~ that you c:::1t1 access any record in any
order. c:llanaer devices may not be accessed r:u1domly, but block type devices, suc."l
as disks, allow ~~·her form of access.

120 ChQoter 5: Flle Handling

Sequential oceess
Here is an e:nmple of a sequential access program:

~0 JU:H Proqram Pri.n-r.Sequen-r.i&l
2 0 FII.~$ • •sequenti.a~l'ext"
30 OPEN FILES. F!I.l'YP• l'X'!' FOR OOTPtrr AS flO
40 FOR X•l '1'0 lO
50 PRIN'!' flO; •'!'his ~· llne •;x
60 NI:X'! X
'70 CI.OS~ flO
80 END

1h.is PrintSequentia.l program writes both string and numeric values into a sequential
text file.

line 20 assigns the string Sequentia!Te::xt to the string variable FilES. Line 30 opens
(and creates, if necess~) the fUe and assigns the number 10 to it as ~me reference
mtmber. As long as the file is open, it is refened to as #10. Lines 40 and 6o define a
loop that will execute 10 times. Each time through the loop, X has a different value:
first 1, then 2, and so on up to 10.

Line 50 writes twO 'W.I.ues into file •10 each time it exeClteS. 1be first value is the string
-nus is line•, and the second is the character string reprcsenution of the numeric
value of X These two strings are joined together (because of the semicolon between
them) to occupy one line of text in the file.

line 70 closes the me. In~ larger program, other routines might need to access rues,
and unless closely controlled, problems arise v.rith attempts to operate with more than
six or seven mes open at one time or by accessing the wrong me.

After the program nms, the contents of the me are:

This is ~j,ne !
'l'h.is ~s line 2
'l'l:" • .is .is l..ine 3

'l'h:.s .is l.i.ne l 0

To see the contents of this file on the screen, you need another program:

Sequential and random access 121

10 :U:M Proqram I.npu~Sequen~i41

2 0 r:!.ES • "Sequen~ialTax~"

JO OP~ r:t!.ES, AS tll
40 ON tOF Ul GOTO 80
SO INPOT tll; ACCEPTS
60 PRINT ACCEPTS
70 GOTO 50
80 CI.OSE tll
90 END

The InputSequentia.l prognm opens the file to ~d its contents. Ea.ch time the loop in
lines 40 through iO e=cutes, Une 50 reads the next Une of text from file •1, and stores
it in the string variable ACCEPTS. Then_ line 6o displays the string on the screen.

"''be SequentialText file in the previous e=mple wu a text file because of the ~Y it w.a.s
opened. You can use a BASIC dala file to achieve the same result 11le following
program aear.es a data file and writes some data into it:

10 REM ?roqram wri~aSequen~ial

20 r!I.ES • "Sequen~ialDaea"

30 CREATE F!l.ES, !'II.'l'YP•DA'l'A
4 0 OP!:N r:::.zs, FOR OO'!PO'l' AS tl2
SO :"OR X•l TO 10

60 liR!'!'E tl2; "':h.i.s is line ", X
iO NEXT X
SO C!.OSE tl2
90 END

The WriteSequemi.a.l prognm is like the PriruSequential program, but it uses WRITE#
instead of PRINT#. WRITE# does not allow the use of semicolons to sepante values
that are written to a file. Ea.ch WRITE# sends a fleld to the rue for each variable in its
expression list. WRITE# 6l.so does not convert numbers to suings, but places them in a
file using the same format (binary) as numeric variables that are stored in the
computer's memory.

In the SequentW.Dau flle, every other field contains the string "This is Line~, and the
fields in between contain binary coded numeric values from 1 to 10.

The program below reads information from the SequentialDat.a flle back into memory
and displays it on the saeen:

10 REM Proqram Reac1Sequaneia1
20 nus - "Sequeneia1Daea•
30 OPEN !'II.ES, FOR :NP!J"l' AS tl3
40 FOR X•l TO 10
50 READ tlJ; ACCEPTS, INNOM
60 !'RIN'l' ACCEPTS; INN OM
iO NEX'!' X
ao C:.OSE tlJ
go END

122 Chapter 5: File Handling

Wh~ the InputSequential program used INPUT•, the ReadSequential program uses
READ•. 1be READ• statement reads the values of two fields from the file: the fust (a
suing value) is stored in ACCEPTS, the second (numeri~ value is stored in INNUM. In
line 60, PRIN'I' displays the two values as one line because of the semicolon.

lleadSequential displays the following on the saeen:

This is line 1
Th.is .is ~.ine .2
•

Th.is .is ~.ine 10

Sequential access considerations

Notice that the programs above with P~"T•, INPUT•, WRTI'E•, and READ•
statemems all use sequential ac:a:ss; -we never had to specify where to begin in the flle.
PRn-."T• or 'WRITE• statemems cause one ac:a:ss for each expression in their
expression list, and INPUT• or READ• statements cause ooe access for each variable
in their wriable list. BASIC automatically adva.nces by one data or text item each time
an expression is wrinen or a variable is read, so that the next ac:cess to the file will be
positioned correaly.

When -you open a file, the first access begins at the beginning of the file. Each
subsequent a.c:c:ess begins where the last one left off.

1bis means that each time that you open an existing file and write to it, at le2St some of
its original contents will be written over. If all of the original file is not written over,
where is the end of the file? AI the end of its original contents, or at the end of its new
contents? The answer is tha.t you can't be sure. If the old contents have been fully
overwritten, they a.re lost. If not, a portion of the old contents will remain after the end
of the new contents. BASIC will not tell you either -way.

To avoid problems with the old contents of files, don't open an existing file using a
FOR OL"'TPL'Pf statement for sequential access. Instead, delete the old file, then open a
new file using the same file reference number with the FOR OUTPUT statement.
(Before you delete. the old file, be sure that you read any information you need from
it.)

It you just want to append information to the end of a file, open it using the FOR
APPE.l~ID statement, When an existing file has been opened with FOR APPEND, the
first access begins at the end of the flle. Each subsequent ac:c:ess begins where the last
one left off. This allows you to retain information previously saved in the file.

Sequen~el end rendom ecce~ '"''l ~~--

Random access
Random-access files are suuaured as a sequence of equal-sized records. In random­
ac:cess operation, you spedfy e:aaly where each file acczss should begin by specifying
a record mtmber in the PRINT.it, INPUT•, "WR111!4t, and READ.- statements.

1be CREA'IE and OPEN scnemenrs allow you to specify the record size of a new file. II
you don't specly it, the record size de&ulu to 512 bytes. You cannot change the
record size of an existing file.

:Sote that in sequential access, the record size is irrelevant; you do not need to think
about it. A record in a sequential file cannot be accessed randomly.

In a data file, the contentS of a record are organized into fields. Each field contains
either a numeric or string value. Any a;.ven field is alvnys coruained wholly within one
record, the records do not overlap.

In a test file, each record is a series of bytes; with each byte containing a c:baraaer.

To use random access, you must have a dear ide:l of how information will be
organized in your file. In a data me, you should usually plan to have each record
contain the same kind of fields. For example, each data record might contain two real
values, an integer, and a string. in that order. 'The record size must be large enough to
contain all the fields you will write in each record.

Each data type uses a certain amount of bytes in irs fleld, as follows

Da1a type

Real
Double real
Integer
Double integer
Long integer
String

Byus used

s
9
3
5
9
ming length + 2

II you vnnt to randomly acczss text in a rext file, remember that the INPUT.- state.'Ilent
reads lines of test ended with a return c:baraaer. 'Iberefore, you should usually plan to
have each record eonwa one Line. This means that the record size should be at least
big enough to contain the longest line your program will ever write into iL A line
requiles 1 byte for each c:haraaer in the line. plus 1 byte for the rerum c:haraaer at the
end of the Line.

We can modify the sequential access examples so that they use random access to
display only the even-numbered lines of the me on the screen.

To change the PrintSequential program to the PrintRandom prognm, we must specify
a record size in the CREATE statement and a record number in the PRINT.- statement.

124 · Chcl:>ter 5: File Handling

lO :REM Proc;ram Prin~Ranciom

2 0 C:REATE "'kanciom'!'ex~", F!l.'!'YP•TX':, 16
30 OPEN "lt&nciom'l'ex~", FOR OO'!'POT AS tl 0
40 FOR X•l TO lO
.SO P:R!N'l' flO. X; "'!'his is line " ; X
60 NEXT X
iO CLOSE flO
80 END

Although "We could have specified a larger record size, 16 bytes is enough to contain
the longest string we will be writins- ThiS iS Une 10 is 15 charaaers plus 1 for the return

chataaer at the end

In line 50, X is the record number. Each time through the loop, the PRINT• statement
'Wtires to a diff'erent .record; first it writes to record l, then record 2, and so on, up to
record 10.

We can change the lnputSequential program to the lnputRandom program, without
specifying the .record size, beause BASIC stored that information when the flle 'W2S

aeated When you open the me BASIC retrieves the record size.

However, we do need to make two changes: one in the FOR statement and another in
the record number in the INPUT• statement.

l C REM Proc;rart lnput:Ranciom
20 OPEN "':RanciomTen"', FOR INPOT AS tll
30 FOR Xt•2 TO lO STEP 2
40 !NPO':' tll, Xt; ACCEPTS
SO Pk!NT ACCEPTS
60 NEX':
iC C!.OS.t
80 .tND

.a ••
~·-

nte FOR statement now swts with X%-2 and has ST.EP 2, causing X% to take on the
values 2, 4, 6, 8, 10 as the loop repeats five times. In the INPtJT• statement, we specify
X% as the .record number; so the first time through the loop we access record 2, the
second time .record 4, and so on, up to record 10.

When you run lnputRandom. it displays the following on the saeen:

":hi.s i.s line :2
:'h.is is l.ine 4

:'hi.s is li.ne 6

'!'h:.s is .:...ine 8
:'h.;.s i.s line lO

In the same fashion. program WriteSequentia.l can be changed to a program to
randomly access data rues. Try it!

Sequentlol ond rondom occess 125

Rcndcm access ccnsideratlcns

Here are the essential rules for using random-access files:

c When a record mtmbu is specifu:d in a. file I/0 statement, the access begins at the
beginning field of that record.

r::J When you overwrite any part of an existing record using a WRl'I'E# (not PRINT#
mtement), all the previous content of that record is lost. However, an existing
record that is not overwritten remain• unchanged.

::::i Whe.-1 accessing data files, il a RE.o\0.- statement contains more than one variable
or a WRITE~~t statement contains more than one expression, the current record
position will move from one fleld to the next.

c When accessing rat files, it a PRINT# statement writes more than one Une, each is
placed in the file in the order written, regardless of record boundaries. If an
INPti7" mrement reads more than one line, it assumes that each one begins where
the last one left off, .rep.rdless of record boundaries.

c If a field in a data file won't f11: in the space remaining in the record, BASIC goes to
the beginning of the next record. If a field is too big to fit in any record, BASIC
displays the message

?00': OF CA'!'A ERROR

File stotements and functions
BASIC comairu sarements that allow you to control program e.""tecution according to
information contained in files that your program accesses.

The ON EOFf statement
You can use ON EOF• to force BASIC to allow your program to ccnuol what ha.ppe.'l.S if
BASIC reads past the end of a file CEOF sta.nds for end~f-file). When ON EOF• is not
in e:Tea., and BASIC reads past the end of a file, it displays the message

?OO'r OF CA'!'A ERROR

and halts exea~tion. ON EOF# is vety similar to the ON ERR statement, except that ON
EOF• recognizes only the end-of-file event.

Follow the reserved word EOP• with a. statement or statement list, and execution will
branch to that statement list whenever BASIC reads past the end of the file instead of
displaying an error message or halting execution. For example:

I !00 ON tOF tlO PRINT ·t~a of ~~!e­

l 1000 ON tOF tl2 GOTO 2000

126 Chcpter 5: File Hcndllng

',

The statement list is executed as though a GOTO statement had caused execution to
jump there. Unl.ilce with ON ERR statements, RESUME does not function in
conjunction with ON EOF• statements.

The OFF EOF# statement
OFF EOF• cancels an ON EOF• statement After an OFF EOF• swemeru has been
executed, BASIC JeSUmeS displaying error messages and halting execution when it
reaches the end of a file, just as i1 did before the ON EOF• statement "N2.S executed. You
must follow the JeSerVed word EOF• with a file reference number to specify which file's
ON EOF• statement should be canceled.

The reserved variable EOF

When BASIC encounters the end of a file, it assigns the file reference number of the file
causing the error to the reserved variable EOF, You can then check the reserved
variable EOF to determine which file r:an out of data.

When you use the reserved variable EOF in an ON ... GOTO or ON ... GOSUB
statement, you must enclose EOF in parentheses. For example:

JON tEOFJ GO'l'C 100,200,300

The EOFMARK function
EOFMARK returns the c:urrent value of the end-of-file mark for the file specified by the
value of it argument. which ca.n be any arithmetic expression in the r:ange of 1 through
29. 1bis function is only valid for open block device (disk) files. If you reference a file
that is not currently open, BASIC displays the message

?F:~t N~ OPEN ERROR

If you use the EOFMARK function with a c:haracter device file, you will see the message

?NC:' A BLOC!< DEVICE

The FilE tunc:Hon
FILE tests the existence of a disk filename given by its ftrSt parameter, a string
expression. It returnS the value 1 if the file with the given pathname exists, or the value
0 if the file does not exist. The FII.E function also allows an optional second parameter,
sepanted from the string expression by a comma..

File stotements ond functions 127

1be second parameter is the reserved word FII.'IYP- followed by a file type desaiptor
or a .awneric expression whose value is in the range 0 through 255. The valid file type
desc:ripcor.s are 1'XI" or TEXI', SRC, BDP or DATA. and DIR or CAT.

If any error ocher than

?!'I:.Z NOT ?OOND ERROR

is encaumered. that error will be displayed If you do not specify a. file type, BASIC
returns a. aue (the value 1) for a. file of any type. If you specify a. type different from the
one the file already bas, BASIC will display

?!':~ T~PE ERROR

1be reserved variable AtJXIDO will contain the subtype from the directory entry of the
file.

The FlLTYP function

FII. TYP retwnS the file type of an open file from the BASIC FCB. Its argument is the
reference m1mber of the file. FII.TYP(O) is a. special case that rerums the file type of the
last FII.E function ca.ll

FII. TYP bas the same error conditions a.s the EOFMARK and TYP funaions (desaibed
below).

The TYP function

You an use TYP to detemline what type of data will be re:ad from a. particular file on
the next acc:es.s to that file. TYP only works for BASIC data files criLTYP•BDF). If the
file is not a BASIC data file, BASIC displays the message

?F!:.Z T~l':: ERROR

1be argument to the funaion can be any arithmetic expression. but irs value must
specify a. particular file reference number from 1 through 29. If you use a. larger or
smaller argument. BASIC displays the message

?II.:.EC:AL QOANTI'r! ERROR

1be mtmber retUrned by the TYP funaion denotes what type of data will next be re:ld
from the spedf.~ed file. TYP aaually returns the value of the rag byte of the next field in
the file. For example:

l 2000 ON ':~P<Jl C:OSO"B 2010,2100,2200,2300,2400,2500,2600

means that the next item is a double integer.

For a. BASIC data file., TYP retwnS the following values:

128 Chapter S: File Hcndllng

0 End of file
1 Not used
2 Integer
3 Double integer
4 Long integer
5 Single real
6 Double zeal
7 String

If there are no more data items in the file, TY'P returns the value 0.

II you specify the reference mtmber of a file that is not open, BASIC displays the
message

?FIU NO'l' OPEN ERROR

The REC function
REC rerums the current record number of the fne specified by the value of it argument,
which can be any arithmetic expression whose value is in the range of 1 through 29.
REC zetums a number in the range of 0 through 8,338,607.

II you use the INPUT411 or READ- statements to ac:cess a window me, REC ren.uns the
'W"mciow Manager window-record pointer. If you use the INPUI'41t statement to access a
direaory file, REC MOD 65536 gives the line number in the last catalog line
generated..

REC has the same error conditions as the TYP function, desaibed above.

Example of file l/0
Here is an eDmple of file use. Assume that you have inserted a BASIC diskette named
APPI.El in disk drive 1 and turned on the power. Assume that there is no initialization
ft.le CGSB.HELLO program), so no program is run automatically; you just see the
prompt character. Now you type

RON DEMO

to load and run the DEMO program, show below. 1llis program J:ru~..:~;~;:s copies of
existing files.

Excmpie of file 1/0 . -.­. "~

-lO P!\IN'l' •-:en tile copy u~ili~y·
2 0 !'SPOT "!n~er inpu~ !ile pa~hname: •; AS
JO OP!:N AS, F!I.:YP•TXT !OR INPOT AS HO
40 INPOT "!n~er ou~pu~ file pa~hn&JDe: ";AS
!0 lU:M Open new ou1:pu1: file
60 OPEN AS, FILl'YP•TXT FOR OOTl'OT AS ill
70 ON EOF tlO PRINT •oone" : CLOSE : END
80 INPOT tlO; AS : PRINT +ll; AS : GOTO 80

Line 10 displays a message on the saeen. Line 20 displays a prompt and then waits for
you tO emer a pathn;ame You must enter a legal pathname, or you will see a message,
and the program will halt. Line 30 opens the named file, referenced hereafter as •1.
Line 40 asks for another pathname; and line 60 opens the file for output, assigning tO it
the file reference 4t2. I.ine 8> perlonns ihe aaual copying. Line 70 will be executed
only when the end of the input file bas been reached to end the program. Until line 70
is e20lted., line 8> reads in lines from the input file, and writes them to the output file.

Recall that when you boot your computer, the volume name of the diskette in the built­
in disk drive is stored in prefix 0. 11lis me2llS that a valid pathname can be as little as
the name of the file (assuming that there are no subdireaories on the diskette). So,
responding simply ~ and BFILE to the program prompts would cause
I APPU:l/.AFII.E to be duplicated to a new file named I APPLEl/BFII.E. Remember that
not using a slash before a pathname causes the contents of prefix 0 to be added to the
beginning of the pathname. ·

11lis program can be used to print a file by responding AFD.E and .PRINT.ER.
assuming that a printer is properly connected Responding .CONSOLE and
/APPLEl/'l'EXr will take input direaly from the computer's keyboard and write it to
the new me /APPU:lii'EXT created by the program.

~ote that in the l2.st case, where input is taken from the keyboard, the program will not
terminate normally because block devices (.CONSOLE and .PRINTER) have no end of
file. (In the next-to-last case, .PRIN'I'ER was used for output, not as an input flle.) You
can use Conuol-C to end the program.

130 Chapter S: Flle Hcndllng

Chapter 6

External Routines

The toolbox Interface xx

Toolbox defmition f.Ues xx
The liBRARY statement XX

The CAll. mrement xx
The EXPN_ statement XX

The lnvokable module Interface xx

The INVOKE statement XX

The PERFORM statement xx
The EXFN statement xx

131

Apple ncs BASIC provides two complete interf:lces to exremal subroutines (assembly­
language procedures or funaions ttw are not part ofiiCS BASIO. Each interface
allows you to load and execute external subroutines from BASIC programs. You can
use both external subroutines uw you write and those included with your Apple ncs.
For example, there is a tool set of subroutines for displaying graphics, supplied in the
Apple IIGS read-only menory (ROM). 1b.i.s tool set, called QuickDnw II, can display
gnphio objea.s of many types in the Super Hi-Res video display mode.

II you catalog your ncs BASIC master diskette, you will see some files with the
extension .INV. 1bese are one type of exr.emal routines. There are two other groups of
related files uw you should be aware of, both having the same name as the external
routine files. One type has the extension .DOC (for doCliileruation). The other type
of files, which have no extension, are BASIC demonstration programs. II you run a flle
with a .OOC or no extension, it will desaibe the use of its a.ssociated external routines.

A subroutine is a separ:ue part of a program called by one or (usually) several other
pans of the program to perform a specialized or frequently repeated task. A subroutine
may have a list of arguments endosed in parentheses following its name, either
variables, pointers, or expressions. There are rwo types of external subroutines:
procedures and functions. A function returns a value, a procedure does not

An external subroutine uses its panmeter list to tell the calling program what
information is available for irs use, what is to be operated on, or where it should leave
the results of its operation for the use of the calling program.

The Toolbox interfoce
BASIC supportS an interface to the Apple IIGS Toolbox tool sets, some of which are
provided on the System disk. You can access these tool setS by using the BASIC
statements UBRARY, C.-\.LI., and EXFN_.

Tool sets are of two types: re:ld-only memory (ROM) and random access memory
(RA.\1). ROM tool sets are built into the Apple ncs computer, and RAM tool sets are
loaded from the System disk. RAM tool sets are alw-ays kept in a special sub­
subdireaory on the boot or System disk. You can view these files by typing

CAT •tSYST!:M/TOOt.S

1'he files in this direaory all have names uw follow the paa.em TOOL.999, where the
999 is the tool set mtmber from 001 to 255.

+ Note: You can write your own tool set See the Apple UGS Tooibo% Referrmce
manual for details.

1 32 Chopter 6: Extemol Routines

..

Toolbox definition files
The UBRARY statement loads a special IDe, called a TDF or tooJboz clefinition file.
that conta.ins a diaionary of interface defm.itions for all the funaions and procedures
in a tool set. Each intedace definition contains the funaion or llgruy name name,
tool mtmber, function number, parameter count, and panmeter type for each
DrOC:edure or funaion in the tool a:t.

A complete set of 'IDF files is supplied with BASIC for all the standard Apple DGS
Toolbox ROM and RAM tool sets. The individual procedures and functions for all the
tool sets are doc:w:Demed in the AppJe Toolbox Reference manual Appendix H
provides more information about 'IDF ~ format.

.As fu possible, the names of the procedures and functions in the 'I'DF diaionaries are
the ones used in the Toolbo% Rt?ferm.ce manual; c:erWn tool sets have duplicate
names, so some function names in the 'I'DF will not match those in the Toolbo%
Refrnmce manual.

The LIBRARY statement
The LIBRARY statement loads one or more 'I'DF rues into the BASIC library diaionary
(a separate memory segment allocated for interface definitions). The reserved word
LIBRARY is followed by one or more string expressions separated by commas. Each
string expression must be the paihname of a 'I'DF file on a c:u.rrenily mounted disk
volume.

If BASIC does not have enough free memory for all the diaionary data., it displays the
message

00'! 0!' MEMORY ERROR

If no filenames are present, the library dictionary is deleted, except for entries
inserted by the INVOKE staremeni

When you use the LIBRARY statement with just a pa.thname parameter, BASIC discards
all prior library definitions before loading the new ones. If you want to add a 'I'DF file
to the c:isting library diaionary without deleting the currently loaded entries, use the
.APPEND option. For example:

) :.:BRARY APPEND •TD!'. QOlCKDRAW"

will append the diaionary for the QuickDraw n tool set to the library segment.

The Toolbox interfoce 133

"'be header record inside the 1DP file may request that the tool set be loaded from
disk. In this c::a.se, use the Tool ~tor LOADlTOOL c::all to load the tool set from the
TOOLS sut>subdireaory of the System disk. IIGS BASIC first checks to verify that the
same 1DP file definitions have not already been loaded into the library dictionary; if
the 1DP file wu loaded previously BASIC skips that file and processes the next 1DF
filename (if any).

Thus, you an safely reexecur.e a LIBRARY mrement any number of times while testing
a program from immediate mode, and only load the 1DF definitions once. Note,
however, that the 1DF file must continue to be acczssibJe since BASIC will open the file
md read the header record read before making the duplicate load check.

The CAll statement
CAU. executes a named procedure in an Apple IIGS tool set. Before you an use CALL
for normal functions, most tool sets mwt be properly iniria lized. All tool sets have a
sca.rtup function that must be called before using any other functions.

Calling a procedure is done like this:

l:. 0 0 CAl..:. C:.ZARSCREEN (-ll

or

1200 _Cle•rSc:::een !BK'l

"'be second example shows the use of the shorthand CALL verb, the underscore
char.laer U. 'The CALL and _ st:aremenrs in both examples call the ClearScreen
function in the Qu.ickDl"2.w II tool sec, which cleats the entire Super-Hi-Res saeen,
using the value of the par.uneter to set a word, or 2 byres, of pixels.

Each procedure or fUnction in a tool set has a function number and a tool number,
along with its parameter requirements. All three of these items (and others) are
extracted from the interface definition entry in the library dictionary. The dictionary
entry is found by searching for tbe libname, in this c::a.se, CI.EARSCRE:EN.

1be 1DF file for the tool set must have been loaded into the library dictionary with the
UBRARY statement prior to executing a CALL libna.me; otherwise, BASIC will display
the message ·

ONDEF '0 PROC/FtJNC'riON !RROR

1'he dictionary entry indicates the parameters requ.i.red by the tool set fUnction (and
their order and types). The parameter list in the CAIJ. statement must contain the
proper number, order, and typeS of argumentS within parentheses following the
libname. The parameters are pushed on the CPU stack in order from left to right, and
the proper tool set fUnction is called

134 Chapter 6: Extemcl Routines

BASIC removes any returned .results from the CPU stack and stores the fust 16 words
(32 bytes) in the retum sw:k bWfer. The comenr.s of the return stack buffer may be
accessed through the R.S'IACK functions.

Wamlng:

Don't attempt to use CALL without complete lcnowtege of o tool set. (The
standard fool se11 ore d~ted In the Apple fiGS Toolbox Reference manual.)

nos BASIC c:onealy initiates QuickDraw n when the GRAF INIT command is executed,
and it also SWtS up tbe Sound Manager (but not the NO~ or NOT:ESEQ tool sets).
Y au may obtain the acidn:sses of some preallocated memory resources that are useful
for initializing certain tool sets with the ·RASico function.

To pass real or imeger mtmbetS or the values of variables, just include them in the
argument list a.s an expression (for an explanation of expressions see the sections titled
Expressions and Staremenrs in Chapter 2). If the type of the numeric argument or
expression you use does not match the type of the parameter required by the tool set
function, CAll attempts to convert the result to the proper type, just as if you had used
the proper CONY() function for the type of the argument.

Warning:
BASIC wnr not perform strtng-fo-nurnertc or numertc-to-strtng conversions: In these
cases. on Argument Type M1smatch Error will occur.

You must also use the correct number of arguments when c:alling a tool set function;
otherwise, you will see the message

?ARG::JME:N: COON: ERROR

+ Note: The binary format of real numbers are those defmed by the SANE tool set. If
an expression is used for a parameter, the expression evaluation may create an
extended-precision real result, which will be converted to the type required by the
tool set function. This conversion may cause an Overflow Error if the result of the
expression is a number too large for the type of parameter required by the function.

To pass the address of 2 numeric variable, use the V ARl'TR function. There is no
means of passing the address of an expression.

The Toolbox lntertoce 1'21:.

If the tool set inrerface definition enay obtained from the library indicates that the
argument for a tool set function should be a coumed string (often referred to as a
Pascal string or P-string), the CAll srarement will convert a BASIC string, or string
expression result, into a counted string. A C01Ulted string is a count byte followed by
the characters. CAll automatic:ally passes the addre:ss of the count byte to the function
instead of the address of the BASIC string. You do not need to use the V.ARYI'R
function for P-string parameters in the tool sets defined by the stmd.ard TDF, since all
of these definitions were set up in adv2nce to use the c:cunr.ed string conversion
function described above.

Wamlng:

The cOU'lted strtng conversion wtll only pcss strings up to 254 cncrccters long.
A1"ter'nptlng to peas a s1rtng wttn 255 cncrcc:ters ('the limit ccse) will ccuse a
Strtng Too Long Error.

To pass the address of the samg•s f.ust charaaer (without a COunt byte) use the
v ARP1lU function. See Chapter 8, •BASic Reference, • for more details.

The EXrN_ statement
EXFN_ executes toel set functions that return a numeric value. The library dictionary,
loaded by the LIBRARY st:arement, contains the libnames that EXFN_ can c:all.

The name of the e:xre.ma1 function must follow the reserved word E:XFN_. EXFN can be
used anywhere in a BASIC statement that a vuia.ble can be used. For example:

lOOOO PR!N'l' !XF'~_St:inqWicith (•'!'HIS IS A SAMPU:"l

You can use one of the following type c:haraae.rs to docwncnt the type of the function
result, even though the function result type is aaually conuolled by the interface
defmition entry information in the library· dictionary:

' ! ' $ •

The type character immediately follows EXFN_. For example, the statement

lOOOO PRIN'l' !XFNt_St:inqWicith ("'l'JliS IS A SAMPL!:•)

indiares that the result of the e:xre.ma1 function is a regular .integer.

If BASIC does not find the libname in the library dictionary, it displays the message

?ONOEF'!) PROC/FONC'l'!ON ERROR

If you wutt to pass an integer argument, just include an integer variable in the
pat2meter list, but as a variable, not as an expression.

136 Ch~ter 6: External ~outtnes

To pass the address of numeric variables, use the VARPTR function. SUing variables
are convened to c:oumed strings and the address is passed for the argumenL EXFN_
processes argumentS in the same manner as the CALL statement.

Additional technical details about EXFN_ an be found in Chapter 8, •BASIC
Reference. •

The invokable module interlace
The BASIC statements, INVOKE, PERFORM, and EXFN provide the interface to user­
written external subroutines, called invokable modules. 'These swemems are used to
load a file containing e:xtema1 subroutines into memory from disk files and execute
them at the BASIC program's demand.

lnvokable modules are similar to tool sets, but are user-written and are specifically
dependent on the in1emal operation of the ncs BASIC interpreter. CA tool set, even a
user-wrillen one, is normally coded to be independent of the calling environment.)
How to wriie an invokable module is desaibed in Appendix l

The INVOKE statement loads external subroutines and their dictionaries with the
System Loader tool set and, depending on the subroutine's ·type, either the PERFORM
or EXFN .sf3remem execute:s it.

The INVOKE statement
INVOKE loads into memory the fJ.les whose names are given by the string parameters
following the reserved word INVOKE. For example, to load an invokable me named
.FastPrint, enter

l INVOia: F as~P: in~

You may load as many files at once as you like by separating the pathnames by
commas. The following is an example of INVOKE used in immediate mode:

)!NVOia: !'Pl. FP2, /Vol2/Subr/FP3

Using INVOKE in deferred mode is somewhat different; the fJlenames must be string
constants or string variables, like this:

llO !'!:O..NAM3S•"' /VOl.2/SOBR/FP3"
120 !NVOia: "FPl"',"FP2"',F!I.NAM3$

Executing INVOKE with just a list of filenames discards from memory any subroutine
modules previously loaded by other ll'NOKE statements and returns the freed
memory space to the Memory Manager. You can add to the existing set of invoked
modules by using the APPEND option with INVOKE. For example:

lhe invokoble module Interface 137

200 INVOU APPEND "Banner.Printer"

will add the subroutines in the named flle to those already loaded. INVOKE APPEND
does not discard the previou.sly invoked modules OI there are any-) before loading the
new' module.

Invokable modules are wtitten in assembly language using the Apple IIGS
Pro~s Workshop CAPW) Assembler, following the guidelines found in
Appendix L An invokable module must be a load me in objea module format. The flle
must have a data segment with the segment name DICI'IONAR'f and a code segment
containing the exr.emal subroutines.

1he dictionary segment of an invokable module conra.i.ns an interface definition for
each proceciure and function subroutine used in the code segment. A single code
segment may have from 1 through 255 enay points defined within its dic:tiorwy.
BASIC loads the diaiorwy through f'JtSt, and adds the entries to the invoke table
within the library dictionary. 1he code segment is loaded with the System Loader.

+ Note: If you don't need your invoked subroutines any longer and want to free the
memory, execute an INVOKE statement with no pathcames following it. All the
invoked subroutines are removed from memory, variables defined in BASIC are
not touched, nor is the BASIC program altered. The freed memory is rerurned to
the Memory Manager and will not be available for BASIC variables or arrays Wlless
the data segment size is expanded with the 0.EAR Stltement.

1! there is not enough memory to load an invoked file, BASIC will display the message

'COT OF.MEMORY ERROR

If the file loaded is not a load me with file type 516 ($B3), BASIC will display the
message

?!'"::.z ':"!PE ERROR

If the file is not found on the named disk, you will see the message

'!'"!I.i: NOT i"OONO ERROR

The PERFORM statement
PDFORM executes a named extemal procedure previously loaded by an INVOKE
statement. If an argument list is present (endosed in parentheses after the procedure
name), each argument is evaluated and passed to the procedure before execution.
Numeric argwnenrs are converted to the type specified by the interface definition
entry in the INVOKE dictiorwy.

138 Cnopter 6: Extemol ~outtnes

\

The libruy dictionary contains the names of the procedUJ'eS that may be performed.
The dictionary entry also contains a description of the number, order, and type of
arguments required by the procedure. The INVOKE st2tement reads the library
dictionary entry from the dictionary segment of the invokable load file when the
&SRmbly-language module is loaded.

To pass real or integer constanrs or the values of single variables, just include them in
the argument list. A string or string expression may not be used for a numeric
argumem or vice ve~Sa; anempting to do so will display the message

'ARGUMENT 'l'YP~ MISMATC:B ERROR

If the proper mzmber of argumentS is not supplied, you will see the message

7ARGOMENT COUNT ERROR

To pass addresses of variables, use the V ARP'I'R function. For example:

)PERFORM ErrprocCR,l3-6,VARP'l'R!Dll

passes the value of variable R, the value 7, and the address of the variable D to the
procedure named E.rrproc.

If you W2nt your subroutine to operate on a BASIC string in memory, simply using a
string variable will pass an address pointing to the suing's descriptor in memory. The
subroutine should be designed to ac:t on the string using the address of the descriptor.
Aliemately, you may pass the acidress of the string dara by using the V ARP"''RS
funaion.

A third choice is also available if you ciefJ.ne the argument .a; :a counted string argument
in the interface defmition. When a counted string argwm:.m lis :equired by the
procedure, DGS BASIC aeates a c:ounted suing from a BASIC suing and passes the
address of the count byte as the argument.

Values passed to an external subroutine are pushed on the ~ stack in memory.
When the routine is executed. it must read the values ..&om the sr.adc..

Addresses of variables to be passed to an a:em21 subroutine ~ pushed on the system
srac:k by BASIC only if the VARP"''R function is used. It is the AtSp'msi!bilicy of the
subroutine to distinguish between variable values and ac:idresses. Only single variables
can be used a the argument of the V ARPTR function; using m ezpression is not legal.

Let's say we have two subroutines that each take one .arp!l'nent. The fust one, MyProc,
takes the value of a real expression. The other one, MyOtherProc, takes the address of
a real variable. The following are examples of various legal and illegal combinations
of arguments to these subroutines:

lP!:RFORM MyProcC4.Sl : RE~ Legal: i\ simple expression
} PERFORM MyProc CNOMSl : RE~ Value o! NOMS is passed
I PERFORM HyProc INOMS•4. Sl : REM NOMS•4. 5 is legal a expression.
l PERFORM MyOtherProc fVARP:'R !NOMS!) : ~ passes •dMess o~ NOMS
l PERFORM HyOt!lerP:oc tVARP'!'R 14. S l l : REM lllec;al use of Vi\RP'!'R

The tnvokcble module intertcce 139

The EXFN statement
EXFN executes an external assembly-language function that returns a value and has
been loaded by an INVOKE st2temenL (EXFN_, with an unde%3core, is used to call
tool set functions.)

As with EXFN_, you an use one of the following type c:har:la.ers to document the type
of the function result, even though the aaual type of the result is controlled by the
interbce defmition entry information in the invoke dictionary.

' ! ' s t

For aample, suppose that you have a function named ~c."< that performs some
operation on a supplied argument and returns a double-precision result of the
operation. You could execute ~eX in immediate mode with the following statement:

)PRINT EXF~tCalcX(2l •32/256

The value returned by CalcX is multiplied by the expression 321256. Remember that
the argument pa.ssed to CalcX is contained within the parentheses following the
function's name.

The rules for passing argwnenrs to exrema.l procedures also apply to external
functions. See the previous sections on the EXFN_ and PERFORM statements for
details.

II the function named is not part of a currently invoked file, you will see the message

'?UNDEF' !J PROC/ FUNC'!'ION ERROR

1.40 Chopter 6: Extemol Routines

Chapter 7

Advanced Topics

Procedur.. xx

Using procedures xx
Defming procec::iu.tes xx
Argument passing XX

Loc:al and global vuiables xx

Functions xx

Using funaions :a:
Defming funaions xx

Memory manag•m•nt xx

Memory segments xx
The user data segment :a:
The program segment xx
The librvy segment xx
Record buffer segments :a:
Invoke segments :a:
Tool set segments :a:

Using the CLEAR statement xx
Using the NEW statement xx
Using the FR.EEMEM funaion xx
Memory management errors x:x

Th• INPUT USING statement xx

IMAGE Statement parameters xx
The ma.x/.en parameter :a:
The cursor.~: and cursory parameter xx
The scmwidth parameter :a:

1 A 1

"-

The ./fllcJ&ar parameter xx
1be cursor-mode parameter xx
1be lorrg and Siron parameter XX

1be modmasil parameter xx
1be cantrol parameter xx
1be tmmeduue par.u:neter xx
1be beep parameter XX

1be borr:t-d&ar parameter xx
The spare parameter xx
The n-d&ars parameter xx
1be tchar parameter xx
1be tmodfr par.u:neter XX

The tmode parameter xx
The UIR funaion xx

Using talk master xx

Prerequisites XX

Setting up the enviorment xx
Using the EVEDEF statement let

Event and menu handling routines let

Opening a window file xx

Using ON EXCEPTION statements xx

142 Chopter 7: Advonced Topics

Apple DGS BASIC supports several advanced programming capabilities that require
detailed explanation. In acidition, some statements require information only
cioo.une.nted in other Apple nos Technical Library publications.

The following topics are discussed in this chapter:

::l procedures

c multiline functions

o memory management

c the INPUT t.'SING statement

c the Task Master call and Wmdow and Menu Managers

::; window files

c ON EXCEPTION evem-trapping

The beginning programmer need not master any of these features, but reading the
sections on procedures and functions can be helpful after learning the fundamentals.

Procedures
Procedures are groups of BASIC statements similar to subroutines, with the added
advantages of speed of execution and modularity.

1lli.s can have multiple formal arguments and local variables that are isolated from the
rest of the program. This separ:ltion allows a subprogram to define iis own local
variables with the same names as variables in the main program and retain separate
values. Procedures can also be used to create side-effect multiline string functions by
returning a global suing varia.ble as a result.

The use of local variables allows modular program design. You can use procedures in
multiple programs without considering variable duplication. Generic procedures can
make up a library of tools that can be integrated into new programs.

BASIC scans a program once, during the RUN and CHAlN commands, for all the
procedure defmitions and inserts the names into the variable table. When a procedure
is executed, BASIC searches the variable table instead of the entire program for its
defmition; thus, a procedure will usually StaJ"t execution faster than a subroutine
invoked with a GOSUB statement..

Using procedures
You use the PROC statement to reference procedures, which can haye an argument list
with one or more arguments.

Procedures 14~

A.rguments or real para:c.ew3 are the values of the variables used in the PROC
statement that are passed to a proc:::edure during execution. For example:

PROC Orav!soTrianqle(X~EF~.Y~EFT,XRIGBT,!RIGBT,66l

uses the arguments XI.E:FT, YI.EFr, XlUGHI', YRIGHI' and the constant 66. The values
of the arguments are passed to the proc:::edwe, and their values are assigned to the
panlle1 formal parameters in the procedure.

The term formal parameter refers to the par:ameter(s) that are defined in the
OEF PROC staremenr. For example, the OEF' PROC starement for this procedure

· might look like this:

tl&F PROC Orav!soTrianqle (Xl, Yl, X2, Y2, BEIGBTl

The formal parameters are tbe loc::al variables Xl, Yl, X2, Y2, and HEIGHI'. They
become loc:al variables within the procedure, and the values of the arguments become
the initial values of the loc:al variables. 'The formal arguments de not return their
values to the arguments; the passing is one way into the procedure. This parameter­
transfer approach is called pue by Talue. 'This means that a procedure cannot change
the value of the argument by changing the value of the formal parameter.

In ttGs BASIC, a procedure can reference both irs local variables and all the global
variables of the main program, as long as there is not a local variable with the same
name as the global variable. Loc:al atr2.ys are not supported, and all atr2.y references
are global.

Ceftning procedures
You begin a procedure definition with a OEF PROC statement and complete it with an
END PROC state!nent. The DEF PROC statement must be the rlrSt statement on a
program line. A procedure returns control to the next statement after the calling
PROC statement when an END PROC statement is executed. A procedure may have
more than one END PROC statement. but there must be at least one END PROC
statement at the beginning of a line following the DEF PROC staremenr.

The general syntaX for deful.ing a proc:edure i.s a follows:

:.ooo OEF PROC prccadure-n..- [(.formal-~r&~~~at:er-l.i.st:)
1010 LOCAL v•rO::.&bla l.i.st:

1090 END PROC [prccedure-n4me)

The procedure-ni.Jme must follow the syntaX of a variable name, and it can be up to 29
characters long. Th.is name cannot be duplicated in any other DEF statement as the
name of a procedure or funaion, and it cannot have a type c."lara.aer on the end.

144 Chclpter 7: Advanced Topics

--

The formai-parameter-ltst is optional, and it can only contain simple variables.
Parameters are separated by comma.s, and they can be any type of simple variable.
The number of parameters is l.imited by the length of a program line (239 c:hanaers),
but a large mtmber of parameters will execute slowly, since they are aeated each time
a procedure is executed

Parameters do not retain their values between invocations of a procedure. If your
procedure needs variables that retain their wlues, you must use global variables or
arrays.

E.ach formal parameter in the list becomes a local variable when a procedure is
invoked and has the value of the matching argument stored in it a.s its initial value. You
can defme additional local variables with the LOCAl staremenr These will have initial
values of zero or null. ·

The st:nements between the DEF PROC and END PROC statements are called the
body of the procedure.

You c:a.nnot use a user-defined function definition CDEF FN ... END FN) or another
procedure defmition in the body of a procedure.

Even though procedure and function definitions cannot be nested, a procedure can
-reference another procedure or function within its body. When a procedure calls
another procedure, the inner procedure cannot reference the local variables of its
caller, unless they were passed a.s argumentS, and it cannot change the local variables
of its caller.

Argument passing
Arguments used in PROC statements ca.n be any type of simple variable, array
element, or constant. A string variable or expression must be passed for a string
formal parameter, and a. numeric variable or expression must be passed for a. numeric
formal parameter. If you aaempt to pass a string argument to a numeric formal
parameter or vice versa., BASIC will display the message

'?'!'YPE MlSMA'l'CB ERROR

BASIC will convett the type of a numeric argument to the type of the numeric formal
parameter if they do not match. This conversion may cause an overflow error if the
value of the argument is out of range for the type of the numeric formal parameter.

Procedures 1.45

Local and global variables
When you assign a definition to a variable within a procedure without using a LOCAL
statement in the procedwe definicion BASIC will aeate a global variable, just as it
does when you make an assignment in the main progr:un. You can avoid this by using
the PN variable • assignment statement for variables within a procedure or function.
'Thia PN lEI' statement will only assign definitions definitions to loal variables, and
will display a

?NOT LOCAL !:llROR

if you uninEentionally use a global variable name.

A procedure can share a variable with the main program by simply not declaring it in a
LOCAL statement. Arrays are always shared and global to all prcx:e<iures, functions,
and tbe main program.

Functions
You an define two cypes of user functions in I!GS BASIC; single-expression Cor
simple) functions and multiline functions. Both can have multiple formal arguments,
and multiline functions can have additional local variables, which are isolated from
the rest of the program.

BASIC scans a program once, during the RL'N and CHAIN commands, for all the
function definitions and inserts the function names into the variable table. Ot does not
scan for the c:le£inition when you use a GOTO statement to execute a program.) When a
function is referenced, BASIC se:uches the vuiable table for the function entry and
executes the function through the resulting program location pointer.

Using functions
You reference single-expression, or simple, functions in the same manner that you
reference variabl=. You can use a simple function anywhere within your program that
a simple V2riabie can be used. Functions must have an argument list with one or more
argumenr5. See the ·using Procedures• section earlier in this chapter for deflttitions of
the terms fomu:IJ para1'Nitlm and formal t:JtgUment:s.

Multiline functions are referenced like variables, but only in the expression of a I:ET or
FN • assignment statement.

Both multiline and simple functions are referenced by preceding the function name
with the reserved word FN. For e.umple.

20 A • !'N REC:P !Xl

146 Chcpter 7: Advonced Topics

'·-··
could be a reference to a simple or multiline function, but the srarement

30 PRIN'l' FN REC!P !xy:l

could only be a reference to a simple function.

Defining functions
An inUoduaory explanation of simple funaions is given in Chapter 2, "Tools of Your
Trade. • Simple functions are defined with a single program sr:arement, which must be
the fust statement on a program Une. Punaions may not be defined in immediate
mode, but you can refer to a function before defining it within your program. Single·

• expression functions c:an be of any type numeric type. As with variable typeS, funaion
types are seleaed by including a type c:haraaer.

You can also defme single-expression suing functions (but not multiline string
funaions) using the following syntax:

20 DEF !'N .n&ID8 {% ·@ ·' • t) (var{, var}) • •r.ir.l:amer.ic axpre••.io.n
30 DEF FN .aame S (var{, var}) • •rrU2g axpress.io.n

You must inc:lude a parameter list, enclosed in parentheses, with at least one
parameter. Numeric and string .funaions can have either numeric or sUing parameters
of the same or different type as the funaion result. However, a numeric function
defmition must be have a numeric expression, and a string funaion definition must
have a string expression.

A function can have as many para.mete:s as will fit in one program Une, but the more
parameters a funaion has, the slower it will execute.

A multiline funaion definition is begun with a DEF FN statement and fmished with an
END FS statement. The DEF FN statement must be the fJJ'St statement on a program
line. A multiline funaion returns a numeric result to the referencing III' expression
when the :END PN statement is executed. Multiline suing funaions are not allowed.

.A muhmne• function an have more than one END FN statement. but you must include
at least one END FN swemem as the first st:atement on a line following the DE:F PN
line.

The general syntax for defining a multiline function is as follows:

!)£!" FN .fu.nc:'t.io.n-.name [% ·@ ·' • t) (.fonaal-paramerer l.i•e l
I LOCAl. var.iAble-,lj_•t l

•

n .func:r.io.n-.name - axpress.io.n
END FN ..fu.nc:r.icn-.name

Functions 14i

1be ~na""' must follow the symu of a variable name, and it can be up to 29
charaaers long. nus name cannot be duplicated in any otber DEP statement as the
name of a procedure or function.

The jomt.al-p4ra1MU!r-list is required. and it can only contain simple wriables.
ParameterS are separated by c:ommu, and they can be any type of simple variable.
1be number of par.ametetS is limited by the length of a program line (239 charaaers),
but a large number of paramere:s will eea1te slowly, since they are aeated each time
a function is e=Olted.

ParameterS do not retain their values between invocations of a function. If your
f'unaion needs variables that retlin their values, you must use global variables or
arrays.

'Each formal in the parameter list becomes a local variable when a function is invoked
and has the value of tbe marchin& araument stOred in .it as its initial value. You can
define additional leal variables with the LOCAL sraremenL These will have initial
values of zero or null.

The sratements between the DEF FN and END FN statement are called the body of the
function. You ·cannot use a user defmed procedure defl.Dition (DEF"PROC ... END
PROC) or another function defl.Dition (definition nesting is prohibited) in the body of
a function. Furthermore, certain statements, such as a DIM statement, may not work
more than once if they oc:cur within the body of a function (the second reference to the
function may cause a duplicate definition error). However a DIM sratement could be
exe01ted cona1tlonally in a fu.naio.n. For example, you could dimension an array
within an IF srarement a.s follows:

!F ~TABU:'<0)•0 T!!EN CIM MYTABLE:t<SSJ : MY'!'A.SLEt<Ol•l

'Ibis technique works because a reference to an undefined array does not cause
automatic dimensioning of the array (only a LET assignment to an underined array
element causes automatic dimensioning). Any reference to an unde.rined array
element returns a zero Cor a null string for suing arrays).

Wamlng:
lhll technique will probcbly not wcrlc with a ecmpller If a II~ BASIC compiler
becomes avolloble In the tuture.

Even though procedure and function definitions may not be nested, a multiline
function may refere.nc:e another procedure or function within its body. When a
function c:a.lls another procedure or funaion, the inner function cannot reference the
leX:::&! ~les of its ca.ller, unless they were passed as arguments, and ic cannot
change the leal variables of its ca.ller.

The discussions of argument passing and 1~ at?-d global variables in the
•Procedures• section of this chapter also apply to simple and multill......: functions.

148 Chapter 7: AdVanced Topics

Memory management
With Apple nos BASIC, you an easily aeau: large prognms for the Apple nos and
dynamically c:onuol the allocation of the user cWa segment and the program segment
during program execution. nos BASIC uses the Memory Manager tool set to allocate
.memory segmentS, as desaibed in this seaion.

Memory segments
'Ihe Memory Manager allocates three main memory segmerus. The CI.E.U and NEW
sruemenrs provide memory management control for the user data segment and the
program segment, respeaively. It allocates a third segment for the library diaionary
segment, which can be deallocated by the a.E.AR D'NOKE and CLEAR LIBRARY
options of the CLEAR statement.

nos BASIC does not automatically try to allocate all available memory when you start

up the interpreter. Generally, the interpreter code data segment requires all of one
64.K bank of memory, and allocates a small initial userdata segment of 32K before
aaempting to run the GSB.HElJ.O program. All the BASIC interpreter is loaded into
memory as a single code data segment upon initial startup.

The three main memory segmentS are all allocated in multiples of 256 bytes so
changing the si2e of one of these segme:rus may not produce the exaa results you
requested Fue buffers are always allocated in word (2-byte) multiples, and thus will
conta.in 1 exm byte for odd record lengths.

+ Technical note: The intepreter keeps all its Memory Manager segments locked, and
has numerous dereferenced pointers to the partitions within them, until one of the
three main segmentS must be resized. Then three main segments (and sometimes
all the file buffer segments) are unlocked and one of the main segmentS is resized.
The Memory Manager may then move one or more of the unlocked segmentS
during memory compaaion. Following resizing, all the pointers are re­
dereferenced after locking all the segmentS. Only the record buffer ~dles are
dereferenced on-the-fly during BASIC programs.

Memory monogemenr 149

:c-

he user data segment

The user data segment an be as large as necessary, but it bas a functional limit derived
from the sum of the si2e of all arrays, simple variables, and 64K for string data plus the
free memory required for tbe transient leal variable tables for functions and
procedutes. Gener:a.lly, the mazimum user data segment size would be tbe sum of
memory for arrays plus simple variables plus 128K.

The user data segment conrains speed partitions. In order of the lowest to highest
address, these are

::1 the array partition

::: the simple-variable partition

c the local-variable-stack partition

c free memory

t:i the suing-data pool

c the mvo~nua partition

The free-memory partition provides the only gap between the user data segment
partitions. The string-data pool and invoke<onuol tables grow downward into the
gap, and the lower partitions grow upward mto the gap. The FRE reserved variable
returns the size of the gap (the free memory partition within the user data segment.)

Even if the FRE variable retums a small number, there may be large amounts of
unalloc::ued memory available outside the interpreter memory segments. To use this
memory in a BASIC program. you must first expand the user data segment with the
CLEAR statement (.see the discussion of the CI.EAR srarement in Chapter 8).

Dimensioning or erasing an array with a DIM or ERASE statement moves the variable
and local partitions; erasing a variable and reference or assignment to a new simple
variable moves the local-variable partition. Executing the INVOKE statement will
move the string pool downward.

In addition to the above aaions, opening a file an shrink andlot move the user data
segment when a me teeercl buffer mu.st be aJlocared or when Pro.DOS requires more
unallocated memory to open a me. Also, many funaions within the Apple IIGS
Toolbox require that unalloc:ated memory be available for their operation.

If you are planning to write a BASIC progr:un with large memory requirements,
remember that you probably cannot expand the user data segment to consume all the
memory in the Apple IIGS. If you are going to be writing a program using the W'mdow,
Menu. Control, and/or Dialog managers, they will require 128K to 192K. plus work
space, depending on how many managers you use and what you do with them.

. In addition to the three main segmentS, a separate Memory Manager segment is
allocated for the teeerd buffer of each open file (see further under "Record Buffer
Segmenrs• later in this seaion) .• o\lso, the System Loader allocateS each invoked
module as a separate memory segment.

1 fSO Chapter 7: AdVanced Topics

(

\

'

Womlng:

1he feet 1hot 1he memory segmen1s may move durtng program execution
presents o problem for programmers fomlllor with Appleso1't end other BASICs. In
which the addresses of the user dcto elements remain constant during program
exeeutlon. Even 1hough 1he VAAPTR function Is provided In IIGS BASIC, the
oddr ren.med by It ore not tbced end con become stele If they ere not
Immediately used ond then discorded.

Using the V .A.RP1"R funaion on a local variable is very likely to become stale because
allocating a global simple V2riable will move all the stacked local variables.

nos BASIC will shrink the user data segment when it needs to expand the program or
library segments, allocate a new record buffer, free space for ProDOS to allocate an
l/0 buffer, or add interface definitions to the library segment for an invokable module
c:iuring an D'-o"VOKE statement Thus, it is safe to over-allocate the ~:,ze of the user data
segment wiihic the limits discussed earlier in this seaion.

The program segment
The program segment contains the program header partition, the program-text
pattition, and a free-memory partition (for adding new program lines).

When you load or run a program, BASIC expands the program segment, using
unallocated memory fll'St, to accommodate the program. When you load a program
in immediate mode, BASIC expands the prognm segment to 112. S percent of the size
of the program's EOFMARK (shown in the CATALOG display as the ENDFILE field).
The extra 12.5 percent of space is provided for editing the program.

The addition of lines beyond this initial 12.5 percent margin causes the program
segment to be expanded a.s required, in portions of at least 256 bytes at a time.
Loading or expanding a program may cause the user data segment to move and/ or
shrink if enough unallocated memory is not aV2ilable from the Memory Manager .

.BASIC will not reduce the program segment size when it needs memory for other
purposes or if a smaller program is loaded, run, or chained. Once the program
segment expands to a given size, it will remain that size unless you use the NEW
statement with the size option. Using a size of 512 bytes with the NEW statement will
shrink the program segment to a size just luger than the program.

nos BASIC will not shrink the program segment when it needs to expand the library
segmeru, allocate a new record buffer, free space for ProDOS to allocate an l/0
buffer, or add interface defmitions to the !Jorary segment for an invokable module
during an INVOKE statement. Thus, it is not safe to over-allocate the size of the
program segmenL

Memory mcnogement 151

The library segment

1he Memory Manager allocates 512 bytes to the library segment during interpreter
stutup, and it remains this size if the IlBRARY and INVOKE st:atements are never
used. When you load a TDP file with the IlBRARY st:atetnent or invoke a module with
the INVOKE statement, BASIC expands the library segment as required

1he library segment contains three pa:tition.s: the TDP partition, the invoke partition,
and a free partition. 1be TDP partition, which is used by the UBRARY statement,
contains a linked list of TDP tables, one per UBRARY file. 1he invoke partition
contains a single interface definition table QD1') with the same format as a 'TDP table.
1he IDT is expanded dynamically by the dictionary segment of each invoked moclule
loaded by the INVOKE sa.tement.

IICS BASIC will not shrink tbe library segment when it needs to expand the program
segment, allocate a new record buffer, or free space for ProOOS to allocate an I/0
buffer. The size of the library segment c:::annot be explicitly allocated from BASIC, but
it expands as needed during INVOKE and UBRARY st:aremerus. You can reduce the
libr:ary segment by using the CI.E.:\R INVOKE or the CLEAR UBRARY (see Chapter 8
for details).

Record buffer segments

Eadl open file, except for file types 1'XT and SRC, has a record buffer allocated as a
separate Memory Manager memory segment. 1be handle for the memory segme.-1t is
stored in the IICS BASIC tile control block CPCB). Whenever the recotci buffer is
referenced (read or WJ"iae%?.), the handle is dereferenced into a work pointer and the
data uansfen-ed between the buffer and the variable tables.

If you do not specify a recotci size in the OPEN sa.rement, BASIC assigns a size of 512
bytes and allocates the buffer accordingly. For other record sizes, an even number of
bytes is al~ys allocated, even if the record size is odcl. Thus, the memory segment
may be 1 byre longer than the record's size. 1his is done to minimize the time required
to fDl the buffer with zeros during buffer allocacion.

lnvcke segments

Each time a module is invoked, BASIC uses the System Loader to load the code
segment into memory, thus aeating a memory segment 'Ihe System Loader
information about each of these segments is retained in the i.nvoke-conrrol partition at
the top of the user data segmem. For each segment loaded by an INVOKE statement, a
1()-byte record is created and stored in the table so the segment can be referenced and
deallocated as requited.

You can deallocate ~voke segments by using the INVOKE or CJ.E.AR INVOKE
statements. BASIC automatically deallocaces all invoke · segments when a Qt:IT
statement i.s ae01tecl.

152 Chcpter 7: Advonced Topics

Tool set segments

You can use the LIBRARY statement to load a RAM tool set, but BASIC does not
dealloc::ate the segmentS that are allocated by the LOADlTOOL call or when a QUlT
statement is executed. You must deallocate memory segments and shut down any tool
sets aw you load during a BASIC program if the memory they use is to be returned to
the Memory Manager. Refer to the App~ Toolbo% Refnmce manual for further details
about using tool sets in your programs.

Using the CLEAR statement
.. You can use the CI.£AR scarement to expand and shrink the size of the user daia

segment during the executicm of a progrzm. If you combine the use of ERASE and
CLEAR statements, your prognm em dynamically add and then remove aznys or
change the user data segment size in overlays invoked through a OiAIN statement.

The CLEAR statement is discussed in detail in Chapter 8. The syntax of the CLEAR
statement is

=~ u••r-aa:•-•~z•

BASIC ueau the user~-stze argument as a request to expand or shrink the user data
segment to the number of bytes given. During interpreter swtup, this size defaults to

approximately 32K. You can create a GSB.HEIJ.O program that allocates more or less
if you want to selea anomer size for normal u.se..

Unless you use the c:.EAR statement, the user data segment will not expand or
c:ontrac:, even when you clear or expand the data within the segment. For example,
attempting to dimension a large array without first e.xpa.nding the user data segment
can result in an out of memory error.

The user-data-me argument cannot be less than 8192 or larger than the amount of
memory a.urently available through the Memory Manager. Because the user data
segment is a contiguous memory bloc:lc., memory fragmentation may make it
impossible for rhe Memory Manager to allocate all available memory into the user
data segment. A detailed discussion oC memory fragmentation can be found in the
App~ Toolbo% Reference manual, chapter on the Memory Manager.

Your programs can adjust memory usage for many purposes, using differing amounts
at various times, with the CLEAR statement. Note that the CLEAR statement with the
size option does not delete or change the anays or variables that are allocated, but will
cause the string-pool partition to be c:ompa~d. The ERASE statement, described in
Chapter 8, removes an array or variable from the appropriate partition within the user
data segment and enlarges the free-memory partition, but does not shrink the user
data segment.

Memory monogement 153

You can u.se the rREMEM funaion, (di.soJSSe(i later in this chapter) to fmd out how
much memory is alloated or free for variOU-' partitions within the memory segments,
as well as how much remains unallocated and available to the Memory Manager.

Using the NEW stctement
You can u.se the NEW swement to expand and shrink the size of the program segment
during the execution of a program. If you combine the the use of OiAIN and ~
statementS, the program segment can dynamically grow and shrink with overlays
invoked through the OiAIN statement.

1'bc NEW srarement is discussed in deta1l in Chapter 8. The relewnt syntax of the~
starement for memory management purposes is:

NEW pr'Ogram-st.ze

BASIC treats the /)1'0g"'CCm-st.ze argument as a request to expand or shrink the program
segment to the .number of bytes given. During interpreter stamip, this size defaults to
512 bytes.

If the progmm-st.ze argument is smaller than the current program, BASIC will use the
smallest size that will contain the program instead of the size requested. Using the :-JEW
statement is the only ~Y to shrink the program segment once it has grown due to
loading or ch.aining tO a large program.

:"lEW first aaempcs to expand the program segment without stealing space from the
user data segment. If unalloared space is available from the Memory Manager, the
user data segment remaim unchanged. If space is not available, ncs BASIC will
attempt to shrink the user data segment to deallocate enough memory to expand the
program segment to the requested size. If it cannot use space from the user data
segment, NEW will display the message

:OCT OF M~~CR~ ERROR

and leave the program segment as it was (although it may have moved).

Using the FREMEM function
The FRE.~\4 function provides useful information about the partitions of the user
data segment and the program segment, as well as the other memory segments
allocated by the Memory Manager. The syntax of the FREMEM function is:

FREM~'A(n)

The FREMEM(n) syntax provides 10 different function results, as follows:

FREMEM < 0) Returns the free tnel ... ory in the user data segment, without flt'St

performing the compaction to recover unused string space

154 Chapter 7: Advanced Topics

F:RE:MEM C l)

FR.EMEM (2)

!"REMEM (3)

i'R.EMEM(4)

FREME:M (5)

i'REME:M(6)

FREMEM(i)

i'REME:M(8)

ReturnS the size of the user data segment after performing eompaaion
to recover unused string space. The number 'Will usually be 256 larger
than the resenec1 variable PRE when all arrays and variables are clear

ReturnS the amou.m of memory currently allocated for arrays within
the user data sesmem

Returns the amount of memory cunently alloc:ated for simple
variables (not indud.ing loc:al variables) within the user data segment

ReEwns the size the o..uTeD.t program will have when it is saved on disk,
including the size of the program beader

ReturnS the size of the propm segment

ReturnS the size of the library segment

Returns the Memory Manager's unallOcated memory total (and does a
CompactMem without unlocking any RASIC memory segments)

Returns the size of the Memory Manager's largest free contiguous
block.

FREMEM (9) Returns the total memory installed in the system, excluding the 64K
Digital Oscillator Chip CDOO RAM dedicated to the sound generator

By subtracting the FREMEM(O) n:sult from the FR.E:MEM(1) result, you can monitor the
•rugh W"a~ mark of memory usage during program execution. AJ. frequently used
places within your program, you could capture the FREME:M(O) value into a variable
whenever it is smaller than the prior value of that variable, thus recording the smallest
free memory available in your program. This will let you know whether you have over­
allocated the user data segment size and should reduce it to free memory for other
purposes. Genenlly, you should set the user data segment size from 10 to 20 percent
above the high-warer mark determined using this method.

+ Note: Remember that the string-pool partition will never grow to more than 64K in
size, even jf F'REMEM(l) indicates more space is available.

By summing the results of F.REMEM(2) and FR£MEM(3), you can determine the static
variable memory requirement for a program, after all variable and a.mys have been
allocated and dimensioned This sum, plus space for transient local variables and 64K
for the string-pool partition, is the mnimum useful uSer data segment size for a given
program. 'Ibis total will only be a constant if you are not using the ERASE statement.

There are three 64K banks (19210 in the Apple nos that are essentially reserved for use
and c:onuol by the ProDOS operating system, the System Loader, the Memory
Manager, and the video display buffers.

Memory monogement 155

The IICiS BASIC interpreter requires most of another 64X bank, rhus consuming 256K
of the minimum 384K requited to run IICiS BASIC. 'Ibis leaves about 128K for
programs, data, record buffers, and so forth in a minimum Apple IICiS system. Add to
this the 128K to 192K required if all the RAM-based Graphics, W'Uldow, and Desktop
tool sers (with their data) are used. and you will need a minimum of 512X.

A large BASIC application program using the full toolbox could easily use a 768K
system. Add to this a future F'Ulder with multiple resident copies of IIOS BASIC, and
you will be semns out of memory enors in a 1 megabyte system.

Memory-management errors
Hele are some of the most common causes of out-of-memory errors

o dimensioning a latge nl.11Deric amy without first expanding the u.ser data segment
with the CLEAR statement

= loading and attempting to use aJl the toolbox tool sers in a 512K system with a large
program

= allocating a very large (more than 64K) program segment with a ~ program-size
sraremen.t Cit is not necessary to preallocate the program segment since it will
automatially expand in small inaements as needed)

= attempting to run IICiS BASIC Wlder a Switcher after loading numerous other large
applications (IIGS BASIC requires at least 160K of free memory with a contiguous
64K segment for the interpreter and a 32K segment for the user data segment)

IIGS BASIC may also display the message

:'!'OOLSE'! ERROR •S02xx

when an unexpected Memory Manager error occurs or a toolbox function is Wlable to
allocate needed memory. These errors are defined in the Apple JIGS Toolbox
Refe'l'l!'1'lCB m::amJal chapter about the tool set you called, and in Chapter X. •Memory
~anager.•

The INPUT USING statement
INPUI" USING exeQ.lteS a user input routine (UIR) using the paramete:S in an IMAGE
statement. 'Ibe UlR is the same routine used by the mrr command and for entering
command lines in IIGS BASIC. You on customi%e the behavior of the input routine for
your programs with the IMAGE statement parameters. The parameter ltnnuml or
Jabel1 points to the IMAGE statement. ·

156 ChcJ:)ter 7: Advanced Topics

..

!be IMAGE statement for lNPti,. USING is similar to the one used for PR.Il'l.,. USING,
but instead of specs for each variable, it contains a f1Xed format sequence of initial
panmerers. ~ string variable, war, is both input to and output from the INPUT
USING statement. 'Ibe value of the string is the default value of the line to be edited by
the user. it may be a nuD string if ne"W data are being entered. The edited c:haraaers of
the line Cif any) are tetumed in place of the deb.ult value.

1be UIR funaion provides the status information from the UIR after the INPUT USING
statement completes. "'be um funaion is desaibed later in this chapter.

IMAGE scanning parameters .
The parameterS in the IMAGE statement are separated by commas, and all the
parameters up through tfi'II:X:UJ are required. The parameter n~han is a count from 1
to 10 that indicates how many sets of termination character definitions follow.

The order and names of the IMAGE statement parameters for INPtJT USING are as
follows:

IMAGE m1Z%len, cunO?%, cunory, scrnwidth, .ftllchar, cunor mode, short, lo~g.
moamasie, control, immea,a:e, beep, bor~char, spare ,n-chan,tchar1, tmoaft1,

tmoae_p ... ,tchar6- mwajr6 maoae6 ... tcharu>tmodfrz()otmoae10 l

'The maxJen parameter

The m:alen panmeter indicates the maximum length of the result string. Enter a
number from 1 through 255. If the maximum size of the input string is larger than
scmuN:ith, the width of the field on the screen, the UIR uses the invisible part of the
input string to save characters that were pushed out of the field by insertions. Thus,
ma:den may be greater than scmulidth. However, in this case, the length a:· the result
string aaually remmed by INPUT U5rnG statement is limited to sc:nnridth
characters.

The r:ursorx, and cursory

The cunor.x' and cunory par.uneters contain the relative coordinates of the start of
the field within the current textport. When the UIR is entered initially (not reentered
after an interrUpt termination), cunor.%' and cunory are used to position the cursor at
the beginning of the input field on the screen display. Selea values for ::c from 1
through 80; selea values for y from 1 through 24.

The INPUT USING statement 157

The scmwidth parameter

The scm:utii:Jlh parameter tells tbe UIR how wide to make the field on the screen. When
the tJIR is c:alled. it displays the input .string's default value at the c:wsor position
defmed by cumm~: and cunory. It there is any room left in the field. fill characters are
displayed (the number of fin charaaers equals the scmwidth minus the length of the
input suing). You an set SC7'J'I.UIU:ilh from 1 through 254.

It the value of SC'1'ftfJitdlh is greater than the number of character positions from the
swt of the field (a.s defined by ausoe~: and cunory) to the end of the textport minus
two, the UIR reduces scrn.tll1l:ith to the maximum available less l'W'O.

The flllchor parc:meter

The jilkl&ar panmer.er determines the cbar.lcter that is used to fill the unused portion
of the field. Normally, jll/cJ&ar is set to .space, enter 32, or • •. It jflk;har is any value
less tlwl 32, the Mou.seText underline CMouseText 0 cb.ar.lcter is used as the fill
character.

The cursor-mode parameter

The cunor-mode parameter indiates which cursor mode is being used. Set it at 0 for
the insert c:wsor, and at 1 for the replace c:wsor. Conuol-E toggies between the two
cwsor types. The initial value is normally 0 (insert mode), but your application
program can force the UIR to swt with the replace cursor by setting this parameter
to 1.

The long and short parameters

The long and shan paramete:s are the countdown values used to cte2.te the correa
blinking frequency for the cursor. The nominal values for long are in the range of 200
through 800 and about half these number for short.

An important part of the Human ln:erfaa Guide#nes is that the cursor blinks 80 times
a minute, with one phase taking twice a.s long a.s the other. Tilat is, if the insert cursor is
aaive and under a chatacter in the input field, the character should be visible twice as
long a.s the underline. II the replace cursor is aaive, the inverse character should be
visible twice as long a.s the normal chatacter.

1be values that you select for /cmg and shon control the CW30r blink rare. However, if
you aaivar.e immediate mode, the cursor will no longer blink at the correa race
because your invo.kable assembler program will get conuol in the middle of the blink
loop. In this case, your IMAGE parameters for /eng and shan must be adjusted so that
the cursor will again blink ac the desired rate.

158 Chcpter 7: Advonced Topics

The modmask

!be 1'1J0dm~Jsk (for modifier mask) parameter is used to c:ause the UIR to ignore
meaningless or unwanted bits in the keypress modifier byte derived from the modifier
word returned by the Event Manager. 11le um uses 8 bits extncted from the :Event
Manager modifier word as the UIR modifier. The modmask parameter is ANDed with
the UIR modifier byte before comparing it with the rermination character modifier list
(Tmod~.

'Ibe bits of the UIR modifser byte and ~are defined as follows:

Table 7·1

Ull On add lit Event Manager
bit value aescrtptton rnodlfter word

' 128 KeyPad bit Bit 13
6 64 Control key Bit 12
5 32 Option key (closed Apple) Bit 11
4 16 Caps Lock key Bit 10
3 8 Shift key Bit 9
2 4 Apple key (open Apple) Bit 8
1 2 BtnOSwe NOT Bit 7
0 1 BtnlSwe NOT Bit 6

+ Note: The Btn0/1 state bits are inverted from their swe in the :Event Manager
modifier word.

For general use, the following bits should be 0, or off: BtnOState, Btn1State, Shift key,
Caps Lock key, and Control key. 11le KeyPad bit should also normally be 0 unless you
are using the keypad keys as termination charaaers (as funaion keys of some type).
Most termination characters are usually produced by Apple key or Apple and Option
key combinations.

Variows c:onflias arise if you do not mask out a given bit. For example, the Control key
bit is not set when the Retum key is pressed, but it is set if the user types Control-M.
Either method will retwn the .AScn character code 13, but with different modifiers.

Unless you wuu Controi-M to be treated differently than the Retwn key, the Control
key bit in mot:imasJt must be 0. In the same manner, the E.nter key on the keypad
returns the same ASCI code as the Return key, and if you want Enter to funaion like
Return, the KeyPad bit must be 0. When the KeyPad bit is enabled, you may need to
defme separate termination character entries for the Return and :Enter keys.

The normal value to use for modmasie is 36 (32+4). When using KeyPad termination
ch.a.r.aaers, a v:llue of 164 (128+32+4) should be used.

Memory Management 159

lhe control parameter

If the control parameter is initially set at 0, control charaae%s (.ASCII values less than
32) are not allowed as input (typing a c:cmrol chanaer causes a beep).

If you set tlUs parameter to 1, amuol c:hanaers are allowed as input from the
keyboard. To insen a control c:banaer, the user must press the Option key, the
Conuol key, and one other key. 'Ibis lets the user type, for example, Option-conuol­
X as an input dw2taer and still use Conuol-X as an editing command.

The aaua! value inserted in the string, during editing, is the ASCII value of the letter
key pius 128, whid1 appeam on the saeen as the inverse of the corresponding
character. Por example, to insert the carriage return character (.ASCII 13), the user
presses Option-Conuol-M. 'lbe saeen shows an inverse M, and the result string will
contain the real value of Conuol-i'yf,l3.

The result string is scanned for c:bataaers gxear.er than 128, and BASIC converm them
into the proper control codes before returning the string to your program.

Note that editing and tennination c:bataaeis are not affeaed by the setting of conuol.

The immedlate parameter

The tmmediate parameter will normally be 0. Selecting immediate mode by setting
this parameter to 1 enables the e:xtemal veaoring through the INPUT USING statement
immed.iare mode veacr. 1be address of this veaor is obtained through the BASIC~
function. When immediate mode is enabled, the UIR routine calls an e.xtemal
assembler routine after every keypress.

To use immediate mode, you must write an invokable module yowse1f and link the
involable module to the UIR by scoring the address of your invokable module enuy
point into the veaor. Refer to Appendix I for more information about how to write
invo.kable modules.

If you accidently enable INPtrr USING immediate mode without setting up the veaor
first. the UIR will act as il you have not enabled immediate mode bec::wse the default
ac:idress in the veacr retwns direaly to the UIR routine.

Specialized filtering ancl sequence c:hecking can be implemented using immediate
mode, for example, dale entry that checks the date against the month anclleap day
against the ~- 1be external routine is c:aJled with a]SL instruction ancl must rerum
through an R'Il. insauction.

lhe , .. , parameter

Set the beep pan.merer to 0, ancl any illegal keypresses will cause the ti1R to beep. If it is
set to 1, there is no beep.

160 Chcpter 7: Advcnced Topics

The bord·char parameter

Normally, the cursor blinks by alternating between the cursor character and the space
chara.aer or a cb.ta chara.aer in the field. When the field is filled and the cursor resides
one character beyond it, bord-char (border character) is used instead of space. To
use a blank space as the border character, enter 32 or • •.

lhe spare parameter

1be ~parameter is not in use at this time. You must enter 0.

The n·chars parameter

The n-chars parameter specifies the mtmber of termination characters you want to
defme. When any character is typed during INPUT USING data entry, the character is
checlced against the list of termination characters you supply with this parameter and
the ones that follow. Typing a termination character 'Will signal completion or
temporary interruption of data entry and return control from the UIR to your BASIC
program. For example, you would set it at 2 if the only termination characters you want
to use are Return and Escape. If you are using other termination characters, you must
set n-chars accorciingly.

The n-chars parameter must be a number from 1 through 10, and it must be followed
by exac::tly bt number of groups of three parameters each. The three parameters in
each group defme exaaly wrw keypress is the termination keypress or keypress
combination. The fll'St element of each three parameter·group is the AScn code of the
termination character, described as .tchar below. The second parameter is a bit mask
that defines which of eight possible modifier bits must occur with the AScn code, as
described under tmod.fr below, and the third parameter is the exit mode, either
temlinate or interrupt, for that termination character defmition.

The tchar parameter

Termination characters are the ASCII codes that terminate input and cause the UIR to
return with the resulting string of characters typed by the user. Examples of
termination characters include the Return key, the Esc key, and Apple key-? (for help).
The tchar parameter can be entered as a number from 1 through 127, as. any single
character (other than a digit), or as a character in quotation marks. For example, M,
77, and •M• are all valid and equivalent tchar parameters.

The tmoatr parameters

Each tmodfr, (for termination modifier) parameter is paired with the corresponding
tt::.har ASCJl code to define exaaly which keypress or keypress combination is a
D:rmi.nation character that will terminate UIR input and return control to your B.ASlC
pro~

Memory Monogement 161

The values to use for tmodfrare defined in the table shown below. When a given
mwdfr bit is enableci, that bit must be on in the UIR modifier, after .A."'l''ing with the
mod11'U1Sil panmeter, for tbe cwrent keypress to match and thus terminate input. If
you want multiple bits, sum the enable vahles in tbe table for the appropriate birs, and
enter the total as the tmodfr.

Table 7-2

tmodtr EnatM lit lequjred
bit value deiCrfptlon a tate

7 128 KeyPad bit Keypad keypress
6 64 Control key 1be Conuol key must be pressed
5 32 Option key 1be Option key must be pressed
4 16 Caps Lock key 'The Caps Lock key must be down
3 8 Shift: key 'I'he Shift key must be pressed
2 4 Apple key 1be Apple key must be pressed
1 2 BtnOSwe NOT Paddle button 0 must be pressed
0 1 BtnlState NOT Paddle button 1 must be pressed

-> Note: the Btn0/1 .swe bits are inverted from their state in the Event Manager
modifier word.

lhe tmcd• parameter

The tmodll parameter is normally 0 and thus defines the termination c:haraaer as a
terminate c:hat:laer. When t'I'I'Wt:te i.s set to 1, the termination c:haraaer is treated as an
imenupt charaaer that will tempor:uily suspend editing of the input field and return
control to your prognm. Iruenupt mode is designed to allow you to implement
external editing features in your program.

For example, you could defme Apple key-? as an interrupt c:haracter and display a
help saeen describing the UIR editing features, then reswt the UIR editing by
exea1ting INPu'T t.."'SING 0 ; svar.

The INPt."T USING 0 option CO is not a valid line mtmber) reenters the L'IR with the t.'IR
patamete:s in their prior state. When the um exits because of an i.ruerrupt t'I'I'Wt:te
c:b.anc:rer, the reenay flag is set so INPur USING 0 will ccaealy restart the editing
process. TI1e c:wsor is retwned to its prior position and mode, as are the other
elemenrs of the editing process.

'""• UIR funcflcn

The UIR function retUrnS the status infom:wion from the UIR after an INPtJT USIN'G
statement completes.

The UIR .".61laion rea.uns the following staiUS results:

162 Chcpter 7: AdVcnc:ed Topics

UIRCO) Returns the exit_type that terminated input editing. Exit_type is the incie.x of
the tchar (termination keypress) that aused the termination. It will be in the
range of l to n-clum. When immediate mode is enabled, ait_rype will be 0
when the external assembler routine is called by the UIR; this indiates that
the UIR has not yet terminated

UIR(l) Returns the ASCII value of the termination or immediate mode keypress.
1bis will normally be a value from 32 through 126 in immediate mode or the
termination character ASCI value, such as 13 for Return or 27 for Esc. nus
value is used on retu.m to the UIR when INPUT USING 0 restarts an inr.errupt
mode edit.

UIR(2) Returns the UIR modifier (before masking with ~ for the
termination or immediate mode keypress. This value is used on return to the
UIR when lNPUI' USING 0 restarts an inrerrupt mode ediL

UIRG) Returns the reentry mode swus of the UIR paramete:s. It will be a 1 for an
interrupt termination, a 2 uter an immediate mode termination .

• UIR(4) Returns the last column position of the cursor.

UIRCS) Returns the last row position of the cursor.

UIR(6) Returns field relative position of the c:wsor upon termination. This function
returns a value from l through scrmw:ith and indiates where there cursor
was last positioned relative to the data returned in the string variable.

Using Task Master
The Apple liGS BASIC E'\'Eri.'TDEF, ML'ltJDEF, and TASKPOU statements and the
TASKREC function provide a direa interpreter interface to the Wmdow Manager's
Task Master function. 1his interface allows maximum flexibility for programmers who
W3nt to implement window and menu based appllations.

Before considering the statements that implement Task Master in BASIC, you should
stUdy the following summary of the programming tasks that must be accomplished
before T.ASKPOU. INlT can be executed. 1bi.s summary desaibes the general scope
and complexity of window-and menu-based appliations; it is not a defltlitive or
exhaustive explanation of the tasks.

PrereQuisites
If you are considering developing a window-based appliation program in BASIC with
a menu bar, in the classic desktop style of user interface, you should fust reac: ~.;"'.e
Human Jnterfaa Guide#ne:s manual. It thoroughly descnbes the design foundation
for this type of application.

USING Tosk Moster 163

You should be familiar with all the introductOry material in the Wmdow Manager and
Menu Manager chapter3 of the A.pp/8 DGS Toolbo% Reference manual and the
disc.wion of Using Ta.sk Master, plu.! the Event Manager chapter. You should also
review the definitions of EVENTDEF, MENUDEF, T.ASKPOil., and T.ASK:REC in
Chapter 8.

Setting up the environment
Before Task Master event polling can be aaivated, the following tool sets and their
associated TDF files must be loaded, in the order shown, through the UBRARY
statement, and then aaivated in that same order. 11len numerous funaions need to be
called to initialize the environments for each tool .set and for Task Master.

1 • QuickDraw n (aaivate by using the GRA.F lNl'I' statement in BASIC.

2. Desk Manager

3. Wtndow Manager

4. ConU'ol Manager

5. Menu Manager

Additional rool sets that your appliation may a.lso require include:

6. Font Manager

7. LineEdit Manager

8. Dialog Manager

9. Scrap Manager

10. List Manager

11~ Printer Managers (high and low level

12. Standard rile Operation

13. Note Synthesizer

14. Note Sequencer

15. FOB

ncs BASIC uses and ha.s initiaJ.ized. these tool sets during interpreter startup:

o Tool Loot or

c Memory Manager

= Miscellaneous

CJ Event Manager

!:l Sound Manager

:::: ~'lE

.:::: Integer Math

164 Chopter 7: Advanced Topics

Each of these managers has from 30 to more tha.n 175 funaion calls, some of which
require complex cata tables that you must cre:a.te. Initia.l.iz:a.tion of these tool sets
requires calling from one to a dozen or more of its funaions. In addition, if you :a.re
going to ae:a.te an application using a window 'With scrolling of the content region, the
coment-saolling procedure prob:a.bly must be written in assembly langua.ge;
anempting to saoll a window by using BASIC smemenrs will usually prove to be
unbearably slow.

After SWting up Quic:kDraw n with the GRAF INrr sraremem in BASIC, you may want to
position the c:u.rsor, set the background :a.nd foreground colors, open a Gra.fPon a.s a
file, display :a. message, :a.nd show the ausor (mouse pointer).

Desktop environment initi;li:z;;tion indudes the following steps:

1 . Calling _ WmdStartup to initialize the Wmdow Manager.

2. Calling _Refresh to dear the desktop pon.

3. Calling _CtrlStanup to initia.lize the Conuol Manager.

4. Calling _I..ESta.rtup to initial.ize the Li.neEd.it Manager.

S. Calling _MenuStartup to initialize the Menu Manager.

6. Calling _NewMenu and _lnsenMenu for each menu bar menu.

7. Calling _FixAppleMenu (the Desk Manager) to install desk accessories.

8. Calling _FixMenuB:a.r

9. Calling _DrawMenuBar to display the menu b:a.r on the screen.

Of these t2Sks, calling _NewMenu is the most complex because you must build a
number of interlinked tables to de.fme the content of the pop-up menus. Each me:lu­
defmition record contains the text of the menu item. various options, and the menu­
item ID number used by BASIC for menu item dispatching. The menu-item numbers
you defme in the _NewMenu data structures must correlate with the MENUDEF
statements in your BASIC program.

After the above tasks, you must define aaua.l application windows for the Wmdow
Mmager via the _NewWmdow function. The _NewWmdow parameter list contains 27
parameters, including the addresses of assembler routines and a bit veaor of options
that defines the type of window frame.

Once the menu b:a.r and window are defined and you have initi:a!ired any other tool sets
and their cat.a struaures, you have completed the initialization of the tool set
environment.

Your application may start up without displaying a document window, and thus will
need to activate and display a window when the user opens a document file. The
Standard rue Operation Tool Set provides the standardized dWog box metaphor for
locating and opening a document flle. Your application would call Stand:a.rd File
Operation functions for the open menu item event from Ta.sk Master.

USING Task Moster 165

Before you an execute TASKPOU. INn', you must fust execute EVEN1'DEF and
MENUDEF statementS enough times, with the proper data, to link the event-handling
routines in your progrun to Task Master through the dispatch W,les inside BASIC.

Using the EVENTOEF statement
The EVEN1'DEF statement is used to store line numbers into the event dispatch table
used by ncs BASIC to direct program control to event-handling routines in your
program. This table has 64 entries, numbered from 0 through 63. It an be thought of
a.s a preallocated array into which you must store information. The fltSt 32 entries CO
through 31) have a fixed relationship to. the event codes returned by Task Master.

Task Master alls the Event Manager's _GetNe:a.Event function and passes most of the
returned events onto the appropriate functions in the W"mdow Manager and Menu
Manager. Task .\'laster an process all but three of the 12 predeiined Event Manager
events.

Your program will receive the activate keypress and auto-key events for a window.
Generally, it will not need to handle any other events.

The following W,le shOW3 the meaning of the event codes used by Task Master and the
event dispatch table:

Table 7-3

Event code

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Event
Descnpttona

Null, or no event (BASIC doesn't use this entry)
Mouse Bu!Ion Down event
Mouse Bu!Ion Up event
Keypress event

Auto-Keypress event
W"mdow Update event

W"mdow Activate event
Swiech event in the future
Desk Accessory event. Cnot returned to user)
Device Driver event
application-defmed event
application-defmed event
application-defmed event
application-defmed event

The additional event codes shown below are gene.1•2.ted when Task Master receives a
Mouse Bullen Down event and c:ills the W"mdow M2nager _FindW"mdow function to
locate whe:e the mouse OlZSOr wa.s pointing when the bUCion was pushed.

166 Chopter 7: Advcnc:ed Topics

Table 7-4

Event code

16
17
18
19
20
21
22
23
24
25
26
27
2S
29

Event

wlnDesk
wlnMenuBar
winSysWmciow
winComent
winD rag
wiDGrow
winGaAwzy
wlnZoom
wlnlnfo

winPnme
winSpec:ial
wlnDesldrem

Location of c:ur.or

in the desktop area (not in a window)
in the system menu bar
in a system window
in a winc:iow's c:oment region
in window-drag (title bar) region
in window-grow (size bcrl;) region
in window gc>awzy (close bcrl;) region
in window-zoom (zoom box) region
in window-information bar
in vertical-saoll conuol
in horizontal-scroll eonuol
in window, but non~: ::;: t~ above areas
in special menu i~o •,ed.u menu)
??

Task Master c:an handle most of these _FindWindow events; your program will
normally need to handle cmiy the wlnContent, wlnGoAway, and wlnlnio eventS

(wlnlnfo will only oc:au if your window has an information-bar subdivision).
wlnMenuBar events are handled through the MENUD:EF statement, desaibed later in
Ihis c:bapter.

~. you must e=c:ute an ~'TDEF sr;uemem for the few events that Task
Master can't handle and write a routine in your BASIC program to proc::ess the event.
The EVE'J'.;"''DEF statement is used 10 inform BASIC of the beginning line number of the
event-handling routine. The syntax of the :EV'EJ\'TDEF statement is:

:E:VI:l-."T::lE!' ~ndex{, l.inenum 'lAbel}

EVE .. ,'TD:EF defmes the beginning line number(s) of the event handling routines that
will be called after T.ASKPOU. ON is exeOJ.ted TASKPOU. on activates the poWng for
Task Master evems. GS BASIC has an iniernal table of 64 events, 29 of which may be
tetU.med by Task Master. The i.memal table is indexed usmg the event code number
returned by Task Master. If the entry in the table is zero, the event is is disc:arded
(except for event 17).

The inde::J: parameter is a number from 0 to 63 that defines which event you want to

handle in your program, and the is the event handl~ routine. The index parameter is
shown in the left column of the two earlier tables.

The routines referenced by £VENTDEF must end with a RETURN 0 (zero) statement
This special form of the RETURN statement can only be used as the last statement in an
event handling routine for Task Master events. RETURN 0 reenables Task Master
poWng that W2.S suspended when the event-handler routine was called

USING Tcsk Moster 167

EVEN'IDEF c::a.n define sequentiaL ewmrs by following the index with multiple line
numbers separated by commas. If you W'lln1 to skip an event, use a llmzum of zero.
~ormally, using Task Master only requires defining a few of the 29 possible events; see
-using Taskmuter" in the Toolbox Reference manual.

Event 17 is a spedal case re1ared to the wlnMenuBat evenrs from Task Master. As long
as the entry in the EVEN'IDEF table for event 17 is left a zero, IIGS BASIC assumes that
you have defined the menu-item-handling routines with the MENUD:EP statement and
direa.s the individual menu-item-select events to their event-handler routines.

Using the MENUDEf statement
The MENUDEF statement is used to store line mtmbe~ into the menu-item dispatch
table used by IIGS BASIC to direct prognm control to a menu-item-handling routines
in your program 'Ibis table ha.s 128 enrries, numbered from 0 through 127. It can be
thought of as a preallocated array into which you must store information.

When Task Master polling receives the wlnMenuBar event from the _F'mdWindow
function. and the resulting menu item is identif~ed by the Menu Manager _MenuSelect
funaion., IIGS BASIC examines entry 17 in the event dispatch table. If the entry is zero,
the menu-item dispatch table is indexed with the selected item identification number
minus 2S6. The menu-item dispatch table entry should coruain the beginning line
number of tbe menu-item-handling routine.

If enuy 17 in the event dispatch table is not zero, the automatic dispatChing by the
menu-item dispatch table is suppressed. and the winMenuBar event is dispatched to
your pro!Pill through the line number in entry 17 of the event dispatch table.

When you det"me your menus and their items with the Menu Manager _NewMenu
funaion., you det"10e the menu item identification number for each selectable item.
You must select the identification numbers from the r:ange of 256 through 383 if you are
going to use the .ME:Nt.,;"O:EP dispatch mechaniSm. You need not select them in any
order, nor do they need to be sequentia I The menu item identification numbetS 256
through 383 correspond to MENUDEF index values 0 through 127.

The Menu Manager chapter in tbe Apple OGS Toolbox Re/e1'fJ1'JCII manual describeS
how to create the _NewMenu item and menu definition lines and how to select menu­
item ID mtmb.er in the sea:ion entitled Menu Lines and Item Lines.

The synru and function of the MENUDEP sarement is described in detail in
Chapter 8. --

168 Chapter 7: Advanced Toplc:s

Event· and menu-handling routines
You can write event- and menu-handling routines in BASIC for many types of
applications. Some funaions in an application however will be too slow if they are
written in BASIC and will need to be wriaen in assembly language. A primary example
of tbis is the saol1ing functions needed by a dcw:•ument window with scroll bars. 11le
clisc:ussion of the OPEN Wmclow statement later in this chapter presentS a senerai
model of what is required to handle the update evenr:s for a dootment window. 1be
Content Defmition procedure for a window is required if Task Master is handling
update everus for your program. However the address of the wContDefProc in the
_NewW"mdow parameter list can't be the line mzmber of a BASIC statement.

nas BASIC contains 32 emry point addresses that will dispatch into your BASIC
prosram like an eYenL "'bese 32 entry points addresses are returned by the funaion
~"TO. 'Ihe 32 entry points dispatCh through :EVENTDEF entries 32 through 63.
Thus, you can obtain an adciress to insert into the _NewWmdow parameter list from
~"TO and write your wContDefProc in BASIC if you like.

Task Master polling is suspended when an event is dispatched through the EVEJI.o"''DEF
and MENUDEF tables or through one of the ~"TO enuy points. All routines
alled by the event dispatCher are called as if a GOSUB with a line number had
exec:ur.eci. Control is returned through the RETURN 0 statement.

The event-dispatch mechanism uses a 65816)SL ... Rn. sequence so that the external
entry points provided by EX:EV:ENTO can c:al1 BASIC from anywhere in memory and
regain control when the eYen.t-handling routine returns. 11le special case of RE'IURN 0
discards the return address of the BASIC statement interpreter and does an R"'!.. If the
CPU stack is not properly preserved, the system will crash when the Rn. uses an invalid
address from the stack.

Care must be taken in writing event-handling routines in BASIC. They cannot generate
BASIC errors beause BASIC'S error-handling routines reset the CPU stack register,
disc;arding the address for the above desaibed xn return instruction.

Opening a window file
This seaion disOlSSeS a spec:ial form of the OPEN statement whose use requires a
through understanding of the Window Manager and its functions, as desaibed in the
App~ OGS Toolbo% Reference manual. Before you read this section, you should be
familiar with the terms defined in Chapter xxx of that manual and understand how to
use the W"mdow Manager and Qu.ickDnw n tool sets.

Opentn; o window file 169

!be OPEN window statement provides a means of linking a W"mdow Manager window
port to IIGS BASIC as an outpUt file. The V ARPTR() function returnS the address of a
parameter list, desaibed in detail later in this section. When opening a window, the
parameter list is an extended version of the parameters used with the W"mdow Manager
.NewWindow all

OPEN window may ~ be used to link a file to a Quic:kDraw n Gr.UPott through a
G.ratPott pointer. This variation is selecred by the value of the option word in the
parameter list. You must ae:ue the NewW"mdow ~ yourself in a suuaure
array.

OPEN window records the file mode and irs window/Gr:UPort pointer in the FCB,
along wim the optional Fn.'Ii'P• parameter. If you use the optional bu:&ize
parameter, a memory segment of that sl%e is allocated and it! handle is aJso placed in
the FCB.

A window (but not a Gr.UPott) is dosed with the OoseW"mdow call when the file is
dosed with the ClOSE • suremenc (or the ClOSE all variation), and the optional
buffer is deallocated and the h.andle discarded

After a w-indow file has been opened, you can use the PRINT• or PRINT• USING
statements to di.rea output text to the window at its current cu.rsor position. IIGS BASIC
does not provide for positioning the cursor like it does for the text console. You must
do this yowse.Jf using the appropriate QuickOrawii calls before executing a PRINT• or
PRINT• USING sraremenr.

Each time a PRINT srate:meru direas output to a window file, a W"mdow Manager
SrartDrawing call will precede the QuickDraw II text drawing calls. IIGS BASIC uses
OrawChar, Oraw'Text, and OrawCString for output to a window file or Gtat'Pott. When
Gr.UPort mode is selected, a QuickOraw II SetPott call precedes the drawing functions.

The following diagram depias the relationships between IIGS BASIC, a window port, a
user tool set window driver, a data buffer, and Quic:kDraw II.

You must enable QuickOraw II wim the GRAP INn' statement prior to opening a window
file, otherwise the message

'TOOL SE~ ZRROR •$0400

will be displayed

The OPEN window parameter list is defmed as follows:

Parameter Type .Example
W"mdowMode WORD I2'mode'
Tool setNum BY'l"E 11'04' ;04- QuickDraw Tool set
OrawFunc.""''um BYTE 11'164' ;• _Draw<:har in QuickOraw
Pointer LONG 14'0'

The wuulowmode parameter is defmed as follows:

170 Chopter 7: Advonced Topics

\

Table 7·5

Value wtnaow mode

SOC Gr.lf'pon draw mode
$08 Tool set drawinJ
$18 Tool set drzwing
$28 Tool set drzwing
$38 Tool set drawing
S 98 Tool set drawing
$AS Tool set drawing
SBS Tool set drzwing

De~ertptton

Poimer is a GzafPott address
NewWmdow parameters follow
Insert PCB adcitess in wRelton
Insert fu.naion 9 result in wContDe£Proc
Insert PCB address and Punc 4119 result
Space fill the buffer plus $18 options
Space fill the buffer plus $28 options
Space ii11 the buffer plus $38 options

'Ibe ~ panmeter is the fitst of four sequential function numbers used to

draw te:x1 messages with Quic:ki>raw II or a user tool set 'Ibe eample shows the values
for dmwing text with QuickDraw II. IICiS BASIC will use DrrmiFuncNum,
DrawFuncNum+l, DrawFuncNum+2, and DrawFuncNum+3 for DrawChar,
DrawString, I>nwCString, and DrawText, respectively. A user-written tool set must
suppott all four entry points, with input parameters matching the QuickDraw II
functions.

A window-driver toOl set could be innialized with the a~ of the SANE zero page
and share it with SANE (see the SANE chapter of the Toolbo:% Reference manual for
teStriaions). A user tool set should also be passed the a~ of the IICiS BASIC Task
Master TaskRec as an initiaHzation parameter. 'Ibe address of the SANE zero page and
the l'a.skRec addzess can be obtained by using the BASICC funaion.

You must load and initialize a window-driver tool set before opening a flle that
n:quires the tool seL ihe PoinJer parameter must be zero when opening a window
through the Wmdow Manager.

A user tool set should have a tool set number from 128 through 254. The
DrawFuncNum parameter can be any number greater than 8 and will normally be a
10. Function 9 of tbe user tool set (which has no inputs) should n:tum a long result
giving the address of a content update routine embedded within the tool set.

'Ibis entry point address must meet the n:quirements for a Task Master wContDefProc
routine, as described under NewWmclow in the Wmdow Manager chapter of the Apple
IIGS Toolbo% Referrmce manual Documentation on how to write a tool set is found in
Appendix A of Iha1 manual.

'Ibe NewWmdow parameterS list is defined as follows:

Opening c window file 171

Tat:M 7·5

Jtarameter Type Oeecrtptton

Panmlength WORD Number of bytes in panmeter table
wPr:ame WORD Bit vector that describes the window
wT1tle LONG Pointer to window's title
wllefCoa LONG Filled in by OPEN with FCB address
wZoom REC1' Size and position of c:onrent when zoomed
w<:oJor LONG Pointer to windows color table
wYOrigiD WORD Content's vertical origin
wXOrigiD WORD Content's horizontal origin
wDar.aH WORD Height of entire ciocument
wDal:aW WORD Width of entire doounent
wMD:imumH WORD Ma.'W'imnm height of ccnrent allowed by GrowWUldow
wMa:imwDW WORD Mn'imum width of cement allowed by GrowWUldow
~UVer WORD Number of pixels to scroll vertically for arrows
wScroDHor WORD Number of pixels to scroll horizontally for arrows
wPageVer WORD Number of pixels to saoll vertically for page
wPageHor WORD Number of pixels to scroll horizontally for page
wlafoRefCoa LONG Value passed to information-bar draw routine
wlafoHeight WORD Height of the information bar
wPrameDe1Proc LONG Address of stanciard window deflllition procedure
wlafoDe1Proc LONG Address of information-bar draw routine
wCoatDefProc LONG Address of cement-update draw routine
wPosidoa REC1' W'J..ndow4s starting position and size
wPJaae LONG W'Uldow'S statting plane
wStorage LONG Addres.s of memory to use for window record

1he PCBs iniemal to IIGS BASIC are divided into two halves, separated by 256 bytes.
1he address placed into the ~ewWUldow wRefCon is the address of the lower half. 1he
upper half is referenced by adding 2~ to the supplied address.

Each half of the FCB contains 8 bytes of data organized as follows:

Tacte 7-o

Lower half

Mode
Tool set
Internal
Status
BufrHndl
DnwFunc

FCil

BY"I'E
BY"I'E
BYTE
BYTE
3 bytes
BYLE

Oe~ertptton

W'mdow mode•SOS; GtaiPort mode-SOC
1he tool set number of the tool to all
FCB master/slave concrol byte
FCB file swus-ac:cess byte
Handle of the data butTer memory segment (if any)
Function number of the fJtSt draw function

172 Choptar 7: Advcneed Topics

Table 7-7

Hl;h•r Half

mm
Buffer Offset
WindowPu
BufferSize

FC12

BYTE
WORD
3 Bytes
WORD

~scription

Value from the mn'P• option if any else zero
Zero at open time; available to user tool set
Window pott/GrafPort address CNewWindow result)
Size of the allocated buffer (if any else zero)

Both the PCB1 BufrHndl and the FCB2 WmciowPtr an: only 3 bytes, and you must
ensure that a fourth byte of zero is aeated, by .ANDing the upper W"Ord with .. SOOFF,
before pushing eirher poime.r as a parameter for a tool set call.

Using ON EXCEPTJON statements
DGS BASIC handles errors from the SANE mathematic:al engine as normal errors
(through the ON ERR statement or by printing a message) until you use an ON
EXCEPTION statement. Before you read this seaion, you should have a complete
unde."SWlding of SM"E, as described in the .A.pp~ Nummcs Manual (published by
Addison-Wesley) and have read the additioml information on the SANE Tool Set in
the Apple DGS Too/.bo% Reference manual.

The ON EXCE:PnON .statement is a separate version of the ON ERR for the errors that
occ:ur in mathematical computations. Apple ncs BASIC uses the SANE 65816
implementation of the IEEE Standard 754 for binary floating point arithmetic for all
real and long-integer operations, or a mixed-mode operation with one real or long
integer operand. OFF EXCEPTION is the default mode for ncs BASIC, and so
computational results may return an infmity or a SA.~ NaN resulL. ·

After an ON EXCEPTION statement has been executed, the statement list following the
reserved word EXCEPnON will execute if any of the six exceptions occ:ur during any
mathematical expression evaluation. There are five SANE exceptions and one pseudo
exception generated by ncs .BASlC, as follows:

Toble7-e

Enable
lit number Yaw•

1 1
2 2
3 4
4 8
5 16
6 32

Exc•ptlon
~scrtptlon

An invalid operation was anempted (such as SQRT(-2))
Overflow
Underflow
Divide by zero
Inexaa resuh
Unordered comparison (such as A<B where B is a Na..'PI,")

Using ON EXCEPTION statements ""'':! II~

.
The EXCE:P'!ION sarement is used to selea the subset of these six exceptions you want
dispatclled through ON EXCU'IlON to your prognm, prior to enabling exception
trapping with ON EXCEPTION.

'The default exception mode of liGS BASIC enable5 all exceptions except the fifth,
ine:aa result. 'The sixth exception is aeated by the logic of the BASIC IF statement,
and the exception trapping mechanism within the interpreter i.s called as if a SANE
exception had oc:cwred. 'The syntaX of the EXCEPnON statement is:

l:XC:tP'!'!ON ON l.lbexpr

'The unsigned byte expression (u.be::x:[:m must have a value in the range of 0 through 63.
The value of the expression is a bit mask used by IIGS BASIC to enable the trapping of
individual exceptions. Each exception is enabled or disabled by summing the enable
values shown in the above table. When an exception is disabled. its occurrence is
ignored, and the expression evaluation continues as if the exception had not
oc:cwred.

'The error code and error line for ON EXCEPTION are returned in ERR and ERRliN as
with the ON ERR stuemenL The error code returned in ERR when a SANE exception
occurs may have more than one exception occur simultaneously. The Apple Nu~cs
Manua.i defines how this an occur.

To provide complete information to your prognm from SANE, the value of the ERR
reserved V'Uiable is set to 128 plus the masked exception byte obtained from SAI'lE by
liGS BASIC. 'The exception byte values are the same as the exception enable mask bits
clesc:::ribed earlier in this section. 'Ihus, ERR • 128 • 1, or 129, for the invalid exception
and would equal128 +1 • 16, or 145, if both the invalid and inexaa exceptions
occurred together. ERR an range from 129 through 191; however, in aaual
operation, exceptions usually occur one at a time (although inexact often occurs
together with invalid).

Exe01ting OFF EXCEPTION will restore BASIC to its default mode, in whic."l the SA.'lE
invalid. divide by zero, not a number, underflow, and overflow errors will display
messages or be trapped by ON ERR.

The following are brief de:saiption.s of the SANE exceptions; for a complete
di.sOJSSion, read the Apple Numtrrles Manuai.-

0 'The invalid exception Occu.r3 for numerous re2SOns, but the most common one is
the conversion of a real number that is too larger for a an integer format. The
invalid exception also oc:c:ur3 when aa.empting to compute the square root of a
negative argument or a remainder, such as %MOD y or % RE.\1DR y where y is a
zero or % is infinite.

c '!be underllow exception occurs when a floating-point result is both tiny and
inexaa.

c The divide-by-zero exception occurs when a finite nonzero number is divided by
zero.

17 4 Chopter 7: Advanced Topics

- The overflow exception oc:c:urs when a floating point destination format's largest
finite number is exceeded in magnitude by the result of a computation. In other
words, when the exponent range for a single- or double-precision number is too
small to represent the result.

:::l The inex:aa exception OCOlrS if the rounded result of an operation is not identical to
the mathematical (euc:t) result. It also occurs when you convert a real number such
a.s 10.5 to an integer.

Using ON EXCEPTION stotements 175

Chapter 8

BASIC Reference

Syntax notaHon

The IASIC Une

Statements and Functions

ABS
ANNUITY
Arithmetic operators
Arithmetic operators
ASC
ASSIGN
ATN
AUTO
AUXIDC
BASICC
BREAK
BTN
CAll
CAll%
CATALOG
CHAIN
CHRS
CLEAR
CLOSE and CLOSE•
COMPOUND
CONT
Control-Apple-Delete
Control-Apple-Escape
Control-Reset

177

CONV
CONV•
CONVS
CONV&
CO NV%
CONVO
COPY
cos
CREATE
DATE
DATES
DATA
OEP FN and DEP PROC
DEL
DEI.ETE
Digit specifiations (digitspecs)
om
DIM
DO
EDIT
ELSE
END
E.ngenering specifiation
EOF
EOFMARK
ERASE
ERR
ERROR
ERRTXTS
EVENTDEF
EXCEPTION
EXEC
EXEV'E..l'.IT@
EXFN and EXFN_
EXP
EXP1
E:XP2
Fn.E
Fn.TYP
FIX
F"1Xed-point specifiation
FN•
FOR .•• NEXT
PRE
FRE.\.tE..\1

178 Chopter 8: BASIC Reference

GET#
GETS
GSB.HEllO
GO SUB
GOTO
HEX$
GRAF
HUST
HOME
HPOS and VPOS
IF ... TiiEN and IF .•. GOTO
p-IDENT
INrr
INPL'T
INPUT#
INPUT USING
INSTR
INT
lnteeger constants
INVERSE
INVOKE
)OYX and JOYY
KBD
LEFTS
LEN
LET
UBFIND
UBRARY
UST
LISTIAB
LOAD
LOCAL
LOCK and UNLOCK
LOG
LOGB%
LOGl
LOG2
Logical expressions
Long integers
.MEMBUFR
MENUDEF
MID$
NEGATE
NEW
NORMAl

O'lopter 8: BASIC Reference 179

NO"l'XACE
OFPEOP4t
ONEOf4t
ON BREAK and OFF BREAK
ON ERR and OFF :ERR
ON E:XCEPTION and OFF EXCEPTION
ON KBD and OFP KBD
ON .•• GOSUB
ON .•. GOTO
ONTIMER and OFF T.IMER
OPEN
OPEN window
OUI'Pur­
oUTREc
POL and PDL9
PEEK
PERFORM
PFX.S
PI
POKE
POP
PREFIX
PREFIX$
PRINT
PRINT USING

.PRINT4t
PRINI'4t USING
PROGNAMS
Pu.,._
QUI'I'
R.STACX%, R.STACKO, and R.STACX&
RA..'IIDOMIZE
READ
RE.AI)4t
RULS
REC
REM
RE.""'AME
RE.""ltJMBER
REPS
RESTORE
RESUME
Rm.JRN ..

RIGHTS
ROUND

180 ~ter 8: BASIC Reference

RND
RUN
SAVE
SCALB
SCALE
scispec
SECONDSO
SET
SGN
SHOWDIGI1'S
SIN
SPACES
SPC
SQR
ST.EP
S10P
STR$
Strings
SUBS
SWAP
TAB
TAN
'TEN
TASKPOU.
TASKREC% and TASKRECC
TEXT
TEXTPORT
TIMES
TIME
TIMER ON and 11MER OFF
TRACE
TYP
TYPE
UBOUND
UCASES
um%
UNLOCK
UNTIL
VAL
VAB
VARS
v A.RPTR and V ARP1'RS
Variable types
VOLUMES
VPOS and HPOS

Chapter 8: BASIC Reference 181

.....

Syntax notation
1he symax of a language is a body of rules that defines the various language elements
and how they may be combined. There are simple elements that are combined into
compound elements, which in tum an be combined into expressions and
statements.

An element .is defined like this:

(element to be defined)
::• (some combination of defined eJements).

Any uppercase letters or punctuation marla appearing on the right side of the
defmition must be typed exaaly as shown. Lowerca.se leaers represent variable
information that you must fill in. For example, in the clefmition

goto statement ::• GOTO linenum

the Jetre:s GOTO must be typed just as shown, followr:d by any.lega.lline number.

Some defmitions have two or more lines conlaining ::• in them. These lines are
variations for a given element.

In this chapter, the following symbols are used to represent the types of elements (note
that you do not type them when you are entering a program they are for purposes of
desaibing symax only.)

separates alternative elements
encloses optional elements

{ } encloses Tepeatable elements that must occur at least once
\ \ encloses elements whose values are to be used

Other c:haraaers found in the symax clesaiptions are required by BASIC.

Here is an example of how this system desaibes the various parts of BASIC's synWt:

house

::• roofldoorHwindow}[fueplaceJ[all-elec:tric kitchen!

A house has a roof, one or more doors, one or more windows, and may have a fireplace and an all­
elearic kitchen.

home

::• house·cottage'mansion

A home can be a house, cottage, or mansion.

price

Syntcx notctlon 183

::• \house\

The selling price is the wlue of the house.

The remainder of this chapter is a description of the fu.naions, expressions, and
statements of Apple TIGS BASIC. A concise definition of all the elements and the
language syntax may be found in Appenclix G, •swnmazy of GS BASIC. •

The BASIC Unes
Apple TIGS BASIC program lines have the following format:

(d.i.CJi.:} [l.~~:] •tate-=t {: •tat-.,.:} {:REM o, n:•) <Return>

The digit argument is the required lice mtmber, and it must be an integer in the range 1
through 65Zi9. The optional label must begin with a letter CA through Z, a through z)
and contain letters, digits, or the period. The label must be immediately followed by a
ccion (:)without any intervening spaces. A label may contain up to 30 characters.

Apple IIGS BASIC program lines begin with a line number, followed by an optional
label. and end with a curiage return. A program line can be a m.a.ximum of 239
characters long when entered (although its inrema1 format may be up to 286 bytes; 31
for the longest label and 255 for the line).

Program lines are entered into the a.ureru program by pressing the Rerum key. The
carriage retum does not display a c:har:laer on the saeen, but it i.s a required part of a
BASIC line.

Each line must have a unique line number and, if it also !us a label, a unique labei.
Whe.'l you enter a line with a label that label, may not already be a label on a line with a
different line number. For example, once a label is used on line number 3000, that
label can't be used on a line with any other line number. You can remove the label
from line 3000 (by editing or retyping line 3000 with no label or another label), and
then use the l.a.bei with some ocher line number. Aa.empting to enter a line with an
existing label will display the message

1DOPL:C.U! LABEL E:RROR.

A label may not be any reserved word If you enter a label that is a reserved word,
BASIC will display the message

1!LLZGAL LINE NOMBER/LABEL ERROR

except when the reserved word is a verb that may begin a statement. For example, if
you type

10 SORMAL: ?!UNT "!ii !HERE"

the NO~: is taken as a line without a label and .not as a line with the !abe! NO~..AL.

184 Chapter 8: BASIC Reference

Using labels in your programs, pania.Uarly for procedures, will make your programs
more readable, easier to undemand, and easier to change long after you write them.

When your refer to a label in a GOTO or GOSUB statement, you must not include the
colon that is eruered after the label in the line. This colon allows BASIC to distinguish
between a statement that begins with a variable name and one that begins with a label.
For example.

320 TAX70TAL • 2900.00

is a valid staten ent that is a line number followed by a word that cx:JUld be a label, but is
in faa a variable name. The colon tells BASIC you want the word treated as a label
instead of as a variable name.

line munbers can be preceded by any nUmber of spaces, and there may or may not be
spaces between the line number and the label or the colon and the following
statement. Even if you don't enter the spaces between these elements, GS BASIC may
put one between them when listing or editing the srarement. You an freely use labels
in your programs, but remember that long labels take up a lot more space than line
numbers, which are compressed into 2 binary bytes, no matter how many digits (up to
five) you have entered

Statements and Functions

AIS

: :• ABS t.-zp:)

) PRIN:' ABS (3 4 S)
34S
)PRIN7 ABS(24-363)
339

ABS reiUmS the absolute value of the argument; in other words, the value of the
argument if .it is positive, 0 if the value .is zero, and the negative of the argument value if
it .is negative.

ANNUITY

: :• ANtJCaezp:l. aezp:2)

The annuity Iunaion, .ANU(rate,periods), computes the expression

Cl - (l • :&~el (-pericc:isl J I ra~e

Statements end Functions 185

The calculation .A.."lU~te ,periods) is more accurate than the straightforward
computation of the expression above using normal arithmetic and exponentiation
operations. Tile annuity function is direaly applicable to the computation of present
wlue and future value of ord.inaty annuities. The formula for these and other useful
calCllations may be found in Appendix F. See also the COMPUOUND function.

Arithmetic operators

: : • aclop · auop

This defmition me2ns an arithmetic oper.uor is an arithmetic dyadic operator or an
arithmetic unary operator. A dyadic (pronounced "di-ad-ic") requires two operands,
and a unary operator requires one operand. The operands of arithmetic expressions
an be single or double teals or single, double, or long integers.

There are nine arithmetic opentetS, twO unary and seven dyadic:

Symbol
+

I\

•
I

MOD
DIY

+

Mantna
Unary plus
Unary minus
Exponentiation
Multiplication
Division
Modulo
Integer division
Addition
Subtr:a.ction

Arithmetic operators

Evmple
+5
-2

2!1.4
4"6
512

7MOD5
7DIV 5

4+7
9-2

Numeric yalue
+5
-2
16
24
2.5
2
1
11
7

An amy is an ordered collection of variables, all of the same type. The name of the
whole collection, called the amy name can be any legal variable name. The last
ch.araa.er of the name determines the type of all the variables in the amy, as follows:

Example
NA.'AES(2000)
TOTALS.-(3,2,4)
COUNTR%(112)
ADRTBLO(lO, 1)
CRUZAD0&(39)
BYTS!(511, 1599)

Variable type
Single-precision ~
Double-precision real
Single integer
Double integer
Long integer
Structure

The individual variables (or elemerus) within a.n amy are numbe:ed, starting with 0.
To refer to any element within an amy, you specify the name of the am.y, followed by
the number of the element enclosed in parentheses, called a subscript For example:

l ?RINT AR C 3 l
l PRINT rr:.ces Cl471

)0t(0,0)•85

186 Chcpter 8: BASIC Reference

An array may have up to 32767 elements per dimension up to the array size limit of
4096K bytes of memory. 'The m1mber of dimensions is the number of subsaipts
needed to specify an individual e.leirient within the array. The number of dimensions
and their sizes are set with the DIM (for dimension) statement

The maximum number of dimensions is limited by the amount of data segment
memory allocared via the CLEAR statement. The maximum size of a single numeric
array is limiied to " megabytes. The maximum size of a string array is limited by the
65K maximum suing pool size. In addition, string arrays may not be allocated beyond
the first 64X of the user data segment (Dimension string arrays first).

'The suuaure is a spec:ia.l type of array that does not have a corresponding variable
type. 'Ibe elemerus of a suuau..re are bytes. An. eleme..~ of a strUcture wiD. funaion as an
unsigned single inleger in a numeric expression. A numeric value assigned to a
suuaure element must be in the range of 0 through 255, otherwise an illegal quantitty
error will ocau. Struau.re:s are pri.ma.rily used with the GET•, Pur•, and SET
statements and the V.AR funaion.

Generally, a suuaure array is used by other statements as an array with an element of
the size of the leftmost array dimension. For example, a structure array with

DIM STRDCl'! !Sll,l599l

can be thought of as a one-dimensional array with 1600 elements each 512 bytes.
(ldea.l for reading all the blocks of a 3.5-inch disk into memory).

ASC

: :• ASC caazpr)

-)PRINT ASC (.. BE:E:P"}
)SS•"Air" : PRINT ASC(s$+"hcr.n")

ASC Jetums the decimal ASCII code corresponding to the first c:haraaer of the given
string expression. If the suing expression value is a null string, then the value -1 is
zetumed

ASSIGN

: : • ASS lG'N cAa.rie-r1c ell& .. , aezpr [, AtrrO]

ASSIGN assoc:iates a character device name with a slot or port number. GS BASIC
defines six standard c:h2.neter device names, which may be changed with ASSIGN. A
c:hardevicename is a filename that begins with a period, followed by a letter (A

through Z, a through ij followed by one or more letters or digits (not including a
comma).

Statements end Functions 187

The optional AUI'O argument indicates that BASIC should also send a line-feed
ch2naer ~ each o.rriage rerum sent to the device. ~ a new c:harcleTlcename
is de&ed with ASSIGN, the new name an be used in the OPEN st2retnent to access a
devia: for input or output.

A limit of 12 c:.barderice:D2es may be defined with ASSIGN Oncluding the six default
mme:s). A value of 1 through 7 defines the slot number of the character device. A value
ofO defll'leS a null device, and the value -1 deletes a~ from the table.
Any other negative number will cause an illegal quantity enor.

'The six standard chanaer device names are:

Device pome
.CONSOLE
.PRIN'TER
.MODEM
.MEMBUFR
.NEIPTRl
.:-rt.ll

ATN

: :• ATN (a-.zp:)

) PRINT ATN (. 3456)
.33275
)

~
3
1
2

7
0

Auto-Lf
OFF
ON
OFF
OFF
ON
OFF

Descriot!oo
C3COu"Tl

pseudo-device (255-byte buffer)
CAppleTalk* printer driver)
(a bit bucket. read-eR)

Rerums the arc tangent, in radians, of the given argument The value returned
represents an angle in the range -pi/2 to •pi/2 radians.

AUTO

: :• AO'l:O (l.~zae.aua L ·- izacu:-.at J 1

AUI'O is a submode of the EDIT command that automatic:ally generates line numbers
for new lines to be entered into the c:urrent prognm. The Unenum is the rltSt line
m,mber presented after entering edit mode. The inaement is the amount added to
Unermm to generate the next line mtmber.

If the Jinennm or the i.naement ~not given, the value 10 is used Entering an
inaement larger than 1000 will be ignored, and the value 10 will be used instead

If Unenum is the line number or label of an existing line, the command is executed as
jf the command EDIT Unemun - Unemun+inaement w:as entered If a label is used
and that label does not exist, the message

LINE NOMBER/ LABU: ERROR

will be displayed

188 Chopter S: BASIC Reference

AUXIDO

: :• AOX!DI

AUXIDO is a reserved variable that is set each time an OPEN, LOAD, SAVE., RUN,
CHAIN, or COPY statement or the Fil.E' funaion is executed. It n:tums the vahle of
the atalog Subtype field as an unsigned double integer for the last file n:ferenced by
any of these commands.

BASI CO

: :• BASlCI <~~)

'Ibe BASICO funaion is provided to all~ easy access to tbe addresses of certain
memory resouces that are alloc::ated by GS BASIC. 1be unsigned byte expression must
be a number from 0 through 255, and the n:tumed result is always a positive double
integer that is an address of some d:m. suuaure .intemal to GS BASIC.

"'be argument selects one enuy in a table maintained by BASIC during execution. The
deta.ils of the BAS ICC funaion are desaibed in Appendix D, -x.nterprerer Data
suuaures."

BREAK.

::• BREAK ON
: : • BREAX OFF

During program execution, except when reading from the keyboard for INPu'T,
GS BASIC monitors the keyboard for the attention keypress, a Control-C. When this
key combination is pressed, BASIC discards any characters in the typeahead buffer,
stops the program after the aureru program statement is completed, and displays the
message

PROGRAM J:Nl'ERROPTED IN .U.aeznaa

Control-C monitoring can be suppressed by BREAK OPP and re-enabled by BREAK
ON. If Conuol-C is pressed while BREAK is off, it is treated like any other charaaer
and entered into the typeahead buffer. BREAK OFF also disables the recognition of
Conuol-C during the INPUT statement.

BREAK OFF is the SWtUp mode until GS BASIC displays the command line prompt for
the first time. The GSB.HEU.O program., if present, is run with BREAK OFF in effect
until it executes an END or STOP statement or until the program specifically reenables
BREAK ON.

BTN

: : • B'l'N I 0 <-a.t.zp~ <• 2)

Statements and Functions 1 89

•
BTN returnS the state of the three sense inputs CSEOC061, 62, and 63) as 0 or 1. 1be
various devices that control the state of these inputs include paddle or joystick, buaons
and the Apple and Option keys.

CALL

: :• CALI. l.J.!»o ... [(pazaa [{ ,pazaa•l) l
::- _l..u. ... [(pazaa [{,pazaa.])}

) CALI. PAIN'l'UC'l' (VARP'nl (m!C'!'\ (0)))

)_PAINTRREC'l'(~'nl(RREC'l'\(0)),50,20)

CALL exea.ues a named procedure in an Apple IIGS tool set. Tools and/or their
inr.erfac:e definitions are loaded by tbe LIBRARY sr:aremenr and must be properly
initialized by your BASIC program. The funaion number, tool number, parameter
requiremenrs: result size. and result type, if any, are exuaaec1 from the interface
definition library by seuc:hing the current diaionary for Ubaame. 1be imerface
defmitions for a tool set a.re loaded by the LIBRARY statement from a spec:ial 1DF
CFIL'IYP • 1DF).

The reserved word CAll can be replaced by the shorthand call character, the
underscore_. The 1DF for the tool set must have been loaded into the LIBRARY
diaionary with the LIBRARY statement prior to executing a CAll Ubaame: otherwise
an

imDU'!J PROC/FONC':'ION ERROR

message will be displayed.

The diaionary entry indic:aieS if any parameterS a.re required by the tool funaion (and
their order and typeS). The parameter list must contain the proper number, order,
and .types of argumentS within parentheses following the Ubaame if any panmeters
a.re requirec1. The parameterS a.re pushed on the CPU stack in order from left to right,
tool set and the proper tool set funaion is called by the Tool Locator.

Any returned results a.re removed from the CPU suck, and the first 16 words (32 bytes)
a.re stored in the retum stack buffer. The c:onteniS of the return stack buffer may be
acc:essec1 by the R.ST.ACX func:tions.

The Apple IICiS Tool Loator interface is used to disparch the funaion call. Apple IICiS
BASIC is supplied with a set of 1DF for most of the tool sets available at produa
rele2Se. The lfbnama for the functions will match, as far as possible, the funaion
names used in the Apple OGS Toolbo% Reference rMnuals for the tool set. More
infon:nation on the format of the 1DF is found in Appendix H.

190 Chapter 8: BASIC Reference

Don"t ant:mpt to use CAll without complete knowledge of a tool set. GS BASIC
c:orrealy i.niriares QWckDraw n when the GRAF INri' command is c:ecuted, and it also
does the SWtUp of the Sound tool set (but not the NO'l'ESYN or NO'I'ESEQ tool sets).
You may obtain the addresses of some preallocated memory resources that are useful
for jnjtja1izing c:erta.in tool sets, with the BASICO function.

'I'o pass real or integer munhers or tbe values of variables, include them in the
argument list as an ezpressi.on (for an explanation of expressions, see ~res.sions•
in Chapter 2.). If tbe type of tbe numeric argument or expression you use does not
match the type of tbe argument required by the tool set funaion, CALL attempts to
convert the JeSUit to tbe proper type as if you had used the CONVx() function for tbe
type of the argument. Argument ~ion does not include SUing-tc>nwneric or
mtmeric-to-string conversions. The message

'!ARGDMEN'! nPE MlSMA'!Cll ERROR

will be displayed in these cases.

You must also use the c:orrea number of argumentS when c:alli.ng a tool set funaion,
... otherwise, an argument count error will occur.

+ NOTE: The binary format of real numbers are those defined by the SANE tool set. If
an expression is used for a parameter, tbe expression evaluation may create an
extended-precision real result, which will be convened to the type required by the
tool set funaion. This c:onvemion may cause an overflow error if the result of the
expression is a munber too large for the type of parame!er required by that
argwnenL

To pass the address of a numeric variable, use the V.ARP'm() funaion. There is no
means of passing the address of an expression.

, If the tool set interface definition indicates that the argument for a tool set funaion
should be a counted string {often Jeferred to as a Pascal string), the CAll statement

will convert a BASIC string. or -suing expression result. into a counted string. A
c:oumed suing is a count byte followed by the charaaers. CAll passes the address of
the coum byte to tbe function instead of the ad.d.ress of the BASIC sUing desaiptor.

WARNING:

The counted s1Ting conversion will onty pass s1Ttngs up to 254 chorocters long.
Attemp11ng to pass o srrtng wt1t1 255 chorocters will couse the s1Ttng too long
error to occur.

'I'o pass the address of the sumg•s fust character (without a count byte) use the
V A.RP"mS() function.

CALL~

: :• c.u.:.• uezp:1, uazp:2, "Al>azp:3 r (pa:aa{ r pa:aa))

Statements ond Functions 191

l CALL' 84, 4, 0 (IREC'n (0)
) CALL' 94,4, 0 <tRREC'!'' COl, •so. '20)

CAll.% executeS a speci6ed proc:edwe of a spedf'J.ed tool set properly initiated
previously by your program. The toOl funaion mtmber is given by ube:zprt. the tool
set m1mber is given by uba:pr2. and the si2le of the result (in words), if any, returned
on the stack is sm=n by ubespr3. Any zetumed n:su1rs ate removed &om the au
staCk, and the fUst 16 words (32 bytes) ate stored in the reaun sw::k buffer. The
conrenm of the reaun stack buB'er may be acceued through the R.S'I'ACK funaions.

All 3 unsigned byte ezpressions (ubespr) must be in the r.mge of 0 through 255 or an
illegal quantity error will occur. The Apple nos Tool Loator is used to dispatch the
function call; refer to the proper ~le.DGS Toolbcl:% TecJmtcal Referena manual
c:hapr.er for the tool set you are using.

If an argument list is present (endosed in parentheses after tbe ubespr3), each
argument is evaluated and pu.sbed onto the stack (from left to right;) before execution
of the procedure. Correa operation of toolbox procedures requires that proper
panmeters be pushed on tbe stack in the correct order. Failure to do this will probably
crash the system.

To pass real or integer m1mbea or the values of vmables, just inc:hlde them in the
argument lisL II an expression is used, the result may be an extended-format real
mtmber, in which ase a 10-byte parameter is passed to the funaion (which is likely to
crash the system unless the .funaion is expeaing a SANE exrended-format number as
the panmeter).

To pass the address of a numeric variable use the VAlU"'"R() function. You may not
pass the address of an expression. CAll.% does automatic conversion to a counted
string like CAll. (described above) for any string parameter. CAU.% does not use the
UBRARY dictionary interface definitions, and so the number and types of the
parameters are not c:becked, nor are automatic numeric conversions performed, but
CAll.% is faster as a result.

When you wmt to use an expression as an argu.ment, you can force the result to be the
correa type by using a conveaion funaion such as CONV%() or CONVO(), I.E. You
must put any required c:onvezsions explicitly in your program. Integer constants will
be passed as integer, double integer, or long integer (2, 4, or 8 bytes), based on the
.r:ange of the value. Thus, if you wmt a double integer zro, you must use CONVO(O).

192 Chcpter 8: BASC Reference

'-

CATALOG

: :• CATALOG [cU.ak.zlaae • cU.rpat.J:l • aezpr)
: : • CATALOG [aezpr)
: :• CAT [cU.aka·- • cU.rpat.J:l • aezpr)
: :• CA'l' [aezpr]

)CA'l' .02
) CA'l'

) CA'l'ALOG /Applal
)~ALOG /Applal/Applekind

immediate IIIC>cle
cle!arrecl 1110cle
immediate 1110cle
cle!arrad 1110cle

CATAlOG displays an SO-column listing of a root directory or subdirectory specified
by the directory path following the reserved word CA'I'.A.LOG. CAT displays the left 40
columns of the SO-column listing. If the sped.fied pathname is a given volume name,
then the names of all files in the given root directory are displayed on the screen, and
the names of any subdirectories of the root directory are also displayed

If no pathname is given, tbe pathname contained in PREFIX$ is assumed.

If OL"'''PGT# is set to anything other than 0, tbe directory listing will be sent to the
spec:Uied OU'I'PtJT file, not to tbe saeen.

CHAIN

: :• CRA!N patlma.me [, 1i.DeDUa'1&1>a1)

)CHAIN Liqhtning,St~as

Q1A.nl: automatially loads and runs a specified program, without clearing the values
of the varW>les left over from the previous prognm or closing any flles the previous
program had left open. ibis allows v:uiable values used in one program to be used in
another. 'The program begins execution at the line given by the optional line number
or label 'lbe pathname of the program to chain must follow the reserved word
OiAIN. If the chained progr.un assigns dimensions to an array that 'WaS de..fined in the
previous program, the message

?DL"TPIJCAT.E DE:FrnmON ERROR

is displayed.

CHR$

: : • CBRS I aezpr)

) PRIN'l' c:HRS (U • B)
) RS•" 6 8" ; PR!N'l' c:mtS (VAL CRS))

CHR$ returns the ASCI c:haraaers corresponding to the value of the arithmetic
argument, which must be in the rmge of 0 through 255, or an illegal quantity error
oc:cws. (See Appendix A. •ASCI Character Codes• .)

CLEAR

: :• CUAR
; : • C:.EAR iezpz:
: :- c:.E.AR INVOKE
: :- c:I..EAR I.IBRARY

CI.E.o\R. with no par2meterS, sets all nua:Jeric variables to zero, all strings variables to
null suings. cJe:u:s all BASIC poinre:s and stacks, and doses all open disk files except a
file being executed.

c..EAR 1espr attemptS ro change the dara segment size while preserving all variables,
strings, arrays, libr:uy diaionary, and open files. The amount of memory allocated
for arrays, variables, and string dara is adjusted to the size given (rounded up to the
ne:uest multiple of 256) or the minimum amount cunently required, whichever is
greater. The minimum required memory includes the sum of all arrays, variables,
local variables, string dara, and invoke records, plus a minimum of 2048 bytes of free
space for string operations.

The lc:Epr may not be set sm::aDer than 8192 bytes or the minimum requirement.

Additional memory segments are allocated for the BASIC program, the library
diaionary tables, plus one for each invoked module and each file record buffer. (See
the UBRARY and INVOKE sc:uemenr.s in this chapcer and Chaprer 7, • Advanced
Topics.")

ClEAR LIBRARY and ClEAR INVOKE delete all the diaicn.aries and code segments
that have been loaded with LIBRARY and INVOKE sr::atements, respectively. In
addition, executing CLEAR LIBRARY and ClEAR INVOKE will shrink the library
memory segment to its minimum size CS12 bytes). INVOKE and LIBRARY both insert
inte.rface definitions into the libnry segment. ClEAR LIBRARY or ClEAR INVOKE
used separately will only shrink the library segment to minimum when there are no
definitions for the other purpose.

CLOSE and CLOSEt

: :• c:.osz [t til.eaual

)1000 CI.OSE

)Strikes: 3200 CLOSEt l

194 Chapter 8: BASIC Reference

\ __

Before ending program esecution, all open files should be dosed with either a
C.OSE• or C.OSE statement. Any files dosed during program exe01tion must be
.zeopened before they can be accessed again. Each time a file is opened, even if it was
used earlier in the same program, BASIC assumes that the file bas not been opened
before during the cunem execution of the program.

c.osE• doses the me whose file number is equal to the arithmetic expression that
foDows CDSE•.

Q.OSE doses all files that are open when the statement is ezecwed. All open files are
also dosed by a LOAD, CLE.AR, NEW, or RUN statement. The CHAIN srarement does
not dose any files.

COMPOUND

: :• COMP! «&azp%,&a%p%)

The compound interest funt:tion, COMPI(r.ue,periods), computes the expression:

(l • ratel perioc:la

When the rare is small., COMPI(me ,period) gives a more ac:Olrate result for the
computation than does the straightforward computation of (1 +r)P by addition and
e:xponenti.ation. COMPI is direaly applicable to computation of present and future
values and the formula for these are found in Appendix F. See also the ANNUITY
function.

CONT

c : :• CON'l'

COl'a'T resumes exe01tion of a program that bas been halted by a STOP or END
statement or a Comrol-C at the statement immediately following the one at which
exeOltion was suspended. CONT can only be used as a command, not as a statement
in a program.

CONT does not dear the program or reset the variables in memory, and there are no
options associated with it.

A program halted by an error may be continued. BASIC will aaempt to continue
execution starting with the statement in which the enor oc:curred. An enor made in
.immediate execution will not prevent a prognm from being continued.

A program that has had any of its statements altered, or any new statements added,
may not be continued. If you try, the

?CAN'"! CONl'!ND'E ERROR

message will be displa-yed 'Ibe values of variables in a program can be changed using
assignment statements in immediate execution while the program is stopped.

Chapter 8: BASIC Reference 195

OS BASIC suspends a number of aaivities during immediate mode that are restarted
when execution is resumed with CONT. The ON 1"'MER interVal counter is frozen and
Task Master polling is suppressed during immediate mode. The status of ON TIMER,
ON KBD, and T.ASXPOU. are preserved and restarted when CONT is used

Control-Apple-Delete

Pressing the Conuol-Apple-Delete key combination clears the keyboard micro and
type2bead input buffers.

Control• Apple-Esc

Pressing the Control-Apple-Esc key combination will enter the Apple nos Control
Panel program. which may awe a change of screen modes. For more information
about the Conuol ~ refer to the Apple acs Oumers Gui.ds.

Control-Reset

Pressing the Reset button while holding down the CONTROL key reboots your Apple
nos. just as if you had switched the computet off and back on. Anything stored in
memory is lost (including your p~ and OS BASIO.

CONV

: :• CONV (ezp~)

)G*•234234 : B*•523S23 : PRINT CONV(H*-G*l
289289
)

CONV ev2luaies the 2r'gWIIeilt, and returns a single-precision real value. The value
may be assigned to an integer variable. If CONV is used with a stting expression, the
effea is the same as with the vAL function.

CONVt

: :• CONVt (ez"p~)

>G••234234 : B*•523S23 : PRINT CONVf(B'-G*l
289289
)

CONV• evaluates the argument and returnS a double-precision real value. The value
may be assigned to an integer variable. If CONV• is ·•sed with a suing expression, the
effea is the same as with the VAL funaion.

190 Chopter S: BASIC Reference

CONV$

: : • CONV$ I .s"pZ')

)Dt•34S : At-453 : PRI~ •a•+CONV$(0t*At)+•z•
a1S628Sz
)

CONVi

: :• CONV' (.s"pZ')

)PRINT CONV6(2178-79S4)
-57'76
)PRINT CONV6(•S2S'78942l'79.8S•)
62578942179
)

CONV& evaluates lbe given argument a.nc:i retwns a long-imeger value.

lftbe argument is a string. the effea is the same as using VAl. followed by CONY&: (see
the chapter STRINGS AND STRING FUNCilONS for an explanation of the VAl.
funaion). The value returned must be within the range of 9,223,372,036,854. 775,807
through -9,223,372,036,854,775,807, or an overflow error will ocau. The result may
be assigned to a single- or double-real variable, although significance will be lost in
the conversion. The largest negative mtmber, -9,223,372,036,854,775,808, is used to
represent the SANE NaN result.

CONV%

: :• co~ c.spzo)

)PRI~ CONV't (42.3.94)
424
)A,•76S6 ,: B6-•364 : PR.IN'l' CO~ (A6/B')
21
)

CONV% ev2luates the argument and returns an single inleger value, rounding off to the
neuest who.le m1mber. The value returned must be within the range -32768 to 32767, or
an overflow error results.

CONVO

: :• CONVI! f.s"pZ')

Chapter 8: BASIC Reference 197

I PRIM'! CONV\! (76S423. 941
765424
lA•76S6.4.3 : 8•364.11 : PRIN'! CONV@(A/Bl
21

CONVO evaluates the argument and relllmS an double-integer value, rounding off to
the nearest whole number. The value reDlmed must be within the range -2,147,483,648
to 2.1"'7,486,647, or an overllow error occurs. A result of less than .5 will be rounded
down to 2ll:rt).

COPV

: :• COPY fi..leAl, fi.1ea ... 2 (,li.aeawa'l&bel]

COPY is used to copy any disk tile within or between disk voh,mes. Both fiJenamel
and ftlename2 must be enclosed in quowion maries in deferred mode or be valid
string expressions. WUdard filenames and device filenames are not allowed; COPY
only copies one existing disk tile to a new volume or different subdirectory within a
volume. COPY preserves the file type and subtype of the original flle.

COPY will return an out of memory error if less than 1280 bytes of free data segment
memory are aV2llable. COPY will use up to 63. SK of memory as a buffer for the copy
operation. F"Jles larger than 63.SK will be copied in 63.SK incremenr.s (assuming 63.SK
is aV2llable). When copying between two disk volumes, both volumes must be
mounted during the entire copy operation, unless the optional Unenum or Jabe1 is
present. I! the output filename already exists, a duplicue filename error will result.

The optional llneaum must reference a subroutine tbat ends with a RESUME COPY
statement. The subroutine will be alled by COPY before ~ch reading of the input file
and before ~ch write aaion to the output fUe. The initial all occurs just before COPY
uys to locate the input file, the second call occurs before it uys to verify that the output
file doesn't exist, the third all occurs before the fust read, and the fourth occurs
before the fust write. The subroutine should prompt the user to switch disk volumes for
a single drive copy. The optional Unenum parameter cannot be used in immediate
mode.

cos
: :• cos (&eZpZ')

)PRINT COS(l.S71)
-2.03673E-04
)

COS returns the cosine of an angle given in r:~dian.s.

198 Chopter 8: BASIC Reference

CRUTE

: :• CREA'!'E pathname, {FIL'l'YP•DIR . '!'X'l' . SRC . BDF · ubezp.r) [,aez:pr]

)CREATE a/Piea/Applepiea, FILTYP-TXT
)CREATE Attache, FILTYP•l72, 4212

CREATE is used to make subdireaories, text files, source files, data files, or any other
file type. You must specify the name of the me you "W3%U to create by following the
reserved word CR.'E.A. TE with the new pathname. 'The optional m TYP- parameter may
follow the pathname sepanted by a comma.. TXT specifies that a text file be aea.ted.;
BDF specifies that a BASIC data file be created; and DIR specifies a subdirectory. If the
m 'I'YP• option is not used, a 'IX'I' f.Lle is created 'Three synonyms are supported for
the Fn.'I'YP• option: n:xT may be used for 'IX'I' files, DATA may be used for BDF
.files, and CAT may be used for DIR files.

A file's Subtype may be specifJed by appending an uitb.metic expression to the
CREATE argument list. The subtype is required only for ra.ndom·acc:ess data rues, and
it specifies the logical record size. GS BASIC requires this record size be in the range of
3 through 32,767. For other file types, the range of 0 through 65,535 is allowed, and the
meaning of the subtype varies according to its flle type. If no subtype argument is
given, the subtype defaults to 0. A subtype of zero is al"W"ays used for DIR files,
regardless of the subtype given.

Any arbitrary file type can be created with the Fn.'IYP-ubezpr option. The unsigned
byte expression (ube%pr) must result in a number in the range of 0 through 255;
otherwise, 2n illegal quantity error results. A partial list of the most common flle types
is found in Appendix J. You must understand how the subtype is used by other
application programs for their specific flle types if you are creating such a flle.

An attempt to create an already existing flle generateS a duplicate flle error.

DATE

: :•DA'!'Et~r)

The DATE funaion is used to read the Apple llGS dock date fields as numbers rather
than as the variant format string returned by DA n:s. The ubapr must be in the range
of 0 through 4. The DATE function must be called with a zero argument to aaually
update the v:Uues returned for the other argumentS to the current date. Tile result
returned for argument zero is the year less 1900, for example 87 rather than 1987.

The requirement that the funaion zero be called first proteCts you from having the
date, month, or year change berween calls for the other results. This problem is
commonly known as •the clock rollover• problem. If DA TE(O) is not called·
immediately prior to using DATE with the other paramete:s, the function results will
reflect the date at the time of the previous DATE(O) call. You should not call DATE(O)
a second time until you have retrieved all the other JeSults into your variables.

Chapter 8: BASIC Reference 199

Eypct!OO
DATE(O)
DATE(1)
DATE(2)
DATE(3)
DATE(4)

DATA

Resylt
Ye:u-1900, W7 is retumed for 1987)
Year
Month (1 through 12)
Day of month (1 through 31)
Day oi week (1 tbrcugh 7, Sunday - 1)

: :•DATA (l..i.~ezal. • a~Z~ACJ ·zeal.· .i.A~eqez) [{, [l..i.~•zal. · •~z:iaq · ~•al. · int•q•~l l l

)1158 DA%A "Panjandram",1.4142l,De~icit'

DATA aeares a list of elements that em be used by a READ st:uement.

DATE$

:: •DATES
: : •DATES u!»ezpzl. uezp~2. u!aezp~l

DATE.$ is both a reserved variable (fust form) that returns the current date as a string,
and a statement (sealnd form) that sets the Apple ncs dock date to the year given by
ubezprl. the month given by ubczprl, and the day of the month given by ubc:zpr3.
You must be sure that the panmeters fall into the following ~mges: year 0 through 255
• year-1900, month 1 through 12, and day 1 through 31. The current time setting is not
disturbed by changing the dare.

The string format for the .fim form is derermined by the date format setting in the
Canuel Panel.

DEF FN and DEF PROC

::• DEF m aame{%'0'&·.-·s](r.ar{,ftl'i) • ezpr
or
::• DEF FN aame{%'0'&'•)("'f'V{,nr}): [swcment list)

JrN'Dame • ezpressJoa

!ND PN Amcdoaaame

::• O'EP PROC aame{("'f'V{, nr})]: [statement Ustl

END PROC [procname)

)10 OEF FN C~rcumf(X) • X•2•-I
)20 OEF FN Sworded#(CI) • I~(RNC(3)*l00)

)30 OEF FN MSBY7.MAT(OED) • OED•LOG(33)-ABS(F~)

200 · Chapter 8: BASIC Reference

'The DEF swemem allows you to def.ane functions and proc:edures for use in your
programs. DEF FN allows you to def.ane single-expression functions or multiline
functions. Multiline functions can only be referenced in a LET statement expression.
Single-line func:iions can return string values, whereas multiline functions can only
return numeric values.

When you exea1re your program, BASIC searches through all the lines ofyour
program for D£F PN and D£F PROC swemenrs and builds a spec:ial enuy in tbe
variable table for each function or procedure. "'bis DE:P scan validates the D£F
starement and the corresponding END statement and may genemte error messages if it
.finds incorrect symax.

+ Note: 1be DEF statement must always be the first statement in a program line.
II you embed a DEF statement later, the DEF scan will not find it, and the message

?ONDEF 'D PROC/FtnfCl'ION ERROR

will be displayed when your program references the function or procedure.

DEF PN allows you to define multiline numeric functions to be used in your programs.
'Ihe function's argumentS must be simple variables. :Each argument becomes a local
variable in the tempot2J'Y local variable table. You may create additional local
variables with the LOCAL statement in multiline functions. All function defmitions
must have at least one argument, but procedures need not have any.

Procedures are generally faster than GOSUB routines because the program is searched
once for the location of the procedure during the DEF scan instead of every time it is
called.

Chapter i, •Advanced Topics,• provides a more complete discussion of functions
a.nd procedures.

DEL

: :• DEL l.i..DaAUal "l.abal.1 { 1i.Aaznm2 · l.abel.2]

DEl. dele~ lines from the program stored in memory. You can specify either a single
line or a range of lines to be deleted. "'bis command can only be used in immediate
mode; it cannot be a statement in a program.

lDEL 7

lDEL i:3.:9:3
) DEl. PAS'!-Ft1'!t1RE

Each of the examples above will delete all existing lines of the program c:urrently in
memory within the specified range (including the single line).

0\opter 8: BASIC Reference 201

DELm

: : • OEl.E'.rE: pa~ ...

) CEI.E'!E /T: .. /Banana

'Ibe DEI.E'IE statement is used to remove the subdireaory or f.U.e specified as its
argumenL A subdireaory can be removed only if all files in that .subditeaory have
been deleted. .

Even if all files in a root dUeaory have been removed, you cannot remove the root
direaory.

A number of errors an occur with improper arguments appended to a DEI.ETE
staremenr 'They are summari2led below.

Error message

?VOLOME NOT FOOND ERROR
?PATH NOT FOCNO ERROR
?F:LE NOT FOCNO ERROR
?F:U: LOCKED ERROR

?WRI':E PROT!C':ED ERROR
?FIU: BCSY ERROR

Digit spedficuioas (d1gicspecs)

Cause

Volume naml! qiven does no1: exis1:.
SW)ctirec1:ory does no1: exis1:.
Local file name does no1: exis1: .
SuJ:Idirec1:ory con1:ains files, or speci!!.ec
file is locked.
Oiske1:1:e is wri1:e-pro1:ec1:ed.
The file is Already open.

A • reserves one numeric digit position. Leading zeros (lf present) are replaced with
spaces.

A Z reserves one numeric digit position, just like a •, except that leading zeros are
printed.

An 4: character reserves one position for a numeric digit or comma. Comm2S are
.inserted after every third digit left of the decimal point. Commas are included in the
character count, and leading zeros are replaced with spaces. At least five digit
positions must be reserved to the left of the decimal point when using ct.

DIR

::• OIR (~•kA ... · d~:path [/w~ldaazd[,~ypl~•~ll ·aezpz)
: : • DIR [wlld.cazd [, ~ypl.~•~l immeciia1:e mode
: :• DIR [•.apz) defe::ed mode

202 Chcpter 8: BASIC Reference

"····

) DIR .D:Z
lDlR
) D!R /Applel
) DIR -, GSB, l'DF
l DIR • • l'Xl' • Tn
>OIR AB•t•
l DIR -, -GSB, l'OF, l'Xl', BIN
1000 DIR • /Applel/Applelt.ind•

DIR displays an SO-column listing of a root directory or subdireaory specified by the
directory path following the reserved word DIR. II the speci.fied pathname is a given
volume name, then the names of an files in the given root direaory are displayed on
the saeen and the names of any subdireaories of the root directory are also
displayed.

One or two MouseText characters will precede the display of the entries from the
direaory to c:reaie a visual key (a pseu~icon) for the file types commonly used with
DGS BASIC. A MouseText icon will be assigned for BASIC program files (GSB), data
~Jles (BDF), IDF files, 1Xr files, and DOC files, as well as SYS, O.S, and BIN flles.

The ~dcard field is a special form of a filename defined solely within the DIR
command. 1be wildard filename defines a pmem usecl for selecting a subset of the
entries within a directory or subdireaory. Three special characters have wildcard
meanings, and all other characters must be matched enaly tndudtng spaces, except
that uppercase and loWercase letters are treated as the same.

ibe two simple wildcud characters ~ the number sign (•) and the dash (-). The
number sign c:haraaer matches any one-digit character, and the dash c:haraaer
matches any one c:ha.raaer (induding digits). For example, the wildcard paaern P•
will match all IWCKharaaer fllenames that begin with p or P and end with .a digit.

'Ibe other wildcard character is the equal sign character (•). This will match any
mtmber of characters of the direaory entry name. Thus, a wildcard pattern of just an
equal sign will match all entries in the direaory. Normally, the • character is used
before or after other c:har.aaers to aeate a pattern with some feted and some wildcard
c:ha.raaers. For example, the pattern • .TXT will selea all the filenames that begin with
any characters and end with the four characters .'I'XT. The equal sign charaaer cannot
be followed ii:nmediately by another equal sign or dash character in a wildcard
paaem.

The equal sign character can be used more than once in the same panem, with the
above limitation. DIR allows for up to 32 characters in direaory entry names and
patternS. The • and - c:haraaers can be used as often as needed, and they can be used
.sequentially.

The optional typlist is defined as follows:

: : • i -) :''!P { 4 '!''!P }

Chapter 8: BASIC Reference 203

The TYP fields ate the three-letter file type abbreviations used by DIR and CATALOG
in their TYPE field output display. When a typUst is given·following a wildcard
pattern, only those directory entries with file types matching the typllst ate displayed
by DIR. 1be optional leading minus sign inverts the me211ing of the entire list of file
types and indic:ares that an file types except those given in the list are to be displayed.
In deferred mode, a TIP field may be a numeric expression with a value from 0
through 255.

If no p=athn;une is given, the pathname contained in PREFIX$ (prefiX 0) is assumed,
along with a def2ult wild.cud paaem of a single equal sign and an file types.

If Ot.rrPUT• is set to anything other than 0, the direaory listing will be sent to the
specified OtJI'PUT file instead of to the saeen.

DIM

: :• DIM &3:&Y zaa.- (au!»aaJ:i.pt(, auacJ:i.pt})
{, &J:J:ay a ... (auacJ:i.pt (, auac:i.pt}) }

)OIM MIN0\(7,2,3)
)DIM BLOCXS! (Sll,lS99), Bu~s@(2,4S}, L&nter.ns,(9,0,8), LY(l6)

You can alloare space for one or more aaays in your progr2m with a DIM (for
dimension) st:uemeru. 1be maximum si2e for a subsaipt is 32767, and the maximUm
total .size for a single numeric aaay is 4096K (4,194,000 bytes).

If you assign a value to an aaay before defining it with a DIM statement, BASIC
automa.tic:ally creates an aaay having 11 elements per dimension, with subscriprs
rmmbeted from 0 through 10. If the statement

I PRINT 0' (18, LOOPS!

is executed before the aaay D& is defined, zero is printed but no array is created

If the value of a subscript refers to either a nonexistent dimension or a nonexistent
element (one that is greater than the highest numbered element in a given
dimension), a bad subsa:ipt exror occ:urs.

A special type of aaay, c:alled a structure, an be defined with the DIM sutemeru.
There il no corresponding simple variable for this type of aaay. A suuaure array uses
the exclamation point(!) as irs type charaaer. A detailed desaiption of suuaures ~
be found under • Atrays• earlier in this chapter.

DO

::- 00

1be DO swement defines the beginning of a DO .•. UNm.. loop or a
DO ... WHILE ... UNTIL loop. (See the WHII.E and UNTIL statement desoiptions later
in~~~ ~

204 Chcpter 8: BASIC Reference

'··-

EDIT and EDIT TOt

: :• EDI': l.J.AeD11a1 • l.U.l1 t •. - l.~eAua2 "l&kl2 J

::- EDI~ TOt fil.aaa

1be EDIT command is used to edit the statements of your BASIC program. 1t will
search the program for the line with llilenum.l or Iabell and display that line or the
next line in tbe program for editing. Edit mode divides the text saeen into two
textpons. 'Ibe boaom four lines of the screen are used for editing the aurem line, and
the n:mainder of the saeen funaions as the normal saolling display.

Editing is clone using the Apple DGS UIR editor. Pressing the Return key indic:a.tes the
line is complete. The Escape key will terminate edit mode and restore the saeen to a
single 24 by 80 scrolling textpen. The following um edit commands are supported:

Control-D and Del Deletes the c:haraaer to the left of the cursor
:Conuol-E Seleas insert versus replace mode and cursor
Conuol-F Deletes the c:haraaer under the cursor
Conuol-H(<-)Moves the Clll"SSr one charaaer to the left
Control-U(->) Moves the ausor one charaaer to the right
Control-X Deletes all the characters in the line
Control-Y Deletes all the character from the cursor to the end of the line
Control-Z Restores the line to irs original value

The EDIT and AL"TO commands are desaibed in more detail in the seaion titled
•:Editing Yow Programs• in Chapter 1.

EDIT TO • file:Dum is an additional mode for the EDIT command that will write text
lines to the open file indicated by the file nwnber fllemun, one line at a time. No line
number or program line will appear in the edit window, just the insert cursor. The
saeen will saoll up two lines before the edit window appears.

1be open file may be a ProDOS 'TXT or SRC file, opened either FOR OtJTPt.,~ or FOR
APPEND, or a charaaer device file such as PJU!'onDl Each line is sent to the file and
echoed to the main window when the Return key is pressed Since "'XT and SRC files
always have a 512-byte Proi;)OS buffer, the text will not be written to disk until 512 bytes
have been entered You must open the flle yowself, to assign a fllenum to it, and
close it to ensure that the last lines typed are flushed to the disk file. As with the EDIT
command, the edit mode is exited by pressing the Escape key.

EDrr TO will not write to files with flle types other than "'XT or SRC or write to flles
opened only FOR INPUT. When EDIT TO mode is used the immediate mode versus
deferred mode distinction normally present during EDIT does not operate.
Everything you type. even jf .it begins with digits, is written to the file and echoed to the

SYNTAX NOTATION 205

saeen. If what you type happens to be a valid BASIC program line, it is still treated as
ordinary text and not checked for syntaX or tokenized.

EDIT and EDIT To- force'SO-c:olumn mode, normal text, wich MouseText off.

ELSE

: : • ELSE l.i.Aea'lla "lU.l " a~a~...at l~a~

1be ElSE statement can be used as a continuation line in a muWllne
lP ... 1HEN ... ELSE conditional logic srarement. If an :ELSE statement occws alone or
is branched to ditealy, it behaves like a REM statement, skipping everything on the
line. (See the IF ... TiiEN starement desaiption later in chis chapter.)

END

::• END
::• END FH a. ...
: :• END PROC [~)

END wichout any panmerers is che same as STOP, except that no message is displayecL
END FN ssame and END PROC [ssamel are used in conjunaion with DEF FN and DEF
PROC, respectively. See the DEF statement desaiption above for details.)

Engenering specification .

: :• [+'-1 eaq~azot [~.:acp&ft) ezp

)PRINT OSING "+3t.4t4E"; 1729
-+ 1. 7290E+03
)PRINT OSING "+3Z.4Z3E"; 1729
+01.729E+3

The engineering specifiation (engrspec) is closely related to the scientific notation
specifiation. It forces che exponem•s value to be a multiple of 3. and has a awtimum
of thtee~git positions to the left of the decimal point.

Either _.s or .Z's an be used to indiate digit poaitions, and their choice is signifiant
only to the left of the decimal point; • replaces leading zeros with spaces, and Z prints
leading zeros.

EOF

BASIC assip the file reference number of the file causing an EOP error to the
reserved variable EOF. You can then check the reserved variable EOF to determine the
affeaed file.

When you use the reserved variable EOF in an ON ... GOTO or ON ... GOSUB
staremeru, you must enclose EOF in parentheses. For example:

206 Chapter 8: BASIC Reference

\ ·

) ON tEOFl GOTO 100,200.300

EOFMARK

: :• EOFKARJC (~£.l.eau•

EOFMARK retums the a.mem end-of-flle mark for the specified open flle. The value
returned is in the range of a positive double inleger.

ERASE

: : • ERASE •azo£.ul.e-aaae • azozoay-name () { • •azo£.a.bl.a,. • &Z"Z"ay _.. () }

ERASE deletes the variable or array and frees all the memory space it oea1pied. Any
data in the array or variable is immediately lost and cannot be recovered The array
names must be followed by two parentheses, as shown.

The freed memory will be used for new variables, arrays, or string data.. For the
-memory to be used for file buffers, invokable modules, or the library dictionary, you

must first use the CLEAR statement must be used to reduce the size of the dara segment.

ERR

When BASIC encoumers an error, it assigns the reserved variable ERR a code number
corresponding to the type of the detected error. You c:an then Ieier to the reserved
variable ERR to determine what kind of error oc:c:urred. For a list of these codes and the
corresponding error messages, see Appendix B, •Error Messages. •

ERROR

: : • ERROR ~Z'

The ERROR statement generates a user-deflned error code, which c:an be trapped by
the ON ERR statement. The ube:xpr may be any number from 1 through 255. If the
number equals a defined BASIC error number that error message will be displayed;
otherwise, the message

USER PROGRAM ERROR •nnn

will be displayed

ERRTXT$

: : • I:RR':X'!'$ c'llb-.zpzo)

The ERR'I'X'I'S function returns a string, which is the text of the error message for the
error number given by ubezpr.lf ube:xpr is not a BASIC error number, a null string is
reru.med

SYNTAX NOTATION 207

EVENTDEf

: : • EVENTOEF .i.Aclea { , lJ.Aea11a' l&JMl }

EVENTDEF defmes the beginning line numbers of the event-handling routines that
will be c::alled after T.ASIO'OLL ON is executed. TASKPOLL ON activates the polling for
Task Master events. ncs BASIC has an inr.emal table of 64 events, 7:7 of which may be
returned by Task Master. The imema1 table is indexed using the event code number
returned by Task Master. If the enay in the table i.s zero, the event is ignored (except
for event 1 i).

EVENIDEF defines the line number to dispau::h conuol to when a Task Master event is
returned. 'Ibe index parameter i.s a mtmber from 0 to 63 that defines which event you
want to handle in your program. and the lbmum. i.s the event-handling routine. The
Task Master doc:u..mentation under the W'mdow Manager section of the .App/4 IIGS
Toolbo:l: Re.{e1fml;s m;amg•l defines the meaning of the wrious event nnmbetS from 1
through 27.

The routines referenced by EVENIDEF must end with a RE'nJRN 0 (zero) st:atemenL
1bis special fonn of the RETt.i'RN st:aremem an only be used as the last s~rement in an
event-handling routine for Task Master events.

EVENTDEF an defme sequential events by following the index with multiple line
mtmbers, separated by commas. If you w:uu to skip an event, use a lbmum of zero.
Normally, using Task Master only requires defming a few of the 27 possible events; see
Using Task Master in the Toolbo% Refenmce manual

Event 17 i.s a special case related to the menu evenrs from Task Master. As long as event
17 i.s left a zero, ncs BASIC assumes that you have defined the menu-item-handling
routines with the MENt."DEF statement and directs the individual item-selea evenrs to
the event-handling routines. (See the MENti'DEF description in this chapter.)

EXCCPTION

: :• EXCEPT!ON ON uezp~
: : • EXCZPT:ON OFF
: :• EXCEPTION 0

ncs BASIC implemems floating-point arithmetic operations with the SANE
mathematial routines (tool set) and provides the programmer with conuol over the
exceptions generated by the tool seL There are three modes available in handling
these exceptions that an be seleaed by the EXCEPTION statemenL

208 Chopter 8: BASIC Reference

The default mode is seleaed with EXCEP'IlON OFF. Unless you have read the Apple
NumeriCs Manual and have a complete undemanding of what exceptions are and
how to use them, you need not change the exception-handling mode. In the default
mode, DGS BASIC returns the standard error messages for the important
mathematical calculation exceptions and ignores the unimportant exceptions. Tile
details of exception handling in the default and other modes are provided in
Appendix K.

EXCEPTION 0 (zero) is used to disable all SANE exceptions and will cause all
exceptions to be ignored and pass through NaNs to the expression results and into the
real variables.

EXCEPTION ON is used to enable exception trapping in your program of a specific
type beyond the normal default settings. The unsigned byte expression must be a
m1mber between 0 and 63 and is used as a mask to filter the SANE exceptions. 1be
SA. '1\lE halt veaor is alwzys enabled, and all halts are received by DGS BASIC. The mask
is used to determine if any specific exception will generate a BASIC error message or
be ignorecl

ON EXCEPTION and OFF EXCEPTION can be used to handle SANE exceptions in your
program. (See -using ON EXCEPTION" in Chapter 7 and Appendix K.)

EXEC

: :• I:UC ~~.lepatb{, OFF] {, "&r~tl { [, &r~tD) })

: :• EXEC ~~.lepatb {,OFF) [, aezpr)

: : • EXEC t~i.le.Dua(, OFF)

::• EXEC t~i.le.Dua[,OIT)

The EXEC command causes BASIC to take its input from a sequential text file rather
than the .CONSOLE device, normally the keyboarcl Th.is sequential text file may
contain any BASIC statement, lines of a program, or commands that may be entered
in immediate mode. Tile various uses of EXEC are explained in more deta.il in the
•Automatic E.xeoltion• seaion of Chapter 1.

The two forms of EXEC perform the same overall funaion but with some useful

differences. EXEC filepath will al-ways return control to the .CONSOLE device when
the EOF of the EXEC me is reached, automatically dosing the EXEC me. BASIC uses
an exdusive file C•30) for EXEC files (•31 is used for CATALOG).

EXEC #fllennm seleas an open file as the new source for the console input stream,
but it chains to the previous EXEC flle, if an EXEC was already in progress, returning
conuol to that EXEC upon reaching its own EOF. EXEC #IDenum chains to the
.CONSOLE device if an EXEC is not in progress. If the flle type of the EXEC .::1::: is not
TXT or SRC, a file type error will occur.

SYNTAX NOTATION 209

The OFF option will suppress the normal immediate mode echo behavior for input
lines and not display the input text on the .CONSOLE display screen.

The optional argnmenrs (or string expression) allow substinltion of values provided on
the EXEC command line for placeholders speQfied within the EXEC flle. Arguments
are extracted from the comma-separated list of literal characters following the initial
quotation mark, or the value of the string expression. II a suing expression is used, it
may not begin with a quotation mark character. The quoted argument-list option uses
all c:hat:a.aers following the quote tO the end of line as argument data; a closing
quotation mark is optionaL

Arguments are sepa.rated by commas, and two quotation mark in a row are taken as a
single quotation mark when processing the quoted argument data into the EXEC
argument buffer. The contents of the string expression are copied intO the argument
buffer as given (induding any embedded quotation mark).

When you create an EXEC file, up tO nine formal panmeters may be encoded intO the
EXEC file as a special three dw'aaer sequence. The sequence is {%} where the x
represenrs any digit from 1 through 9. The formal par:ameter will be replaced by the
argument whose position in the argument list, counting the fust argument on the left as
passed from the EXEC command as position one, corresponds with .x For example,
all the characters up tO the fU'St comma become argument one and replace all
occ:utTenc:es of the sequence {1) in the EXEC text lines before they are passed to the
interpreter.

Arguments can only be passed with EXEC parhname and cannot be passed with
EXEC #; that .is. there is only one argument buffer and one set of argumentS returned
by all formal par2meter references. However, an EXEC tile invoked by EXEC • from
within an EXEC file invoked ·by EXEC parhn:ame (with arguments) will reference the
arguments in the argument buffer.

Because an EXEC flle exeanes in immediate mode, it can use the commands available
there to conuol the behavior of the EXEC file. Apple ncs BASIC allows you to use
INPUT •30 to read from the c:wrent EXEC file invoked by EXEC pathname. As a result
you can skip forwud conditionally within an EXEC file by using immediate mode
INPUT tt statementS within immed.i.a.Ie mode IF .•• 11iEN ... ELSE Uld DO ... WHILE ...
UN1'IL construas.

NEW without the optional program memory size parameter may not be execuced
within an EXEC ~ use

DEL l-65279: CLEAR.

EX EVENT@

: : • EXEVENTC! nab~: I

210 Chapter 8: 8AS&C Reference

The ~"TO funaion retu.m.s one of 32 exremal event entry point addresses
available within DGS BASIC. 'Ibe address reEUmed may be passed to a toolbox
funaion as the address of an event-handling routine. The argument is a number from
32 through 63, and it specifies which external evem-handiling address is to be
returned

An e:aemal tool set funaion must]SL to the address returned by EXEVENI'O when the
tool set is called by Task Master polling (aaivatecl by TASKPOLL ON). "'be line
number of the event-handling routine in your program is defined with the EVEl'n'DEF
statement. The index (event mtmber) in the EVEl'n'DEF sauement must match the
argument to tbe EX:EVENTO fu.naion. The extemal enuy poinrs dispatch as if the Task
Master polling mechanism bad retumed an event code in the range of 32 through 64.

'Ibe highest event numbers should be used first in your programs since Task Master
may be expanded in the f'u.ture to use the lower numbers. See Olapter 7, • Advanced
Topics.•

EXFN and EXFN_

: :• t:XFN!' ·! ·' · t · s J libllaae [Clezp:r· @Y&Z'[{, lezp:r ·, @•a:r}])]
: : • EXFN [t · @ • ' • f · $) _l~!:ua&ae I CJ.ezp:r · @Y&:r [{ , l.ezp:r · , @Y&:r}])]

)PRINT EXFNC&lcX(2)*32/256

EXF'N exeanes an external assembly-language function loaded by an INVOKE
.statement, and E:XFN_ exeau.es external functions defined by a UBRARY statement,
either of which may return a numeric or suing result. The library diaionary contains
the Ubaames that £XFN may all. The hbrary diaionary is loaded by the UBRARY
statement for toolbox external funaions and by the D'NOKE state:nem for invokable
module funaions. If the Ubn.ame is not found in the library diQ.lcnary an

?ONOt:F' 0 PROC/FONCTION t:RROR

will be displayed.

m:N searches the invoked module name dictionary, and EXFN_ searches the
toolbox UBRARY diaionary. Any enuy point in the toolbox an be called with :EXFN,
even if it doesn't return a result on the stack given the proper interface definition in the
dictionary. The 1DF files supplied with DGS BASIC are defmed so that this is possible,
and mOSt funaions return the error status as the result of calling a procedure as if it
.weze a function.

Standard tool set procedures return error status in the carry and the A register. When a
tool set procedu.re is c:al1ed with EXPN_, a zero is returned as the function result when
the carrv is clear, and the conrenrs of the A register are returned as the result when the
cury is set.

If you want to pass an integer argument, include an integer variable in the parameter
list, but as just a variable, not as an expression.

SYNTAX NOTAilON 211

To pass the address of numeric variables, use the VA.RP'I'R() function. String variables
are converted to counted strings, and the address is passed for the argwnenL EXFN
and EXFN_ process arguments in the same manner as the CALL statement. See the
CAll desaiption in this chapter.

EXP

: :• EXP <aezp:)

) PRINT EXP (3)
20.0855
)

EXP raises e (to 6 places, e equals 2 718282) to the power indiated by the argument
wlue.

EXPl

: :• EXPl <aezp:)

)PRINT EXP (3)
19.0855
)

EXPl(;z) accurately computes eZ -1. If the argument xis small, such as an interest rate,
then the computation of £XP1C:z) is more accurate chan the straightforward
computation of eX-1 by exponentiation and subcraaion.

EXP2
: :• EXP2 !aezp:)

>PRINT EXP2 (3)
8
)

EXP2 raises 2 to the power indiated by the argument value.

FILE

:: • F!I.E < •.zp: {, Fil.'l"YP• TXT. SRC. BOF. a.IMzp:)

1be PILE funaion retUrnS the V2lue 1 if the file given by the pathname suing expression
exists, or the vaJ.ue 0 if the tile does 110(exist. If any error other than file not found is
encountered, that error will be displayed. If the optional me type is not specified, then
aue will be returned for any me type. If the me type is specified, and the me has some
other flle type, a file type error will occur. The reserVed "variable AUXIDO will contain
the subtype from the directory entry of the file. The funaion ffi.TYP(O) will return the
file type of the file.

212 Chopter 8: BASIC Reference

...

FJLTYP

: :• Fll.'!'YP ~~~l.eAUal

The mTYP function returns the file type of an open file from the BASIC FCB.
FIL'IYP(O) is a special c:a.se that returns the file type of the last FILE fu.naion call.

FIX

: :• FIX caezpr)

)PRINT FIXC3.333)~TIX(-3.333)
3 ~-3

)

FIX returns the integfal portion of the V2lue of the argument, truncating the fraaion of
the absolute V2lue of the argument. FIX differs from INT in that FIX does not return the
next lower number for a negative argument Fix is equivalent to the

_ SGN(x) • Il'."T(ABS(x)).

F"txed-point specification

::• t-J ($] r··-] dlgitspec
::• r-J ['*"-] [$] cligitspec
::• [•J (SJ digitspec [+·-]
::• $$[+"-] cligitspec
::• SS cligitspec [•·-]
::• t-·-J ISJ digitspec

JPR!N'! USING "'•ttt.f.tt"; 3.Hl59
• 3.142
lPRINT OSING "'+6Z.3Z"'; 09999
+009999.000
lPRIN'! OSING "'+U.3,"'; 09999
~ 9,999.000
lPRIN'I OSING "'•••6t.3t"; 09999

···9999.000
lPR!N'!' OS!NG •••S6t.3t-"'; 09999
•••$9999,000
)PRIN'I OSING "'+S6t.2t"'; 09999

- $9999.00
lPRIN'I OSING "'SS+6t.3t"'; 09999

$+9999.00
IPRINT OSING ·-U.3t"; 09999

•9999.00
l PRIN'I OSING •s--6t.3t .. ; 09999

59999.00+
l PRIN'!' OSING "'SSU .3t+"'; 09999

.s 9999.00+

SYNTAX NOTATION 213

The fixed-point specifiation (fix.spec) controls the output format of f1Xed-point
numben with a PRINT USING or PRINT# USING statement. Frxed-point numbers are
any numbers displayed without exponents, including integers, long integers, and real
numbers.

A digitspec, composed of combinations of the chanaers •. &, and z. is used to
defme the format of the number being displayed. (See the digitspec description in this
chapter.)

If you specify a fJXSpec with a fractional part and apply it to an integer expression, only
zeros will appear to the right of the decimal point, unless you use the SCALE funaion.

The entire field is filled with exclamation points if the number of digits displayed
exceeds the number of digits specified to the left of the decimal point.

The following are the tixspec symbols:

+ reserves a character position for the sign. The sign is printed in all cases.

- reserves a characrer position for the sign. The sign is printed if negative; otherwise, a space is
printed.

S reserves a character position for a dollar sign.

.. means print asterisks instead of spaces in unused c:haraaer positions.

++reserves the rightmost unused position(s) for the sign (and following dollar sign, if any).

-is the same as ++, except that the sign is replaced by a space if it is positive.

SS reserves the leftmost unused position(s) for a dollar sign (and following numeric sign, if any).

You annot use S.S, ++, or- if you u.se Z for the digitspec.

Note that the .. , if used, must be the ti.rst thlng in the f1X5pec and cannot be used if Z is
used for the digitspec beause Z leaves no unused digit positions. The dollar sign may
come next, or the number sign (+ or -). (The sign of the number can be placed after
the last digit.)

FN•
: : • FNY&J:.iU~eAa.. • ezpze• •.ioA

The FN •, or FN LET, stacement is a special case assignment statement used inside a
multiline function or procedure defmition. The variable can be the name of a leal
variable, a function or procedure argument, or the name of a funaion. The variable
must be in the current loa! symbol table, otherwise the message

?NOT LOCAL ERROR

will be displayed.

214 Chopter 8: BASIC Reference

Except for this restriction, FN u:r is the same as the u:r statement. Normally, it is
used to assign a function its resulting value, but i1 is also useful to ensure that an
assignment within a procedure or function is loc:al, not global.

Good programming practice would suggest that all loc:al variable assignments be done
with PN •, and all global variable assignments be done with u:r, thus docu.menting the
programmer's iment and providing an error message if an incorrea variable name is
inadveru:ntly used.

FOR- NEXT

: :• FOR ootst:ol ._:.i.~e • aezp:1 '1'0 aezp:2 (STEP aezp:l]
: : • HEX'l' [OOISt:Ol Y&:.i.Ule { , OOilt:"Ol Y&:.i.aJ:»le})

) lS FOR Indax•l to 500 : PIUN':r C&:d+INO:CC : NE:X'1' Index

FOR and NEXr allow a group of statemenrs to be executed a specified m•mber of times.
'The fust conuol variable given in the NEXT statement must be the same as the one

~ n:uned in the most recently exe01ted FOR statement; the second control variable
given must match the second most recently executed FOR statement, and so on.
Incorrectly matched FOR and NEXT statements cause a NEXT without FOR error when
a NEXr statemem is found and a matChing FOR loop is not currently aaive.

When the FOR statement is executed, it searches fOI'W2J"d in the program for a
matching NEXT statement, properly accounting for nested FOR statements. !his
forward search only counts NEXT verbs that begin a statemenJ (not a program line),
ignoring any NEXT verbs embedded in a TiiEN or ELSE clause of an IF or ON
statement. When the search locates a properly nested NEXT, it is considered a match
if the control variable is absent.

II the control variable is present and does not match, the search continues forward
until a NEXT with a matching variable name is found. During this latter search, no FOR
statements are allowed. II a NEXT with a control variable matching the FOR statement
is not found or another FOR statemem is encountered, a FOR without NEXT error is
will oc:c:ur.

The control variable may be any integer or real variable, but not an amay element or a
string variable. If the initial value or the computation of the next value of the control
variable generates a result that is out of range for the type of the control variable, an
overflow error will ocau.

Both the value of the TO limit and the value of the STEP da.use must be within the range
of the type of control variable used. The FOR statement coerces the value of limit and
the step to tbe type of the control variable and will generate an overflow error if they
:ue out of range. This conversion will also round any nonintegrallimit or step value
used with an integer control variable, without giving any error message.

SYNTAX NOTATION 215

FIE

: :• FR£

FRE is a reserved variable that returns the amount of remaining unused data segment
memory, measured in bytes. See Appendix 0, -Interpreter Data SCNaures, • for
information about using memory space more effidendy.

Each time that you ac:c:ess PRE, suing data memory is compressed to recover unused
sUing space.

FREMEM

: : • FREMEM ('IIMzpZ')

PRE.'\iE.'\1 is a funaion that remms other information about awilable memory, as
follows:

FR.EMEM(O) retum.s the free memory in the data segment, without fh3t performing the
garbage collection to recover unused string space.

FREME.'I\1(1) return5 the size of the data segment after performing grabage collection to
recover unused suing space.

FREMEM(2) rea.uns the amount of memory currendy allocated for arr:lys.

PRE.\of:EM{3) returns the amount of memory amendy allocated for simple variables
{not including any local variables).

FREMEM(4) returns the size of the current program.

FREME.'I\1(5) returns the size of the program memory segment.

FREME:.~(6) return5 the size of the library dictionarv segment.

FREMEM(7) rea.uns the Memory Manager's unallocated memory tow (and does a
CompaaMem without unlocking any BASIC memory .segmentS).

FREMEM(8) rea.uns the size of the Memory Manager's largest free contiguous block.

PR.EMEM(9) returns the toW memory installed in the system (excluding the 64K
dedicared to the sound generator).

GET I

: : • GETt ~ ~J..aua(, [J.eA.~] [, zoeCAwa)] ; a~YaZ'

The GET4t statement reads a record from the random-access file given by fllenum
from the record given by recaum and stores the data in the stNc:tUre arr:lY beginning
at the specified element. 1be last parameter can only be a structUre variable reference
(with a subscript).

216 Chcpter 8: BASIC Reference

\

~ recsJze of the file, set when the file is opened, determines the read size, unless
you use the optional length parameter. The read size is limited by the leftmost
dimension of the suuawe amy and the beginning element given by sma.r.

GET$

: :• GE'l'S [f~~l.ezama [,~cmaa)] ; ••a:

)llD GE'.r$ P:e .. $

GE'I'S is used to assign a single c:baraaer or numeral from the kevboard to a string
variable in your program. without displaying it on the screen and without requiring
that the Return key be pressed

GE'I'S with the fflenum option will read a single byte from the specified file and
assign it to the string variable. Since files can contain values that are not defined as
.AScn characters, it is your resporwbility to ensure that the file contains valid
c:baraelelS. Getting a byte with a value of zero and embedding it in a string will cause
unprediaable results later when using that string.

GETS treats ConuoK like any other c:haraaer; it does not interrupt program
execution. GETS cannot be used with a numeric variable.

If the pro~ that uses GE'I'S was called by an EXEC file, the input will be taken from
the EXEC file instead of from the keyboard.

G.SB.HELLO

GSB.HEllO is the name of the swrup program for Apple nos BASIC. !be prototype
interpreter attempts to fmd the me GSB . .HEU.O during initialization. If it fmds the me
(using prefix 0), the me is assumed to be a nos BASIC program file, and an implied

RDN GSB .liEI.I.O

is executed If the file with the name GSB.HEI.LO is a nos BASIC program, it will
commence execution, assuming no errors occur dwing loading. If a me with this
name is not found, the interpreter enters immediate mode after displaying the
copyright notice.

GO SUB

: :• GOSDB l.~Aellma. label

) 287 GOSDB llSS
) 2 8 7 GOSt1B READ :RECORD

GOSUB causes program execution to branch to the line indicated by the Unenum or
label When a RETURN statement is encountered, execution branches to the fU'St line
following the most recently exe01ted GOSUB statement.

SYNTAX NOTATION 217

Nesting subroutines more than 40 deep causes a stack overflow e:ror.

GOTO

: : • GOTO l.iAeAUa. label

)GO'l'O 65200
l l 00 G0'1'0 S'l'lUXES

GOTO causes program exeoJtion to branch to the line indicated by the llnenum or
label. You an also~ it in immediate mode to begin executing a progn.m presently
in memory at a given poinL

HEX$

: :• REX$ (&ezpr)

) PRINT HEXS (780)
)PRINT SEXS(-1024)

HEX.S returns an eight-character string that is the hexadecimal (base 16) equivalent of
the value of the given arithmetic expression. The expression must be in the r.u1ge +/-
2"32-1; otherwise, an illep! quantity error will result. Eight digits are always returned,
filled 'With leading zeros as necessary.

218 Chapter 8: BASIC Reference

GRAF

: : • GRAF INI'l' ~azp~
: : • GRAF OFF
: :~ GRAF ON

GRAF ON 2nd GRAF OFF issue Quic:kDraw II tool Jet function c::alls of the same name,
thereby switching the Super Hi-Res screen on and off, respectively. GBAF INn' must be
exeoJted before using GRAF ON or GRAF OFF; othenvise, a tool set c::aD error will
occur.

GRAF INrr must be used before making any Quick:Draw II calls through CAlL or CAlL%
to allocate zero-page memory and .initiali.ze the QuickDraw mode. The mode is given
by iczpr, and it must be 0, 320, or 640. GBAF INIT does not ezea.ue a LOADlTOOL
call to ensun: a minimum revision level. nor does it load the QuickDraw Auxiliary tool
seL GRAF lNlT immediately issues a GRAF OFF call after the startup call. You must
issue a GRAF ON call to aaivaie video display of the graphics screen.

·, If GRAF INrr has already been issued, a subsequent GRAF INrr will properly stop
QuickDraw II and reaaivate it with the new mode. INlT mode 0 indicates that
QuickDraw II should not be reaaivated GRAF IN1T abo checks to see if the '\Vmdow
Manager, Menu Manager, and ConuoJ Manager are activated. If they are, it issues the
proper calls to inform each tool set of the mode change.

HUST

: : • Bl.!S'.:' !.l.i.zaazaua] t • • - tl.~aza'D&2 J)

HilST is a variation of the UST command that executes a HOME;UST command
sequence. HLIST can only be used in immediate mode. (See the UST desaiption in
this chapter.)

HOME

: :• BOM£

HOME deals aD text within the current text window and moves the cursor to the upper­
left comer of the window.

HPOS and VPOS

: :• BPOS - VPOS

The HPOS and VPOS modifJ.able rese!'\led V21'iables contain £be vertical and
ho~ontal positions, respectively, of the cuneru print position. Changing their values
will change the cwrent print position (and the cursor's position). The position of the
cwsor can be found by accessing the values of VPOS and HPOS.

Assigning vahJes greater than the height of the text window to VPOS causes the ausor
co move to the bottom screen line within the· window. Assigning values ~ter than the
width of the text window to HPOS c:w.ses the Clli'SOr to move co the right .margin of the
window. The value 0 is ccnverted to the value 1. Assigning values outside the range of 0
to 255 to either VPOS or HPOS causes an illegal quantity error.

tF -'THEN and IF -· GOTO

: :• IF l-ap% GOTO li.A..ama "label (:ELSE 1.1..De.cma'l&bel' atateae.ctl.1.at J
: : • IF l-ap% THEN l.i.Ae.cma · l&bel · atateae.ct1.1.•t (: •1•• atataae.Dt
or
::• IF lazp% THEN 1.1.Ae.cua'l&bel"atateae.ct1.1.•t

ELSE 1.1.Ae.cua·l&bel"atateae.Dt1.1.•t
or
::• IF lezp%
~ 1.1.Ae.Dua"l&bel"atate .. At1.1.at
~ 1.1.Ae.Dua"l&bel"atate .. At1.1.•t

)IF A•4 GOTO 4 7 3
·)IF KP+BH GO'l'O 3785
)100 IF Gi MOO F' >2 GOTO l2l
) IF 0 THEN PRINT l
) SO IF 2+2 TEN PlUNT .RPT

(muat beqin next line)

(muat beqin next line)
(muat beqin next line)

) IF S/3>-17 * NOT 2 '1'BEN GOSCB 3000 : INV'ERSE : PRINT "B.i ..
)IF X•l THEN Y•2 : ELSE Y•3
) IF 3<PI.S Tm:N PI.S-PI.S : ELSE NORMAL : GOTO 376
)718 IF NOT Y THEN 3200 : ELSE TEXTPORT l,l TO 4,4 : GOTO 4S7

II the expression following IF evaluates to nonzero (true), the instructions following
11-lEN or GOTO in the same line will be exeruted.. If the expression evaluates to zero
(false) execution will continue with the next line.

A string variable or expression is also allowed as the logical expression of an IF
statement. The expression is considered true if the string length is no112ero and false if
the string is a null suing; it is cre:ued as if you had entered I.EN(se:xpr).

In an IF ... nn::N ~rement, the insuuaions can be a line number or label to which
execution should branch or a statement list for BASIC to execute.

In an IF ... GOTO statement, the instruction must be a line number or label to which
execution should branch. If the Uuenum. or JabeJ does not exist, an undefmed
statement error will oc:cu.r.

1be optional El.SE c:!au.se in IF ... ni:EN statements allows you to specify instructions
for BASIC to execute if the truth value of the logical expression is false. In other words,
when the expression is false, instead of having execution pass to the next higher
numbered line, you can have BASIC execute some instructions. The instructions
following the reserved word EI..SE can be a line number or l.abei to which execution
should branch or a statement list co execute. If the logical expression is true, the ELSE
clause and any statements following on that line are ignored

220 Chopter 8: BAS1C Reference

The IF ... n1EN •.. ELSE statement can be continued on multiple lines as long as each
program Une begins with either 'IliEN or ELSE. Multiline IF ... TiiEN .•. ELSE
st:nemerus can be nested, and embedded IF statements can also be continued on
multiple lines according to the above rule. You must be c:areful to always indude the
ELSE clause for any nested IF statement (even if it does nothing) if you want to pair an
ELSE line with an earlier IF.

When you break an IF sratement into multiple lines at the ELSE 'W!Ib, the 1HEN clause
c:a.nnot be continued any fwther. Any single IF ... 1HEN ... ELSE consuua can be
three lines at mosL
Note that if you compare a numeric expression to a numeric variable using a
conditional statement, you might not get the results you expeaed nos BASIC is
implememed using the SANE math engine, which does floating-point binary
arithmetic with the equivalent of 19 digits of decimal precision (extended precision).
Apple DGS BASIC c:alOllates expressions to 19 digits. However, single· and double­
precision variables only have 7 and 15 digits of precision, respectively.

When you compa~e an expression to a variable, the more precise expression result will
not compare as EQUAL or NOT EQUAL to a variable into which that same expression
owere stored This an be explained by the following example:·

10 Dt•l/:3
20 :tF Dt•l/3 'rB£5 PRI!r! •True" : ELSE PRI5T "False"

You might expect this program to print True but it does not because

Df • .3333333333333330000

while

l 13 - • 333333:!333333333333

and these are in faa two different numbers.

Further details of the issue are explained in Capter 4 and Appendix K.

INDENT

INDEJ\'"T is a reserved variable that contains the number of spaces to be used to indent
FOR •.. NEXT loops in the program listings. Its default value is 2.

JNIT

::• IN:~ ~akD&ae,~o~u.a~ama

INIT is used to iniWdil'r a disk volume in the disk drive designated by the d.lskname
with the given volume:o.ame. In immediate mode, the INIT statement checks to see if
a volume, already present in the indicated drive, is about to be erased If an existing
volume is present, the event queue (typeahead buffer) is flushed and the message

Press ~ .i! you vam to cies'tory t•oaa .. ?

SYNTAX NOTATION 221

is displayed You must type a Y Cory) from the keyboard before the initialization will
begin. If any other character key is pressed the command will be aborted. In deferred
mode, the INlT command does not check for a volume before initialization
(formatting) begins; it is assumed that the program will check for icself and display
appropriate warnings to the user.

INPUT

: : - INPUT [au.:U:aq , • ; 1 T&: { , ••: 1

)1000 INPUT INPUT Zoo$,Gnus,Tolls
) 20 INPUT "!::n:e.r your aqe in years"; AGE

INPUT accepts m1mbers or ten typed at the keyboard and assigns their values to
variables specified in the INPUT sarement. INPUT an be used in deferred exeOJtion
only.

You may optionally include a suing in an INPUT sareme:u. The optional suing must
be a sequence of char.laers in quotation marks, followed by a comma or semicolon; it
cannot be a string variable or expression. When the optional string is present, it is
displayed exactly as spedf~ed; no question mark, spaces, or other punau.ation are
displayed airJ!r the string. You can use only one optional string.

You an halt program exeOJtion during an INPUT stltement by pressing Conuol-C
any time during your response (unless BREAK is OFF). You need not press Return or
Conuol-C as the rust c:hat2.ra.er of your response; the Conuol-C is recognized
immediately whenever it is typed. If only the Return key is pressed when a string
response is expeaed, the response is interpreted as a null string.

Two special ases exist for entry of numeric representations of mathematical concepts
supported by SA.'lE. The characters INF are used to enter either+ or- infinity. The
characters ~aN are used to enter a not a number. The characters ~aN an be followed
by a conswu of one to three digits enclosed in parentheses. The various values
deterinine the type of the NaN that is cre:lted, as desaibed in Appendix K, •SA."l'E
Considentions.•

IN PUTt

: :• INPOTt ~J.J.eAua [, :ecmua} (;Ya: [{, Ya:}]

) INPUTt 2; Paymen~ \, Grease$
l INPUTt 8, 34; DG(O), DG(2), DG(4)

222 Chopter 8: BASIC Reference

INPUT• reads 2 line of text from the input file and inputs variables from the text in
order, from left to right. The line of text may or may not be terminated by an ASCII
carriage rerum. INPti'T • wiD read the next 255 characters from the file if it does not
fmd a line ending with a carriage return. The text must contain v:a.lld constants for the
type of each variable, separated by commas. If the initial input line does not contain
enough conswus for all the variables, the second and subsequent lines will be read
from the file until all variables are assigned a value or an EOF oc:aus.

Automatic conversions are performed for numeric variables, but string conswus must
.be used for string variables. The file to be read from is defmed by a me reference
number following the reset11ed word INPtrr~J. If the file reference number is followed
by a comma., the arithmetic expression following the comma specif.aes a record
m1mber at which to begin file ac:a:ss.

JNl'UT USING

: : • INPUT t:SING .l.J.Azlwa ; a• a~

!J'I.I"PUT USING exe01tes the User Input Routine, using the parameters in an IMAGE
statement. The User Input Routine is the same routine used by the EDIT command and
for entering command lines in GS BASIC. The behavior of the input routine can be
customized for your programs with the IMAGE statement pa.rameters. IJnnuml or
label1 points to the IMAGE statement.

The IMAGE statement for INPur USING is similar to the one used for PRI:!'rl" USING,
but instead of specs for each variable, it contains a fiXed-format sequence of serup
pa.nmeters. The string variable, svar, is both input to and output from the INPL!
USING statement. The value of the string is the default V2.lue of the line to be edited by
the user; it may be a null string if new data are being entered. The edited characters of
.the line Gf any) are returned in place of the default V2.lue.

You can conuol many aspects of the entry process with the parameters in the IMAGE
statement, as explained in the sea.ion titled "'The INPtrr USING Statement• in Chapter
7. The IMAGE statement parameters are summarized here for quick reference.

INPL! USING 0; svar will execute INPtrr USING with the parameters from the prior
INPL "T USING with a new default data string.

IMAGE maxlen,x,'f, scrDwidth, tlllchar, cursor-mode, short, long, control,
immediate, beep, bord_ch, O,n, tc:har1,modfrl,tmode1
{,tcharn,modfr21 ,tmode21}

The UIR() function provides the starus information from the User Input Routine after
Ir-."Ptrr USING completes. 'The UIR function 0, exit type, is the index of the tchar, or
termination keypress, that ended the input editing. It will be in the range 1 through n,
and indicates which tchar in the IMAGE statement that was entered.

These are some of the UIR funa.ion results: UIR(O) rerums exit type, UIR(l) rerums last
keypress, and UIR(2) rerums modifier of last keypress.

SYNTAX NOTATION 2.23

INSTR

::• INSTR(aezpr, aezpr [,aezpr})

) PRINT INS'l'R ("b.in in Spain on ehe Plain", "ai")
2
) PRINT INS'l'R ("R&.in ill Spain on ehe Plain"; "ai" , S)
ll

lNS'I'X searches for occwrena::s of a specified substring within a string and returns the
number of the fust c:haraaer of the substring.

The optional arithmetic expression specifies the character position where the search
should begin. If no arithmetic expression is specified, the search begins with the fU'St
charaaer of the string expression. If the search fails, 0 is returned.

If the arith.metic expression is greater than the length of the suing expression or less
than 1, then an illegal quantity error OCCW'S.

INT

: : • INT (aezpr)

)PRINT INT(3.3)
3
X-INT(-3.3) : PRINT X
-4
)

INT returns the largest whole m1mber value less than or equal to the argument value.
We use whole number r.lther thatn integer in this definition bec.u.se the INT
function actually rerums a real number.

lnteeger constants

~ :• [+"-] (CU.q.it}

An integer constant is any positive or negative whole number without a decimal point.
IIGS BASIC has single, double, and long integetS. IIGS BASIC converts any integer
constant with nine or fewer digits from characters into binary when a progr.lm line is
entered. Imeger constants with ten or more digits are left as characters in the program
and are converted to binary each time the statement is exeOJted. In addition, integer
COCSWlts in a DATA st2tement are left as chatacters and converted to binary by the
READ statement. The tokenized, or binary form, of an integer constant is usually
smaller than its represenwion as characteiS and is never larger.

Your progr.lm will exeOJte faster if you use integer constants with nine or fewer digits.
Place large integer constants in a DATA statement and convert them into a long
integer V2riable once, with a READ statement.

224 Chapter 8: BASIC Reference

The expression evaluator has both integer and floating-point mathematic:ali routines
and will use the smallest integer size that will represent the value of an cxpnession.
Integers values may be freely mixed with real variables and const.a.rus. A single integer
can represent values in the range of -32768 through 32767, a double integer can
represent values in the range of -2147483648 through 214783647. a long integer can
represent values in the range of -92233720368>4775807 through 9223372036SS4775807.
Anempting to assign a V2.lue beyond the respective range to each type of integer
variable generateS an overflow error.

INVERSE

: : • INVERSE

INVERSE sets all subsequent display to black leaers on a ~ background Characters
on the saee.n before the execution of the INVERSE or NORMAl. statement are not
affeaed When the video display is a color monitor, the terms black and white in this
description become the background and foreground, respeaively.

~ has no effect on charaaers .read from or written to files.,

JNVOKE

: : • INVOJa:
: :• INVO:U patl:I.Daae { { ,pat.Ail ...) 1
: :- INVOKE APPE:ND patl:I.Dame r { I pat.Ailaaa) J

) INVOKE F'Pl, F'P2, /Floppy2/Subr/F'P3
)lOlOO INVOKE Fastpr~t

INVOKE loads a.n OMF flle, as defmed by the .Apple llGS Object module format
specification. The flles given ill .a.n. INVOKE statement are located and loaded in
sequence. If any file is not found or is the wrong type, a file not found error or flle type
error will occur.

Invokable module files must be created as described in Appendix I. They must contain
a static code segment as segment •1 and a private data segment with the segment name
DICI10NARY. The diaionary segment defmes the interface definitions required by
the PERFORM and EXFN statements.

INVOKE accumulates all the diaionary segment entries into a single entry point
definition table, maintajned in the library memory segmenL The entries are hashed.
into 32 search threads to minimize search time during PERFORM and EX:F!\.

It is suggested that only one flle be loaded per INVOKE statement to allow error
handling and use of the RESUME statemenL INVOKE will not request volume
mounting if the pathname refers to a.n off-line volume.

SYNTAX NOTATION 225

Executing INVOKE without any pathname er.a.ses all e:::aemal subroutines previously
loaded by other INVOKE statements and rele2SeS their memor,r back to the Memor,r
Manager.

Exea1ting INVOKE without the APPEND option first erases all existing invoke segments
and releases their memor,r back to the Memor,r ~ger before loading the new file or
files.

INVOKE APPEND loads the file or files without releasing any previously loaded
modules.

Wamlng:

INVOKE APPEND does not prevent dupllecte loodlng of the some module. You
must be eoretul when testing a program not 1t1 repeatedly execute INVOKE
APPEND stotements tor the sane ftle.

One approach to handling this problem during program testing is to invoke your
modules from i.mmediate mode and only insert the INVOKE statements into your
program when you have finished testing. ibis can e:3.Sily be done by using an EXEC file
to load your program and the invokable modules.

Another approach might be to attempt to use a dummy procedure or function with the
:EXFN or PERFORM statement without fust executing the INVOKE, and execut:e the
INVOKE only after the undefined procedure or function error is trapped with ON ERR.

JOYX end JOYY

: :• JOYX !u.bezp:)
:: • JOY'! (a reserved variable)

JOYX reads two of the four game paddle inputs O.f they ue plugged in) specified by
ubcxpr. 'The unsigned byte expression must result in a number from 0 to 2; otherwise,
an illegal quantity error ocous.]OYX returns the value for the paddle given by
ubcxpr, and a rese:ved variable JOYY is set with the value of the paddle ube:rpr+ 1.
This function eliminates the interaction between paddles aused by the coupling of the
hardware one-shot ~ by timing both paddles in parallel Both JOYX and JOYY
retUm a resul1 wich 8 significant bits.

KBD

l ON !ltBOl -64 GOTO lOO, 200,300

KBO contains the ASCII V21Ue of the bst key struck. (See Appendix A, •ASCI
Character Codes.~

226 Chapter 6: BASIC Reference

···""

When you use the reserved variable KBD in an ON ... GOTO or ON ... GOSUB
statement, you must enclose KBD in parentheses, or BASIC will not treat it as a
variable. '

LEFT$

: :• l.EFT$ caezp:, aezp:)

)PRINT ~$("App1e•kin",5)
App1•
) PUNT I.Er'T$ (•spa:~.i.nq", 3)
Spa

I.EFI'S returns a string of specified length composed of the leftmost c:haraaers of the
given suing expression.

If the value of the arithmetic expression exceeds the length of the string expression
value, all the c:haraa.ers of the SUing expression value are returned. If the string
expression value contains more than 255 c:haraa.ers, a string too long error results.
1be value of the arithmetic expression is rounded down to the nearest whole number if
necessary. It must be in the ~ of 1 to 255, or an illegal quantity error resulrs.

1EN

: :• 'LEN (aezpz::)

)PUN'!' LEN C"ABCD"')

) PR.IN'I' LEN ('Y a:n$)

.LEN returns an integer value equal to the length of the suing expression, irl the range of
0 to 255. A string expression containing more than 255 c:haraaers causes a STRING
TOO lONG ERROR.

LET

~:- I'LE~1 Yaz::·ao~!~&b~• :.a•az:: • \azpz::eaa~oo\

)~ Benry-FatherofJack
)LET Wa~•=~$•"B1ue whale"

~ variable name to the left of the equal sign is assigned the value of the expression to
the right of the equal sign. Only one assignment may occur per statement. LET is
optional.

+ NOTE: The LET expreSsion is the only context in which a multiline funaion, defined
with DEF P'N ••. :END P'N statements, c:an be Jeferenced Referencing a multiline
funaion in any other statement wiJ! cause a multiline funaion reference error.

SYNTAX NOTATION 227

UBF1ND

: :• LIBFINO ••a:. a.i•a:1, a.i•a:2. a.i•a:3

UBFIND seuc:hes the libr.uy dktionary, loaded with the UBRARY statement. If the
string variable, n-ar, is not a null suing. the library is searched for the Ubname given
by the value of the string. The tool set funaion mtmber for the Ubname is returned in
str.&rl. the tool set tool m,m.,..t is renuned in sivarl. and the result stack size is
returned in smr3. If the Ubaame is not found, all three integer variables are set to

zero.

UBRARY

: : • LIBRARY (~.il.epaU [{ , ~.il.epaU} 1 1

The UBRARY srarement loads one or more tool set Definition rues into the library
diaionary. The library dictionary is a separately alloaled memory segment that
contains a diaionary of inrerfxe definitions for one or more tool sets. Each interface
definition contains the funaion or Ubname name, tool number, funaion number,
parameter count and type for each panmeter, result word counc, function result type,
and error mode.

If there is not enough free memory for all the TDF diaionary data, an out of memory
error will occur. Entries are also inserted into the diaionary by the INVOKE
statement. If no filenames are present, the library diaionary is deleted, except for
entries inserted by the INVOKE saremenc. The TDF for most tools are supplied with
ncs BASIC. More information about the format of a TDP may be found in Appendix
H.

LIST

::• LIST [1J.Aeagal."l&bell]

) LIS"''
)LIS"'' S - 300
) LIS"'' S. 300
) LIS"'' 5-300
)LIST sc~.tinish
) LIST s~rt-2000
) LIS"'' - 2100
) LIS"'' 158S -

(laesa~ · label.2l J

UST displays the contents of the progr.un currently in memory:

The first example above displays the entire program currently in memory. The ne.~t
three examples display lines 5 through 300, (assuming that they e.U5t), of the program
currently in memory. The next two e:nmples show how you may use line labels instead
of line numbers. The 12st two examples will list, respeaively, from the beginning of
the progr.un to line 2100 and from line 1585 to the end.

2:28 Chcpter 8: BASIC Reference

•

You can stop the listing by pressing the space bar and restart it by pressing any other
c:haraaer key. Pressing ConuoJ-c terminates the listing.

LISTTAB

: : • l.ISl'TAB

IJSn'AB is a modifiable reserved variable that is set each time a program is loaded.
Each nos BASIC program contains a header that is not pan of the program
suremenrs, and IJSTI'AB is set from this header information. USTr.AB causes all the
lines of a program to be indented a fixed amount when it is listed by the UST
command. LIS'ITAB allows you to to offset the program statements to the right of line
labels and make your program easier to read.

"The default value of IlSTTAB is 5, which effec::tively disables label indenting because
the line numbeiS are printed right-justified and require five c:haraaeiS plus a space.
You should set LISTTAB to the length of your longest label plus 6 to align the left
margin of all the staremenrs in a listing.

The I.ISTI'AB modifiable reserved variable also controls a special UST statement
display mode. When the value of UST!AB is larger than 127, the line numbers are not
output in the listing and left margin setting is ta.ken as the value USTrAB-128. Thus, a
listing of a nos BASIC program without line numbers can be diplayed, printed, or
outpulto a re:xt me. ·

LOAD

: : • LOAD patl:uaa ..

) LOAD Countciown
) LOAD 2/Soma:llle

LOAD reads a specif~ed BASIC program from a disk file and stores it in memory. The
pathname of the program to be loaded must follow the reserved word LOAD. (See the
Chapter 5, -r.ue Handling• for an explanation of pathnames.)

All variables in the loaded program are cleared; numeric variables are all set to zero,
and suing variables are set to null strings. All files are dosed, with the exception of any
.EXEC file being executed. Any existing program is cleared from memory.

Attempting to load a file other than a BASIC program causes a flle type error.

nos BASIC stores the program in a sepuare memory segment, and LOAD attempts to
allocate a segment large enough for the program plus a small amount of extra space for
additions. 'The program segment is automatically extended as neW lines are entered
BASIC attempts to extend the program segment using unallocated memory before it
begins shrinking the user data segment.

SYNTAX NOTATION 229

BASIC does not shrink the program segment once a large program has been loaded,
chained, or run. even if the OJJTent program is smaller that the program segment size.
Tile only way to recover the unused space in the program segment .is to use the NEW
sratem:nt with the program segment size option.

2:30 ~ter 8: BASlC Reference

LOCAL

: :• LOCAl. ••~ ... { p Ya~aae)

The LOCAl. sanement can only be used within a function or procedure defmition. If
lOCAL is used elsewhere in a program, exealting it will generate not local error.
lOCAL adds additional local variables to the aurent local variable table for use during
the exeOJtion of a multi-line fu.nc:tion or procedure. All local variabls are transient and
do not reWn their values from one execution of a function or procedure to the next.
loc:al arrays are not allowed.

A local variable table is creared each time a funaion or procedure is executed by a
F'Naame (••.)or PROC (•••)reference. The arguments of the funaion or procedure are
always inserted into the local variable table u local variables. In addition, a local
variable with the same name u the funaion is aeated to receive the resulting funaion

. value by an PN• assignment.

Only the most rec:ently created local variable table is accessible during program
-execution. In other words, a function or procedure can only refer to its own local
variables and the global variables, but not the local variables of any other procedure
or funaion, eYeD if it was ilself executed by another procedure or funaion. The local
variable tables are allocued using a stack and require free memory in the data
segment.

When BASIC is searching for a variable in the variable tables, the local variable table
is always searched before the global variable table. If a variable n.ame is used in both
the current local variable table and the global variable table, tho: ··,..:;.W variable will
always be found and used in place of the global variable.

J\ procedure or function definition may contain one or more LOCAl statements, and
they may occur anywhere within the defmition. Nonnally, LOCAl statements should
immediately follow the D£F statement, but if they do not or are embedded in
conditional (one-shot) logic a given variable will be global until it is defined in a
LOCAL sr;nement, and thereafter it will be a local variable even if the procedure or
funaion srarements loop back to a statement where the variable was initially a global
.teference. In other words, BASIC does not look ahead at funaion or procedure
defmitions for all the LOCAL statements.

+ Note: If you create programs that depend upon this interpreter behavior, your
programs will not compile or funaion conealy if a DGS BASIC compiler becomes
available (compiletS usually require that all the LOCAL defmitions precede all other
Statements).

LOCATE

: : • LOCATE l zow] I • ao~ wm]

SYNTAX NOTATION 231

LOCATE positions the rext c:ocsole cursor to the row and column specified by the
argumentS. If only the row is given the column remains
unchanged, and given, the row is unchanged. The row atgument must
be within the range 1 through 24, the column argument must be in the range of 1
through 80. The value 0 is treated a.s the value 1.

The location specified by LOCATE is relative to the upper-left comer of the current
r.e:aport. The LOCATE statement duplicates the funaion of a.s.signmenrs to the HPOS
and VPOS modifiable reserved variables.

LOCK and UNLOCX

: :• LOCK patlula ..
: : • ONI.OCX patlu:l ...

) LOCX Sar:ndoor
) ONI.OC:K S.c::re1:.3

LOCK prohibits writing to, saving, or deleting the me named as its argument. Locked
files are shown 'With an asterisk to the left of their file type when cataloged. Volume
names can not be locked, but subdirectories can be.

tJNLOCK allows you to remove the protection from a locked file that you vnru to
delete, rename, change, or save. 1be reserved word UNLOCK must be followed by the
file's pathname.

LOG

: :• LOG taazpr)

)PRINT LOG(20.08S5)
3

LOG returns the natur:U Cba.se e) logarithm of the argument value.

LOGB~

: :• LOGBt taezpr)

LOGB% returns the binary exponent of the argument value a.s a signed integer.

LOGl

: : • LOG"- <aazpr)

)PRINT LOGl(20.08SS)
3
)

232 Chapter 8: BASIC Reference

LOGl retums the natUral (base e) logarithm of one plus argument value. LOGI(x)
accurately computes LOG l (1 +x). If the input argument x is small, then the
computation of LOGl(l+x) is more a~ than the straightforward computation of
l.OGl(l ... x) by adding x to 1 and taking the~ logarithm of the result

LOG2

: :• LOG2 (aazp~)

l.OG2 returns the base 2 logarithm of the argument value.

Logical expressions

Logical expressions are also called relational ezpressions and Boolean
expresslom. They are similar to arithmetic expressions, but use different operators.
A logical expression has a value of either 1 for true or 0 for false. Any arithmetic
expression with a nonzero value has a truth value of true, and any wirh a value equal to
zero has a truth value of false. When nos BASIC reDJmS a true or false result for a
logical expression, it creates an integer 0 or l.

The following are the eleven logical operators:

Symbol Megnjng Exgmple Truth yglye
- Equal to 3•3 1
< 1..ess than 3<1 0
> Greater than 7>4 1

<• or •< less than or equal to 5<•4 0
>- or •> Greater than or equal to 8>•5 1
<> or >< Not equal to 4 <>4 0
<•> or >•< Ordered (vs unordered) A<•>NaN 0
AND Conjunction 5 AND 0 0
OR Disjunction 8 OR 3 1
XOR Exclusive OR 8 XOR 3 0
NOT Negation NOT 4 0

You can use all the logical operators, except ordered (<•> or >-<), in string
expressions. For example, •alpha • < •beta • is true. ·

The ordered_ operator is used to test for the SANE NaN. It will return false (0) if either
ope:·and is a NaN and true (1) if both operands are v:ilid numbers. NaNs are aeated by
anempting various mathematically meaningless operations, such as dividing zero by
zero, adding -infinity to +infinity, or trying to take the square root of a negative
number.

Long integers

::• I•"-J!t11qi~l

SYNTAX NOTA TJON 233

Long-integer constants may be up to 19 digits long. You an mix long-integer
consWlts and variables in arithmetic expressions with single or double integers or
reals (See the description of reals in this chapter). Long-integer variable names must
end with an ampersand (&).

A long integer c:::u1 represent v:alues in the· range from -9223372036854775807 to
9223372036854775807. Exceeding this range causes an overflow error. The binary
value that would represent the mtmbfo.r -9223372036854775808 .is used to represent the
~"'f£ NaN that results when various mathematical operations generate an
unrepresentable number. (See Appendix K, •SANE Considerations• for more details
about NaN.)

.MEMBUFR

.MEMBUFR (pronounced •dot-mem-buffer-) is a speci2.1 pseudo-c.bataaer device
that provides a 255-byte memory buffer that you an use for high-speed I/0 without
having to create a disk file. .MEMBUFR an be used in an OPEN suremeru to associate
it with a file reference mtmber and then used with PRINT• or PRINT USING" and then
INPUT " to aeate exaaly formaaed .strings.

There is only one aaual memory buffer, and it ha.s only one current position pointer.
The current position po.i.ruer is set to zero when a c::uriage rerum is sent to the device
and advanced one with each cbar.laer OUtpUt to or input from the device. If more than
256 characters are sent to .MEMBtJFR the current position pointer wraps around to
zero and will overwrite the beginning of the butTer.

Because the memory buffer used by .. MEMBUFR is shared with the BASIC EDIT, INPu-r
USING, CAT, CATALOG, OIR, and TYPE statements, you must print to it and input
from it without using any of these commands in between.

MENUOEJ=

: : • MENODEF i.Dciez, lJ.AAua. label [{, li.DeAua' label.}]

ME.!'l'UDEF defmes for IICS BASIC the menu-item-handling routines to use when Task
Master returns a menu-selea event. The menu item identification numbers defmed by
the Menu Manager must be assigned values from 256 through 383. IICS BASIC uses the
menu item identification mtmber minus 256 as the index of its in.temal menu-item
dispatch table.

MEN'GDEF is used to define the entries in the in.temal table.. The index parameter is a
mtmber from 0 through 127 that selea:s which entry to define (or reset with a 0). If
multiple line numbers are used, each one defines the line number of the next entry in
the menu -item dispatch table. You need not define consecutive identification
nwnbe:s, but they must fall within the above range..

MENUDEF .is only relewnt when you are also using the T.A,)KPQU statement in
conjunaion with the W'mdow and Menu ManagetS.

234 O'lopter 8: BASIC Reference

MID$

::• MID$ c•ezp~. 11k&p~1 [, 11k&p~2])

) PRINT MID$ ("Bookkeep.inq", 5)
)k .. pinq
) PRIN'I' MID$ ("Bookk .. p.inq" I 5. 4)
)keep

MID$ reuuns a substring of a given strina expression. 'Ibe first unsigned byte
expression specifies the first c:baraaer to be returned from the string. and the optional
second unsigned byte e:xpession specifies the length of the substring to be returned.

If the value of the first expression exc:eed.s the length of the string expression value,
then a nun string is reo.uned. If the value of the second ezpression is greare:r than the
number of dwaaers to be retrieved from the string expression value, all the
c:haraaers from the position specifJed by the value of the flt'St unsigned byte
expression to the end of the value of the SUing ezpression :ue returned

If the string expression value contains more than 255 c:haraaers, a string too long
error occurs. If the value of either arithmetic expression is outside the range of 1
through 255, an illegal quantity error occurs.

NEGATE

: : • NEGATE (ae&p~)

Negate returns the value -aeqJr. ibis seemingly simple function is included because of
the spec:i.alized SANE data type representations for infinity and NaN results (see
Appendix K. ·sANE considerations"). You should use JI.'EGATE rather than -l•ae%pr
to properly negate such a ft:Sult

NEW

: :• NEW
: : • · NEW iezpr

NEW without the size option erases the current program and an its associated variables
from the computer's memory and doses an open files, except a text file being
exe01ted. (See the description of EXEC in this chapter.)

NEW may be used with an optional integer expression to request that the program
memory segment size be changed to the indicated size (rounded up to the nearest even
multiple of 256 bytes). When you use the size option, the a.ureru variables, and
program, me buffers, etc all remain unchanged.

SYNTAX NOTATION 235

If the current proiPDl is larger than the indic:ar.ed Sze, the program segment is
reduced to the size required to contain the program (rounded up). If unalloated
memory is not available to expand the program segment, BASIC will reduce the data
segment (if it .bas enough space.) An out of memory error will oc:cur if the requested
memory is not available.

NORMAL

: :• liORMAL

NORMAL is the default display mode. It sets the display to white leaeiS on a black
background. Charaaers on the screen before the execution of the NORMAL statement
are not affected If the Video display is a color monitor white refers to the foreground
color, and black refezs to tbe background color, a set with the Control Panel.

NORMAL .bas no effect on c:hataa.ez3 read from or written to files.

NOTRAC&

: :• NOTRAC!

NOTRACE cancels TRACE, stopping the display of Ihe line m1mbers of executing
program sratemerus. There are no options associ.atea with it.

OFF EOFf

~ :• OFF EOFt ~.i~•a~ua

The OFF EOF• statement ance!.s an ON EOF• statement. After an OFF EOF•
statement ha.s been executed, BASIC resumes displaying error messages and halting
execution when an end of me is te3Ched, just as it did before the ON EOF• statement
W2.S executed You must follow the reserved word EOF• with a file reference number to
specify which file's ON EOF• statement should be onceled.

ON &OFf

: :• ON tort ~.i~~ua •tataa.At~.i•t

ON EOF• is used to force BASIC to allow your progmm to control what Mppens if
BASIC reads pa.st the end of a file, just as an ON ERR statement allows your program to
perform irs own error h2ndling.

A statement or st:arement list must follow the reserved word EOF•, as in a GOTO
statement.

236 Chopter 8: BASIC Reference

ON BREAK and OFF BREAK

: :• ON BREAK •tatea.Atl.~•t
::• OFF BREAK

ON BREAK is used to force BASIC to allow your program to control what happens if
the .Ailention c:baraaer, a ConuoJ-C, is entered during input or typed while your
program is running. ON BREAK is a special case of the ON ERR starernenr that allows
your program to perform its own error handling.

ON BREAK is provided as a separate statement to simplify the programming of ON
ERR for the more important types of errors and to aDow a single handling routine for
the user Anemion funaion. ON BREAK is also useful for handling a user request to
abort a .long operation; for eumple, to stop printing a report when a paper jam
ocom.

A mrement or statement 1m must follow the reserved word BREAK, just as with the ON
ERR statement. IF the BREAK OFF statement has been executed, typing the Aaention
chanaer will be ignored and eruered into the typeahead buffer like all other
charaaers.

OFF BREAK cancels the most recently executed ON BREAK statement. There are no
par.uneters or options assoc:i.ated with it. After an OFF BREAK statement has been
exeaJted, BASIC resumes displaying the

PROGJ\AM DTERR'OPTED IN ~118

message and halting exeClltion, just as it did before the ON BREAK statement was
executed.

+ Note: The O:f'II"'BREAK md OFFBREAK statements are only efeaive in BREAKON
mode. (See the description of BREAK earlier in this chapter.)

ON ERR and OFF ERR

::• ON ERR atateaeDtl.~•t

: :• O!T ERR

10 REM EX»>PI.E OF ERROR HANDLING
20 ON DUt GOS'CB 1000
30 INPOT •pl .. se ~ype a ainqle number be~veen l and 100" ;X
4 0 PRIN'l' -~h• number you ~yped vas " ; X
SO END
1000 ~ ~OR D.NOLING S'CBROO'I'INE
1010 PRIN'l' : PRIN'l' "I'm very sorry, bu~ only a n'WIIber will do. Please try aqa.ir.."
l 02 0 RE'l'CRN

ON ERR is used to force BASIC to Jet your program handle any errors that might occur
by br.mc:hing to an error-handling subroutine in your program.

SYNTAX NOTATION 237

'Ibe ON ERR sraremenr should not be used u a tool for finding errors in programs.
(Use the 1'RAC! srarement for this instead.)

- --· -· -

If a_propm conrains more than one_ ON ERR sraremem, the sr.arement list of the most
recendy e."'er" 1~ one Will be used. - - · -

OFF_PR cancels tt1e most rea:ndy ~red ON ERR sraremenr ~ are no
parameterS or options associated ~ iL .Afrl:r an OfF ERR sraremenr has been
exeaued, BASIC resumes displaying esror messages and halting ezea~tion, just as it
did before the ON ERR sarement wu executed. ON BREAK will remain active after
OfF ERR has been exeaued..

+ Note: 1be sraremems that ON ERR causes to be executed must tbemse1ves be free of
errors, or an endless loop may result. 'lbe endless loop can be inremlpted by
Conuol-C because Conuol-C is handled separately by ON BREAK. For a complete
list of BASIC errors, see Appendix B, Error Messages.

ON EXCEPnON ~OFF EXCEP110N

: :• ON EXC!!P'!:CH a~at ... Atli•t
: : • OIT EXa:PTION

ON EXCEP'llON is a separ:ue version of ON ERR for errors that occur in mathematical
computations. App.le IIGS BASIC uses the SANE 65816 implementation of the IEEE
Standard 754 for binary floaling-poinl arithmetic for te21 and long integer operations,
and a mixed mode operation with one re2l or long integer opermd. OFF EXCEPTION
is the default mode for IICS BASIC, and so computationai results may return an infmity
or a SANE NaN result. (See Appendix K, •SANE Considerations•.)

Aifa ON EXCEP'IlON has been exeC1ted, the statement list will execute if any of these
exce;Jtions oc01r during mathematical expression evaluation or assignment. The
following are. exceptions:

o an innlld ~on is aaempted (such as SQR"''(-2))

:::l overllow
o underflow

d divide by Zro

o unorde:ed comparison ($uch u A<B ~ B is NaN)

0 :ineDa .result
~- --

EXC&!lONON is used to selea the subset of these excepticm tb2t you want

dispatched tO ON EXCEPnON prior to enabling exception trapping with ON
EXCEPTION.

238 Chapter 8: BASIC Reference

;
'.

.
\

..

The error code and error line for ON EXCEP'IlON are returned in ERR and ERRIJN, as
with the ON ERR statemenL (See Chapter 7, •Advanced Topic:s,• for details of the
codes and cxber c:onsidentions.) Executing OFF EXCEPnON will restore BASIC to its
default mode, in which the divide by zero, not a mnnber, and overflow errors will
oc:au or be lr.lpped by ON :ERR.

ON KID and OFF KID

: :• 05 DO •tat.-.zat:.1J.•t:.

: =- otT Kim

10 ON KBD GOTO 100 : REM BASIC branches here when any key is pressed
20 PlUNT • • •; : JU:M Print periocia vlUle not handl..:l.nc; key-atrokea
30 GOTO 20
100 PRINT KBD : REM ~iaplay the ASCII v&lue of the key last pressed
110 ON KBD GOTO 100 : REM l\eenable ON DO. Must be before return
~20 RETORN : REM Proc;ram jumps ~ck to the atatement follovinq the one durinq which

a key vaa pressed

ON KBD is used to cause BASIC to exeCUie a specific statement list immedWely after
any key is pressed 'Ibe statement list to be exea.~ted must follow the reserved word
KBD.

Note that you must reenable the ON KBD statement immediately before executing the
~ starement at the end of the statement lisL

Afu!r an ON KBD statement has been executed, BASIC continues executing the
program normally - but as soon as any key is pressed, execution branches back to the
most rec:emly executed ON KBD statement. Then the statement list pointed to by the

·ON KBD statement is executed.

1be branch to the ON KBD swement list is treated as a GOSUB to a subroutine, so the
program segment that KBD causes to be exeruted must end with a RETURN statement.
To enable ON KBD to handle more than one keysuoke, the last statement in the list
should be another ON KBD statement.

+ Note: 'When ON KBD is in effea, the program cannot be halted by pressing
Conuol-C because that keysuoke is treated like any other. However, the ON KBD
sraremenr could cause a branch to a STOP or END statemem if Control-C is
pressed. A RETURN starement placed after the STOP would allow the CO~'T
aaremc-.nt to be used

Aiu!r ON KBD is exeruted and a program retUrnS to immediate mode through a STOP
or END statement, ON KBD trapping is suspended. If the program is restarted by using
the CONT command, the ON KBD trapping will be reenabled. However, if the
program is restaned by GOTO or RUN commands, the ON KBD trapping will not be
reswt.ed until another- ON KBD statement is exec:uied.

SYNTAX NOTATION 239

ON-GOSUI

: : • OH u.sp~ GOStm l.J.Acaaa ·label ([, liAcaaa ·label])

)1000 OB CO~fu GOStm 1000, GOOFOO, 3000, 4000

ON ... GOSUB is identical to the ON ... GOTO staremeru. except that the line
m1mbers or labels following the teSerVed word GOSUB must be reference subroutine
entry points.

ON-GOTO

: : • OH aMZ"p~ GO'l'O l.i.Acaaa · luel. { [, lJ.Acaaa· ~U.ll }

)1000 OB X GOTO 100, DOI~. 300, 40

ON ... GOTO is used to specify dilf'erent progrm1 brmch points, based on the value of an unsigned
byte expression. The arithmetic expression must follow the reserved word ON, and the

· line mtmbets or labeJs to which execution branches must follow the: reserved word
GOTO.

If X•l, execution branches to the fitst line in the list (line 100); if X • 2, execution
branches to the second line in the list (line oom; if X•3, execution branches to line
300 (the third item in the list}, and so on.

1be vU1e of the arithmetic expression must be within the range of 0 through 255, or an
ll1ep1 quantity en"Or oc:aus. If the v:alue of the arithmetic expression is 0, or greater
than the number of line mtmbers or single integers given in the ON ·- GOTO
seuemeru. the list of line numbers (or labels) is ignored and execution continues with
the next scaremenr in the program.

240 Chapter 8: BAS1C Reference

\ ___ .

ONTlMER and OFF nMER

~~- ON TIMER caazpr) etat..-=t1iet
: : • OFF TIMER

ON TIMER enables event trapping using the 1-second imerrupt capability of the Apple
DGS dock. ON TIMER (ac:xpr) sets a c:ountdown interval of a.e::xpr seconds long. The
inierva1 is given by the arithmetic expression, and it must be a number in the range of
2 through 86400.

The countdown is complete when the interval counter reaches zero. 'Then the
statement is executed when the current program sratement completes exeCJtion. The
s~tement list must end with a RETURN statement to re!llm conuol to the next
sequential statement in the program.

The 1IMER countdown interVal is approximate only and does not guarantee a precise
amount of time. The first 1-second i.ruenupt from the clock may occur in a few
microseconds or in an entire second after enabling the countdown. In addition, some
activities, such as disk l/0 operations or AppleTalk communiations, have higher
priority than the 1-second interrupt, and they may lock out the timer imerrupt for
more than a second

All of these factors can delay the processing of the ON TIMER event trapping. You
should envision you timer iniervals as requests for a delay of not less than ac::zpr
seconds minus one, not as a request for an exaa time delay in seconds. The
ON TIMER statement will have no effea unless the 1-second interrupt is enabled by the
TIMER ON statement.

OFF TIMER disables the most recently executed ON TIMER s~tement

OPEN

: :• OPEN opeapat.h, IFILTYP•OIR . TXT ' SRC ' BOF ' ub~:]
{FOR INPO"'' . OtrrPO"'' . APPEND . DPOA'l':t] AS t fi1acua [, :aoaiza]
: : • OPEN t fUazmml., FOR { INPO"'' ' OOTPO"'' . DPOA'l':t}
AS t filaDtaa2 [, reoeisa]

) OPEN DOOR, AS t 6
)OPEN W~ndov, ASt4,l63
)OPEN .CONSOLE, FORINPUT ASt2
) OPEN ptr$, FOR OOTPO"'' AStl
)3309 OPEN "BINARY", FILTYP•6 FOR APPEND AStll,2S6
)lO OPEN tll FCR INPO"'' ASti

OPE.."i is used to open files for access and must precede any me 1/0 s~tements
accessing a given me. The arguments following OPE..""~" :ue the flle's pathname or
characner device name, the optional f.ale type, the optional mocie, the AS f.ale
reference number, and the optional record size.

The FILTiP- panmer.er may be omitted, in which case the file will be opened if irs me
type is '!'XI', SRC. or BDF. The file _reference m1mber is- used in all subsequent I/0
staremenrs to refer to the file while it is open. 'Ibe file tefe:ence m1mber an be any
_arithmetic expression having a wlue of 1 through 29.

rf the reserved words FOR INPUI' are present. the file is opened as a read-only me and
may not be written to. If the reserved words FOR OUIPUI' are present, the file is
-opened as a write-only file and maY not be read from. If the ~ words FOR
l.JPDAT.E are present, tbe file is opened as a read-write file and may be written to and
read from. If the FOR mode parameter is omitted, the file is opened FOR UPDATE.
1be access requested for a file must march the access modes permitted in the
directory~ access parameter. If an access mode is locked and that mode is
requested, a file locked eaor will occur (for either read or write access).

'Ibe FOR APPEND option is a variant of fOR OllTPUT, and it is used in sequential
access to allow PRINT# or WlU"IE.it nremeru:s to append new information to the end of
an existing file without disturbing any existing data.

The recsJze parameter can be -given for BDf' files. It is used to alloc:ar.e a record buffer
for r:a.ndom access. If the .recsize parameter is not given for a BDf' IDe, the subtype
.from the direaory enrry is used as the record length and buffer size.

Record buffers are not alloc:ar.ed for 'I'XI' and SRC files.

"The second wriation of OPEN allows you to open the same IDe twice. The IDe
referenced by Blcauml must currently be an open me. F.llenWJ12 is the slave tUe
and Bleauml is a master B1e. A given master flle may have up to seven slaves linked
to it.

Only the ma.stef file in a master-slave chain of disk files an be used in WlU"IE mode,
all other disk IDes in the chain must be opened FOR INPui. 'The master f.tle in a chain
may be opened for OUI'Ptrr, APP£..,..,."0, or UPDAT.E; otherwise, all flles in the chain
must be opened FOR INPUI'. Oosing the master tile in a chain without rll'St closing the
slave files will make the slave file with the lowest file reference number the new master
for the chain. The-new master will remain in INPui mode.

Opening the same tile twice em be a means of accessing a conuol record at the
J:)eginning of the me or referencing an in~ suuawe embedded in a data base me.
The aWil benefit of this capability is that e2ch slave flle has ir.. own record buffer,
tbereby allQWing access to multiple records from the same file simultaneously. Future
Versions of ProOOS 16 may also allow multiple sysrems to share common files through
a file server. -- - ---
A chain of tiles must all be disk files or c:har.act.er device r.ales; mixing types is not
allowed. A chain of character device files may be c:reated regardless of the file mode,
but the resulr.. may be unpredictable; for example, trying to read from _a printer is
~ to hang the system indefinitely.

242 Chapter 8: BASIC Reference

"---
OPEN window

::• OPEN VARP~R(pa~at), tFI~TYP-ezp:] FOR OCTPOT
AS t~i.leAUI [,l»'ll~ai.ae]

OPEN window provides a means of linking a Wmdow Manager window port to
DGS BASIC as an output file. 7be V ARPTR() function re1UmS the addn:ss of a
p:uame~er list. (See Olapr.er 7, •Advanced Topics,• for derails.)

. - - -

'When opening a window, the panmeter list is an enended version of the parameters
used with rhe Wmdow Manager NewWmclow call. See the Apple I/GS Toolbo:x
Refertmt:e manual for the deWled description of the NewWmdow parameters in the
parameter lisL)

.. OPEN window may also be used to link a me to a QuickDraw n Graf'Port by a GrafPort
pointer. 'Ibis variation is selected from the value of the option word in the parameter
list.

You must aeare tbe NewW"mdow par.ameters yourself in a suuaure array and pass the
address of it to OPEN through the V AlU"'rn function. You must use the V ARPTR
funaion to indicate that you want OPEN to open a window or GrafPort as a file.

A window (but not a GnfPort) is dosed with the OoseWandow c:ail when the me is
dosed with ClOSE • (or the ClOSE all variation), and the optional buffer is
dealloc::ated and the handle di.scarded.

After a window file bas been opened, you can use the PRINT• or PRINT• USING
stateinenrs to direa output text to the window at its c:urrent cursor position. DGS BASIC
does not provide for positioning the cursor as it does for the text display. You must do
this vourself using the appropriate QuickDrawn al1s before executing PR.I!'."T• or
F_~ ·r• USING.

Each time a P~"T statement clireas output to a window file a Wmdow Manager
SeleaW'mdow call will precede the QuickDraw n text drawing calls. nos BASIC uses
DrawChar, DrawString, and DrawCSUing for output to a window port or a Gra.fPort.
When GrafPort mode is seleaed. a QuickDrawn SetPort call precedes the drawing
function calls.

You must enable QuickDraw D with the GRAP INrr swement prior to opening a window
file; otherwise, the message

?TOOLSET ERROR •50400

will be displayed when OPEN window is auempted.

OUTPUT#

~ :• OUTPU'l't ~i.leAua

) Cc"":"i?OT tS

SYNTAX NOTATION 243

OUI'Pur.- redireas screen output to a specif~ed file. All PRINT, UST, TRACE. md
CATALOG sa rement output is sent to the spedf~ed file, but keyboard input is echoed
md error messages are still sent to the screen. The file used for output is specified by
irs file reference mtm~ ~t by an OPEN.- sraremeru) following the reserved word
OUI'Pur.-.

System I/0 devices such as .CONSOLE and .PRINTER are treated as files and can be
opened and used as such.

To resume normal saeen output, type

l OOTPOTt 0

and c:har:lae:s will again be displayed on the screen. A ClOSE or ClOSE# statement
also redireas output to the screen.

OUTREC

OU1'REC is a reserved vuiable tbat contains the awtimum length of lines output by
the UST command before wrapping the text on the next line by issuing a carriage
rerum. The value of OU!REC must be greater than the value of INDENT. Setting
OUTREC to zero suppresses the wraparound of the text displayed by the UST
c:omm:and., which .is useful when listing a prog12JD to a text file.

1be following command sequence will make a text file of the current progr2lil:

I OPEN ?ROGNAM$+'". TXT'" AS t9 : OOTRE:C•O : OOTPOT t9 : LIST : OOTPOT -.. o
OOTRE:C•80 : CLOSE t9

The tllree statements OUI'Pur.- 9: UST: OUI'Pu'T #Q must be executed together as a
single command line. Titi.s is because UST cannot be a statement in a program, and
you must tum off ~ switching of the console output to flle #9 immediately after the
UST swem~ is complete.

OU'TREC -is set from the prognm header whe.'leV'ei a program -is loaded by the LOAD,
RUN,- or CHAIN statemeniS.

PDL and PDL9

: : • POL< 0 <• 'abezp~ <•3)
: :• PCL9

PDL reads the position of the game control paddle (if it is plugged in) md returns a
value in the r:u1ge of 0 through 255. POL aaua1ly reads the position twice as fast as the
original Apple II routines and discards the le2st significant bit, thus eliminating the
uncertainty caused by the v:uiable processor speed of the Apple UGS. The reserved
variable PDL9 will return the 9-bit result calculated by the prior execution of the POL
function.

244 Chopter 8: BASJC Reference

+ NOTE.: Reading any two paddles in quick succession will tend to produce WlStable
results because of the hardware coupling among all four paddles. Using the JOYX
funaion will el.iminare this intetaaion when reading two paddles or both axes of a
joystick.

PEEK

: ~- PEE!: Ci.ezp~)

PEEK reads a byte from memory at the address given by the integer expression and
retwns an unsigned integer in the zmge of 0 through 255. The integer expression must
be a positive inleger less that 2 of 24. Cafe should be exercised in using PEEK because
improperly reading many I/0 devices and conaol registers can cash the system.

'Programmers conc:emed Wo\lt writing programs that will run on new versions of the
Apple n produa family should avoid the use of the PEEK funaion because it contains a
hard-coded address that may not be supported in the future. PEEK is provided for
those who want to build nonuansponable, locked-in programs.

PERFORM

: : • PERFORM ~~l.epath I (l.ezpz: '.a~ [{ , l.azpz:' , yaz} J) J

)PERFORM ~YADO (VARP'l'R (Al (0, 0)), VARP'l'R (A2 (0, 0)))
) PERFORM Er:p:roc (R, 13-6, VARP'l'R (0))

PERFORM executes a specified assembly-language procedure previously loaded by an
Ito. 'VOKE statemenL If an argument list is present (enclosed in parentheses after the
procedure name), each argument is evaluated and passed to the procedure before
execution. Numeric arguments aze converted to the type specified by the interface
definition entry in the library diaionary.

The Ubnry diaionary contains the names of the procedures that may be performed.
The diaionary entry also contains a description of the mtmber, order, and type of
argumentS requited by the procedure or funaion. The library diaionary entry is read
from the diaionary segment of the invokable load file by INVOKE when the assembly­
language module is loaded.

To pass real or integer constants or the values of single variables, include them in the
argument list. A string or suing expression may not be used for a numeric argument or
vice versa; attempting to do so will cause an argument type mismatch error. If the
proper number of argumentS in not supplied, an argument coun,t error will occur.

To pass addresses of a numeric variable, use the V ARPTRC) funaion.

If you want your subroutine to operate on a BASIC string in memory, simply using a
string variable will pass an address pointing to the string's descriptor in memory. The
subroutine should be designed to act on the suing from that point on. .Alternately, you
can pass the address of the string data by using the V ARPTR.SC) funaion.

SYNTAX NOTATION 245

A third choice is also available if you deflne the argument as a c:owued string argument
in the interface defl.tlition. When a counted string argument is required by the
procedure, ncs BASIC ae:ues a coumed string from a BASIC string and· passes the
address of the cowu byte as the argument.

See Appendix I, for details on how to write invokable modules.

PFX$

: :• P:XS cu.zp~ <• 7) • aezp~

: : • "PFX$ ('Q.be.zp~ <• 8)

PFXS(O through 8) is a string funaion that returns the value currently assigned to that
pref1X by ProDOS 16. In addition to the eight normal prefixes, IIGS BASIC will return
the boot-volume-name as PFX$(8). 'this pseudo-prefix can be referenced by using an
asterisk instead of a digit at the beginning of a parhn:ame

Pt

:: • pI

PI is a real reserved variable name that contains the value of 1t accurate to 20 decimal
digits. When used in an expression, it returns a SANE extended-format representation
of 1t. PI may be converted to single or double precision by assigning it to a variable.

POKE

: :- POKE iezp~ I neap~.

POKE stores a byte. given by the unsigned byte expression, at the address given bv the
integer expression. The integer expression must be a positive number less than z24;
otherwise, an illegal quantity error results.

Prognnuners conc:emed about writing programs that will run on new versions of the
Apple II product family should avoid the use of the POKE stacement because it
contains a hard-coded address that may not be supported in the future. Invokable
modules are a preferable alternative to most of the· uses associated with the POKE
sr:a temeru.

POP

: :• POP

POP allOW3 you to jump out of one level of subroutine nesting by removing the top
pointer from the program stack and disc:uding iL When the next REI1JR.,.'1 statement is
encountered. after a POP statement is executed, i.nE::.::ad of branching to the fu-se
statement beyond the most recendy exeOlted GOSUB, BASIC branches to the fu-se
staremeru beyond the second most recently exeOlted GOStJB.

246 Chapter 8: BASIC Reference

\. .. _.:..

..

PREFIX

: :• PREFIX
: : • PREFIX ?
: :• PR£FIX p~z
: : • PJU:FIX cf.1.:e~ozy pat.U ...
: : • PJU:FZX p~, cli.:ec:to:y patbne-

1be PREFIX starement provides two funaions. The first three forms will display the
current prefixes on the next lines of the screen, with the first form being equivalent to
PREFIX 0, and PRI!\"T P:R:EPIXS. PREFIX? will display all eight prefa:es in order, one
line per prefix.

The pb prefix seleaor is a single digit from 0 through 7. The fowth and fJ!th forms will
set prefix 0 and the p& prefix, respeaively.

PREFIX$

PRE.FIXS is a modifable reserved variable that contains the most recently assigned
default pathname pref'J.X, known as prefix 0, and PFXS(O).

PRINT

::• ?"PRINl u.·;] [~:]} [,";]

)PJUNT
) PRINT "Several words of text."
Several wor=• of te~.
)AS•"E is about " : E•2.7lS
) PRIN'I' AS ; E
E is about 2.718

PRD\ "T displays text. An item list may indude any expression, comm2., semicolon,
'!AE specification, or SPC specification following the reserved word PRIN'T.

BASIC evaluates expressions in P~"T st;uements and displays their values. If there are
.several expressions, their values ate displayed in sequence. A PRINT statement without
an item list moves the cursor to the beginning of the next screen line.

1f a comma separates two expressions, a tab aaion separates their values on the
saeen. If a semicolon sepantes them, the second value is displayed after the fust,
with no inlervening spaces.

Following the last expression in a PRINT statement, there may be a semicolon,
comm2., or nothing. If there is nothing after the last expression, the cursor moves to
the beginning of the next screen line. A comma causes a tab action. A semicolon
leaves the cursor in the position immediately following the last c:haraaer displayed.

SYNTAX NOTATION 2A7

All numeric values a.re formatted uniformly, regardless of the variable type. The
reserved variable SHOWDIGrrs conuoJ.s how many significant digirs will be
displayed, and the magniEUde of ~ value generally conuoJ.s ~ format. If the value is
greater than or equal to 1o-showdigltS and less than lOShowdiiPrs, the expression or
variable is formaaed in fixed-point format; otherwise, the number is formaaed in
scientific notation.

PRINT will format any inreger vanable in scientific nowion it SHOWDIGITS is smaller
than the numfJ,er required to print the m1mber as an integer. I.ikewise, PRINT will
fo.rmat any real variable in fiXed-point nowion it the value is within the above r.ange
tmd it formatting the number in fixed format would not result in a loss of precision for
the SHOWDIGITS number of significant digirs.

For ez:ample, assume that SHOWDIGri'S equals 7, and the value is lE-7, or .0000001.
This value is the sma !lest m1mber that can be formaaed in fJXed format, but if the value
were l.lE-7, it would be .00000011 in fixed format, with eight digits (even though only
two of them are significant digits). Rather than drop the significant digits BASIC
formats the .aumbe:s in scientific notation.

PRINT USING

: : • ? . PRIN"l' CS ING 1.1aea ua· e~:aq. ••a: (; ezp: ({ , ezp:} -1 1 (; 1

1be PRINT USING srarement is the same a.s a PRINT srarement with a L"SSNG clause,
.used to conuol the format of information sent to the display screen. (See Chapter 3,
·.BASic lnput md OutpuL ")

~ O'Q:)18r 8: BASIC Reference

\

PRINT I

::• ?"PJliNTt ~£.1e1Uia [, J:eCIIlua] [; ezp~ [{; ezp~]) [;]]

)PRIN'l't l; W$(0,0,0), I.EF'l'$(W$(0,0,l))
)PRIN'l't lO, 47SS: ~+24, T'/43, Rt

PRINT• writes informarion to files in the same way that PRINI' writes information to the
screen. Irs syntax § the same as that desaibed for the PRINI' statement above. A list of
expressions separated by commas foDows, the file reference number (or record
number, if included).

One line of text is wriaen for each expression in the lisl PRINI'• automatially
performs any necessary numeric to string type conversions (similar to the STRS
function) in order to transfer the information from the apressions to the me.

A PRI!It'T• statement in which a specific record number is given starts writing
information IO the file at the beginning of the specified record.

You c:an use he SPC spec:ific:ation with P~'T• stareinerus in the same way that it is used
with PRINT statements.

PRINT# USING

::• ?.PJliNTt ~.11e~au.a (, %eCilua] trSING 1.11le~au.a·•t%.11lCJ"•••~ [:ezp~[{,ezpr}J) [;]

The PRI!Iti• L'SING Statement is the same as a PRil\'T• statement with a USING clause,
used to control the format of information sent to a file. (See Chapter 3, •BASic Iput
and Output"). ·

PROGNAM$

: :• PROCNAMS

PROGNAMS returns as a string the fnename of the current program, preceded by the
two c:hanaers 7/. "'be funaion MIDS(PROGNAM$,2) will return just the program
name. 1bis name is set with the SAVE or SAVE AS mename variation of the SAVE
statement.

PUTt

: :• PO'l't ~.11ellU.&{, 1e~aqtll [, ~eCilu.a]: •t•a~

The PL"T• statement transfezs n byteS from the suuaure array to the random-access
file given by fUeDum into the record given by remum. 1be value of n is equal to the
record size <set when the me is opened), unless a le:Dgth parameter is given.

SYNTAX NOTATION 249

Structures are aaays with an element length of 1 byte. 'I'hey are defined by the DIM
saremeru, just like any other aaay. They an be used like single-integer aaay elements
in numeric expressions, that is, as short positive integers from 0 through 255. Like
normal aaays, suuaures can have multiple dimensions.

pur.- is used with a random-ac.c::ess file of a defined record length. It will transfer the
smaller of the record size or the left dimension size minus the left subscipt plus 1,
unless the tea:)rd size is equal to 1. When the record size is 1, the length parameter is
used GET and PUT# al'W'a)'S begin data transfe:s with the first byte of a record when the
recnum option is used. When the recnu.m option is omitted, the transfer begins at
the current file position, but the transfer length is limited to the remaining fraction of
the cum:nt record. GET and pur.- will transfer data to and from DATA, BIN, or TXT
files.

ibe pur.- sr;aremenr limits the size of a tnnsfer to the leftmost dimension of a struaure
or tbe maximum record size (3Z767 bytes).

QUIT

::• QOIT {~~~•path]

QUIT terminates GS BASIC, returning to the control progrun that initiated it. If GS
BASIC W2S itself the conuol program initiated by ProDOS 16, conuol returns to the
Apple ncs Start Next Progrun default seleaor.

If the optional Bleparh is entered, the operating system will attempt to initiate a
program with the given 112me, prefix 0 will apply if a partial pathname is used

R.STACX%, R.S'TACX@, and R.STACK&

: : • :R. S'l'AC!<' cu.bazp:)
:: • R. Sl'ACX@ (uezp:)
::- R.STACXa (WM.zp:)

The R.STACK functions ren.un data from the CAll rerum stack, a 32-byte buffer. The
CAll and CAll% sraremenrs save up to 32 bytes or 16 words of tesults passed from a
toolbox function in the return stack buffer. (See the desaiption of CALL% in this
chapter.) The unsigned byte expression is a word offset into the 32-byte return stack
buffer; it must be in the t:lllge of 0 through 16 for R.STAQ{%, 0 through 15 for
R.STACKO, and 0 through 13 for R.STACX&.

,,R.STACKO returnS a double 1Nord (32 bits) from the return stack as a signed integer
riumber, R.STACK% returns an integer (16 bits) from the rerum stack as a signed
integer number, and R.STACKa: returns a long integer (64 bits) from the rerum stack as
'a signed iriteger mJmber.

250 Chcpter 8: BASIC Reference

......__

R.STACK%(0) will retum a word containing the number of words left in the R.STACK
by the last CAll statement execution. R.STACK%(1) will retum the word that 'WaS at the
top of stack after return from the toolbox funaion. 1'be return stack is cleared upon
return from every execution of a CAll. or CAll.% (even if its result word count is zero),
so you must remove any retum stack results before the next use of CAll. or CAll.% in
your program.

RANDOMIZE

: : • R.ANI>OM!ZI: aazp%

RANDOMIZE reseeds the random number genentor. The aexpr is the new seed and
must be a positive integer in the range of 1 through :z3l_z. The expression may be
derived from the reserved variable SECONDSO after a 'IIMER ON statement has been
executed SECONDSO will seed the random-number generator with the number of
seconds since midnight CO through 86399).

READ

: :• RE:A!l Y&% ({ ,Y&%}]

)2001 READ Odyaaey$,Wine,,Oark,,C

READ assigns the vuiable in its list values taken from elements in the program's DATA
statement list. The following rules apply when you are assigning values to string:

c If the f.ust nonblank character is either a quotation mark (") or an apt" ;;:ophe ('),
that character is the ending delimiter and all c:hara~ up to (but not mcluding)
the next occurrence of the delimiter are the value assigned to the string variable.

'-' If the first nonblank character is not a quotation IIW'k or an apostrophe, all
cha.raaers, including the f.ust nonblank one, up to (but not including) the next
comma are the value assigned to the sUing variable.

If a READ statement attempts to assign a string data element value to an arithmetic
variable, the

?SYNTAX l:RROR

message appears when the inc:orrea value type is assigned

• Note: the rules for assignment of sUing variables using READ differ from those using
11\"PUT.

Variables are assigned values of zero or null string (depending on the variable's type)

when any of the following conditions are met:

:::J A comma is the f.ust nonspace character following the reserved word DATA.

:::l There is no data element between two commas.

SYNTAX NOTATION 251

o 1be last c:h2r.la.er in a DATA mremenr is a manna (when tbe comma is being read
as a data element).

READ I

::• READt ~j,J.eA\Ja [, Z'ec:A1:1a) [; ..-.:({,~})

)REACt 7; Pipl, Pip2

)REACt 8, 54; Twelve~. Stronq,(2)

READ• gets information from a data file, specified by a file reference number. An
optional record number may be included to specify a particular record in a random­
access file to begin reading. A variable list following the file reference number (and
optional record number. it included) defines where to put the information being read.
(See the section • Accessing Data FiJe:s• in c:haprer 5 for the conversion limits of the
READ• srarement.)

1he following table defines the conversion limits of the READ• statement:

Variable to Dara Pleld Type

Real to:
Real
Double Real
Integer
DoubJe Imeger
Long Integer
String

Double real tO:

Inreger to:

Real
Double Real
Integer
Double Inreger
Long Inreger
string

Real .
.. Double Real

Integer
Double Integer
Long Integer
String

252 Chapter 8: BASJC Reference

Jlesult

OK
OK Possible loss of aCCW'2.cy
OK
OK; Possible loss of aCCW'2.cy
OK; Possible loss of accuracy
TYPE MISMATOi ERROR

OK
OK
OK
OK;
OK; Possible loss of accuracy
TYPE MISMATOi ERROR

OK in the range of +-32K. else OVERFLOW
OK in the range of ±32K. else OVERFLOW
OK
OK in the range of ±32K. else OVERFLOW
OK in the range of ±32K. else OVERFLOW
TYPE MISMTOi ERROR

.
' ·

·-

Double integer to:
Real
Double Real
Integer
Double Imeger
Long Integer
Tring

long integer to:

String to:

RiALS

Real
DoubleReal
Integer
Double lmeger
long Inreger
SUing

Real
Double Real
Integer
Doublelnteger
Long Integer
Suing

OK in the rmge of±2E+9, else OVERFLOW
OK in the r.ange of±2E+9, else OVERFLOW
OK
OK
OK in'Ibe rmge of ±2E+9, else OVERPLOW
1YP:E MISMATCH ERROR

?OVERFLOW ERROR if more than ±9E+18
?OVERPLOW ERROR if more than ±9E+18
OK
OK
OK
1YP:E MISMATCH ERROR

TYPE MISMATCH ERROR
TYPE MISMATCH ERROR
TYPE MISMATCH ERROR
TYPE MISMATOi ERROR
TYPE MISMATOi ERROR
OK

::• {~·-1 {dlgitlUdigitll E[+"-Udigit}
=~- 1•·-J fdigitl.f{digit}] lEI•·-J{digit}]
::• I+· -1Hdigitll. {digit) lEI• · -Hdigitl l

' A real is any positive or negative number, and it can have a fractional part. A numeric
.constant with a dec:imal point is always of type real, even if it has only zeros to the right
of the decimal point However, all real constants must have either a decimal point, an
exponent, or both; otherwise, the constant is considered an integer.

Rea1s whose absolute values are greater than or equal to 1o·showdigits and less than
10Showdigits are printed in conventional fJXed-point notation. For example, if
SHOWDIGITS is set at the default of 7, then 1, +1, -1., 3.14, 999.999, and -<>.00002 are
all real numbers that will be printed in fixed-point notation.

A real may also be expressed in scientific notation, such as 3.3E2, -3.3E4, 3.3E-4, or -
3.3E-3. The real number 5.3:£12, for example, is equal to 5.3 times 10 raised to the
twelfth power.

Here are examples of conventional notation vursus scientific notation.

Coavauioaal aoawon

300
320

Sdentific (E) DOCWOD

3:£2 • 3•(1 0A2)
3.2E2 - ;.ro OA2)

SYNTAX NOTATION 253

.44
-.033
1000000000000

4AE-1 • 4.4•(10A-1)
-3.31!:-2 • 3.3•(tOA-2)
1El2 • t•(lOAl2)

Single-precision rea1s an .represent numbers with seven signillant digits within the
following ranges -INP,-3.41!:+38 through -l.SE-45, zero, 1.51!:-45 through
+3.41!:+38, +INF'.

Double-precision rea1s an represent numbezs with 15 significant digits within a much
larger ranges as follows: -INF,-1.7E+308 through -5.01!:-324, zero, +5.01!:-324 through
+ 1. 7E+308, + INF.

All mathematical computations involving single- or double-precision variables,
constants, or long integers are aaually done with extended precision before storing
the result. :Extended precision can represent numbers with 19 signif"JCUU digits and a
numeric range of -1.11!:+4932 through 1.1E+4932. 'Ibe SANE mathematial engine also
provides for representation of plus and minus infmicy, and wrious NaN results
genenred by impossible operations, such as dividing zero by zero or tyring to obtain
the square root of a negative number.

REC

: • REC (.f .iJ. e1umt

REC .ren.uns the cument .record m1mber of the file specified by the w.lue of the
arithmetic expression following the reserved word REC.

If you use the INPur.-or~ statements to access the aralog of a direaory, REC
returns the number of the line c:urrendy being acces-sed.

aEC has the same error conditions as the T'fP funaion.

REM

::• REM anTthiaa

) lOO REM This can be & lifesaver.

1be reserved word REM must be the first thing in a remark sraremem or the statement
will not be treated as a remark. REM statements must ncx exceed 250 c:hat:la.ers in
length. If you comment your progr:ams heavily, use several REM statements in
successive lines ruher than using one very long remark.

IENAME

: :• RENAME pa+bn•ee1, pa•bnaee2 [, FII.'l"YP•TX'l'' SRC'BOF 'Uez'p:]

>RENAME /Floppy2/~mals/Ooqs,/Floppy2/Animals/Piqs

254 Chapter 8: BASIC Reference

·,

RENAME is used to change the names of volumes, subditecrories, and loc:al f.Ues.
RENAME's argument list is composed of the old pathname, followed by a comma,
followed by the new pathname, optionally followed by a file type specification. When
the IDe type specification is include~ the PIIEI'YPE of the renamed file will be
changed after a suc:a:ssful rename operation. You can change just the type of file by
Jenamina it wil:h the same name, but with a new file type specification.

You cannot use the RENAME statement to create a file or subdirecrory, only to rename
an existing one. Use the CREATE statement to make new files and subdin:crories.

A local filename or subdirectory cannot be changed to another volume name or
subdirec:tory; aaempting this will result in a duplicate filename error.

RENUM

: :• ~ (Devl..l.Deznaa) I. I.l.Dc:z-a-Dt l I, l..l.DaD'D&l. [-l..1DaDua2]]]

The ltENUM command will renumber the lines of the c:wrently loaded program. After
renumbering your program. you must save it if you 'Want to keep the newly renumbered
program. RENUM fust clears all the arrays, variables, and string data from the user
data segment. as if ft?U typed a.E.AR.

1be user data segment is then used to build the temporary renumber data tables during
renumbering. If the user data segment .is not large enough to accomplish
n:numbering, an

?OU! OF MEMORY ERROR

message will be displayed. and the program will remain unchanged RENUM can only
be used as a comman~ it cannot appear in a statement of a program.

tt.~ will n:number. and if necessary resequence, your program. The four
renumbering parameterS can be used in various ways. II you don't enter any
paramete!S with the command, the Dewlloeuum and IDcremeut panmerers
default to a value of 10. BASIC will renumber the entire program, assigning the first
line number 10 with a line the m1mber increment of 10.

:RE."'roM 1000 means remunber the entire program in inaements of 10 but assign the
first line the number 1000. RE:NtlM ,50 means renumber the entire program in
increments of 50, assigning the first line the number 10.

~ ltE!'IlUM bWlds a table of the old line numbers and the corresponding new line
numbers, the program .is searched for all references to line numbers in GOTO,
GOStJB, ON .•. GOTO, ntEN, ELSE, and similar statements, and the·old references
are checked to verify that all lines can be correaly modified for renumbering without
losing any infoJmation.

SYNTAX NOTATION 255

lnformation might be lost because line mtmbers are tokenized (converted from
c:hanaers into binary) and tola:nization aeates 1, 2, or 3 bytes for a tokenized line
mtmber. BASIC may have to inae::Lse the size of a program line to renumber it because
the _tokenized form of a line m1mber n:fe!ena: may grow from 2 to 3 bytes. Because a
line js limited w 255 bytes, it is possible to aeate one that c::annot be renumbered
later. -

llENllM c:heck.s all lines that must have their teferences changed because of
tenumbering to ensure that all the lines can be re.nwnbefed without losing information
U1 any line of the program. It RENUM .findsa line that cannot be renumbered, the
·message

?I.IlfE TOO LONG IN LINE DAliA

will appear, whe!e DDDD is the mtmber of that line.

After all lines are cbeda:d, the propm is aaually renumbered. If for any reason
RENUM cannot renumber everything correaly, the program remains unchanged, and
a message is displayed.

The last two panmete:s are only used when you want to renumber or move (by giving it
new line m1mbers) a portion of the program. The 11Denuml-Unenu.m2 parameters
defme a range of lines within the program that are to be renumbered. Both llilenuml
and Una1u.m2 refer to the e%isting line nwnbe13 of the prognm before renumbering,
but they Deed not refer to specific lines.

XfNtJM searches for llllemuul and Ilnenuml and uses that line or the first line with
1 larger line number if the speciilC line number given does not exisL When you specify
llnenuml without -lb:leDu.m2, RENUM uses the last line nnmf>o!r in the program for
llneDum2. ·

RENti'M with liDenuml and/or Unenum2 may cause the lines of the range to be
moved within the program. 1bis occurs when the new.llnenum is less than the line
mtmber of the line prior to lb:lenuml iii the program or when newllnenum is
gre:uer than the line number of the rJrSt line airt:r IJnmJm 2

When a range of lines is re.nwnbefed in place, or moved to a new position, the new
line numbeiS for the range cannot overlap the line m1mbets of any existing lines in the
prognm outside the range. RENUM chec:ks for dUa and issues the message

?CAN IT RENOMBER ERROR

when .it oc:cws, leaving the program in memory unchanged.

'REP$·

:• REPSc•eap~.ueap~)

REPS returns a suing of length ubexpr whose c:haraaers are all the fit.~ char.lcter
se:rpr. The ube::Epr must be a number in the range of 0 through 25;.

:256 Chcpter 8: BASIC Reference

\.

RESTORE

: : • US'l'ORE [l..i.Ae&n&a' l.alMl.]

RFSTORE moves the data list poiruer back to the beginning of the data list, allowing
you to read the same data more than once. If the optional line number is given, the
data .read pointer is set to the beginning data irem in the DATA statement at the given

.line number. If the line munber given is not a DATA statement, an invalid linellabe1
-error ocaus.

RESUME

: : • JU:SOM£ t NEX'!'. COPY J

'lbe RESUME statement, without either option, aaempts to reswt the starement that
caused the most recent ON ERR or ON EXCEPTION event trap. RESUME without either
option should only be used in an ON ERR proc:essing routine. DGS BASIC ignores
RESUME statements it encounters until an error occurs. If you try to resume in
immediare mode, an illegal direct error results.

RESUME NEXT may be used in place of RESUME in an ON ERR processing routine to
exec:ure the statement after the one that caused the error.

RESUME COPY is used to return conuol to the COPY statement for implementation of
single-drive file-copy programs, (see the desaiption of COPY in this chapter).

RETURN

• : : • RE:t'ORN

: :• RE'!'ORN 0

When executing a n:TURN statement, BASIC removes one pointer from the top of the
for-gosub stack and branches to the statement indicated by the pointer. nus is the
statement immediately following the most recently executed GOSUB statement, unless
a POP statement has been executed since the most recent GOSUB was encountered

If BASIC attempts to execute one more R£TURN statement than it has pointers on the
program sta?t, a RE'I"URN without GOSUB error oc:aus.

If you do not want to return to the statement following a GOSUB, possibly due to an
error, you may return to another spedfic line in your progr.am by using the sequence
POP: GOTO 11Denua11abel.

RETUR..~ 0 is a special case of RETURN used at the end of the eYent-processing routines
defmed by ~"TDEF and MENUDEF for use with T.ASKPOll. RETURN 0 resets the
current statement to the one given by the painter from the top entry on the for-gosub
stack, but then executr:s an assembler R'I1. instnJction to return to the event­
dispatching code.

SYNTAX NOTATION 257

Wamlng:
RETURN 0 should never be used except In eonjune11on with TASKPOU and the
event-hcndllng roU'ttnes It eolia. Misuse ot RETURN 0 will crash the system.

liGHT$

: :• RIGB'l'S (a~z:. 11beapz:)

)PRIN'l' RIGli't$ ("Apple•kin" + "Ware" • 8)
ak:inWare
)B$•RIGHT$("Fruitbat". 3) :PRINT B$
bat

RIGHI'S returnS a string of specified length composed of the rightmost characters of
the given suing expression. The length is given by the unsigned byte expression, and it
must be U1 the range of 0 through 255, otherwise, an illegal quantity error will occur.

ROUND

: : • ROOND (aezpz: l

ihe ROUND function returnS the integral value nearest the value of the acspr,
according to the rounding direaion of the SANE settings. ROUND should be used in
.place of the common INT(aerpr+. 5) because it will return a result consistent with the
other capabilities of SANE.

RND

: : • i\ND < aeapz: l

) PRINT RNO (8 l
.830965
)

The RND funaion returnS a random,. real positive number less than 1.

RND generates a new r:uuiom mtmber e2Ch time it is used if the argument value is
.greater than zero.

auN
: :• RON patlulaae (• l.i.AeA11a' l&lM.l 1
: :- RON (l.J.A..aua· lue.l 1

258 Chcpter 8: BASIC Reterenee

\.~_ ..

) ROll
) ROll 20S
) ROll M&rathOII
) ROll Assets, '7254

RUN is used 10 start running a program. When a RUN statement is eruered, BASIC
dears all variables, doses all open files except exec:uling text files, and begins to
exeo.Jte the program in memory beginning with its smallest line mtmber, or at the line
number indic::aled. A program on disk can be tun by following RUN with the program's
pathname.

If you specify a nonexistent line number, an unde.fined statement error ocaus. If the
file you specify is not found after searching the disk, a file not found error oc:c:ws. If the
file type of the file is not a nos RASIC program file type, a file type error oc:cws.

SAVE

! :• SAVE {pa+hna-1
: : • SAVE AS [pa tlu:&aae]

SAVE writes a copy of the program Cl.lm:Iltly in memory to a disk file. You can specify
the pathname 10 be 'LJ5ed by SAVE. If you have previously loaded, nm, or c:ha.ined the
a.urent program, the pathname is not required, and DGS BASIC will save the program
back to disk using its original name.

The SAVE AS variation of SAVE is used to set and display the current name; SAVE AS
parhname will set the name UJUhoul saving the program to disk. SAVE AS without the
pathname will display the name on the next line of the saeen display.

BASIC saves the progr.un name and its associated prefix in memory (the prefix is set
into pref1X i). SAVE without a pathname is the equivalent of SAVE 7 /program-name.

Pref1X 7 is set equal to prefiX 1 (application prefz.x) during DGS BASIC startup. Prefix 7
is updated whenever a full or partial parhname a used in a CHAIN, LOAD, RUN, SAVE
AS, or SAVE statement.

If there is already a BASIC program with the same pathname on the disk, it will be
overwriaen and lost. If a locked BASIC program with the same name is on the disk, you
will get a file locked error. If a file on the disk having the specified name .is not a BASIC

r.program, a file type error ocaus, and the file is not saved.

SCALI

::• SCALBia~ezp:,aezp:)

SCAl.B scales the arithmetic expression by ~apr, effectively returning the operand
shifted left or right sie:zpr binary places. LOGB is related to SCALB, returning the
siapr for a given aa::pr.

SYNTAX NOTAilON 259

SCALI

: :• SCALE (i.taZpZ', &eZpZ')

)A,•l234S6i8901234567
)PRINT OSING •$$20,t.tt•;SCALE(-2,Aa)
$l23,456,789,0l2,345.6i

SCALE is used in c:onjunaion with PIUNI' USING to shift the decimal point of a
displayed value to rhe left or the right. SCALE uses two arithmetic expressions as
argumenrs. 1be tim argument defmes the munber of places to the right that the
decimal point should be moved. 1be second argument is the aaua.l numeric value to
be owput.

The resulting exponent of the value must be between -4951 and +4532. or an illegal
quantity ermr oc:o.us.

scispec

~:- [+"-J [•o~pa:tl [~racpa:t] ezp

)PRINT OSrNG "+t.4t4E"; 3.1415926
+3.l416E+OO
)PRINT OSING "+.4t4E"; 3.1415926
+.3143+01

1be sdenrific notation specification (sd.spec) formats numeric output in scientific
notation. 1be scispec is simpler than the fixspec, having either one digit or none to
the left of the decimal point.

The • characters, either stated explicitly or by a repeat factor, def1ne the number of
digits to the right of the decimal poinL The exponent position is defmed with the letter
E. and you can use a repeat f2aer.

Either three, four, five, or six char:laer positions must be allowed for the exponent;
four positions are adequate for all single-precision real variables, and five ue
adequate for all double-pleCision real variables. Six c:hanaer positions a..re allowed
for printing expressions that may have very large exponents.

When the spec calls for one digit position to the left of the decimal point, the first
signifiant digit of the value is placed ~ when thete is no digit position to the left of
the decimal point, the most significant digit is placed to the right of the ded.ma.l poinL
In either ase., the exponent is then calculated to make the displayed value correa.

SECONDStit

: :• SECONDS@

260 Q,cpter 8: BASIC Reference

SECOl\'l!>SC is a n:se:rved variable that returns the value of counter maintained by the
nMER ON statement. SECONDSC will return a positive number in the range of -1
through 86400. The value 0 is returned jf TIMER ON has not been executed If TIMER
OFF mode is currently in effea, the value of the timer will return an unchanging
mJmber.

SECONDSO will remain a zero until tbe fiiSt TIMER ON statement is executed. Due to
the presence of numerous intenupt sourc:es in the Apple nos, many of which have
higher priority than the 1-second dock inlemlpt, the SECONDSO value is not always
exaa. However, SECONDSO will always be ena immediately after execution of the
'IlMER ON statement. 1lMER ON may be used as often as needed during a program.

SYNTAX NOTATION 26~

SET

: : • SET (at-.a:, (aezp:l]) • ezp:
: : • SE'l' (at-.a:; (aezpzol]) _.. aezpzo
::• SE'l'(at-.azo, (aezpzol]) ••cU.-.azo(,l .. ¢Jl]

1he SET statement allows storing a variable or expression result into a suuawe am.y.
1he optional arithmetic expression., ..zpzo, is the size of the destination field and
must result in a positive number in the r.mge of 1 to the leftmost dimension of the
•t-.azo (if it is used).

SET assigns the result of the expteSSion to the suuawe array according to the type of
the expression result. 1be expresaion leSUlt will be an integer only if the expression
evaluation was able to complete all opentions using integer calculations or the
expression is just an integer variable.

1he size of the result controls the rleld size stored if the optional length pammeter,
aazprl, is not given. The size for various variable and expression results is show in
the table below. It the length parameter is given and the expression result (tight of the
equal sign) is smaller than the rleld size, just the size of the result is stored, and any
extra bytes in the field are left unchanged. The result is al~ys stored low byte at the
lowest address, which corresponds to lowest suuaure amy subsaipts.

1be default field sizes for an expresaion that is just a variable reference are as follows:

Single-precision real variable
Double-precision real variable
Single-integer variable
Double-integer variable
Long-~nteger variable
String variable

4 bytes
Sbytes
2 bytes
4 bytes
8 bytes
Length of the string(0 .. 255
byteS)

An actual expression c::an rerum a result that is single or double integer or an extended
precision real result. When the expression result is an extended-precision real, the
result will be converted and stored as a double-precision real if the length is given as 8
bytes, as a single-precision real if the length is 4 bytes, or left as an extended precision
real if the length is 10 bytes.

1be second form of the SET starement is used to srore a BASIC string into a suuaure
am.y as a counred string (sometimes refered to as a Pascal string). The expression
must be a string expression. nus conve:sion will store LEN(sespr)+se:spr in the
suuaure arnay.

\

'

'The third form of the SET allows two types of direa memory assignment to a struaure
amy. When the optional comma md length expression are omitted, the V2lue of the
double-imeger variable ~ used as the memory address of a 1-byte count, followed by 0
to 255 characte!S of string data that are assigned to the field in the suuaure array. If the
comma and length expression are present, the address used ~ the address. of length
bytes of data. The count byte or the length parameter may be zero, md ~ length may
be up ro 3Z767.

-SGN

: :• SGN caazpr>

}PJUN'l' SGN(-234)
-l
)PRINT SGN(2496+234)
l
)PRINT SGN(SE4-SE4)
0
}

SGN returnS -1 if the argument value ~ negative, 0 if the value of the argument equals 0,
and 1 jf the argument value ~ positive.

SHOWDIGrTS

:• S.BOWDlG':l'S

SHOWDIGm ~ a modifiable ~d variable that controls how many significant
digits are output by the PRD\"T statement. The default value of SHOWDIGITS is 7, the
number of significant digits in a single-precision real number. SHOWDIGI'I'S can be
set to integer v:Wes in the r.ange of 2 through 28 with the I.:e:T statement. SHOWDIGI'I'S
does not influence the behavior of PR.n\"T USING or any other statement (See the
desaiption of PRD."'I' in this chapter.)

SIN

: :• S!N caezpr)

)PRINT SIN(2.7l8)
.4ll038
)

~ returns the sine of m angle given in radians.

SPACE$

:• SPACES (uMzpr).

SYNTAX NOTATION 263

SPACES reuuns a string of spaces in the length given by ubezpr. 1be unsigned
:apression must be a number in the range of 0 through 255.

'SPC

: :• SPC taezp~)

)PRIBT "A"; SPC(l); •B•; SPC(2); •c•
ABC
)PRIBT •o•; SPC(5); "E"; SPC(Sl; "F"
tll!F
1 SPC (250) SPC (139) SPC (255)

SPC is used in PRINT statements to define (by the expression enclosed in parentheses)
.the mtmber of spaces to be inserted after the last printed c:baraaer.

Each SPC statement is limited to a maximum v:&lue of 255, but you an insert as many
spaces as you w:ant by stringing together a series of SPC st:aremerus.

SQR

: :• SQRiaezp~)

l.P!mr.t' SQR(3""2+4""2)
s
i)

5QR .1e!:Um5 the positive square root of the argument v:&lue.

STEP

: : • S'l'EP aezp~

)2000 FOR Faranheit•l eo 451 STEP 3 : NEXT
)2005 PRINT "Fire!!!"
)87 FOR Couneer-10 to -10 STEP -1 ••• ~Counter

STEP allows you to inaement Cor deaement) the conuol variable of a FOR ..• NEXT
loop (desaibed earlier) by integer steps other than 1. If a negative v:&lue is specified in
2 S'IEP dwse, tbe loop c:ounrs bac:kw2tds. If a positive value is specified, the loop runs
forwud.

ibe FOR statement coerces the w1ue of the snP expression to the type of the control
variable. For example:

FOR :'•ll eo 33 STEP 1.66

will execute with a step value of 2.00 becwse the step expression is treated as if you had
entered S'I'EP CONV%(1.66). The CONV% funaion will round the argument to an
integral (the aearest whole number), and then convert it to an integer;.

~ Chapter 8: BASIC Reference

STOP

: :• S'l'OP

S'IOP halls exealtion of a program, terminates any executing text file, returns BASIC
to immediate exeaJtion. resets the output file to .CONSOLE, and redisplays the
prompt c:haraaer. S'IOP displays a message, such as

?PRO~ IRTERROPTED 8712

where 8712 .is the line number of the program line containing the STOP statement. The
program in memory .is not altered in any way. STOP has no options a.ssoc:iated with it.

STR$

: :• STRS (aezp:)

)PRINT ST.R$(25/3)
8.33333
}PRINT STRS(lOOOOOOOOOOO)+"More"
lE+llMore
)

STRS evaluates a given arithmetic: expression and returns the value as a string.

Strings

A string is a sequence of charaaers. String variable names must end with a dollar sign
($). Strings c:an contain from 0 characters (the null suing) to 255 charaaers. The
number of characters in a string is referred to as its length. Strings are not flxed in
length, but may grow or shrink as necessary.

'When a program is run, all string variables initially contain the null string.

SUB$

: : • SOBS (.... a:, ~: [, 11bezpr]) • 8ezpr

)FS•"Baraware" : SOBS(FS,l)•"Soft• : PRINT F$
Software
)FS•"Baraware• : BS•"Soft" : SCBSCFS,l,2)•B$: PRINT FS
Scrc:lware
)

SUBS lets you replace any part of a string with a specif~ed substring. The string to be
changed c:an be any string variable, and the substring may be the value of any string
expression. You must specify the fust character in the string to bt; changed by
following that string with an unsigned arithmetic: expression in the rmge of 1 through
255. .

SYNTAX NOTATION 265

Y~ an optionally include a second unsigned arithmetic expression to spedfy the
m1mber of char:lcte:s in the substring to replace characters in the original string.

SWAP

::- SWA!I ~:1, •a:2

) SWAP 'l':ic:k, 'l'ocll:
)SWAP Olcl$,New$

SWAP exchanges the value stOred in one variable for the value stored in another. You
.can use .suing. lnleger, and real variables wilh SVI AP, but bolh variables must be of the
same~

1'AW

: :- ~AB <aezp:)

)PRINT "Greae•; 'l'AB(8); 347
Greae 347
)P!UN'r "'Oncier.b.ancied"; 'l'AS (8): SS3
llnderhandedSS3

TAB is used in PRINT staremenrs to define the number of spaces from the left margin of
the text window to begin printing ten If you specify an expression that is less than the
mtmber of the current print position, no spaces will be inserted before the next
rharaaer to be printed.

1'AN

; :• "!'AN <aezpzo)

)PRINT ~(3.141)
-S.926S3E-04
)

TAN retums the tangent of an angle given in radians.

1'1N

~ :- 'l'EH <aezpzo)

)PRIH'l' 'l'EN("30C")
)PRINT TEN(" SE02033")

266 ~ter 8: BASIC Reference

·\·~

TEN returns the decimal (base 10) equivalent of the hex digits of the given suing
expression. The value returned will be in the range of a double integer. The expression
may contain leading spaces followed by an optional dollar sign character, but the next
eight or fewer charaaers of the string result must represent a hexadec:i.mal number; if
not, an illegal quantity error oc:c:ws.

TASKPOLL

: :• 'rAS:KPOLL IN!'! j,azp:l, j,azp:2
: : • TASKPOI.I. ON
: : • TAS!I:POI.I. OFF

The TASKPOU. sutement enables and activates Wmdow Manager and Menu Manager
event polling through the Task Master function of the Window Manager. This
statement is desaibed in more detail in Chapter 7, •Advanced Topics•.

Prior to executing TASKPOll INIT, you must load and properly initialize the Wmdow
Manager, .the Menu Manager, the Desk Manager, the Control Manager, and any other
tool set you are using, and defme all the required data suuaures with CAll or CAll%.
The tool set functions required for this complex prognmmi.ng task are fully
documented in the Apple OGS Toolbox Reference manual. ln addition, you must
defme for nos BASIC the event-handling routines in your program with the
EVENTDEF and MENUDEF statements, desaibed in this chapter and in Chapter 7,
•Advanced Topics. •

Warning
tf you haven't reed end understood 1he Toolbox documents on using Tosk Moster
end ell the related tool sets. don't use TASKPOU. In your proQroms.

The iexprl in ~~·.;'>.SKPOll I!'o;TI' is a douDle-integer variable stored in the TaskMask field
of the TaskRec used by DGS BASIC when calling Task Master. The second integer
expression, ie::xpr2,. is used as the EventMask in the Task Master call parameters. It is
stored in the word preceding the TaskRec and can be e.:ramined with T.ASREC%(0).

You must exealte TASKPOU. INrr before executing TASKPOU ON; if you do not, you
will see the message

?'!ASKPOI.l. !NIT 'I ii!NOS'!AR'!OP ERROR

T.ASKPOU. INrr also checks to be sure that the Wmdow Manager is active when
TASKPOll INIT is executed, and if it is not, TASKPOU. ON will generate the above
message, even jf TASKPOU. .INIT has set the TaskMa.sk and EventMask.

The proper values 10 use for the TaskMask and E~entMask are defmed in the Toolbox
Reference manuaJ in the Wmdow Manager and Event Manager chapters. The exact
values you select will depend on how you decide to use Task Master.

SYNTAX NOTATlON 267

'EVENTDEF and MENUDEP provide the linkage between specific Task Master events
and your program. IIGS BASIC supports 64 events C!ask Master defmes 29 as of March
87) plus up to 128 menu ir.ems. 1be menu items are not dispatched individually, but
are returned as the wlnSpec:ial event.

T.ASKPOIJ. ON enables aaual Task Muter polling, and TASKPOIJ. OFF disables Task
Master polling. When polling is enabled with TASKPOIJ. ON, IIGS BASIC a1ls Task
Master just before e=cuting t!!Ver'f scnemenL Task Master polling has lower priority
tban the ON TIMER, ON BREAK, and ON KBD evenrs, all of which are checked before
polling Task Master.

When Task Master reD.lmS a null eYent, the a.ment statement is executed. If an event is
returned by Task Master, it is dispau:bed through the EVEN"IDEP dispatch table,
except for the winMenu.Bar evenrs, which are dispau:bed through the MENli'DEF
dispatch table using the item identification number reauned by MenuSelea. If the
seJected entry in the appropriate dispatch table is zero, the event is discarded and
program execution continues.

When the event or menu dispatch entry in the EVEN"I'DEF and MENL"DEF tables
defmes line mtmber, an effeaive GOSUB llnanm statement is executed. The event­
handling routine in your BASIC program processes the event, and then executes a
RETUR."i 0 to rerum control ro the next program statement. Task Master polling is
suspended until the RmJRN 0 is exeoJted, so subsequent events are held in the event
queue until BASIC completes processing for the current one.

TAS1CR£~ and TASKREC@

: : • '!ASKREC:~ ~:)

: :• l'ASKREC8 (uhezp:)

The TASKREC functions return a single- or double-integer result from the Task Master
TaskRec. The unsigned byte expression is a word offset into the TaskRec, which is an
intema1 8ASIC data suuawe used when alling Ta.sk Master. ·

'The Task.Rec is an e:uension of the W"mdow Manager task record suuawe. The fust
word of TaskRec is the Event Manager mask used by IIGS BASIC when alllng Task
Master. The remainder is the same as the Task Master task record, as def111ed under
Usina Task Master in the W'Uldow Manager chapter of the Tooibo:% Reference manual

TEXl

: :• nn

1be TEXT statement sets the dispJay screen to the usual full-screen text mode. It clears
any other text or graphics mode in use and displays a prompt and the cursor at the left
margin of the next line.

268 Chopter 8: BASIC Reference

TEXTPORT

: : • '!E:Xl'POR'I uba:cp:l, uba:cp:2 'l'O uba:cp:l, uba:cp:4

) TEXTPOR'l' 37, 9 'l'O 44., 16

T.EXTPORT allows you to set the position and si2e of the textport, a rectangle within the
total saeen area where BASIC may display ten

The first pair of numbeis spedfies the horizontal and vertical coordinates of ·the
upper-left comer of the textport, and the second pair spec:if'leS the coordinates of the
lower-right comer. 1be enmple above will create a textport eight columns wide and
eight screen lines high, in the center of your screen. When a T.EXTPORT statement is
executed, the cursor moves to the upper left comer of the specified textport.

T.EXTPORT statement coordinates may be specified by any arithmetic expression.
Each of the four expressions must have a value within the range of 0 through 255, or an

'?!l.:.ZGAl. QOAN'.I'I'!'Y ERROR

message will be displayed. If your values would make the textport larger than the
maximum allowed screen size (24 x 80), the textport is uunc::ued to fit.

nME$

: :• nM:ts uba:cp:l, uba:cp:2, uba:cp:l

You can set the Apple DGS dock time, without changing the current date, with the
TIMES statemenl. 1be hour is set from ubexprl and must be in the range of 0 through
23, the minute is set from ubcxpr2. and the second from ubcxpr3. Both the minutes
and seconds must be in the range of 0 through 59.

TIME

: : • ':' IMI: (ul:>azp: l

1be TIME function is used to read the Apple ncs clock time fields as numbers rather
than as the string returned by TIMES. The ube%pr must-be in the range ofO through 3.
The TIME function must be alled with a zero argument to ac:rually update the values
rerumed for the other arguments. The result returned for argument zero is the hour in
24-hour format (0 through 23).

The requirement that the function zero be called first protects you from having the
hour, minute, or second change between calls for the other results. 1his problem is
commonly known as the clock rollover problem. If 'I!ME(O) is not alled
immediaiely prior to using the other parameters, the function results will reflect the
time as of the previous TIME(O) all. You should not call TIME(O) a second time until
you have retrieved all the other results into your variables.

SYNTAX NOTATION 269

function
TIME(O)
Th\iE(l)
TIME(2)
TL\iEC3)

TIME$

: :- TIMES

Result
Hour (0 through 23) reads the dock
Hour (0 through 23) doesn't read the dock
Minute (0 through 59)
Second CO through 59)

: :- !'!MES u.zp~1. uezp~2. a~•zp~l

-riMES is botb a reserved v:uiable (first form) that returns the current time as a stting,
and a smrement (second form) tbat sets the Apple IIGS dock time to the hour given by
ubaprl (which must be in the range of 0 through 23), the minute given by ubczpr2,
and the second given by ubezpr3. Both the minutes and seconds must be in the r.u1ge
of 0 through 59. The current dare setting is not disa.ubed by changing the time.

nMEI ON and nMEI OFP

: :• TIMER ON

: : • TIMER OFF

TIMER ON reads the time from Apple IIGS dock, ca.lculates •seconds ·since midnight•
(a mtmber from 0 to 86399), and stores the number in a cowu.er that is updated once a
second. The counter is maintained by using the 1-second clock intenupt. ~ TIMER
ON is executed. a program may initiate a one-shot inrerwl timer using the ON nMER
sr::arement. TIMER OFF disables the 1-second clock inr.errupt and thus freezes the
SECONDSO counter.

Because of the low priority of the 1-second interrupt and other faaors in the system, it
is possible for the counter to miss an interrupt an not reflea the aaual number of
seconds sine: mid.nighL

TRACE

::- TRACE
: :- TRACE TO t~£.leAaa

)'mACZ

)RON

~a prirus a • followed by the number of each line of a program as it executes. The
optional TO clause direas the trace information to a file that has been opened wil:h the
OPEN statement. 1be file can be either a charaaer device or a disk me. If it is a disk
rue., the program will slow down whenever the traa: information is wri!Ien to the drive,
and may icself ause a disk full enor.

270 Chapter 8: BASIC Reference

A very useful means of tracing a program is to send the trace information to a printer,
a RAM disk me, or another computer display through a parallel or serial interface.
When the trace information is direaed to a file, the program could also send
additional diagnostic information to. the me with PROO"• statements.

TRACE is switched off by rebooting, a LOAD pathname statement, a RUN
pathname sr:aremeru, or by typing NOTRACE. CHAIN or RUN statements do not

--·a n<rl 'I'RACE.

TYP

: :• TYP t~.S.lezau•

)05 ~(3) GOSCB 1000,1200,1400,1600,1800,2000

1YP is used tD detemline what type of data will be read from a BASIC data file
CFILTYP-BDF) on the next ac:c:ess to that file. The argument to the funaion an be any
arithmetic expression,· but its value must specify a particular file reference number.

· 1be mtmber returned by the 1YP funaion denotes what type of data will next be read
from the specified flle.

For a BASIC ~ta file. TYP renuns the following values:

0 end of file
1 not retu.med by
2 next ~tum is integer
3 next ~tum is double integer
4 next datum is long integer
5 next datum is single Real
6 next datum is double Real
7 next datum is SUing

If there are no more data items in the file the value 0 is re111med. If the type of the file is
not a BASIC Data File, a me type error occurs.

TYPE

::• 7YPE pa~hza ... I~O t ~.S.lezaua] [,w.S.d~]

1be TYPE command will anempt to open a SRC or 'IX!' me, read lines of text
terminared by carriage returns. and display the lines on the screen. If the optional
width parameter is given, only the first width characters of each line are displayed. If
the optional TO • fllenum is used, an implied OUTPUT• filenum :1YPE:
Ot."''l'UT • 0 sequence is exe01ted, sending the text lines to the open me.

UBOUND

: : • :l'BOOND taz:ay-za ... [() J [, cU.a-za~: J)

SYNTAX NOTATION 271

UBOUND returnS the upper bound of the dimensions of an amy. 1be dimension
parameter is an optional mtmber that is used for multidimensional arrays. It specifies
which dimension of the arr.&y to test. 'Ihe upper bound of an amy is the largest
possible subsaipt for a given dimension. The lower bound of an amy is always zero.

UCASE$

! :• OCASE$ <aezp~)

The UCASES function returns the string expression argument after shifting all the
~ Jettem a through z up to the leaers A through Z.

Ul~

.: :• OIRt (Uezp~)

'Ibe UIR% function returnS the statuS information from the UIR after INPu"T USING
completeS. The um function 0, exit type, is the index of the tchar, or termination
keypress, that ended the input editing. It will be in the range lof a, and it indicates the
tchar in the IMAGE statement that was enrered

ibe UIR% function ren.uns the following status results:

'Ll!R%(0) exit type
1JIR%(1) ASCI wJue of 12st keypress
IJIR%(2) m2Sked modifier of last keypress
UIR%(3) reenuv cype
UIR%(4) last cwsor x position
CIR%(5) last cursor y position
UIR%(6) last relative character position

1be INPLlT USING statement and the UIR% function are discussed in more detail in
Chapter 7, • Advanced Topics. •

UNLOCX

5ee me description of LOCK earlier in this chapter.

UNTIL

: :- Otn'!L
: :- ONT!L l.eap~

100 DO : s~a~amenes - : UNTIL GH > 29
14000 WHILE : seaeamene~ - :UNTIL GH >- 299
SSO CO : s~ amene~ : WHILE ewqy > ll : seaeamanes : ONTIL

272 Chcpter 8: BASIC ~eferenc:e

~""III. is used in conjunaion 'With the DO and/or WHILE verbs to aeate various types
of conditional loops. 1be verb t]?I.."TTL marks the end of the loop construct and can be
u.secl with or without the conditional expression.

If the conditional expression is omiaed., UN'IlL loops back to the most recently
exealted 00 or WHJI.E statement COO takes precedence if both DO and WHILE
precede the UN'Ill.). When the logic:a.l expression is present, UN'IU. will loop back if
the expression j[false (zero), and proceed to the next sraremenr if the expression is
true (nonzero).

+ Note The UNI'IL logic test is loop back if false, but the WHILE test is skip if false.

Some other BASICs implement similar WHILE ... WEND or REPEAT ... UN'IU.
c:onstruas that are easily duplic::ated with WHILE ... UN'IU. by simply including or
excluding the logic:al expression. The advantage of the WHILE ... UN'IlL construct is
the new combinations it allows:

WH=l.E ~exp:r : _ statement~ - : ON'l'IL ~exp:r
WHILE lexp:r : _ statement~ _ : ON'l'IL
WHILE : - statement~ - : UNTIL lexp:r
00 : - statement~ - : UNTIL lexpr
WHILE : - statement~ - : UNTIL
DO : statements : WHILE lexpr :_ statements
DO : statements : WHILE lexpr =- statements

(two tests)
(WHILE - WEND)
(REPEAT - UN'l'IL)
(DO - UN'l'IL)
(i.nfinite loop)

-:UN'l'IL
_:UN'l'IL lexpr

1be 00 ... WHILE ... UNI'IL construct always executes the sraremerus before the
'wrm.E and condttionally c:xe01tes the statements after the WHILE. UN'IlL examines
the control stack for the WHILE information and if an UNTIL is exe01ted without a prior
DO or 'WHn..E statement, an Ul'i"TTL without WHILE error will oc:au.

VAL

: :• V~<•azpr)

}PRINT lO • VAI.(•l.3E4.,)
130000
)PRINT VALC .. l3•+•77•)
1377

V AI. ~ a given suing expression and returns the value a.s a real or an integer
number.

If any char.aaer of the string expression value evaluated is not a legal numeric
character (leading spaces are acceptable), a type mismatch error OCOliS.

If the absolute value of the number represented by the value of the string expression is
greater than the range of a double-precision real number (approxa.mately l.7E+308),
an overflow error OCOl%S (see the desaiotion of reals in this chapter).

A string expression value containing more than 255 characters causes a string too long
error.

SYNTAX NOTATION 273

VAR
: :• VAR<•t~a:,ftype(,1¢lll)
::- VAR cac:ldz••-eap:aa:i.oa, type [, 1tJtll))

v AB. is the inverse of tbe SET statement; it exuaas a variable from a structure amy (or
memory) and becomes a variable of the ~ VAB. can be used wherever an .zpr
can be used. V AB. an also be tbe expression on the right side of a LET or SET
assignment. Vtype is spedf~ed by using the m1mbers returned by the TYP function, as
foll~s: ·

1 Result is an extended real
2 Result is an integer
3 Result is a double integer
4 Result is a long integer
5 Result is a single real
6 Result is a doubJe real
7 Result is a suing

1be length parameter may be used with the integer types to specify a size sm;a Jler than
the default size (2, 4, 8), and it must be used with the string type. For single integers,
lgth may be 1 or 2; for double integers, lgth may be 1, 2, 3, or 4; and for long
integers, it may be 1 through 8. For strinp, lgtb. must be in the r2.nge of 1 through 255.
When an integer is aeared from a reduced size, the result is always a positive number;
that is, no sign extension is provided

1be second form of the V AB. function allows a muJtfbyte peek functionality. The
interpreter distinguishes these two otherwise ambiguous definitions by the subsaipted
variable used as the first term of the fU'St panmeter. 1be expression is evaluated and
converted (if necessary) into a double integer that is taken to be an address.
(Expressions starting with subsaipted variable names are not allowed in the second
form of V AR; if the first term is a subsaipted variable name, the fJJSt format is
assumed, and the subsaipr.ed variable must be a suuaure array refere."lee.

The type panmeter still conrrols the type of what is peeked, but it allows peeking at an
integer (type•2), a double integer (type•3) (clereferencing a pointer), a long integer,
single or double teals, and text or P-strinp. When a string is exuaaed, a P-sUing is
assumed if type-7 and no length is given; that is the addre:s.s is the address of a count
byte followed by 1 to 255 chanaers.

Of special nore is the v:ui21ion

VARCBASIC3(48)+x,J,Jl

whele %is a zero-page address. 1bi.s peeks at a ~ pointer in IIGS BASICs zero
page. The type indicates that a double integer should be created; and the length says
peek only 3 bytes. CMost of the GS BASIC zero-page pointers are 3 bytes rather than 4
bytes.)

27 4 Chapter S: BASIC Reference

VAR$

: :• VARS (ae.zpzo (, uMzpZ'])

The V AR$ function creates a string variable from the counted suing at the memory
address given by the arithmetic expression, when the optional length expression is
omiaed 'Ibis function provides a means of extraaing a string result returned by a tool
set function. When the optional comma and length expression are present, the string
result is taken beginning at the address given by KZPf for length bytes or until
encountering a binary zero in memory. The unsigned byte expression, ubezpr, must
have a value in the nnge of 0 through 255.

VARPTR and VARPTR$

: : • VARP'l'R (name)

: :• VARP'!'R$ (svar)

The V .A.RP"m function returns the address of the variable name given in parentheses.
For sUing variables, VARPTR returns the address of the string desaiptor, not the
address of the stting data.. V ARPTR.S(svar) returns the address of the suing data of a
string vuiable. V ARPTR.S will return a type m.issmatch error if a numeric variable is
v.sed V ARPTR and V ARPTRS will not create an array or a variable if an undefined
array or variable is first referenced through V ARPTR. V ARPTR will return a variable
error if an undefined varia.ble or array element is referenced

V ARPTR.S will return a zero if a null string is referenced.

Variable types

There are six elementary variable types in Apple ncs BASIC: single, double and long
integers, single- and double-precision reals, and strings. The fust five types represent
m1mbet"S of various kinds, the last type represerw sequences of c:haraaers.

The type of a variable is determined by the last c:haraaer of its name: % for single
integer, 0 for double inieger, & for long integer, • for double-precision real, and S
for string. In the absence of any of these special tra.iling charaa.ers, the variable type is
considered to be a single-precision real by default

'The suucture array ~ a variable type that is not a simple variable type. 'The last
c:haraaer of a suuaure name is the! c:haraaer, and it must always have a subscript. An
element of a suuaure can be referenced like a numeric variable and will aa like a
single inieger with a value of zero through 255.

Here are examples of names of the six variable types:

SYNTAX NOTATION 275

Name
Length
HYPOTE."'l'USE•
MYField!(12)
M:ublcs7%
ADDRESSO
l.i ght. Ye:us&
Myname.S

VOLUMES

: :• VOLOMES

IxlU:
single-precision real
double-precision real
suuaure element (byte integer)
single integer
double integer
long integer
string

The VOLUMES command attempts to read the volume name for device names .Dl
through .D9. A line per device display of .Da lvolumename freeblks on the
current console device or me is genented. If all devices known by the system have a
volume mounted or a drive conneaed, a text message of

DRIVE EMPTY

or

DEVICE NOT CONNECTED

is substiruted for the volume name and the free blocks count.

VPOS and HPOS

: :• BPOS • VPOS

The modifiable reserved variables VPOS and HPOS contain the vertical and
horizontal positions, respectively, of the cum:nt print position. Changing their values
will change the a.ureru print position (and the alt'SOrs position). You can determine
the position of the cursor by accessing the values of VPOS and HPOS.

Assigning values greater than the height of the text window to VPOS ouses the cwsor
to move to the bottom screen line within the window. Assigning values greater than the
width of the text window to HPOS causes the cursor to move to the right margin of the
window. The value 0 is converted to the value 1. Assigning vUle5 outside the r.u1ge of 0
through 255 to either VPOS or HPOS ou.ses an illegal quantity error.

WHILE

: :• WHILE
:: • WHILE .lezpzo

lOO WHILE : statements - : CNTIL GH > 29
_o~ooo WHILE : statements _ : IJN'l'IL GH >• 299
SSO 00 : statements : WHILE twqy > ll : statements : ONTIL

276 Chcpter 8: BASIC Reference

\ _

1be WHI.E verb is used with the UN'IU verb or with both the DO and UN'IU verbs to

create various conditional loop construas. The verb WHILE marks the beginning or
midpoint of the loop consuua and can be used with or without the conditional
expression. Using WHILE between DO and tJ11..~ without a conditional expression is a
meaningless (although valid) construa.

If rhe logical expression is omitr.ed, WHII.E behaves as ii the expression -were true.
When the logical expression is present WHII.E will exeClle the following statements ii
lbe expression is true (nonzero) and skip to the statement following the UN'm. if the
expression ii false (zero). 'The presence of a conditional expression in the matching
Ul\~ statement does not influence the behavior of WHILE.

WHII.E searc:bes fo.rward in the program for a matching tJ11..~ and will display the
::nessage

WB:~E w/c UNTI~ LRROR

if an Ul\""''L is not present. Fwther examples and details of these consuuas is found in
the desaiption of the L'TJ'o.o"''ll statement and in Chapter 4, •controlling Program
.Execution. •

WRITE#

: :• WRI'!'Ef ~~l.eza11a [, ~Clll'DA) 1; ezpr [{, ezpr}]]

) WRI'!'Et 3: MAJOR\, MINOR\, XI.OW
)WRI:Et 4, ll; MAP(l,3 ,S,7,9l

WRITE• sequentially writes the value of each item in its expression list to a fleld in a
specified data flle. You can optionally follow the flle reference number with a comma
and an arithmetic expression specifying a record number at which to begin access.
The list of expressions must follow the me reference number (or optional record
munher), and the expressions in the list must be separated by commas.

One item of data is written for each expression in the list WRITE• performs no
numeric-to-string type conversions while transferring information from the
expressions to the file, it just writes a binary image of the data to the me, with a type
byte in front.

A single imeger is wrimen as 3 bytes, a dooble integer as 5 byres, a long integer as 9
bytes, a single real as 5 byteS, a double real as 9 bytes, and a string as the length of the
string plus 2 bytes.

If a record number is specified, then the value of the first expression in the expression
list is wriaen to the first field in the specified record. Otherwise, records are accessed
sequentially.

SYNTAX NOTA TlON 277

If there is not enough room left in a record to hold the next V2lue, the field will be
written in the next record Note that writing dar.a to a record causes any old data in the
record to be lost. If an aaempt is made to write a data field longer than the record
length specified when the file W2S cre2U:d, the message

?OOT OF OATA ERROR

is displayed

278 Chopter 8: BASIC Reference

\

Appendix A

ASCII Character Codes

ASCII ism aaonym for American Standard Code for Information lruerchange.

The range of standard ASCII codes extends from 0 to 127. Apple DGS BASIC also treats

the range of wlues 128 to 255 as valid codes, but they are not generaied from the
k~oard.

Legend:

DEC: ASCII code .in decimal notation.

HEX: ASCII code in hexade~l notation.

CHAR: AScn mnemonics.

279

Table A•1
Con1rol Chcrccters

DEC HEX CHAR Keyboard Aefton Comments and Notes

0 ()() Null CONTROL-0 Null
1 01 SOH CONTROL-A
2 02 STX CONTROL-B
3 03 ETX CONTROL-C Halts exe01tion
4 04 ET CONTROL-0
5 05 !NQ CON1'ROL-E
6 06 ACK CONTROL-P
7 07 BEL CONTROL-G Beeps speaker
8 08 BS CONTROL-H Backspace, (same as <-)
9 09 HT CONTROL-I Horizontal tab
10 OA LF CONTROL-] Linefeed
11 OB VT CONTROL-K v ertic:al tab
12 oc pp CON"I'ROL-L Pormfeed
13 OD CR CONTROL-M ~ge return (same as Return)
14 OE so CON"I'ROL-N
15 OF SI CON"I'ROL-0
16 10 OLE CON"I'ROL-P
17 11 DC1 CON"I'ROL-Q
18 12 DC2 CON"I'ROL-R
19 13 DC3 CONTROL-S
20 14 OC4 CON"I'ROL-T
21 15 NAK CONTROL-U
22 16 SYN CONTROL-V
23 17 !TB CONTROL-W
24 18 CAN CONTROL-X Cancels line being edited
25 19 EM CONTROL-Y
26 lA SUB CONTROL-Z
27 lB ESC Escape Cwsor conuol and editing
28 lC PS CONTROL-/
29 10 GS CONTROL[
30 lE RS CONTROL-A
31 1P us CONTROL_

280 Appendix A: ASCll Chcrccter Codes .

\

--

Table A·2
Uppercase Letters. Numbers. and Symbols

DEC HEX CHAR Keyboard DEC HEX CHAR Keyboard

32 20 SPACE SPACEBAR 64 40 0 0
33 21 ! ! 65 -41 A A
34 22 • • 66 -42 B B
35 23 • • 67 -43 c c
36 2-4 s s 68 44 D D
37 25 % % 69 45 E E
38 26 & & 70 46 p p

39 27 I I 71 47 G G
40 28 ((72 <48 H H
-41 29)) 73 49 I I
42 2A • • 74 .(A J J
43 2B ~ + 75 4B K K
44 2C ' '

76 4C L L
;45 2D - - 77 40 M M
-46 2E . . 78 4E N N

"' 2F I I 79 4P 0 0
-48 30 0 0 80 50 p p

-49 31 1
. 1 81 51 Q Q

50 32 2 2 82 52 R R
51 33 3 3 83 53 s s
52 34 4 4 84 S4 T T
53 35 5 5 85 55 u u
S4 36 6 6 86 56 v v
55 37 7 7 87 57 w w
56 38 8 8 88 58 X X
57 39 9 9 89 59 y y

58 3A ; ; 90 SA z z
59 3B ; ; 91 5B [[

6o 3C < < 92 5C \ \

61 3D - - 93 50)]

62 3E > > 94 5E " "
63 3P ? ? 95 5F

Appendix A: ASCII Character Codes 281

Table A·3
Lowercase Letters end Symbols

DEC HEX CHAR Keyboard

96 60
97 61 a a
98 62 b b
99 63 c c
100 64 d d
101 65 e e
102 66 f f
103 67 g g
104 68 h h
105 69
106 6A j j
107 6B k k
108 6C 1 1
109 60 m m
110 6E n n
111 6F 0 0

112 70 p p
113 71 q q
114 72 r r
115 73 s s
116 74 t t
117 75 u u
118 76 v v
119 77 w w
120 78 X X
121 79 y y
122 7A z z
123 7B ({
124 7C I I
125 7D } }

126 7E
127 7P none DEL

282 Appendix A: ASCII Character Codes

\

Appendix B

Errors

When BASIC deteas a program error during deferred execution, it checks to see if an
ON ERR statement is in effect. If so, program execution jumps to the statement list
following the reserved words ON ERR. If not, BASIC halts execution of the program,
displays a brief error message, and displays the prompt and cursor. Variable values
and the program text remain intact, but program execution can not continue. All
program stacks and pending FO~"EXT loops are di.sc:arded.

GS BASIC checks the coruext of v:uious classes of rese!Ved words during program
entry, but does not check the exact syntax of each statement until it is executed.
Follo"Wing are some of the more common types of errors; namely grammatical or
syntax errors, data content errors, memory management errors, and flle 1/0 errors.

-'-Gtammatica.l or syntax errors include misspelled or misused reserved words, missing
or incorrect punctuation c:ha.raaers, improper line numbers or labels, correct clauses
or options in the wrong order, and missing clauses required by a specific variation of a
statement.

Data-content errors are very common and may sometimes be reported by BASIC as
syntax errors. Examples of this include using a valid line number or label that
references a nonexistent line, procedure or funaion; using a valid numeric constant
that is outside the allowable range required by its context, such as a subsaipt that is too
large; using a real number in a conteXt that automatically rounds it to an integral
number or forces conversion to an integer; and using a string expression when a
numeric one is required and v.ice v~

Memory-management errors are often the result of incorrect design concepts, the
most common of wh.ich is not assuming that all available memory ·will eventually be
consumed by a program. Generally, it is wise to design software with ftxed limits and
overflow management strategies to avoid the inevitable

'?OU': Of MEMORY tRROR

283

message and less frequent

?S'l'ACX OVERFLOW ERROR

message. Enmples include allocating a string atr.l'f with more elements that can be
represented in a 64K-string data pool, and not expanding the user data segment with
the ClEAR statement or expanding it too the limit of system memory.

File I/0 errors can occur at any time in an odletwise perfet:t program. Ex2mples
include mls.spelled or invalid user-entered filenames, volume names, or pathnames;
valid filenames for files with the wrong file types; aaempting disk file operations on
c:haraaer (device) flles; aaempting operations on a file after it has been closed or
before it has been opened; failures due to removal of a disk volume from its drive after
opening files; running out of disk space or direaory entries in a fixed size root
directory; and attempting to use a restricted access file in the wrong mode.

Formot of error messoges
When an error occurs in an immediate exeOJtion statement, an error message is
immediately displayed. For example:

l PRINT MID$ <234 l
?TYPE MISMATC5 ERROR
)

When an error occurs in a deferred execution statement, an error message is
displayed, complete with the line number of the erroneous statement. For example,

l :.o ?RIN'l' ~IDS (234)

l "ON
?'!"Y!'E ~ISMATC5 ERROR IN 10
)

~ote, however, that the error message only identifies the line number of the stateme:lt
c:wsing the error; when a line contains multiple statements, you cannot always be
certain which statement generated the error. Often, the st:aremerus in a line are
sufficiently different that only one statement could be the source of a specific error
message, but syntax errors can occur in almost every statement. You can always
separate a multist:atemeru line into separate lines to identify exactly which statement is
generating an error.

Error Messcges
The following i.s an alphabetical listing of all the GS BASIC error messages, complete
with possible explanations for why the error occum:d

284 Appendix 8: Errors

'·-·

? ARGUMENT COUNT ERROR

'Whenever you all a procedure with PROC, a funaion with FN, any external procedure
with CAll., _, or PERFORM, or an external funaion with EXFN or EXFN_, BASIC
already has recorded the number of parameters required in the referencing parameter
list. 1his ezror occurs when the wrong number of parameters is used.

?ARGUMENT TYPE MISMATCH ERROR

Whenever you call a procedure with PROC, a funaion with FN, any external procedure
with CAIJ., _, or PERFORM, or an external funaion with EXFN or EXFN_, BASIC
already has recorded the type of each para.meter required in the referencing
parameter list. 'Ibis error occurs when a parameter of the wrong type is used.
Normally, numeric parameters are converted to the proper type, so this error usually
refers to a string argument used for a numeric parameter or vice versa..

?BAD PATH ERROR

This error message will be displayed if you specify an illegal character in any part of a
pathname.

?BAD SUBSCRIPT ERROR

An attempt was made to reference an array element that is outside the bounds of the
array. There are two primary causes of this error:

i...o anempting to access a nonexistent dimension in an array; for example:

l D!M '!':M£S (:,0:3, 59)

J'!'!M£SCll,30,2iJ-'!'RIGG£R

I:l aaempting to acc:ess a nonexistent element in any dimension; for example,

>DIM DA'!'£SD.l,30,2000J
JDA'!'ES{8,28,200l)•-l

'?CANi CONTINUE ERROR

11tis error will occur if you are auempting to continue a program after modifying
anything other than the variables in the current program.

?CANi RENUMBER ERROR

The RENUM command issues this error if insufficient memory is allocated in the user
data segment to provide space for the line number cross-reference table needed to
reunumber the program in mem.ory. nus error is also generated if the RE..l\lUM
arguments request an mpossible renumber ta.sk; that is, one that would generate line­
number confhas.

Error Messages 285

?DAMAGED DIRECTORY ERROR

'This error occws when ProDOS discovers that the mtmber of entries indicated in the ·
direaory header does not match the number of entries the directory aaua.lly
contains.

?DAMAGE REPORT ERROR

'This error message is generated when the string garbage collector discovers that the
string lirenl data pool has been damaged and it is unable to properly readjust the
string descriptors in the variable tables to point at the string lirenl data. A program
will not probably generate correct output after this error oc:curs. A program could
Clear its data and restart to c:orrea this rare condition.

?DMCE NOT CONNECTED ERROR

This error occws when an interface ard for a device is present in your system, but the
requested device is not physically cabled to the interface card

?DMCE NOT fOUND ERROR

1bete are two possible causes of this error:

c Your system is not configured for the device you specify.

c The device name you specify indudes an illegal character.

?DIFFERENT VOLUMES ERROR

The pathnames of a RENAME specify two different volumes. RE."l~\1E can only move
flles amound directories on the same volume.

?DIRECTORY fUU ERROR

nus error oc:cws when all the entries (55) in a root direaory of a ProOOS disk volume
are in use and an OPEN or CREA"''E tries to add another one.

?DIR PATTERN ERROR

nus enor occurs if an invalid wildcard paa.em filename is used with the om.

?DISK FUU ERROR

There is no space left for additional information on the disk. .Either delete files or usc
another disk volume.

286 Appendix B: Errors

\._

?DMSJON by ZERO ERROR

The dividend of any m1mber divided by 0 is infirtiiy. Infmity is mathematical concept
nat SANE supports by providing a represenwion for it in single or double-precision
real v:uiables, but not in integer vuiables.

'Ibis error OCQll'S when a division by zero is aaempted, unless the division by zero
exception is suppressed and the division is done with real opermds, in which case
infinity is generated in the teak result.

?DRIVE EMPTY ERROR

'Ibis e.'TOr oc:cws due ro acc::ess to a removable media disk drive device lacking a disk
volume.

?DUPUCATE DEFINmON ERROR

There are numerous possible causes, the most common are:

o Airt.r an array was defined, another DIM statement for the same array was exeOJted
1his error often oc:cws if an array has been given the default dimension 10 because
a srarement such as ACD-3 is followed later in the program by a DIM A(lOO).

o A progr:a.m contains two DEF statements with the same function or procedure name.
'Ihi.s occurs during RUN or CHAIN commands.

o An invokable module DICTIONARY contains an entry-point name that already
exists in the invoke library dictionary table.

?OUPUCATE FILE ERROR

An attempt was made to rename a me to a name wt already exists on the current disk
volume.

1DUPUCATE lABEL ERROR

'Ibis error OCOJrs when a program line is entered with the same line label already
present on a line with a different line number.

?OUPUCATE VOLUME ERROR

'Ibis error oc:cws when ProDOS recognizes WI it has two mounted volumes with
.identical volume names. This message is a warning; it does not prevent access to
either volume. The ambiguous volume selection problem is be resolved by using the
first volume found (bow is first defmed.'??).

Error Messages 2S7

?END FN!PROC w /0 DEF ERROR

1be error occ:u.rs during the DEP scan executed by RUN or CHAIN and if an END FN or
END PROC statement occ:u.rs outside a procedure or function defl!lition.

?EXTRA IGNORED

More values "VVr"e%'e supplied than were asked for by the variable list of an INPlJT
statement. Th.is is aaually a w:uning. not an error.

?FILE CREATE ERROR

1bis error results during an OPEN tbat aeares a new file and then is unable to ~d the
new direaory entry immediarely thereafter. This error implies that a volume directory
or subdirectory was wriaen sua::ssfuJly but was unreadable on the next ~d Something
major is probably wrong with the drive or its media.

?FILE LOCKED ERROR

An attempt was made to modify a locked file.

?FILE NOT FOUND ERROR

An attempt was made to access a file that does not exist on the disk. The other elements
of the file's pathname must exist for this error to be gener.ued If a volume name, a
preflX, or a subdirectory name in the flle's pathname are wrong or do not exist, this
error will not occur.

?FILE NOT OPEN ERROR

An attempt was made to access a file, via a file reference number, before opening it
with the OPEN statement.

?FILE TOO LARGE ERROR

11le LIBRARY s~remeru generates this error when it opens a TOP file and the file is
larger than 64K.

?FILE OPEN ERROR

Th.is error will occur if you attempt to delete or rename a file while it is open.

288 Appendix 8: Errors

?FILE TYPE ERROR

This occurs when the me type atUibute of a disk file is incompatible with the implied
purpose of the referencing statement 1bere are too many contexts that cause this
error to list them here; refer to the definition of the offending statement to .determine
which file types are allowed.

?FOR w /o NEXT ERROR

This error OCXll%'S when a FOR statement is unable to locate, by scanning forward, a
NEXT statement at the nesting level matching that of the FOR statement about to be
exeCllted. Refer to the FOR sarement description for requirements and restriaions on
how the matching NEXT statement is located.

?FORMULA TOO COMPLEX ERROR

nus error has two possible causes:

JJ parentheses in an expression are nested ~ !han 14 deep

o an attempt was made to evaluate an arilh:metic expression with more than 14
pending operations caused by precedence

?INEXACT ERROR

nus error is normally d.isabled. lt will only oa::m if lhe SANE exception mask is
changed to enable the inexact exception with the EXCEPTION ON statement

?IllEGAL DIRECT ERROR

Given when a DEF FN, DATA, EVENTDEF, RESUME, MENUDEF, ON BREAK, ON
ERR, ON EXCEPTION, ON KBD, ON EOF", ON TIMER, or T.ASKPOU statement is
used in immediate exeanion; these st;:aremems may only be used in program
statement.

?IllEGAL UNE NUMBER/lABEL ERROR

Some of the causes for this error are:

:: The line number or label used in a statement, such a GOTO or GOSUB, contained
an invalid charaaer or was out of r.a.nge (negative, zero, or more than 65279).

o The line number or label used when a statement -was entered contains an invalid
c:haraaer, is out of range, or the label is a reserved word

!:J The line number or label referenced in the USING dause of a statement is out of
range or contains an invalid c:haraaer.

Error Messages 289

?IWGAL QUAN111Y ERROR

The parameter passed to a fUnaion or used with a sratement vns out of range. mega!
quantity errors can be caused by:

o a negative am.y subscript (for example, A(-1))

c using MID$, LEFTS, RIGHTS, VPOS, HPOS, SPC, WINDOW, TAB, SUBS, CHR.S,
HEXS, TEN, INS'I'R, SCALE, or ON .•• GOTO with an expression whose value Ues
outSide the allovn.ble range

c opening a file with a record length less than 3
C specifying a file m1mber less than 1 or greater than 10

c using a repetition value greater than 255 in a PRINT(•) USING Sf.3rement or an
IMAGE specification ·

c a value wirh an integer range C-32768 to 32767) wu expeaed, but a value beyond that
range wu encountered

?INPUT USING PARM ERROR

INPUT USING issues this error when the wrong type of par.ameter is used in the IMAGE
starement for a specific parameter.

?INTI'CI/VCI TIL FUU ERROR

1his is really three different error messages lumped together, they all occur very
rarely:

c 'The .interrupt veaor table (lNT TBL FLU ERROR) message appears when one too
many ProDOS Allocate Interrupt calls is made to ProDOS. ProDOS 16 supports 16
user interrupt handlers.

The file control block (PCB TBL FUll. ERROR) message appearswhen you attempt to
OPEN one too many disk files. ProOOS 16 version 1.2 is limited to 8 totaL BASIC
allows up to 29 such files in anticipation of a future rele2se of ProOOS that will
support more than 8 open files, so BASIC does not check how many files you open.
BASIC needs 1 file always left unused for the CAT, DIR, CATAlOG, or 'IYPE
command, plus 1 file if you expect to use EXEC rlles.

Wamlng
A BASIC prcgrom should not open more then six disk ftles at once with
ProOOS 16 version 1 .2.

290 Appendix 8: Errors

\

7be ~lume c:ontrol block (VCB TBl FULL ERROR) message appears when the VCB
table already contains 8 volumes/devices. The error occws when 8
devices/volumes are online and a ProOOS VOLUME call is made for another
device that has no open fnes. "'bis error is very rare since most systems don't have 9
usable d.i.sk drives or hatddisks paztitioned into many volumes.

? • ADRS: INTERNAL ERROR

An imemal CI'OSH:heck of the correct function of the interpreter or its data structures
has failed GS BASIC performs certain self consistency checks for some of its imemal
operations. On the line abcM: the error message is a relative address within the
imerpreter of where the c:heck that failed was made. 'Ibis error iDdic:::&le:S that some
important da.ta has been corrupted, and a prognm should terminate if this oc:cws.

This error message may indicate, if the problem consistently recurs, the presence of a
software fault in the BASIC interpreter, ProOOS, a tool set, or an external module that
you are using.

··11NV AUD DATA ERROR

AD. of me following will generate this error:

c An invalid BDF field tag byte was found during a read operation.

o 'Ibe parameters for the V AR funaion attempted to extract a variable from a
suuc:mre too close to the end of the sauaure element to em-act the the requested
size variable.

o 'Ibe DICilONARY segment of an invokable module does not contain the proper
format version number.

::1 A tool set dictionary interface«fi.nition record contains invalid data for an input
parameter type byte or .a error handling mode byte.

?INVAUD DEVICE ERROR

ibe disk device name used is a valid disk device name, but the device m1mber is larger
than the total number configured in your system. for example, CAT .D39.

?l/0 ERROR

A physical operation of a peripheral· device failed. The most common cause is the
failure of a disk drive to suc:essfully read or wrile the disk media; this usually indicates a
defective disk volume.

It also could be a mechanical or elearic:al problem causing a loss of data; check all
extem.a1 device connections for possible problems (is everything plugged in
properly?).

Error Messoges 291

?UNE TOO LONG ERROR

'Ibere are two possible causes of this error:

o You have entered a line with so many CAll or_ verbs that the extra hidden field
used to optimize CAll statement performance will cause the line to exceed the line
size limit of 255 bytes.

o RENUM would have to insert so many bytes into a line to renumber it that the line
would exceed 255 total byteS (including overhead).

?MENU or MNT ERROR

1b.i.s error is gener.lted when a Ta.skMasfer event oc:aus and the line defined for that
menu item or event code does not exist, even though it has been defined via a
MENUDEF or EVENTDEF statement

?MISSING END PROC/FN ERR<?R

The OEF scan executed during a RUN or OiAIN command issues this message when it
can't .find the END PROC or END FN st2rement matching a OEF statement.

?MISSING OPERAND ERROR

The following causes generate this error:

o There are insufficient paramete:s in the IMAGE: of an INPUI' USING statement.

c· A u.ser-<ie.fmed funaion is referenced without a panmeter list enclosed in
parenthses.

o EXFN is used without a funaion name

?MISSING RETURN ERROR

1b.i.s eft'Or message is is.Ned when an END PROC or END FN is executed and a GOSUB
is still pending on the top of the conuo! stack. A GOSUB wu executed within a
procedure or funaion, but th~ matChing RETUR.llol wu never executed.

?MULn-UNE FN REP ERROR

1b.i.s error message ~ when a multiline funaion is referenced anywhere in a
program other than in a LET or FN LET expression.

292 Appenc::Ux 8: Errors

?MUl.n STATEMENT ERROR

1be DEF statement san done during RUN and CHAIN requires that an END PROC or
END FN statement, that begins a program line, has no other statements following the
END surement .in that program line.

?NEXT w /o FOR ERROR

There are three possible c::auses of this error:

o loops are nested improper; conuol V2riables in a NEXT statement must be listed in
the teYerse order that they -were encountered in FOR statements.

o The conuol variable specified in a NEXT statement does not correspond to the
V2riable in any FOR statement still in effea.

o A NEXT 3tatement without a specified conuol variable 'W2S executed when no FOR
surement was in effect.

?NESTED DEr ERROR

ibis error occws when the DEF scan, executed by RUN or OiAIN, fmds a DEF
statement within the body of procedure or function. lt probably indicates that an END
PROC or END FN statement is missing.

?NO UBRARY /INVOKE ERROR

ibis error occurs when a CALL,_, EXFN_, PERFORM, EXFN, or UBFIND statement
is used without first using UBRARY or INVOKE. It indicates that the diaionary for tool

_ sets or invokable modules is empty.

?NO SEGMENT ERROR

This error occurs when INVOKE is informed by the System Loader that the invokable
module does not contain a segment named DICilONARY or does not contain a code
segment with segment -'01.

?NOT A NUMBER ERROR

ibis error is generated when the IF statement encounters a numeric comparison
operand Ihat is a NaN (Not A Number). See Appendix K, •SANE Considerations, • for
details.

Error Messoges 293

?NOT LOCAL EIROR

'Ibis encr occurs when a variable reference is global that must be a local variable. The
most common ase is aaempting to use global variable as the target of a FN •
assignment starement.

?OUT of DATA ERROR

'The~e ue three possible causes of this encr.

o A READ mrement was execured. but all the data elemenm in DATA sraremenm in
the program have already been read.

o A ~ or INPtn"# sraremenr ran out of data when reading from a file; in other
words, an end of file was reached.

o A record or rJeld being sent to a file is longer than the one specified for the me.

?OUT of MEMORY EIROR

There are numerous possible causes of this error, the most common are:

o 1bere is no memory available for a file buffer when you open a rUe.

o The program you Uied to LOAD, RUN, or CHAIN is too large.

o The LIBRARY surement cannot obtain memory to load a mF.

0 An invoked me will not rJL in tbe aV2ilable memory space.

:::l Arrays or variables called for need more space than is allocated to the user data
segment, see the ClEAR statement definition.

?OVERFLOW ERROR

The result of a calculation was too large to be represena:d in a specific numeric format.
'This occurs when aaempting to store a number too large for a specific type of integer
or real variable.

?PA114 NOT FOUND ERROR

Part of the pathname specified did not exist it the direaory suuaure of the referenced
volume. It normally occurs because of a misspelled subdireaory name.

?POSmON RANGE ERROR

A disk rue I/0 statement has attempted to reference a record in a file that is beyond the
c:wrent end~f-me mark for a di .lc file. Check the wlue of the record number and
verify that the correa file number was used. This error is most often associated with the
BEAD ". WRI'I'E " , GET ", or Ptrr " statements.

294 AppendJx 8: Errors

\ ··- ...

?PROC NAME ERROR

This error occws when a procedure name is followed by a type c:haraaer. Proc:edure
names can not have types like funaion names.

?ProDOS CALL ERROR a$xx

Ar! error oc:cwred within the opeming J)'Stem. ProDOS, that is not assigned a specific
message by BASIC. The ProDOS heDdecimal error code is shown following the equal
aign. The CDCt error message can be found m the PfoDOS 16 Reference manual.

Geaerally, this error indicues that something that should not normally happen has
occurred. If the error can be repeated every time a specific sequence of events or
inpWs is used, even afcer powering down and up again, it may indic2te the presence of
a software fault in the interpreter, the operating system, a tool set. an invokable
module, or a BASIC program that is poking around in the wrong places in memory.

1t may also mean that the error is so uncommon and infrequent that no error message
was included in BASIC for it. Refer EO the ProDOS 16 Reference manual for
descriptiom of these errors.

?ProDOS VERSION ERROR

GS BASIC will only exeane the CAT, CATALOG, and DIR commands when operating
within the environment of the proper version of ProDOS 16, specifically version 1.2
or later.

?RANGE ERROR

·There are three c::auses for this message:

o AZl illegal line range was specified in a DEL or IlST stltement.

::i Ten output to the console could not be formaaed correaly because the IND~'i
position was beyond tbe wrap column set by Oti'TREC.

o The SET sraremenr issues this error when tbe length parzmeter specifies a valu~
other than 4, 8, or l 0 and an extended predsion expression conversion was
required.

?RECURSION ERROR

nus error message is generated if the pause procedure c:alled by the line number
option of the COPY command itself =ea.ues a COPY command.

Error Messo~;es 295

?REENTER

The characters entered in response to an INPtrr request for a numeric variable are not
a valid representation of a number.

?RESERVED WORD ERROR

11li3 error OCClU3 when a line is added to a program and any of irs ":arements begins
with a verb that may not begin a st::ar,:menr or where a veri> within a statement m2y only
be used to begin a swemenc. See the section in Chapter 1, •syruax Checking. • This
error might also occur ii a program image has become corrupted and cerrain invalid
verb tokens occur as the £lt3t verb in a mrement.

?RETURN 0 ERROR

1b.is en"Or OCCl1'S ii a RE'I'URN 0 sr:aremenr is used incor.realy or without being invoked
by a TaskMaster event dispatch or an exrernal event dispatCh.

?RETURN w/o GOSUB ERROR

More RE'I1..TR.~ st::arements and/or POP statements were executed than GOSUB
statements.

?SANE INV AUD ERROR

There are numerous possible causes of this error:

o using the LOG function with a negative or zero argument

t: using the SQR function with a neg:ative argument

o using X MOD Y or X REMDR Y where Y is zero or X is infinity

c meaningless division of 0/0 or INPJINP ·

c me:mingles.s rnultipliation of Q-INF

0 magnitude subtraction of infinites, that is, (+INF)+(-INF)

For more information on this error i:ces.sage, see Appendix K, -s.&'\1E
Consider.ltiona. •

1STACX: OVERFLOW ERROR

There are a mtmber of possible causes of this error:

c FOR ... NEXT loops nested more than 9 deep

o GOSUB subroutines, DO ... ~ WHI:I.E ..• UNTIL, DO ... WHII..E ... uM.u..loops,
PROCs or multiline function calls nested more than 40 deep

296 Appendix B: Errors

o ON KBD subroutines eruered more than 40 times without a RmJRN

c ON TIMER subroutines eruered more than 40 times without a RmJRN

?STRING TOO LONG ERROR

1he wlue of a string expression is greater than 255 c:haraa.ers in lengt}L

?SYNTAX ERROR

Any of the following can cause this error:
c missing puenthesis in an expression

0

0

o IF not followed by niEN or GOTO

c arithmetic operation ·on a string

- o a digit as the first ~aer of variable name

o variable name more than 29 ~aers in length

c bad specification in an IMAGE format

o bad FOR option for OPEN

c bad operator

c following DEL with something other than a digit

- a valid reserved word used in the wrong context or order

- anything else that is not syntactically correa

'?STRING SPACE ERROR

'This error occurs if a string parameter address setup on the stack to be passed by
reference to an external subroutine had been inwlidated because of garbage
collection caused by subsequent string expression evaluation in another string
parameter. 1be only solution to this problem is not to use string expressions as
arguments.

1TASKPOLL INIT lr./ WINDSTARTUP ERROR

nus error occurs when TASKPOU. ON or T.ASKPOU. INIT are executed and the
prerequisite Window Manager environment has not been set up first

Error Messages 297

?TOOLSET CALL EIROR -41TEE

1b.is error results when an external tool set procedure or function c:all, made via CAU.,
~ or EXFN~ retUrnS an error. The error number is shown following the message in
bezadedmal. The 'IT portion of the error number is the tool set number, and the EE
portion is the actual tool set specific error. Refer to the App/8 OGS Toolbo% RefenJ111:e
manual for details.

?TYPE MISMATCH ERROR

Any of the following can cause this error:

o 'Ibe left side of an assignment srarement was a numeric variable and the right side
was a suing, or vice ve%Sa.

c A funaion that expeaed a string argument was given a numeric one, or vice ve:sa.

c 'Ibe wrong IMAGE .spec:i.fialion for suing/numeric was used in PRINT(•) USING
sratemenL

::1 A READ• numeric data instruction was encountered when next data are a string, or
vice versa.

?UNCLAIMED EVENT ERROR

There are two causes for this error:

c An ON KBD, ON BREAK, ON 11MER, or ON EXCE:P110N is called to dispatch an
event. and no event-handler line number has been defined for the evenL This
irujjnres that a control flag has been enabled for an event, Without the matching
line number and pointer having been set up also.

'?UNCERFl.OW ERROR

1b.is error occurs when the result of a SANE math computation is too small to be
represented This is a rue oco.urence because SA.~ supports a very large range of
numbers.

?UNDEFINED ARIA Y EIROR

Referencing a suuaure arnlV in a SET, GET•, or Pur• statement before it is
dimensioned will generate this error. Unlike numeric arnlys, Struaure arnlys must
be dimensioned before they are used.

o 'Ibe UBOUND function was c::alled with an amv that has never been dimensioned.

.o Attempting · ERASE an arnly that has never been dimensioned will generate this
error.

298 Appendix 8: Errors

?UNDEF'D PROCIFUNcnON ERROR

nus error an oc:cur for the following reasons:

o Reference was made to a user-defmed fu.na.ion that had never been defined or
before the program was ew:r been nm.

o Reference was made (with the PROC statement) to a user defmed procedure that
doesn't exist or has been entered .since the last time the program was nm.

o Reference was made with CALL, or EXPN_ to an exsemal procedure or function
in a tool set without fust loading tbe inteffaa: definjtion(.s) and/or the tool set with
the LIBRARY statement

c Reference was made with PERFORM or EXFN to an external assembly-language
procedure or fundion in a module without having loaded the interface defmition(s)
and the module with the OO'OKE st:uement.

?UNDEF'D STATEMENT ERROR

Any of the following c:a.n cause this en"Or:

o An aaempt was made to GOTO, GOSUB, or niEN to a statement line number or
label that does not exist or has been deleted

o PR.n\ -r USING line was used when the line does nc~ cxisL

o IMAGE. .is not the first statement in the line, or the IMAGE. l.ist is null.

?UNTIL w/o WHILE ERROR

1bere are two possjble cwses:

c Conditional 'WHILE .•. UN'IIl., 00 ... tlNIU. or 00 ... WHn.E .•. tlNIU. loops wen:
improperly nested.

::; .An UNI'IL statement was exeaned when no DO ... WHILE loop was in effea.

?VARIABLE ERROR

A number of different causes generate this error:

c A string array has been alloc:ated in the array table beyond the fsrst 64K of array
memory. SUing arnys should be allocated fsrst and must all f1t within the fust 64K.
The error occurs when an assignment to the array is attempted

c A string variable has been allocated in the simple variable table beyond the fust
64K of amay memory. Suing variables should be allocated fust and must all fit
within the fUst 64K of the simple variable table. The error oca.us when an
assignment to the variable is aaempted.

.: Aztempting to use a FOR loop conuol variable that: is allocated beyond the first 64K
of me simple variable table origin will cause this error.

Error Messo~es 299

o An ordinary wriable was used in a surement in place of a requited structure array
reference (wirh a subscript) such as SET, GEl'•, and Ptrr•.

o Aaempting to ERASE a variable that has never been defJ..Ded will ause this error.

CJ An array name was used in a LOCAL statement (whe:e only a simple vuiable is
allowed).

o A null suing parameter was passed to the V .ARP'I'R$ function.

?VOLUME NOT FOUND ERROR

The volume name specified in the parhname of an I/0 statement does not match the
volume name of any 01l'1"endy mounted di.sk volume.

?VOLUME SWn'CHED ERROR

The disk volume for an I/0 operation (on an open file) has been removed from its
drive; the operation cannot be completed.

Warning
Unlike Apple Ill dnves. most Apple II drtves neve no hordwcre to detect disk
switches. This error ls therefore returned onty when ProOOS checla o volume
nome during the normcl course of on 1/0 c:oll. Bec:ouse most disk I/O calls do not
Involve o vo1t.1me name check. mony disk-switched etrors go undetected.

?VOLUME TYPE ERROR

The disk volume being accessed is readable but is not formatted as a ProDOS (or SOS)
disk volume. This usually implies that the volume is formaaed for DOS 3.3 or Apple II
Pasc2.l.

?WHILE w /o UNnL ERROR

This error occurs when a WHII.E swement is unable to loc:ate, by sc:a.nning forward, an
UNTil. statement at the nesting level matching that of the wrn:t.E statement about to be .
executed. Refer to the wrm.E sratement desaiption for requ.i.remerus and restrictions
on how the matching UNTIL statement is locr.ed

?WRITE PROTECT ERROR

The files on the disk volume cannot be modified because it is M"ite·pror.eaed

300 Appendix B: Errors

ERROR CODES
When BASIC deteas an error, the reserved Y'l.riable ERR will contain a number code
corresponding to the following table.

Table 1·1
Error codes and rneaag•

Error Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
2.2
23
24
25
26
27
28
29
30
31
32
33
34
35

Meaage

NEXTw/oPOR
SYNTAX
RETURN w/o GOSUB
OUTofDATA
ll.I.EGAL QUAN'l'I'!Y
INVALID DATA
lLI.EGAl ImE NUMBER.Il.ABEL
DUPLICA n LABEl
OVERFLOW
our of MEMORY
UNDEF'D STATEMENT
BAD SUBSCRIPT
RANGE
STACK OVERFLOW
DL"PLICA TE DEFINmON
DIVISION by ZERO
lLI.EGAL DIRECT
TYPE MISMATCH
STRING TOO IDNG
FORMULA TOO COMPLEX
CAN'T COm'INUE
UNDEF'D PROCIFUNCilON
VARIABLE
TOOLS£! CAU ERROR • Saee
ProDOS CAU ERROR • See
Fn.E OPEN
VOLUME TYPE
DRIVE EMPTY
Fn.E TYPE
110
rn.:£ TOO WGE
WRITE PROTECT
VOLUME SWITCHED
BAD PAni
P.IIJ':: NOT FOUND

ERROR CODES 301

•

36 PA1H NOT POUND
37 VOLUME NOT POUND
38 DUPllCA'I'E P'ILE
39 DISK F'UU
40 :FilE LOCKED
41 PILE NOT OPEN
42 DEVICE NOT CONN"I'ECI'ED
43 INI'/F'CB/VCB TBL F'UU
44 DIRECI"ORY F'UU.
45 DtJPIJCATE VOLUME
46 • ADRS: IN1DNAl ERROR
47 POR w/o NEXT
48 POSITION RANGE
49 P'ILE CREATE
50 DIFPERENI' VOLUMES
51 DAMAGED DIRECl"ORY
52 llNE TOO LONG
53 RESERVED WORD
54 ARGu"MENT COUNT
55 ARGUME.'II{l" TYPE MISMATOi
56 UNDEFINED ARRAY
57 WHII.E w/o UN11L
58 UN1'IL w/o WHILE
59 MULTI STA'I'EMENT
60 MISSING OPERAND
61 NESTEDDEP
62 RECURSION
63 MISSING END PROC/FN
64 END PROCIFN w/o DEP
65 MISSING RETURN
66 DAMAGE REPORT
67 NOT LOCAL
68 MULTI-LINE PN REP
69 PROC NAME
70 INPUI" USING PARM
71 UNCUIMED EVENT
72 SANE INVALID
73 INEXAcr
74 UNDERFLOW
75 NOT a NUMBE.R
76 . NO SEGMENT
i7 NO LIBRARY/INVOKE
78 STRING SPACE
.,;I MENU or EVENT
80 TASKPOU. INTI' &I WINDSTARruP

302 Appendix B: Errors

81
82
83
&4
85
86
8'7
253
254

DEVICE NOT FOUND
INVALID DEVICE
ProDOS VERSION
RETURN 0
DIR PAnERN
CAN'T .RENUMBER
Not implememed yet
EXTRA IGNORED
REENTER

ERROR CODES 303

'•

Appendix C

Reserved Words
The following is an alphabetical list of the reserved words in Apple ncs BASIC. Note
that some must end with a left parentheses to be considered resetYed words. For
example, AND .is an illegal variable name, but ABS is no~

304 Appendix C: r<eserved Words

_ (underscore)
ABS(
AND
ANU(
APPEND
AS
ASC(
.ASSIGN
A Til(
AUTO
AUXIDO
BASIC=(
BDF
BREAK
BTN(
CAll
CAll%
CAT
CATALOG
CHAIN
CHRS(
CLEAR
CLOSE
COMPI(
CONT
CONY(
CONYO(
CONY•(
CONY$(
CO NV%(
CONY&(
COPY
COS(
CREATE
DATA
DATES
DATE(.
DEP
DEL
DELETE
DIM
DIR
DIV
DO
EDIT
ELSE
E.11olD
EOF
EOFMARKC

ER.ASE
!RR
!R1U.IN
ERROR
ERR TOOL
!RRTXTSC
EVENTDEP
EXCEPTION
EXEC
EXEVENTO(
EXFN
EXP(
EXPl(
EXP2(
FILE(
FILTYP(
FILTYP•
FIX(
FN
FOR
FRE
FREMEM(
GET
GO SUB
GOTO
GRAP
HEXS(
HIJ5T
HOME
HPOS
IF
IMAGE
INDENT
INli'
INPUT
INSTR(
INr(
INV!RSE
INVOKE
JOYX(
JOYY
KBD
LEFTS(
1L11ol(
LET
UBFIND
UBRARY
UST
LISTI'AB

LOAD
LOCAL
LOCATE
LOCK
LOG(
LOGl(
LOG2(
LOGB%(
MENUDEF
MID$(
MOD
NEGATE(
NEW
NEXT
NORMAL
NOT
NOTRACE
OFF.
ON
OPE.11ol
OR
Oti'TPtJT
OUTREC
POL(
PDL9
PEEK(
PERF0~\1
PFX$(
PI
POKE
POP
PREFIX
PREFIX.S
PRINT
PROC
PROGN~\1$
PUT
QUIT
R.STACK%(.
R.STACK@(
R.STACK&(
RANDOMIZE
READ
RECC
RELATION(
REM
REM DR
RENAME
REPS(

Ap~dlx C: Reserved Words 305

RESTORE
RESUME
RETIJR.ll.;
RIGHTS(
RND(
ROUND(
RUN
SAVE
SCAI.BC
SCALE(
SECONDSC
SET
SGN(
SHOWDIGITS
SIN(
SPACES(
SPC(
SQR(
SRC
STEP
STOP
STRS(
SUBS(
SWAP
TAB(
TAN(
TASKPOLL
TASKREC%(
TASKREC@(
TE.""J(
TEXT
TEXTPORT
THEN
TIME$
TIME(
TIMER
TO
TRACE
TXT
TYPE
TYPC
UBOUND(
UCASESC
UIR(
UNLOCK
UNTIL
UPDATE
USING
VAL(

VAR(
VAR$(
VARPTR(
VARPTRS(
VOLUMES
VPOS
WHn.E
WRm
XOR

306 Appendix C: Reserved Words

VERBS
A verb is a reserved word that must begin a statement as the sratement verb or as a
modif'lable reserved variable. Those words shown in bold are verbs also used as
adverbs to begin a clause following some other verb.

Words marked with an asterisk are only commands; that is, they may not occur in
scaremencs (except as an adverb).

VERBS 307

_ (underscore)
ASSIGN
AUTO•
BREAK
CALL
CALL%
CAT
CATALOG
CHAIN
CLEAR
CLOSE
CONT•
COPY
CREATE
DATA
DATES
DEF
DEL•
DELETE
DIM
Dill
DO
EDI,..
ELSE
END
ERASE
ERROR
EVE~"TDEF
EXCEPTION
EXEC
FN
FOR.
GET
GO SUB
GOTO
GRAF
HLIS,..
HOME
HPOS
IF
IMAGE
INDENT
INIT
INPur
INVERSE
n..TVOKE
LET
LIB FIND
IJBRARY

LIST•
LISTI'AB
LOAD
LOCAL
LOCATE
LOCK
MENUDEP
NEW
NEXT
NORMAL
NO TRACE
OFF
ON
OPEN
OUTPUT.
Oti'TREC
PERFORM
POKE
POP
PREFIX
PR.EFIXS
PRINT
PR.OC
PROGNAM$
PUT
QUIT
RANDOMIZE
READ
REM
RENAME
RESTORE
RESUME
RETURN
RUN
SAVE
SET
SHOWDIGITS
STOP
SUBS(
SWAP
TASKPOLL
TEXT
n:xTPORT
THEN
TIME$
TIMER
TRACE
TYPE
UNLOCK

30B Appendix C: Reserved Words

UNTn.
VOLUMES
VPOS
'WHILE
WRITE

Adverbs
The following is an alphabetical list of the adverbs used at the beginning of a clause in
the syn.wc of a .sr.arement begun with a Yerb. Those adverbs shown in bold are also used
a a verb to begin a sta rement.

Adverbs 309

APPEND
AS
AUTO
BKF..I&
CAT
C.OPY
EOF
ERR
ELSE
EOF
ERR
EX,...CEP~rrowiON

YIL1YP•
FN
FOB.
GOTO
GO SUB
INIT
INPUT
INVOKE
KBD
LIB &AllY
NEXT
OFF
ON
Ot.TI'PUT
PB.OC
STEP
TEXT
THEN
TIMER
TO
UPDATE
USING

310 Appendix C: Reserved Words

l l r SJO~OJedo

"S'UO!~Jd~
fC~Ot JO :)Jl;»mtp~ U! p~ SJ01u:ildO ;,ql JO JS'!t fC~d~ tn S! il~fiOJ ~

SJOJCJedQ -

ROX
}!Q

~ON
RCIW:i1t

a ow
AI a

CINV

Nouns
The following is an alphabetial list of the predefmed nouns of ncs Basic. A noun is a
reserved word that can be used in an expression or variable list of a statement
(following a verb). All nouns are characterized by having or imply either a numeric or
suing value as is appropriate.

A few nouns in the list shown in bold are also verbs a.nd reserved variables.

Nouns 313

ABS(
ANUC
ASC(
ATN(
AUXIDO
BASI CO(
BDF
BTN(
CHR$(
COMPI(
CONY(
CONYO(
CONY#(
CONV$(
CO NV%(
CONY&(
COS(
DATE$

·-DATE(
DIR
EOF
EOFMARKC
ERR
E.RlWN
:ERRTOOL
ERR'I'XTS(
EXFN
EXPC
EXPlC
EXP2(
FILE(
Fn.TYP(
FIX(
FN
FRE
FREMEM(
HEX$(
HPOS
INDD-o"T
INS'm(
IJ'I,"T(
JOYXC
)OYY
KBD
LEFTS(
LEN(
USTI'AB
LOG(
LOGl(

LOG2C
LOGB%(
MID$(
NEGATE(
OtJTREC
PDL(
PDL9
PEEK(
PFX$(
PI
PREFIX$
PROGNAM$
R.STACK%(
R.STACKO(
R.STACK&(
RECC
RELATION(
REPS
RIGHT$(
RNDC
"ROUND(
SCALBC
SCALE(
SECONDSO
SGN(
SIN(
SPACES(
SPC(
SQR(
SRC
STRSC
TAB(
TAN(
TASKREC%(
TASKRECO(
TEN(
TIME$
TIME(
TXT
TYPC
UBOUND(
UCASESC
UIRC
VAL(
VAR(
VAR$(
VARPTR(
VARPTRS(
VPOS

314 Appendix C: Reserved Words

Appendix D

INTERPRETER DATA
STRUCTURES

Memory Usage in Variable Tables
BASIC stores the values for variables and arr2ys in three partitions within the user data
segment. An'ays are stored separately from simple and loc:al variables. The entries in
these tables are described here in detail primarily for programmers who may W2nt to
process the tables direaly. This discussion also specifieshow much space each
variable or amy will require.

Simple variable format
Every simple variable in Apple nc;s BASIC has an entry in the simple variable
partition of the user data segmenL Local variables are also stored in their own
partition; both types are stored wirh the following format:

I I.ENGni I NAME I TYPE I VAWE I

I.ENGni is a 1-byte field that contains the size of the entire variable enuy in bytes.

NAME is a field of variable length that contains the .ASOl code of the simple variable
name. NAME is between 1 and 30 bytes in length.

'TYPE is a 1-byte .field that contains a code for the type of the variable.

315

Tabte 0·1

1YP£ value Vanab'e type vaa..a

SCl single integers 2 bytes
S C2 double inrege:s 4 bytes
SC3 long integers 8 bytes
$84 double precision real 4 bytes
$85 single precision real 8 bytes
$87 strings 3 bytes

VALUE is a field that contains the value of the variable. The length and contents of the
V ALL"E field depend on the variable type, as shown. All data values are stored with the
least significant byte in lowest memory.

'Ibe vahJe field for a string consists of a 1-byte suing length and a 2-byte relative offset
to tbe origin of the Uceru string data. in the I.W:ra1 pool The base for this relative offset
is the end of the ur.eru pool Olighest address + 1).

Array Varicble Formct

Every array variable in BASIC has an entry in memory with the following format:

I t:ENG"'H I NAME I TYPE I S.COL"NT I O.SIZE I VALUES I

I.ENG"'H is a 3 byte field that contains the size of the entire array variable erury in
bytes.

NA£\1E is a field of variable length that contains the ASCII code of the array variable
name. ~A£\1E is between 1 and 30 byres in length.

1'YPE is a 1-byte fleld that contains a code for the type of the simple variable. The
same 1'YPE codes as shown for simple variables are used, with the addition of one
value, .SCO for Struau.re arrays (byte arrays).

S.COUNT is a 1-byte field that contains the number of subsaipts in the array variable.

D.SIZE is a field that contains the size of each dimension in the array. Its length, in
bytes. is equal to the number of dimensions times two.

VALUES is a field coruaining the values of each of the array elements. The array
elements are stored with the rightmost index ascending slowest. Each element in the
array occupies the number of byres shown for the value fields of simple variables, in
the section above. Struaure arrays CI'YPE • SCO) are 1 byte per element. TYPE • S87
suings are 3 bytes per element.

316 Appendix 0: Appendtxnt1e

\

Memory usage in programs
1bis seaion diso 1sses how much memory space .is used by GS BASIC to store variables
and constants. Note that the information given here .is not essential to Jeaming how to
program.

A byte is the smallest individually accessible unit of memory, and each byte contains
eight binary digits, or bils. A 512K Apple DOS has 524,288 ~ of memory. ~
BASIC, ProOOS 16, the video bu.ffers, and work areas for the tools have been allocated
space, there is about 192K of memory available for you to use.

Constants
Integer constanrs with one to nine digits are convened into binary when a program
line is entered (and convened back into characters for listing). An inleger is converted

- to binary so that the binary form is always no larger than the characters you enter. An
.inreger is tokenized only if it .is a contiguous string of one to nine digrt.s.

lnlegers with one digit are stered as 1 byte; itUege!s with values from 10 through 4095
are stored as 2 bytes; inlegers with values from 4096 through 65535 are stored as 3
bytes; and v:llues from 65536 through 999999999 are stored as 5 bytes. If an integer is
preceded by a plus or minus sign, that c:baraaer occupies 1 additional byte.

If the mtmber has more than nine digits, it occupies 1 byte of memory in a program for
each digit.

All real constantS require 1 byte of memory per digit, including the characters ., +, -,

and :E. For example, the constant

2. 718281SE•46

uses 13 bytes.

Numeric variables
One byte of memory is used for each c:haraaer of a wriable name (up to a maximum
of 30 bytes), plus an additional byte .is used if the variable name has a type charaaer.

The memory requirements for a variable in the user data segment are described
earlier, in the •Memory Usage in Variable Tables, • section.

Memory usc~ In progroms 317

Strings
BASIC stores strings in two parts. The first part is the entry in the variable tables, and
the second pa.rt contains the aaual sequence of characters in the string. The entry in
the variable table includes a 3-byte suing descriptor, as desaibed earlier in the
seaion. •Memory Usage in Variable Tables. •

In addition to the 3 bytes for the descriptor, each string variable uses 1 byte for each
chanaer of the string name (except the .final dollar sign), 1 link byte, and 1 type byte,
plus 1 byte for each chanaer in the string. An additional 3 bytes are needed for
overhead, unless the value of the variable is the null string. For example, the statement

)TR.S - ••

uses 7 bytes: 3 for the string descriptor, 2 for the string name, 1 for the link, and 1 for
the variable type. The statement

)STARS • "WWX"

uses 15 bytes: 3 for the string descripcor, 4 for the string name, 1 for the link, 1 for the
variable type character, 3 for the string characters, plus 3 overhead byteS.

IIGS BASIC reserves pa.rt of memory solely for strings. Exaaly how much memory is
available for suing stor.lge depends on how many other variables and arrays exist in a
program and the si2e of the program itself. When a string deaeases in length, BASIC
does not immediately reclaim the freed memory space. Instead, whenever BASIC sees
that it is about to run out of user dau segment memory, it compaas string storage to
recover space previously abandoned. All the recovered string storage space is then
reused by new strings.

You can ou.se BASIC to reorganize memory space by referencing the reserved
vuiable FRE.

Ancys

Each array requires the following amount of memoty! 3 link byteS, 1 type byte, 1 byte
per c:haracter of the array name, 1 byte recording the number of array dimensions,
and 2 bytes per dimension.

Each integer array element occupies 2 byu:s of memo~ each double-integer array
element oCOJpies 4 bytes of memory; single- and double-real array elements occupy 4
and 8 bytes, respectively; long integer array elements occupy 8 byteS; and string array
elements oCOJpy 3 byces (the string descriptors).

For example, the statement

)DIM Paymt%(9,3,5)

318 Appendix 0: Appendlxntte

allocates 16 bytes plus the space for the values: 3 link bytes, 1 type byte, 5 bytes for the
array name, 1 byte for the number o(dimensions, and 6 bytes for the three
dimensions. The values occupy 10 x 4 x 6 x 2 bytes per inreger element, or ~ bytes.

. .

Program tokenlzation
Resened verb5 are tokenized into single byu:s called tokens. All adverbs, operators,
and nouns (funaions and reserved variables) are converted into 2-byte tokens .
.A.ppendix C, "Reserved Words, • spedf.aes which words are verbs, nouns, adverbs,
operators, and so on.

All other c:haraaea in progra.r:ns each use 1 byte of storage within the program.

Each program line has 5 bytes of overhead plus the bytes described above. This
overhead consists of 1 byte for the length of the optional label (plus 1 byte per label
c:har:laer) and 1 byte for the length of the rest of the line, including 2 bytes for the line
number and l byte for the end-of-line token (a binary zero).

Interpreter internals
When 2 program js being exe01ted., BASIC uses the space on the 256 byte FORIGOSUB
stack as follows:

c Each aaive FOR ... NEXT loop uses 25 bytes.

o Each active WHILE ... Ul\l1L loop uses 6 bytes.

= Each aaive GOSUB (one that has not returned) uses 6 bytes.

= Each aaive PROC (that has not ended) uses 6 bytes.

D Each aaive user defined funaion (that has not ended) uses 6 bytes.

The BASIC@ function
The BASICO funaion accepts an integer parameter in the range of 0 through 48. The
funaion retums an address of some dau suuaure in the static data areas within the GS
.BASIC interpreter.

"The BASlCC funaion allows programmers who want to work with the internal data
tables to obtain the addresses of specific data struaure no matter how the interpreter is
implemented in the future or where the System Loader happens to place the
interpreter in memory.

The 8ASICC function 319

+ Note: Do not write programs that depend on the faa that the static data segment is
combined with the static code segment and will therefore reside in the same bank as
the code segme.ru. A fuo.ue ve:3ion of GS BASIC will probably separate the static
code and data segments, and there may be more than one code segment in
separate banks.

Wamtng
Use of any other meccnism to obtctn lntemcl addresses wUI not be supported In
fUture versions. end future versions will IZ'Idoubtedly re1Um different addresses for
ony spec!tlc dote structure defined In BASIC@.

If you are going to use POKE to man.ipu.Late the intemal data suua:ures, you should
always fetCh the adciress via the BASICO function. You should not c::aprure addresses
from BASICO into variables beause future BASICO data strua:ures may be
dynamically relocated during imerpteter exea1tion.

BASJC@ parameter definition
The BASICO function rerums the address of some data item for a given parameter.
The assembler diteaive notation and data item si2es are as follows:

P-string is a count byte followed by 1 to 255 charactets
OS mzn means define storage of mm bytes; that is a buffer mm bytes long
OW means define word (2 bytes, low byte fust)
DB means define byte
DL means define long (4 bytes, low byte f'ust)
rf(direawe) means the direaive inside parentheses is repeated rr times

Table 0·2
To~letttle

Parameter

0
1
2
3
4
5
6
7
8
9
10

Item Size

P-string
P-string
P-string
OS 128
OS 60
OS 256
OS 32
OS 256
OS 256
ow
OS 10

Item Decnptton

Name of designer/developer
Names of major contributors
Names of prior authors
NAMBUP: Work buffer with nlena.mes as p-strings
Startup f'llename GSB.HEI.LO
MEMBUFR: Pseudo-device memory buffer
LINL\BL: Buffer with a statement label (see UNtBLGET)
BUP: Command line buffer/ tokenization buffer
IBlJF: Re3dline buffer for IN'PtJT, IN'Ptrr•. and so on.
COI.DSTACX: Value of IIGS BASIC Top of stack
XACC: The expression evaluator X accumulator

320 Appendix 0: AppendlxTit1e

11 DS 10 Y ACC: 1be expression evaluator Y accumulator
12 DB OUTREC: The width of the output device for UST

command
13 DB IND~!: The FOR ... NEXT indentation amount
14 DB IlSTI'AB: The left margin indent for the UST command
15 DB SHOWDIGITS: 1be PRINI' statement significance

control
16 DW SMARGIN: String space margin in pages (default • 16)
17 DS4 RNDSEED: The RND funaion startup seed
18 DS 10 RND function last value as a SANE extended-real value
19 Dl ON ERR deferred mode veaor: Points at dispatcher
20 DL ON ERR immediate mode veaor: Points at

ERRMSG00-1
21 DW Smallest precision compare switch (default • $00-ofi)
22 DW :EXCPCTRI. switch (de.fault-$8000): Enables exceptions
23 JML SANEHAI.TV: Assembler-level JMP vector for SANE

halts
24 DS 1024 CI..HBUF: Command line history buffer
25 DL Conta.ins a handle to the 10 preallocated zero pages (see

i1cm 48 for address of BASIC's zero page)
26 Dl MINPAGES: Minimum size of user data segment in

pages
27 DW CAll_ERROR: Used by CAll and CAll%, followed by

DS 32 R.STACK return stack
28 DSB QUIT command ProDOS PQUIT: 00 parameter list
29 DW TM_EVTMSK: Event mask used for by TASKPOll

DS 22 TM_RECORD: TaskMaster record used by TASKPOll
30 DB AT'I'NKEY: Byte containing the AScn code of the Break

- key -
31 DB ATTNMODFR.: Byte containing the modifier for Break

key values: 0 • none, 1 • Shift, $10 • Keypad, $11 •
Shift+Keypad

32 Dl ON TIMER.: Countdown counter
33 DL SECONDSC: Seconds-since-midnight counter
~ DW AUXIDC: AUX'!YP field from prior GetFJlelnfo in llGS

BASIC
35 lO(DS 16) CF _NAMES: Table of 10 charaaer device names (each

enuy is a P-string with 1 to 15 charaaers)

36 10(DB,DB) CF _SLOT: Table of 10 device slot numbers/AUTO-LF
37 7(DW) cr _lliOOK: Table of last input hook for slots 1 through

7
38 7(DW) CF _OHOOK: Table of last output hook for slots 1

through 7
39 JMP long ON]VECfOR: JMP LONG in mid ON verb processing

logic

The BASICC function 321

40

41
42

43

44

45

46

47

48

DL

DS66
DS 66

vector
EDmO: EDIT command UIR input conuol block
RDLINIO: INPUT/command lice UIR input conuol
block
SWOiGOTBL: Address table of entry poims for
invokable modules
ASCFI'YP: Table of 3-byte file type desaiptors used by
CAT
f"''YP2ASC: Pualle1 table of 1-byte file types used by
CAT
MTHS'I'RS: Table of twelve 4-byte month string used by
CAT
DAYS'I'RS: Table of seven 4-byte day-of-week strings
used by CAT
1be address of UGS BASICS zero page

The M~ory Manager USElUD for IIGS BASIC an be obtained from the GS BASIC
zero-page as follows:

2990 OSERIO,•VAR(BAS!C3(48)+7,2)

If you w:mt to alloare Memory Manager segmenrs in your programs, you should
create subtype user ID's by adding $100, $200,$300 ·-to the IIGS BASIC USElUD. IIGS
BASIC uses subtypeS .SF through $A for its internal memory segmentS and invokable
modules.

The 10 too! set zero pages prealloc:ued by IIGS BASIC are assigned a.s follows:

Table D-3
Table title

+$0 ,S 100,$200
+$300
+$400
+$500
+$600
+$700
+$800
+$900

Tootaet Name

QuickDraw II
Event Manager
Sound Manager
Conuol Manager
I.ine£dit Manager
Menu Manager
Standard File Operation
Other

Vetsion 1 of IIGS BASIC does not aaM.te the tool sets or assign the zero pages shown
in parenthesis, but a future version may. All GS BASIC appliation programs should
observe these 3.SSignmerus when aaiwting these tool sets.

322 Appendix 0: ~pendlxTI11e

Appendix E

Tips and Techniques

Time savers
ibe time savers hints ~Sted below an improve the eecu.tion speed of your ngs BASIC
programs. Nore uw some of these hints are the same as the hinrs given in the second
section of this appendix for decreasing the memory space used by your programs.
1'his means that sometimes you an inaease the speed of your programs while you
improve the efficiency of their memory use.

1. Use inleger conuol variables for any FOR loop with integral step values. A FOR Io/o­
loop will execute the NEXT sratement about six limes faster than a FOR I•, FOR I._,
or FOR I&- loop. You could use a double-inleger conuol variable, but a FOR IO•
loop will only execute rbe NEXT srarement about three times faster than the other
forms.

2. Use imeger constams instead of variables. lnleger constants are convened into
binary when a program statement is entered in a program. It takes less time to use
an in-line binary constant than it does to look up a variable of any type in the
variable tables. nus is especially important within FOR ... NEXT loops or other
code that is executed ~epeatedly.

+ Note: Real constants, and inleger constants with more than nine digits, are not
preconverr.ed to binary. Thus, it is beaer to use real and long-integer variables than
to repeatedly conven them from text to binary.

3. Variables which are encountered fust during the execution of a BASIC program are
allocated at the start of the variable table. For example, this means that a statement
such as

5 A•O : B•O : C•O

323

will place A rust. B second. and C third in tbe variable table (assuming line 5 is the
rU'St statement executed in the program). ~ in the program, when BASIC finds a
reference to tbe variable A, it will searc:h only one enuy in the wriable table to find
A, two entries to find B and duee enaies to find C.

· 4. Use Nm statements without a specified comrol variable. NEXT is slightly faster
than NEXT A becauae BASIC does not have to check to see if the conuol wriable is
tbe same as tbe one in the most recently executed FOR swemeru.

5. When BASIC bnnc:bes to a new line mtmber, one of two things happens depending
on whether the line number is lower or higher than the cunem1y executing line. If it
is a lower number, such as

l 1001 GOTO 1000

BASIC scans tbe entire program, starting at the lowest line until it finds the
referenced line mtmber (1000, in this example). If the new line number is~
than the current line number, BASIC only bas to search forward from the current
line. Here's an example:

l 1001 GOTO 2048

6. You can make your prognm run faster if you use PROC statements instead of
GOStJB statementS. The benefit of using PROC statements results from the for OEF
PROC and OEP PN scans performed when a prognm is run (or chained).

1he OEP scan builds a diaiorwy of procedure and funaion names, and the PROC
smtement searches this table instead of the entire prognm to execute a procedure.
The PROC sratements can be anywhere in the prognm. '!he table is ae:ued in line­
number order, so the PROC statement with the lowest line number will be found the
fastesL

Space severs
The following hints can help you fiL

1 . Use integer inst=d of real arrays wherever possible.

2. Use real variables instead of real constants CThis rule does not apply to small integer
constants in the range of 0 through 4095.) For example, suppose that you use the
real conswtt 2. 71828 ten times in your prognm. If you insert the statement

) 10 £•2 .21828

in the prognm, and use E instead of 2. 71828 each time, you will save 40 bytes. '!his
will also improve. In-line integer constants are always faster than integer variables
but will noc save space unless one or two-letter integer vuiable names are used

3. The END statement is strialy optional. You can save 1 or 2 byte by omitting it from
your progr2m5. However, don't forget to use END to prevent your ,;rogram from
auhing into its own procedures or subroutines.

324 A;)pendlx E: AppendlxTit1e

4 . Reuse the same variables. If you have a variable T to hold a temporary result in one
part of the program, and you need a temporary variable later in your program, use
T again. Or, if you are asking the computer user to give a yes or no answer at two
different times during the execution of the program, use the same temporary
variable to store the reply.

S. Use PROC or GOSUB swements to ese01te sroups of program statements that
perform identical actions.

6. Use the zero elements of arrays, for example, A(O), BX!(O)O.

7. Use multiple Statements per line. There is a smaD amount of overhead CS bytes)
associa.ted with each line in the program.

8. In serious cases only, remove all the REM s~rement lines from your program.
Remember that this will make your program harder for someone else to read,
harder to debug, and generally less desirable-but you will save memory! If you do
this, you should consider keeping a copy of the program with the REM statements.

See Appendix D, •Interpreter Data Structures: for an explanation of memory usage
by variables and constants.

Space savers 325

Appendix F

Useful Calculations

This appendix lists some useful mathematical funaions that can be calculated easily in
DGS BASIC. .

Table ~1

Function

Secant
Cosecant
Csotangent
Inverse Sine

Inverse Cosine
lnvers Cotangent
Hyprebolic Sine
Hyprebolic Cosine

IASIC equivalent

DEF FN SECtCXtl • l/COSCXtl

DEF F'N COSECt CXtl • l/SIN CXtl

DEF FN CO'!'ANf CXtl • l/'!'AN CXt)

OEF FN ARCSIN I CXtl : LOCAl. yt, Ct

Ct • SCA::.Bc-33,1.01)

~~ • ABS CXfl

IF yt >• .51

THEN Yt • Al'NCXt I SQRC2•Cl-Ytl-cl-YI"2ll

ELSE IF Y >• C

TBE:N yt • ATNCXt/CSQRCl-YI"2))

ELSE Yl • Xt

F'N ARCSINI • yt

END FN ARCSINt
OE:F FN ARCCOStCXt) • 2 • ATNCSQR((l-xtl/Cl+xt))l

DEF F'N ARCCOTt CXI) • ATN CXIl +1.5"708

DEF F'N SINHtCXtl • CE:XPCXtl-E:XPC-Xll/21

DE:F FN COSHt CXtl • (E:XP CXtl + E:XP C-X) l /2t

Hyprebolic Tangent DEF FN TAHBt <Xtl : LOCAL !t, C:t

C:t • SCALBI-33,1)

Yt • ABS (Xtl

IF 'U > C:t TUN Yt•EXPl 1-2 • .yt)

rN TANBt • tt•SGN !XII
END FN TANBI

'U • -Ytl !2+'Ul

Appendix F: Useful cclculotlons 327

Appendix G

Summary of IIIIGS BASIC

Syntax notation
!be method used in this Appendix to describe nGS BASIC syntax is a simple lu@uage
in itself, alled a meta Ia nguage. Afrer you get used to the """"'~auauage, it win speed
your understanding of the correct language syntax. The language syntax is described
using the modified Bacilus-Naur form notational scheme. All the language elements
and the rules for dle combination of those elements are described

A metalanguage cannot specify everything about a la.nguase; only its syntax. Readers
already familiar with the syntax of BASIC should be c:an:fu1 not to assume that they
know how a statement functions from just readmg lis syntax. Examples of this might
include assumptions about the type of editing available when eruering an input line, or
the operation of the disk 110 statements. Chapter 8, nGs •BASIC Reference, • contains
a detailed explanation of the all the variables, operands, operators, expressions,
functions, statements, and commands in IIIIGS BASIC.

An element, expression, or statement .is defined like this:

(element to be defmed)
::• (some combination of defined elements)

Any upperc:ase letters or punctuation marks appearing on the second line after the
definition assignment operator, '::•', must be entered exactly a.s shown. Lowercase
letters or words represent variable information that you must fill in with a spec:ific ease.
For example, in the following defmition

WRI"I'E• statement
:: • W'RITE• menum [, recnuml ; (expri{, exprll 1

the word WRITE and the ,_., must be typed a.s shown, a.s must the commas and semi­
colon.

1be filenum, reawm, and expr elemenrs must be replac:ed with specific cases of the
that type of element. Some definitions may have two or mon: lines each beginning
with the defmition assignment opentot, ::•. These lines define variations for an
element, expression, or statement.

1be bnc:es, (},vertical bar, I, and br:ICkets, [l are NOT to be entered, but .instead are
used to indic::ue how to combine the elements to consuua variations of a statement or
expression. These c:baraae:s are elements of the metalanguage.

I
[]
(}

\ \

Separate altemative elements, one of which must be seleaed
Endose optional elements~
Endose a repeatable element or sequence of elements that
Must occur at least once.
'fndose elements whose value are to be used

Here's an intuitive example of how tbis metalanguage is used to describe the various parts of Basic's
syntaX. In this example, we'll use houses, as they are familiar objeas to most of us:

house
:: • rootldoorHwindow}[fueplace][all-electric kitchen)

A house has a roof, one or more doors, one or more windows, and may have a fueplace and/ or
an all-electric kitchen.

home
::• house I coaage I mansion

A home can be a house, cottage, or mansion.

price
::• \house\

The selling price is the wlue of the house.

nus notational scheme is known as modilled BNF (Backu.t-Naur Form) after John
Backus and Peter Naur, who first adapced it for use with computer languages. Its
essential features were invented in ancient times by the Hindu scholar Panini, who wu
doing research into the gnmmar (syntax) of Sanskrit.

The fust part of th.is append.ix is a list of all elements used in BASIC statements. The
second part desaibes the syntax of expressions. The third pans lists the various
functions alphabetically by type. The last part of the appendix is an alphabetical
listing of all BASIC sr:arements and commands.

Elements 329

•

Elements

Discrete elements

uppercase
::• AlBic IDlE I FIG IHIIIJIKILIM INioiP IQ IRisiT!ulvlwlxiYiz

lowercase
==· a lbl cldle I rig lhli li lk I 1Im In I o lp lq Iris ltlu lvlwlx lrlz

foreign language char

::• rh IJI'l{lllll- (spec:W leners in foreign languages)

lener
: : • uppercase I lowercase

digit

==- olll21314l5l617lsl9

line number llinenum
:: • {digiti where value is in the J:?Jlge 1 ... 65279 (l..SFF00-1)

line labelllabel
: : • lener{{lener I digit I . }] (max length • 30 chars)

special
: :• 1l• Is I% l & I· I c 1) 1·1 • I. 1-1.1;1: I; I< 1·1 >I? I o I" I_

character

(NOTE: • becomes £., and/ or C becomes S in foreign languages
except french where C becomes i)

: : • uppercase !lowercase I digit I specia.ll foreign language char

control clmracter
:: • ascii codes with hex values SOl ... SlP (NOTE: $00 is excluded)

prompt character
: :•)

return
: :• ascii cmiage return (a control c:haraaer-13 or SOD)

330 Appendix G: SUmmery of IIIIGS BASIC

Opercnds

name
: : • leaeri{ letter I digit I. }] (m:n;mum length • 30 chars)

subscrip~: • (subsexpr [{,.subsexpri))

Note: the maximum range of any subsaipt is 0 .. 32767 but the range for a given type of array is limited by
the 1024K byte maximum array si2e and the number of dimensions.

variable name
: :- name! o 1-1 s I % I a: 1 c- •> £. o •> s in most foreign languages)

array name
::• name! !lol-lsl%1&: 1

c- •> £, • •> sin most foreign languages)

unsigned integer
::- {digit} (size of integer determined by value as follows:)

C-32768 thru 32767 becomes a single integer)
(-2147483648 thru 2147483647 •> a double integer)
(+/- 9223372036854775807 becomes a long integer)

not a number I nan .
:: • NaN(({digid)]

infinity
::• INF

exponent E I e{ + 1-lldigit} ::•

mixed constant
: : • unsigned integer .
: : • [unsigned imegerl.unsigned integer

r.tnir.e constant
: : • unsigned integer exponent
: : • mixed constant [exponent]

unsigned real
: : • rwce constant I infinity I nan

Elements JJ 1

single-precision constant (with 7 or fewer significant digits)

: : • I+ l-1 unsigned real constant

double -precision constant (with 8 thru 15 significant digits)

: : • I+ l-1 unsigned real constant

extended-precision constant (with 16 thru 20 significant digits)

: : • [+ 1-1 unsigned real constant

single-precision name I s-p name
::• name

single-precision variable I s-p variable
: : • name{subsaiptl

double-precision name I d-p name
: : • name• (name£ in some foreign languages)

double-precision variable 1 d-p variable
: : • name• Isubsaiptl (name£ lsubsaiptl in some foreign languages)

real variable
: : • s-p variable 1 d-p variable

single integer name l sina.me
::• name%

single integer variable I sivar
: : • name% (subsaiptl

double integer name
::• nameO (nameS in most foreign languages)

double integer variable I di'V2.t
: : • nameO (subsaiptl (nameS (subsaiptl in most foreign languages)

long-integer name
: :• name&

long-.integer variable IHvar
: : • name& Lsubsaiptl

integer variable I ivar
: : • sivar l divar luvar

332 Appendix G: Summary of IIIIGS BASIC

suuawe name
::• name!

suuaure variable I stvar
: : • name! subsaipt

literal
::• {c:haraaer I conuol charaaer}

suing constant
: : • •uterai•

null string
::•

constant
::•

••

string variable name
::• nameS

string variable I svu
:: • nameS[subsaiptl

arithmetic variable I avar
: : • integer variable I real variable

variable I var

(max length- 255 chats)

: : • arithmetic variable I string variable I integer variable

variable list I varlist
: : • var [{, var}]

a=v ~Je IJliJDC! !lol•l s I %I "' I subsai~_ 0 •• s in """' foreign 1an!Pasesl

Reserved variables

reserved numeric variable J nresvar
::• AUXIDO I ERR I :ERRTOOL l EOF I ERRLIN I FRE I HPOS I IND~vr I JOYY I
KBD I usnAB I oUTREc I PDL91 sEcoNDs• I SHOWDIGITS I VPos

Elements 333

reserved string variable I sresvar
PREFIX$ I PROGNAMSI DA TESinMES

modifiable resvar I mresva.r
::- HPOS I VPOS I INDENT I USTrAB I OU'I"REC I PREFIXS I PROGNAMS

SHOWDIGm .

MlseeJianeous elements

fllenum
: : • ubexpr (1 •. 29 a maximum of 6 disk files open at one time)

(with ProOOS-16 V2.0 a max of 31 files open)

climame I mename
: : • \ UCASE.S(lenerlleaer I digit I.J) \ (max length • 15 for ProOOS)

volname /dimame
: :•

prefix selector I Pj 1 l21314l5l6l 1718 ::• 0

diskname D digit I.D digit digit ::- .
chardevicename

::- .CONSOLE l.PRil'i'TER !.MODEM I .NULL I.NE!l'TR1 I.MEMBUFR I
.filename

pathname
: :•
::•
: :•

Hdirname/}J filename
(volname[Vdimame}l/Jfilename
lpfxlVd.irname}l/Jfilename

directory-pathname
: :- dimameVdimame}[/J
: :- diskname
:: • volname [Vdirname}][/J
:: • pfx[Vdirname})/

open pathname
: : • chardevicename I pathname

334 Appendix G: Summary of liiiGS BASIC

(PREFIX$ applies)

(PREFIX$ applies)

mepW1
: :•
::-

pathname
sexpr (with \ paduwne \)

immediate mode
deferred mode

dirpath
:: • directory-pathname immediate mode
:: • sexpr (with \direc:tory-pathname\) deferred mode

openpath
::•
::-

open pathname
sexpr (with \open pathname \)

immediate mode
deferred mode

ftyp
: : • a three char.laer filetype abbreviation as defined in Appendix J.

wildcardchar

::• -1-1..-

wildcardf"llnam

: : • \ UCASESOetter I wildcardcharlwildcardchar !letter I digit I .]) \
(mnjmum length of 15 characters for ProOOS)

function name
: :• name{O !%I•I&J

Ptoc:name
::• name

library name
; ! - name (maximum length • 20 ch:a.r:aaers)

recnum
: :• aexpr (result range limited co 0 .. 8,388,6oi)

recsize
::• aexpr (result range limited to 1 .. 32767)

'(except BOF' files are limited co 3 .. 32i67)

repeat factor I rp~digid
::• (result limited [0 1 ... 255)

suing ~ llrpdA I c I R}

A reser.-c:S a charaaer position in a left-justif"~ed string.
C reserves a charaaer position in a centered string.
R reserves a charaaer position in a right-justilled string.

Elements 335

ll1eral spec
: : • UrptlX I I I sUing constant)

An X character prints a space.
A I character prints a c::miage return.
A string conswu prints literal text When a repeat faaor is
used with a string constant the literal is repeated.

digit spec

flXSpeC

sci part

: ·:- lrptl H•l z I&}) . {rptH•I z I&}

: :• lrptJ<•I z I &JLl

• reserves one numeric digit position;
leading zeros are replaced with spaces.

Z reserves one numeric digit position;
leading zeros are printed.

& reserves one position for a numeric digit or a comma;
commas are insened after every third digit swting at the
dec:imal point and working left. Commas are included in the
character couru and leading zeros are replaced with spaces.
A miniau,m of 5 &'s must occur to left of the decimal point.

:::•

::-

::-

::•

::-

::•

+

s
• •
++

ss

::-

[••J[S)[+ 1-1 digitspec
[••][• 1-J[SJ digitspec
I-UsJ digitspec l+ 1-1
.SS! + 1-J digitspec
SS digitspec ! + l_l
{++ 1-liSJ digitspec

reserves a character position for printing the sign.
reserves a character position for printing the sign;
a - is primed for a negatiYe value, a space for positive value.
reserve a character position for a dollar sign.
prints asterisks instead of spaces in unused leading positions.
reserves the rightmost unused position for the sign
(and a following dollar sign if any).
same as- above, except the sign is replaced by a space when
the value is positive.
reserves the rightmost unused position for a dollar sign
(and a following numeric sign if any).
NOTE: SS, -.and- may not be used if the digit spec conta.ins a Z.

[rptl•l z

336 Appendix G: SUmmery of IIIIGS BASIC

fracpart . [rptlH•I Z}]
:.:•

e.xpspec
::• EEE I EEEE I EEEEE I FEFF'FF I3E I4E lsE I6E

sdspec
:: • [+ 1-lscipartllfracpartl e.xpspec

engrpart •••I ZZZ
::•

engrspec
:: • [+ 1-J engrpartffracpartl e.xpspec

spec
: : • suing spec lliter.al spec I flXSpec I sc:ispec I engrspec

functions

=-
CHitS function OilU(ube.xpr) ::•

cor..ovs functionCONVS(e.xpr) . ::•

ERR'I'XI'S functi~'l"XX'S(ube.xpr) ::•

EXFN ~on EXPNS name [Qe.xpri,le.xprl)]

HEX$ function
::• HEX.S(ae.xpr) (value range Umited to +/-211..32.1)

INSTR funaion
:: • INSTR(se.xpr,se.xprl,ube.xprD

I.EFI'S function LEFI'S(se.xpr,ube.xpr) ::•

Functions 337

MID$ function MIDS(sexpr,ubexprl [,ubexpr2D : :•

~· function Pc~ ::• PFXS(pfx)

lUGHI'S: ~c:tion.RIGHTS(sexpr,ubexpr)

REPS function REPS(sexpr,ubexpr) ::•

SPACES: ~aio~PACES(ubexpr)

S'I'RS function STRS(aexpr)
: :•

UCA.SES function CASES(sexpr) ::• u

Arithmetic functions

::-

ABS function ABS(aexpr) ::•

ANNUI1"Y funai~(aexpr ,aexpr) ::•

ATN function
:: • ATN(aexpr)

COMPOUND function
:: • COMPI(aexpr,aexpr)

CONV function
: : • CO NV[0 1•1% I &)(expr)

COS function
;:• COS(aexpr)

EXP function
::• EXP(aexpr)

33S Appendix G: SUmmary of IIIIGS BASIC

EXPl funaion
::• !XPl (aexpr) (base e Exponential minus 1)

EXP2 funaion
::• EXP2(aexpr) (base 2 Exponential)

PIX function FIX(aexpr) ::.

INT funaion INT(aexpr)
::•

LOG funaion LOG(aexpr)
::•

LOGB% funaionLOGB%(aexpr)
: :• (binary exponent of aexpr)

LOG 1 funaion
::• LOGl(aexpr) (base e log of aexpr+ 1)

LOG2 funaion
: :• LOG2(aexpr) (base 2 logarithm)

·n
NEGATE funcno NEGATE(aexpr) ::•

RNO funaion RND(aexpr)
::•

ROUND functio;OUND(aexpr)
::•

SCAI.B function SCALB(siexpr,aexpr) ::• (a~xpr-21\siexpr)

SGN funaion SGN(aexpr) ::•

SIN funaion SIN(aexpr) ::•

Functions 339

SQR fun:~~n SQR(aexpr)

'TAN function 'I'AN(aexpr)
: :•

Miscellaneous functions

::-

ASC function ASC(sexpr) ::-

BASJCC functio~ASICC(ubexpr) ::•

BTN function BTN(ubexpr)
; :•

DATE function DA TE(ubexpr)
::-

EOFMARK function FMARK(tllenum) ::• EO

EXEVE....., "TC function
:: • EXEVE.....,"T@(ubexpr)

~function

: : • EXFNI % I C I # I &: l $ Uname lOexpr{,lexpr}) 1

FILE function
: : • FILE(sexprl , Fn.TYP• Dm I TXT I SRC I BDF I ubexprD

mTYP function FILTYP(fllenum)
: :•

FR.EMEM functio~EM(ubexpr)
; :-

JOYX fu:~~on JOYX(ubexpr)

LEN function LEN(sexpr) =:-

:PDL function
340 Appendix G: SUmmery of llllc;s BASIC

: : • POL(ubexpr)

PEEK function
::• PEEK(iexpr) Ct:ange limited to 0 .. 2"'24)

R.STACK% function
:: • R.STACX%(ubexpr)

R.STACKO function
:: • R.STACKO(ubexpr)

·n
R.STACK& functi::STACK&(ubexpr) ::•

REC function REC(rJ.lenum) ::•

TASKREC% funai~KREC%(ubexpr) . .• T.

~on) TASKRECaJ TASKRECO(ubexpr ::•

'I'EN function TEN(sexpr)
::•

TIME function nM:E(ubexpr) ::•

TYP function TYP(nlenum) ::•

tJBOUND function
:: • UBOUNO (uray-name!OI LubexprD

UIR function UIR(ubexpr)
::•

VAB. ~~on VAR(stvar,vtype{,lgthD

VARS function VAB.S(divu(.lgthD ::•

v ARPTR functio~ ARP1'R(variable) ::•

V ARPTRS function
: : • V ARPTRS(suing variable)

Functions 341

Print functions

::-

SPC function SPC(aexpr) ::•

SCAIE funaion SCAI.E(siexpr,expr) ; :•

TAB function TAB(aexpr) ::-

Numeric functions

numeric function
: : • arithmetic function l miscellaneous function

Expressions

relational operator 1 relop
::• -l<l>l<>l>·l->l<•l•<l<•>

string term I sterm
: : • svar I string function I string constant I (string expression)

string expression I sexpr
: : • sterm {+ sterm}

arithmetic faaor
: : • unsigned real! unsigned integer
: : • arithmetic variable I resvar
: : • numeric function call
: : • (arithmetic expression)
:: • INOTl! + 1-l arithmetic faaor

arithmetic term
:: • arithmetic faaor {A 1•1 I I DIV I MOD I+ 1- arithmetic factor}

(operators shown in order of precedence, highest fust)

342 Appendix G: SUmmary of IIIIGOS BASIC

relational term
: : • arithmetic term [{relop arithmetic termH
: : • sexpr {relop sexpri

logia.l term

:: • relational term !A.L'lD I OR I XOR relational term}
(oper.uors shown in order of precedence, highest rust)

arithmetic expression
: : • arithmetic term
: : • relational term (inr.eger result • 0 for false, 1 for true)
: : • logia.l term (integer result • 0 for false, 1 for true)

unsigned byte expression I ubexpr
::• aexpr (with teSUlting r:mge of o ... 255)

subsaipt expression I subsexpr
::• aexpr (with result range of 0 ... 32767)

llnenum expression llnexpr
: : • linenum !label

single integer expression I siexpr
::• aexpr (with result range of -32768 ... 0 ... 32767)

integer expression I iexpr
::• aexpr (integer with range of -21'.63 ... 0 ... 2-"63)

expression I expr
: : • aexpr I sexpr

Statements

Statement form

Starement List
:: • statement H: statement}]

lmmediate Statement I command
: : • statement list rerum (max of 239 charaaers)

Functions 343

Deferred Statement I program line
: : • linenum [label:1statement list return (mu of 239 chanaers)

Statement definitions

ASSIGN statement

:: • ASSIGN c:hardevic:ename I sexpr,slot [.AUTO)

BREAK statement
::• BREAK ONIOFF

CALl. starrmem
: : • CAll libname [Qexpr{,lexpr}))
: :• _llbna.me [Oexpr{,lexpr})J

CAll.% statement
:: • CALl.% ubexprl,ubexpr2,ubexpr3 [Qexpr{,lexpr})]

CATALOG statement
:: • CATALOG [dirpath]
: : • CAT ldirpathl

(displayed in 80 columns)
(displayed in 40 columns)

OJ.AD'I(statemen~ filepath(,lnexprl .::•

Cl..EAR statement
::• CLEAR
: : • CLE.AR aexpr
: : • CLEAR UBRARY
: : • CLE.AR INVOKE

CLOSE statemen~OSE[tt fllenuml ::•

COPY statement
: : • COPY fllepathl ,fuepath2 [,linenumJ

CREATE statement
:: • CREAn: fllepath ,Fn.TYP• DIR IT.XT I SRC I BDF I ubexprl,recsizel

.
DATA statement

: : • DATA [literal! constant][Uiterall constant} J

DATE.S swement
::• DAi'ES -ubexpr,ubexpr,ubexpr (YY,MM,DD)

344 Appendix G: SUI'Tmary of IJIIGS BASIC

DEF FN mrement
:: • DEF FN function name(varlist) • aexpr
or
: : • DEF FN function name{varlist): [satemeru list]

END FN function name
or
:: • DEF PROC proaw:ce{(varlist)l: [statement list)

END PROC [procnamel

DEI.EI'E statem~EI.E'I"E filepath
::-

DIM statement
:: • DIM art2y variable nameH,art2y variable name}]

DIR statement
:: • DIR [dirpath.rwne [/wildcardfilnam (,[-lftyp[{,ftyp}]]

DO statement
::• DO (used as 00 ... UN11I. or 00 ... WHILE ... UNTIL)

ElSE Statement

:: • El.SE [lnexpr I statementlistl (only as 1st statement in a line)

END statement
::• E..~D

: : • END PROC [procnamel
: : • END FN funaion name

ERASE statement

: : • ERASE vamame I amy variable na.meO
[{,vamame I amy variable name0}]

Elm.OR stateme~OR ubexpr
::-

EVEN"I'DEF statement

:: • EVENTDEF ubexpri,llnnum !label}

EXCEPTION statement
::- EXCEPTION (ON I OFF I 0}

EXEC statement
: : • EXEC filepath,[OFFJ Cfiletype must be TXT I SRC)
: : • EXEC • fllenum,IOFFJ (chains to previous EXEC)

Functions 345

F'N let statement
: : • FN function name-expression
: : • FN localva.r-expression

FOR statement
: : • FOR arithmetic variable • aexprl TO aexpr2 [S'I'EP aexpr31

GET# statement
: : • GET #filenuml:,length(,recnumD ; stva.r

GET$ statement
: :• GET$ (#filenum(,recnuml; svar

GOSt.1B statemen~SUB lnex:pr
::•

GOTO statemenkTo lnexpr
::-

GRAF statement

:: • GRA.F 1NIT mode (mode - 0 1320 1640)
::• GRAFON
: :• GRAF OFF

HOME statement
::• HOME

IF statement
: : • IF lexpr TiiEN lnexpr I statementlist [else statement J
: : • IF lexpr GOTO lnexprl else statement]
or
: : • linnum 1F lex:pr niEN lnexpr I statementlist

linnum else Statement
or
: : • linnum IF lexpr

linnum then statement
linnum else statement

IMAGE statement GE specH,specll ..• lMA

INlT statement
· · • !NIT disk.name,volname immed.i:uc mode

(prompts user in immediate mode if volume a.lteacy exists)
: : • INIT sexpr,sepxr deferred mode

(NO USER PROMPT in deferred mode)

346 Appendix Gi: Summery of IIIIGS BASIC

lNPti'T statement

: : • INPUT [suing constant, I ;] varlist

INPl.JT ;It statement
: : • INPUT# fllenuml.reClum)[; nrlist

lNPL'T USING statement
: : • INPUT USING lnexpr; suing variable

INVERSE statement
::• INVERSE

INVOKE statement
: :• INVOicE
: : • INVOKE rllepathi{,rllepath}]
: : • INVOKE APPEND fllepathi{.fllepath}]

LET statement
: : • [I.ET] vu I mresvar • expression

(multi-line funaion references allowed in LET 0~1.Y)

UBFIND statement
:: • UBFIND sexpr,sivarl,sivar2,sinr3

UBRARY statement
::• UBRARY
:: • UBRARY filepathi{,fllepathll
: : • UBRARY APPEND rllepathi{,f.Uepath}]

LOAD statementlOAD rllepath ...
LOCAL statement

: : • LOCAl. varname{, varna.me} Conly inside DEFE."''D)

LOCX statementl.OCX filepath
:! -

MENUDEF statement
: : • MENtJDEF ubexpr{,linnum I label}

... ~ st:arement ... _..w NEW
! :-

:-.rEXT statement
:: • NEXT [control variable [,{control variable}]

Functions 347

NORMAL statement
::• NORMAL

NO"ffiACE swement
::• NOTRACE

statement
OFF EOF• OFF EOF• filenum : :•

~'D saremeru OFF~ OFF ERR
;:•

OFF EXCEPnON statement
:: • OFF EXCEPnON

OFF '!!MER statement
: : • OFF 11MER

OFF KBD statement
::• OFF KBD

O N BREAK mrement tatementlist
::• ON BREAKs

ON EOF• statement
: : • ON EOF• fllenum statement list

ON ERR statement
: : • ON :ERR statement list

ON EXCEPTION statement
: : • ON EXCEPTION statement list

ON GOSUB statement
: : • - ON aexpr GOSUB lne.xpzH.lnexprll

ON GOTO statement
:: • ON ae.xpr GOTO lnexprl{.lnexpr)]

: :•

ON TIMER st3tement

: : • ON TIMER (ae.xpr) GOSUB linenum !label

OPEN statement
::- OPEN openpath ,tm 'IYP•DIR I TXT I SRC I BDrl ubexprl!FOR ~"Pt.i'T I

348 Appendix G: SUmmery of IIIIGS BASIC

::-

OUTPUT I APPE.~ I UPDA'I'El.AS • filenum [,recsi2el
OPEN • filenum ,FOR INPUT I OUTPu.,-1 UPDATE AS • filenum

[,rec:sizel

y"" statement C'1----0t.11'Pv::• OUTPUT• ~

PERFORM statement
: : • PERFORM Ubname [(lexpr{{,lexpr }]) 1

POKE statement
::- POKE iexpr,ubexpr (iexpr limited to 0 .. 2"24)

POP statement
::• POP

PREFIX statement REFIX [pfx,J[dirpathl : :• p (except pfx-8)

PRINT statement
::- ? I PRINT a. I ;]exprl}[, I ;]

PRINT• statement

:: • ? I PRINT • filenuml,recnuml [; expr [{; exprlD [;]

PRINT USING srarement

: : • ? I PRINT USING lnexpr I string I svar ; [expr [{, exprlD [;]

PRil'i1• uSING sratement

: : • ? I PRINT • filenum [,recnuml USING
linenum I string I svar ; I expr !{. exprlD [;]

· PUT starement
: : • PUT 11 filenum!,!rec:size][,recnumU;scvu

::-

RANDOMIZE sta=~MIZE aexpr ::-

READ statementREAD vulist
::-

READ- statement
: : • READ- fllenum Lrecnuml [; variistl

Functions 349

REM statement REM literal
::-

RENAME statement

:: • RENAME filepa.thl,f1lepath2t,Fn.TYP• DIR I TXT I SRC I BDF I ubexprl

'Doe~RE sr:nement n--rJ ~ ~v RESTORE ~~~ : :•

nstJME statement

::- RESUME lNEX'I" I COPY]

• starement
RETURN RETURN

: :• RETURN 0
: : • RE"'1JRN linnum
: :•

RUN swement RUN {fllepa.th l.lnexprl

~ ~= RUN Unexpr]

SAVE statement
: : • SAVE (fJ.lepa.thl
~=· SAVE AS
: : • SAVE AS fllepa.th

SET statement
:: • SET (stva.r,[siexprD • expr
:: • SET (stva.r,{siexprD • "sexpr
:: • SET (stva.r,{siexprD • • iexprl,lengthl

STOP statement STOP
:· :·--

SUBS statement
:: • SUBS (svar,ubexpr l.ubexprD • sexpr

SWAP statement
: :• SWAP va.rl,var2

TASKPOll statement
:: • TASKPOll INIT iexpr,iexpr
:: • TASKPOll ON
: : • 'TASKPOll OFF

3SO Appendix G: SUmmary of IIIIGS BASIC

•

TEX'IP~~ state~RT ubexprl,ube%pr2 T0ubexpr3,ubexpr4

1liEN statement
: : • 1HEN statement list (only as 1st statement in a line)

TIME$ s:~ent TIMES -ubexpr,ubexpr,ubexpr (HH,MM,SS)

1'IMER statement TIMER ON I OFP
::•

TRACE statement Cl! liO • filenum)
::• 1'R&

TYPE statement
: : • TYPE filepath ITO #filenum)

t.'NI.OCK statement

: : • t.JNLOCX pathname I sexpr

L"NTTL starement
: : • tJN11I. Dexpcl Unust be paired with WHILE or DO)

'WHII.E statement
: : • WHILE [lexprl Ctnust be pa.Ued with UNTIL, may follow DO)

WRI'I'E• statement
: : • WRI1'E• falenu.ml,recnuml [; expr [{, exprll 1

Commands

1be following commands may only be exeoJted in immediate mode and are not supported by the Run­
time version of the interpreter nor will they Likely be supported by a IIGS BASIC compatible compiler,
should one become available in the future.

AUTO command
: : • AUTO Ilinenwn [.inaement]]

CONT command
::• CONT

DEI. command
: : • DEI. linenuml Ll- linenum2 1

Functions 3S1

EDIT command
: : • EDIT llnenuml [, 1- llnenum2)

BUST command
: : • HLIST [linenuml) I, 1- Oinenum2D

USTcommand
: : • 1lST Oinenuml) I, 1- (linenum2])

ltE.""lUM command
: : • RENUM InewlinenumJ[,[inaementl [,linnuml (-linnum2D1

3S2 Appendix G: summary of IJIIGS BASIC

Appendix H

Appendix Needs Title

The TDFBUILO utility
The iDFBUII.D utilily creates DGS BASIC toolbox definition flles (TDFs) from
ordinary teXt ('I'X'1") .files. Source records for 'I'DFBUILD are simple text lines of
arguments terminated by carriage returns. There are two types of records: header
records for each tool set in the 'I'DF and defmition records. Each defmition record
provides the complete interface definition for a single tool set function call.

Each defmition record includes the function name Cup to 20 characters), tool set
number, function number, result stack size (in words), error-handling mode, function
result type, input argument count, and t.l-te type for each input argument.

The output TDF is a bashed symbol table with variable length binary records, one per
interface definition. 'Ibe symbolta.ble begins with a length word followed by a 32-word
hash thread pointer table, one or more 25 byte tool set information records, and then
one or more variable-length binary imerface-definition records. 'Ihe 'IDF format is
defined later in tiUs appendix.

TOF source record format

Input header records
The format of the input header record is as follows:

353

Rectype,Loadjlag, Ve13'ton, Tool•, 0, Toolname

The parameters and options are desaibed below.

Table H-1

'arameter Option Description

Recrype
Lo:a.dflag

H Header record
L Load the tool with Tool Locator LOAD1TOOL call
~ Don't load the tool with LOAD1TOOL (ROM tools)

Version $nnnn Version of the tool set used with LOAD1TOOL call
Tool• 999 Toolbox number of the tool set (1 through 255)
spare 0 spare parame~ must be zero
Tooln:a.me 1 to 20 chars Tool set name, such :a. Wmdow M:a.n:a.ge.r

Options shown as capit:a.lleae:s must be entered as shown. Vemon is entered as a hex
number and must begin with a dol:a.r sign($). Tootname is not used by IIgs BASIC
during execution, but it is required. Any ch:a.raaers after the fl!St 20 in Too/name
(cowuing blanks) are ignored by TDFBun.D. We suggest th:a.t you m:a.intain the input
file revision d:a.te and level in crus portion of the he:a.der record, using it as an
.assembler comment field.

lnter1cee definition records
The interface definition record is more complex. It has the following format:

Type, Tooi•,Func•,RSize,E"Md,R7}pe,PcnPIPTJ,PT2, ... PTpr;n,:,lFunc:tonname

This format is descnbed below.

Table H-2

Parameter Char Description

Type p
F

Tool• digits
Func• digits
RSize digits
ErrMd N

c
X

A

Procedure called via Tool Locator interface (result type • ~
Funaion called via Tool Locator interface (result type <> ~
A tool set number 01 to 255; leading :zeros not required
A fu.naion number 01 to 255; leading zeros not required
A word count of the number of words retUrned on the stack.
No error result returned: R.STACK%(0) • 0000
Carry rerumed as integer function result: R.STACK%(0) • OOOc
Carry set :• error, rerum X register as result:
R.STACK%(0) • X-reg
Carry set :• error, rerum.-\ register as result:
R.STACK%(0) • A-reg

354 Appendix H: AppendlxTit1e

B

:E
p

T

RType N

I
A
l
c
F
D
X

•

Carry set :• error; return C register a.s result:
R.STACK%(0) • C-reg
Carry set :• error in X-register dispatch via BASIC ON ERR
Carry set :• error in A-register dispatch via ProOOS error
translator then to ON ERR with ProOOS CAU error
Carry set :• error inC-register dispatch via TOOLSET error save
then to ON ERR with TOOLSE'I' CAll. error
Nonspedflc result type with lD _RSIZ 0 through 32 bytes
(if RSIZ • 0 then R.STACK%(0) • Carry, (l)•A.,(2) • X,(3) • Y
Single-inteser teSUlt (2 bytes)
Address or pointer (24 lsbits of 32) (4 bytes)
Double-integer result (4 bytes)
Long-inteser result (8 bytes)
Single-precision real result (4 bytes-)
Double-precision real result (8 bytes)
Extended-precision expression result (10 bytes)

The following three func:tion result types cause conversion into a BASIC string and
construction of a BASlC temporary string desaiptor.

T 3-byte pointer • length byte (msbyte) (4 bytes)
P Pointer to a counted string result (4 bytes)
Z Pointer to C string (0 ended) result (4 bytes)

+ Note: String funaions should always return a string result (null or otherwise). The
only usable error mode for a string func:tion is option E, dispatch X to BASIC. You
cannot use any other error mode because returning an integer (error code) for a
string result always generateS a type mismatch error.

Pent digits A couru of the number of parameters in the range of 0 to 10.
PT I Single-integer panmeter (2 bytes)

A Address or pointer parameter (4 bytes)
l Double-integer parameter (4 bytes)
C long-integer parameter (8 byteS)
F Single-precision real parameter (4 bytes)
D Double-precision real parameterb(8 bytes)
X Extended-precision expression result (10 bytes)
P Pointer to a counted string parameter (4_ bytes) (causes automatic

conversion from a BASIC string to a p-string with a maximum
length of 254 bytes)

S Pointer to a BASIC string desaiptor (4 byteS)

Funaionn:une 1 to 20 characters funaion tame, including letters (A-Z) and
digits

TDF source record format ')I:; I:

The interface definition record format will be converted into a preha.shed binary
symbol table format that will .awtimize se2rch speed of the Functtonname parameter.
A simple yet effective equivalence c:lass hashing algorithm (32 classes) keying on the
cha.raae::s in the function name will be used. The TDP will include a head pointer table
for the hash threads and an information record for each tool set defmed in the file.

The library dictionary in memory will consist of a linked list of tables, one table per
preha.shed TDP. The search process will require se2tCh if only 1 of 32 link-list threads
in each TDF table until a match i.s found. The order of the linked list will be controlled
by the order in which the LIBRARY statement loads the TDP. A separate pseudo-TDF
table will be used for invoked module enuy points.

TOF Format
The output of the TDFBtJILD utility is a TDF. The binary foanat of a TDF has been
designed co match exaaly the format of a TDF table in memory, a.s used by IIGS BASIC
in the library dictionary. The LIBRARY statement loads a TDF into the library
segment, without any conversion or modi.fication of its content.

The libr:3.ry segment also includes a partition that contains one TDF table for all the
invokable modules. This TDF table i.s extended dynamically each time an invokable
module is loaded. Each invokable module contains a private data segment named
DICTIONARY, which has a header record and up to 255 enuy point defLnition entries
in the same format shown here. (See Appendix I, -utvokable Modules,• for details.)

The format of a TDP is described below.

Table H-3

Fleld Size Description

length 1 word Total length of all data in the ffie
HeadTbl 32 words Hash~d link (offset) table
Info1bl 2S bytes Tool set information table
ID.Entry 1545 bytes Interface definition entry

The Head1bl contains 32 words; each word ~ the beginning of a equivalence c:lass
hashed linked lisL The hashing algorithm is implemented by the invokable module
HASHIDF.INV. The algorithm is a slightly modified 8-bit I.RC of the charaae::s of the
function's name. The hash key that indexes the Head1bl i.s the least significant 5 bits of
the modified 8-bit I.RC.

3S6 Appendix H: AppendlxTit1e

The hash-thread link table

Each word in the HeadThl contains a self-relative offset to the next entry in that
thread, if any. In other words, if a pointer is pointing at the low byte of the Head'Ibl
word, the address of the next entry in the thread is aear.ed by adding the offset in the
word to the pointer. Likewise, each aaual interface definition entry begins with a word
that contains the offset from itself to the next entry, or a zero for the last entry in the
threacL

The Tool set information table

"The Info'Ibl is a fixed length table with four fields. It desaibes a tool set and provides
the parameters required by the Tool ~tor lOADlTOOL call. A TDF may have all
the interface definitions for one or more tool sets or a mixture of partial interface
defmitions for a number of tool setS, as suits the needs of the programmer.

The format of the tool set information table is desaibed below.

Table H-A

tnto Tbl Item Size Description

Load flag 1 byte $00

7 ooi version 1 word

Tool set number 1 word

S80
SOl

S81

Toolset name 20 chanaers

Don't issue lOADlTOOL ~
Last InfoTol record; don't issue LOADlTOOL call
Issue lOADlTOOL call using version number and
tool numbers
Last InfoTol record; issue lOADlTOOL call
Tool set version number used in calling
LOADlTOOL
Tool set tool number used in calling lOADlTOOL
(valid values are $0001 through SOOFF')
Title of the tool set (for example, Wmdow Manager)

The tool set interlace definition entry
The interface definition entry is designed to support toolbox calls, as well as invokable
module entry-point interface definitions. Some bytes within the entry serve different
purposes for these two functionss so the table is defmed twice, first showing the fields
used for tool set interface definitions and again for invokable module inteface
definitions.

The format of the tool set interface definition entry is decribed below.

TDF Former 357

Taole H-5

Flelcl name

ID_NXT
ID_ElEN
ID_ENTRY
ID_TOOL
ID_FUNC
ID_RSIZ
ID_ERRM

ID_TYP

ID_FNTYP

ID_PCnt
ID_POffset
ID_Nlen
ID_NAME

SIZe

Word
Byte

Word
Byte
Byte
Byte
Byte
$00
$02
$04
$06
$08
SOA
soc
SOE
Byte
$81
$82
Byte

$00

SOl
$02
$02
$03
$04
$05
$06
$07
SOP
$17
Byte
Byte
Byte
1..20

DeiCrtptlon

SeJI-Ielative offset to next thread entry
Length of this emry (all bytes)
Unused by tool set interl'ace definitions; must be zero
Tool set m1mM,r for this function or procedure
Tool funaion number for this function or procedure
Result stack size in words CO through 16)
Error handling mode
N • No Error result is returned
E • carry set :• X-registe%'(8-bit) is BASIC error •
P • carry set :• A-register(S-bit) is ProDOS error •
T• c:::ury set :• C-registe%'(16-bit) is tool set error •
C • carry set :• Return arry as R.STACX%(0) • 0/1
X • carry set :• Return X-registe%'(8-bit) a.s R.STACK%(0)
A • carry set :• Return A-registe%'(8-bit) as R.STACK%(0)
B • carry set :• Return C-registe%'(16-bit) a.s R.STACK%(0)
Type of entry point in tool set
Procedure CID_FN"IYP • N; ID_RSIZ usually zero)
Function OD_FNTYP <> N; ID_RSIZ non2eto)
Type of funa.ion result (input spec a.lls this Rtype)
N • Indicates untyped (multiple) result or no result; for
multiple results, ID_RSIZ will be nonzero; user must use
R.STACK funaions to obtain the results. For ID_RSIZ• to
zero the recw:n registeristers are available: R.STACK%(0) •
Carry, (1) • A-register, (2) • X-register,C3) • Y-register
I • Integer result (a word)
L • Double integer (a long)
A • Address or pointer (24 le2.St significant of 32 bits)
C • Comp integer or BASIC long integer
F • SANE single-precision real result
0 • SANE double-precision real result
X • SANE extended-precision real result
T • String desaiptor (convert 3-byte pointer + length byte)
P • Pointer to a counted suing result (convert it)
Z • Pointer to a C-string (()..ended) result (convert it)
Input parameter count CO to 10)
Offset from first byte of ID . .Enuy to m irem below
Length of ID_NAME item (1 to 20· c:hataaers)
Name of the procedure or function CA-Z, 0-9 only)

358 Appendix H: Appendlxntte

ID_PT1
ID_PT2 .. 10

Byte
Bytes
$01
$02
$02
$03
$04
$05
$06
$07
$87

Parameter type for input argument 1
Parameter type byte(s) for input Arguments 2 through 10
I • Integer argument (a word)
L • Double-imeger argument (a long)
A • Address argument (24 least significant of 32 bits)
C • Comp imeger argument (BASIC long inreger)
F • SANE single-precision real argument
D • SANE double-precision real argument
X • SANE extended-precision real argument
S • Address of RASIC string descriptor argument
P • Pointer to a c:oumed string argument aeated from a
BASIC string (descriptor address)

The 'IDFBUII.D utility will request an input pathname, read 1 to N header records from
the input flle (creating an lnfolbl for each one), and then process iruerface definition
records until end of the file. You can build the data in a stNawe array, and then
create an output file (with the total length as record size) and write a single record with
PUT• (and the length option), after calling the HASHTDF invokable module to hash
the entries.

Using the HASHTOF .JNV invokable module
An invokable module, H.ASHIDF.INV, is provided to pedorm the hashing of an
otherwise complete TDF fonnaaed data suuaure. 'Ibe input content for a
HASHTDF.INVis in a slightly different format than it is in a 1'DF.

HASH1DF.~"V expects ID_NXT of each entry to contain the total length of the entry
(including ID_!\"XT itself). HASH1'DF.INV also expeas the Head1bl to be all zeros.
The first word of the lDF table must contain the total length of the data structure.
HASH"I'DF.l!\"V is called by PERFORM, with the entry point name HASHTDF and a
single parameter. 1be parameter is the address of the beginning of the lDF data
suuaure, that is, the address of the total length word.

HASH'!DF.INV skips over the Wo1bl records and processes the interface defmition
entries in order. The length byte in ID_NXT is copied into ID_EI.EN, and the
lD _1\"XT field is filled in as the enuies are threaded together in their respective
equivalence classes. Upon return from HASHTDF, the data suuaure is ready to be
written to disk as a completed lDF format file.

Invokable module interface definition entries

The interface def'mition entries for all the invokable modules are combined into a
single 1DF table by INVOKE. Each invokable module contains a private data segment
named DICI'IONARY, (the format is defmed in Appendix 0, and these segments are
appended to the invoke defmition table as each module is processed

The format of an invokable module is c:lesaibed below.

UslnQ 1he HASHTOF .INV lnvokoble module 359

Table H-6

Fle6d name Size Deecrtptlon

ID_NXT Word Self-relative offset to next thread enuy
ID_ELEN Byte Length of this enuy (all bytes)
ID_ENTRY Word Entry-point offset (in memory) within the static code

segment -o<>l of an invoked load file.
ID_TOOL Byte INVI'AB offset to Loadseg information record Oow byte)
ID_FUNC Byte INVI'AB offset to Loadseg information record (high byte)
ID_RSIZ Byte Result sw:k si2e in words (0 through 16)
ID_ERRM Byte Error-handling mode

$00 N • No Error result is returned
$02 E • Carry set :• X-register(S-bit) is BASIC error •
$04 P • Carry set :• A-regi.ster(S-bit) is Pro.DOS enor •
$06 T • Carry set :• C-regisrerC16-bit) is tool set enor •
$08 C • Carry set :• Return cury a.s R.ST.ACK%(0) • 0/1
SOA X • Carty set :• Return X-register(S bit) as R.STACK%(0)
soc A • Carry set :• Return A-register(8 bit) as R.STACK%(0)
SOE B-<:a.rty set :• Rerum C-register(16 bit) as R.STACKo/o(O)

ID_TYP Byte Type of enrry point in the invoked module
SOl Proc:edute OD_FNTYP • N; ID_RSIZ usually zero)
$02 Punaion CID_FNTYP <> N; ID_RSIZ non-zero)

ID_FNTYP Byte Type of function result
$00 N • Indic.ates untyped (multiple) result· or no result; for

multiple results, ID _RSIZE will be nonzero; user must use
R.STACX to obtain the results. For ID _RSIZ • to zero the
rerum registeristers are available: R.ST.ACK%(0)-<:arry,
(l)•A-register, (2)• X-register, (3)• Y -register

$01 I • Inreger result (a word)
$02 L • Double-integer (a long)
$02 A • Address or poiruer (24 least significant of 32 bits)
$03 C • Comp integer or BASIC long integer
$04 F • SANE single-precision real result
$05 D • SANE double-precision re2.l result
$06 X • SANE extended-precision re2.l result
$07 T • String desaiptor (convert 3-byte pointer + length byte)
SOF P • Pointer to a counred suing result (convert it)
$17 Z • Pointer to a C-string CO-ended) result (convert it)

ID_PCnt Byte Input parameter count CO to 10)
ID_POffset Byte Offset from first byte of ID.Enuy tom item below
ID_:"--'len Byte Length of ID _NAME item (1 to 20 charaters)
ID_:"--'AME 1 through 20 Name of the procedure or function CA-Z, 0-9 only)
ID_PT1 Byte Par.uneter type for input argument 1

360 Appendix H: Appendlxntte

ID_PT2 .. 10 Bytes
$01
$02
$02
$03
$04
$05
$06
$07
$87

Parameter type byte(s) for input arguements 2 through 10.
I • Integer argument (a word)
l • Double-integer argument (a long)
A • Address argument (24 least significant of 32 bits)
C • Comp integer argument (BASIC long integer)
P • SANE single-precision real argument
D • SANE double-precision real argument
X • SANE extended-precision real argument
S • Address of BASIC string descriptor argument
P • Pointer to a counted string argument created from a
BASIC suing (descriptor address)

Using the HASHTOF.INV lnvokoble module 361

Appendix I

lnvokable Modules

Introduction
'Ihe OGS BASIC satements INVOICE and PERFORM give you an easy-to-use symbolic
interface to assembly-language procedures and funaions. 1bi.s interface allo'WS you to
extend the capabilities of ngs BASIC for specific appplic:ations.

In this appendix, it is assumed that you have read and understood the seaions on
INVOKE, PERFORM, and EXFN in chapters i and 8 of this manual. ln addition, you
should be familiar with the Apple ngs Programmer's Workshop CAPW) Assembler.

The 1!\"'VOKE statement aeate:s interface definition table entries to be used by the
PERFORM statement by reading a data segment, named DicnONARY, from the
invokable load rue. Then INVOICE calls the ProDOS 16 System Loader to load (and
relocate) the executable subroutines. Procedures are called from BASIC with
PERFORM, and functions are c:alled with :EXFN.

The interface definition table provides the symbolic entry point names for the
assembly-language procedures and funaions. The interface definition also defmes
the input parameter count and type for each parameter, as well as the funaion result
type, result stack size, error-handling mode, and the entry point offset in the
executable code.

'Ihe .A:PW Assembler provides the necessary tools for programmers to aeate a single
code segment with up to 255 separate entry points. ln addition to the aaual code
segment, an invokable module must include a private data segment named
DICTIONARY. •

The DICTIONARY segment is ~ted according to the format described in this
appendix, using DC directives. All the requirements for creating an invokable module
can be met without resorting to linked commands of the Advanced Linker.

The PERFORM stotement
The PERFORM statement hashes the name following the word PERFOR.\1 and searches
the interface definition table (IDT) for the entry point name. The IDT entries are
divided into 32 equivalence classes to reduce searc:b. time. Each equivalence class has
a separate linked list to search, with the hash key for each class being derived from all
the chanaers of the procedure name.

After a matching entry is found in the IDT, the parameter list requirements are used to
process the argument list, if one is required. Each argument is type-checked against
the matching parameter type, in the required order. II a string argument is given for a
numeric parameter or vice versa, the message

'?ARG'O'MEN'l' "l'YPE MISMA'l'CR ERROR

appear.>. II the argument is numeric but not the correa type, the argument is
converted to the required type, using the appropriate CONY function, before pushing
the argument on the CPU sr.ack.

The argument list must have the proper number of parameters of the correa type in
the proper order. II too many or too few argwnen.t! are present, the message:

'? ARGOMEN'l' COUNT ERROR

is displayed. After the arguments are all pushed on the stack, the run-time entry point
address is calculated by adding the entry point offset, obca.i.ned from the IDT, to the
load seg address for the code segment. The load seg address is saved in a separate
table, called the invoke segment table 0511. This IST entry retains the System Loader
information about the loaded code segment. The invokable subroutine is then
eruered as if a]SL instruction were executed.

After the procedure returns to BASIC, via an RTI. instruction, any results are pulled off
the CPU stack and saved in a buffer, ailed the return stack. A procedure may or may
not return any results. Execution proceeds with the next statement in the BASIC
program following the PERFORM statement. II there are any results in the return stack,
you can access them by using the R.STACK% and R.STACK@ functions.

II the procedure rerums with the processor carry flag set, an error condition is
signaled, and it will be processed according to the error-handling mode specified in
the IDT entry for the procedure. A number of useful options are available for different
kinds of error handling. as described later in this appendix.

Introduction 36.3

..

The EXFN function
EXFN (which stands for e:xternal funaion) is almost identical to PERFORM, except that
a function type entry point must be found in the imerfac:e definition table. A funaion
entry defines the m1mher of funaion result words that must be pushed on the stack just
before the srgumems are pushed.

A funaion entry in the IDT also defines the type of the numeric or string result.
Punaions may return integers; double integers; long integers; and single-, double·,
or extended-precision SANE real numbers as results. 'Ib.ree types of string results may
be returned; all typeS are convened into a BASIC format string, with a temporary
string desaiptor, and the data are copied into the SASIC string literal pooL

The INVOKE statement
The INVOKE statement accomplishes the following funaions:

l. Optionally deletes all previous invoked modules and recovers the memory used by
those modules and their interface clefmitions.

2. Builds or extends the IDT (from the load file DIC1lONARY segment) to allow
symbolic acc:ess through the PERFORM smtemem or the EXPN funaion.

3 . loads and reloc:ates of one or more assembly code segments from a disk volume
through the System Loader.

Jnvokoble module description
An invokable module is a relocatable assembly-language load file produced by the
Apple nos APW Assembler and Linker or its equivalent. The flle must conform to the
defmition of a ProDOS OMF load me, as required by the System Loader. The
defmition of a load file, a type of OMF me, is included in the Apple DGS Programmers
Workshop Ref~ manual. The System Loader is clesaibed in the Apple IJGS
ProDOS 16 Rejermce manual.

A single invokable module an contain from 1 to 255 entry points. These are specified
by the e.nuies in the separate DIC'IlONARY data segment you must create with the
APW Assembler. The name you give to each entry point is the symbolic name that will
be used by PERFORM and EXFN to access the assembler routine.

An invokable module, like all load rues, an not have any unresolved symbolic
references. The first segment in the load me, number 001, must be a static code
segment, and all entries in the DIC1l0NARY segment are, by defm.ition, entry points
relative to the origin of segment 001.

364 Appendix 1: tnvokcble Modules

+ Technical Note: An invokable module could have a segment jump table and
additional dynamic code segments, but handling the memory management
requirements of dynamic segments is the responsibility of those who understand
how to write such appllcuions. IIGS BASIC m2iniains a number of locked Memory
Manager segments, and there is no mechanism for an external routine to unlock
them or cause them to move independent of the interpreter-you are on your own
when you use dynamic segment, a.s part of an invokable module.

The pointer addresses ~d by IIGS BASIC are passed to invoked modules a.s four
bytes on the St2.Ck, with the mOSl significant byte a 0. IIGS BASIC always c:al1s an
invokable module with the direct-page register set for the interpreter clirea page and
the data bank .register CDBR) for the interpreter static data bank. Both of these
registers must be preserved by an invokable module.

Initially, the BASIC DBR will probably match its program bank register (PBR), but
they may be different in fuo.m: .releases of the interpreter. If an invokable module must
refe.rence the interpreter code bank, it resides in a byte of the BASIC zero page. The
data bank address should always be determined from the DBR; do not assume that it
matches the PBR.

The word count table below shows stack space used for the various types of parameters
that BASIC an pass.

Table 1·1

Parameter description Type c:ftar Wotd count lyte count

Struau.re element ! 1 2
Regular integer % 1 2
Double integer 0 2 4
Long integer &: 4 8
Single precision real none 2 4
Double precision real " 4 8
V A.RPn address NA 2 4
String address $ 2 4

BASIC does not allow variable length para.meter lists. nru.s, para.meter passing
requires a faed number, order, and type of argumentS. An incorrea number or type
of argument will generate an error message.

DICTIONARY segment deflnit1on 365

DICTIONARY segment definition
The ~ta generated within the DICI'IONARY segment, for each entry point in the code
segment, defines for ngs BASIC all the information required to call the entry point for
the PERFORM statement or the EXFN function reference. 1be DICilONARY consists
of a short header, _followed by a table of interface definitions, one per entry point.
1bese table entries could be generated with a maao Cif you 'W2.nt to tac:kle writing one to
do the job).

1be following is an eumple of how to code an invoka.ble module and ~te the
interface defmitions of the DICI'IONARY segment:

OR!:O!N

eq1J&':es,

EN'!'R~_P'!'~

l:N'!'R~_P":2

:In::

t:
l::_t::..er.
t::._tnt.ry
t:_seqnum
l::_RS!.ze
t:_tRRMci
~: ~Y·P

"t::_FN'!'yp

KEEP
65816

S'!'AR'!'
R''
END

Ml.OADs, and

PRIVATE
OSING
Set.Moael6
Pl.A

END

PR!VA'!'E:
'CS!NG
Se-:Mooe:.6
Pl.X
Pl.A

END

and so on

PR!VDA'!'A
DC
DC
DC

DC
DC
DC
DC
DC
DC
DC
DC

7NVOJCE
ON

MYSWEE'!'COCt

other such stuff qoes here

MYSWEE:'!'COCt

MYSWtt'!'COCt

DIC'!'IONAR~ ; interface aefinit.ion t.able
I 1 1 02 ' ; 'I:VO entry points
!l '01' ;clict.ionary format. version 01
!2 1 IDE:ND-!:1 ' : total lenq'l:h of clict.ionary tai::>le

!2 'E:1enci-tl : lenq'l:h of this entry
:::::. 1 o' ; filled in by IIqs BASIC
I2'EN'!'RY_P'!'l-ORIG!N 1 ;offset to entry point
!2 1 0001 1 ;always • 0001
I: 1 00 1 ;result st.aclt size in vor.::v:
!1 1 02 • ;error-hancllinq mocie
I l' 01 1 ;t.ype of ent.ry point.: PROC•Ol
!1 1 581 1 ;type of function result.

366 Appendix 1: tnvokoble Modules

E!_?Cnt: DC
El_?OFS DC
El_NLen DC
!l_~ame DC
El ?':'l DC
:n_n2 DC
Eland ANOI?

E2 DC
E2 t:.en DC -E2 _Ent:ry DC
t2_Seqnum DC
t2_RS.1.ze DC
E2_tRRMd DC
E2_!YI? DC
E2 _FNTyp DC
E2_?Cnt: DC
t2_?0FS :JC
E2_NLen DC
t2_Name DC
E2 ?T! DC
E2_?'!'2 :>c
E2end ANOP

IDtNO ANOI?
END

Il 1 02 1 ; input: param count
I l 1 tl_PTl-El 1 ; of !.set: to tl_I?Tl
Il 1 L: tl_Name' ; lenqt:h ot El_NAME
c' AI?ROCl' ; name ot the procedure
Il' 02' ;parameter type tor input arqument tl
I2' 03' ;parameter type tor input arqument +2

I2 1 E2end-E2 ; lenqth ot this entry
Il 1 0 1 ; tilled in by I!GS 3AS!C
I2 1 tN'l'RY_?T2-0RIGIN' ; ot!set: to entry point
I2 1 COOl' ;always • COOl
Il 1 02' ;result st:ack size in words
Il 1 0l 1

Il'02'
Il'02 1

Il'02'
Il' E2_?Tl-E2'

; error-handlinq mode
; type ot entry point:: ?ROC•Ol
; type ot tunC"tion result
; input: paramet:er count:

; ott.set: to E2_PTl
Il' L: E2_Name' ; lenqt:h of E2_Name
C' li.FONC'N2' ; name of the procedure
I 1 ' 02 ' :parameter type !or input: argument •::.
I2 'OJ' ;parameter type !or input argument. *2

The 'r.llues to selea for the V'Uious options of each field are defined in the next
section. The format of the DICTIONARY segment is used as is (except for the header)
at run-time in the IIgs BASIC INVOKE IDT. The fU'St field is copied to the second and
then is replaced with a. linked list pointer. Geoerating innlid data in the DICTIONARY
segment will ou.se the message

: I'NVAL!D :lATA ERROR

to appears when a. PERFORM or EXFN referencing the innlid entry is executed.

The interfcee deflniHon entry

The following desaibes the interface definition entry format that must be generated in
the DICTIONARY segment of an invokable module.

Tablel-2

Fle6d name

ID_:-lXT
ID_ELEN
ID_ENTRY

Size

Word
Byte
Word

Description

Length of the entire entry (including ID -~
Zero
Entry point offset (in memory) within the static code
segment segment 001 of an invoked load flle.

DICTIONARY segment definition 367

ID_Segnum
ID_RSIZ
ID_ERRM

ID_TYP

ID_F!\'TYP

ID_PCnt
ID_POffset
ID_NLen
ID_NAME
ID_PT1

Word
Byte
Byte
$00
$02
$04
$06

$08
SOA
soc
SOE
Byte
$01
$02
Byte
$00

$01
$02
$02
$03
$04
$05
$06
$07
SOF
Sli
Byte
Byte
Byte
1 to 20
Byte·

Load segment number of entry point; always 0001
Result SI2Ck size in words CO tbroogh 16)
Error-handling mode
N • No error result is returned
E • Carry set :• X-register (8-bit) is BASIC error •
P • Carry set :• A-register (8-bit) is ProOOS error •
T • Carry set :• C-register (16-bit) is tool set error •
1be following error-mode values may have $80 bit on to
indic:are EXFN_ may call the procedure as if it were a
function.
C • Carry set :• return carry as an integer result
X • Carry set :• return X-register (8-bit) as an integer result
A • Carry set :• return A-register (8-bit) as an integer result
B • Carry set :• return C-register (16-bit) as an integer result
Type of entry point in the invoked module
Procedure CID_RSIZ usually zero)
Function CID_RSIZ must not be zero)
Type of function result
Indicates multiple results or no results on stack; for multiple
results, ID_TYP must indicate a PROC; user must use
R.S'I'ACK functions to get the results
I • Imeger result (a worcO
L • Double integer (a long)
A • Address or pointer (24 least signific:::a.nt of 32 bits)
C • Comp integer or BASIC long integer
F • SANE single-precision real result
D • SA."'lE double-precision real result
X • SA.'IIl.E extended-precis1on real result
T • String descriptor (convert 3-byte pointer + length byte)
P • Pointer to a counted string result (convert it)
Z • Pointer to a C-string CO-ended) result (convert it)
Input parameter count (0 to 10)
Offset from ID_NXT to m item below
Length of ID _NAME item (1 to 20 cha.raaers)
Name of the procedure or function CA-Z, 0-9 only)
Parameter type for input argument 1

368 Appendix 1: lnvokoble Modules

ID_PT2 .. 10 ByteS
SOl
$02
$02
$03
$04
$05
$06
$07
$87

Parameter type byte(s) for input argementS 2 through 10
I • Integer argument (a word)
L • Double-integer argument(a long)
A • Address argument (24 least signifiant of 32 bits)
C • Comp integer argument (BASIC Long Imeger)
P • SANE single-precision real argument
0 • SANE double-precision real argument
X • SANE extended-precision real argument
S • Address of BASIC string desaiptor argument
P • Pointer to a counted-suing argument created from a
BASIC string (descriptor address)

OlcnONARY segment detlnitlon 369

Parameter description and conventions
'I'he specific order and type of parameters chosen for an invokable module are up to
you. You can also decide either to pass a parameter by acidress or by value. The
parameters are processed from left to right and pushed on the stack in that order; thus,
the last parameter in the argument list will be tbe fust to be pulled off the top of the
stack.

Puameters are passed by address by using the VARPTR or VARPTR$ functions. String
parameters are discussed a little later.

The PERFORM and EXPN interface CbUt not the tool set CAll. interface) passes an the
input arguments on the CPU stack above the RTL address for BASIC. Any result space
for functions (always zeroed) is below the R'I'l. address on the stack, so an invokable
module does not have to remove the return address to pop the input argumentS, or
.move the return address before executing an RTI..

The following is the order of items on the stack when a proc:edure or function is entered
are as follows (where ss is the page address of the stack pointer):

Table1·3

Stack contents Stack oddrea Example Yalue

(Prior contents) SOOs.sOF
Space for result SOOssDB $00000000
Rn address SOOssD7 S0329FE
.Argument 1 SOOssDS $0435
Argument 2 SOOssDl $00000211
...
Argument n SOOs.sCF $0001

SOOs.sCE - top of Stack

1be example stack addresses shown above are for the low byte of the example values,
which are shown as assembler constants, not in their byte order when stacked. For
example, the example Rn acidress refers to the SFE byte, while the $03 byte would be
in location SOOssD9.

+ Note: All parameters that are passed by address must be accessed via the 65816 long
indirect addressing mode. This is the only means of access that will work because
the assembly code of an executing invoked module will probably not be in the same
bank as the variable stor.age tables.

Argumenis are pushed on the stack high (or most significant) byte or worci(s) f.trst;
therefore, the invoked code must pull paramete%3 off the stack low (or least significant)
byte or worci(s) first. "This is shown below (in bytes) for some of the parameter types. In
the table, MSB me2.n5 most significant byte and LSB stands for least significant byte.

Table 1-"

Real lnt~~ Addr ... Long lnt~era Stack Addrea Example

MSB SssE9
S.s.sE8
S.s.sE7
S.s.sE6

MSB zero S.s.sE 5
BankByte S.s.sE4

MSB PagByte S.s.sE3
LSB LSB Low Byte LSB $.s.sE2

S.s.sEl " Top of stack

Double integers require 4 bytes Oike the address example) and double-precision rea.ls
require 8 bytes Oike Longinteger&).

String porometers

String parameters are only passed by address. There are two ways to pass a string, both
of which push an address on the stack. rust, you can selea the type of an input string
parameter so that the address of a BASIC string descriptor is passed on the stack. This
method is the fastest because it passes the address normally created by BASIC for a
string. However, the address of a string descriptor only indirectiy implies the address
of the string's data; how to use suing descriptors is described in the next seaion.

A second method, called the P-stting method, is easier to use but slower. This method
conven.s a BASIC string descriptor and its data into a counted string, also called a
Pascal or P-st.ring. The address of the count byte is then pushed on the stack as the
argwnenL The P-string option is slower beause BASIC must copy the string data and
move the length byte from the descriptor to the string data pooL

Trying to c:re3te new variables, partic:ularly strings, or to change the length of a string
vanwle involves the entire user data segment of BASIC. This is necessarily so since
either of these aaions could require garbage co/lec:tcn, or compression of the string
llter:ll pool to recover free memory for the new string.

Parameter descr1!:)t1on ond conventions 371

Wamlng

JIGs BASIC provides c:m l!"ter1oee 1hot allows access to some of the Interpreter's
tntemol subroutines that process strings and perform other functions. lhls woli<­
scvtng Interface. described In a lcter section. Is the only Interface to the tntemals
of the BASIC Interpreter that will be supported In future releases of Apple Jigs
BASIC. .

String internals
You must understand the difference between a pcnn1er to a string de:scnptor, a string
descriptOr and a potnJer to the string data to suc:essfully write an invokable module that
directly stores strings into BASIC's variable tables.

However, EXFN can be used to perform this complex task by creating a string funaion
and simply using the external funaion in a string expression or LET statement You
can skip this technical di.cOJssion if your invokable modules will just return string
results via string funaions. The internal subroutines described later, such a PTRGET,
normally return a pointer to a string descriptor.

BASIC uses a >-byte descriptor as the value of a string. Thus, the address passed by
BASIC for a string argument is nominally the address of this >-byte descriptor, not a
pointer to the string's aaual c:ba.raaer data.

.A string descriptor consists of a length byte, followed by a relative offset The length is
an unsigned value, with 0 indicating that the string is null. The next 2 bytes are a
relative offset to the beginning of the string data. Tile offset is an unsigned number that
is subtracted from the highest address for the string dati pool to locate the beginning
of the actual AScn characters. nus offset is invalid when the length is 0, so the length
must be checked before using the relative offset

More than just the content of a string is stored in the string data pooL It also contains a
>-byte desaiptor that points back to the string's descriptor in the variable tables. This
back pointer consists of a type byte and an unsigned relative offset from the beginning
of the simple or local variable table or the array table. The type byte nonnally ·
specifieS to which of the three tables the offset applies.

Because the descriptor and the back pointer have 16-bit relative offsets, all the string
descriptors must be placed within the fust 64K of either the simple or array variable
tables, and the string data pool can't be larger than 64K.

There are two types of BASIC suing descriptors: temporary and variable. A temporary
string desaiptor is created for the result of a string expression or string sut>
expression. A temporary descriptor is 3 bytes in the temporary string desaiptor stack,
named TMPDSCSTK, located in the BASIC interpreter zero page. String variable
desaipcors are the value portion of the string variable or wy element entry in the
BASIC storage tables.

The aaual cbar.laers of a string variable are stored separately from (and located by
using) the suing descriptor. 'Ibus, a pointer to a string descriptor is like a Memory
Manager handle; it must be dereferenced into a pointer before the string data ca.n be
referenced.

A suing descriptor c::anncx be dereferenc:ed like a handle to direaly create a pointer to
the suing's daD.. It first must be converted into a pointer by subtraaing the relative
offset from a pointer, named U'I'END, in the interpreter zero page. An internal
routine, named NO'INOW, performs this conversion, using ceruin zero-page work
pointers.

If you want to a.ssign some ASCII data to a string variable, you must copy the ASCI data
into BASIC's string Gtera1 pool and build a temporary desaiptor for that data. Then
you can copy the new descriptor into the desaiptor of a string variable and update the
back pointer in the string data pool to point to the variable's desaiptor.

Before replacing the existing descriptor for a string variable with the new one, the old
string data must be de2llocated. Deallocation involves changing the string literal pool

_ back pointer to i.ndiate the size of the free memory space that is being deallocated

BASICs S'I'RCP and STS2M routines, perform these two wks for an invokable module.
S'I'RCP copies the .A.Scn data into the string data pool, creates the associated null back
pointer, and builds a temporary suing descriptor for the data.

If the OOSUB:EXPR routine is used to evaluate a string expression, the string result is
returned as a pointer to a temporary descriptor, as if S'I'RCP was used to create it.
Temporary desaiptors are stored in a zero-page stack. Temporary descriptors are
exaaiy like variable desaiptors, and they can also be convened with ='lOTNOW if you
need to reference the ASCII string data.

STS2M (which stands for srore suing to memory) assigns a temporary desaiptor to a
variable descriptOr dealloc::w:s the old one, and fills in the null back pointer.

Using strings in BASIC is complex. We recommend that you clarify your
understanding of how it all works by explaining the process to another programmer.

Fune11ons ond 1heir results 373

Interpreter internals
DGS BASIC is a tokenizing interpreter that compresses, upon progrun entry,
keywords, line numbers and integer constants into 1-, 2-, ~. 4-, and 5-byte tokens. To
exeOlte a program. BASIC scans the tokenized form of a statement byte by byte using
its zero-page program poiruer, named 'I'XTPTil

All statements (except u:n begin with a verb token and the verb's routine is called by
indexing into an address table with the token. Each statement routine perl'orms
additional syntax checking each time a statement is exea1ted. TX"''P'''R's position
detemlines what line and statement of a program is executing.

Some of the routines that can be c:alled by the DISPATCH interface will modify the
'I'X'IYTR that is normally pointing to the end of the PERFORM or EXFN parameter list.
Because the v:llue of "'XTPTR is the means of continuing with the program after
returning from an invoked procedure or function, TXTPTR must be preserved if
routines that modify it are c:alled by the invoked code.

An example of this is the GETNAME routine for creating the pathname for opening a
fJ.le. GETNAME must have the TXTPTR modified to point to the pathna.me to be
opened 1f the existing 'IX'I'PTR Call three bytes, remember) is not ~ved and restored,
BASIC will attempt to continue executing your program from the data at the end of the
pathname, where GETNAME left 'I'X'l"PTR. when you use a Rn instruction to return to

BASIC.

All the subroutines av.Ulable through the DISP A TOl interface are called in 8-bi.t native
mode and return in that mode. Most of the interpreter is coded in 8-bi.t native mode,
with liberal mode switching to full 16-bit and mixed 8- and 16-bit modes. The standard
calling convention f01 almost all subroutines is that they are c:alled and returned in 8-
bit native mode, with :a few exceptions.

ncs BA.SlC i:!'r:.,~e:.~~:;;:;.;·~~s the TXTPTR as a normal long-indirect pointer C3 bytes) which
resides in BJ.!:. , :':'ero page. CHRGET and CHRGOT are subroutines for fetching
program teXL 1he$e routines are useful for synwting tokenized .ASCD data. CHRGET
gets the next sequential nonspace character or token from the data at TXTPTR. Upon
rerum from CHRGET, the A register contains the character or token, and the CPU
swu.s flags are set as follews:

~ Z flag is set (BEQ) if the character is a colon ($3A) or a line terminator ($00). It is
reset CBN.E) otherwise.

o Carry is clear (BC.O if the character is an .AScn digit It is set CBCS) otherwise.

= N flag is set (BMI) if the byte is a token with a value more than SB9
and carry .is set CSBA and up because CMF .-.•:• is equivalent to SBA ... -S3A • $80
...).

'Ihe interface has been specifically designed to maintain the separation of code within
the interpreter and the invokable modules, while still allowing access to the
interpreter. This should allow the interpreter to be modified and upgraded in the
future without changing existing invokable modules 'Ibe c:all iruerface consists of a
routine number and an enuy point within the inrerpreter's zero page.

No fixed-address vector is available to c:onsuua an assembly-time interface for calling
BASIC's inremal routines. All of BASIC ~ is reloc:atable, even its zero page.
Nonetheless, an easy-to-use interface has been c:levised so an invokable module can
all BASIC without resorting to self-modifying code.

Since invokable modules are called from BASIC, the direct page register will contain
the bank zero address of the interpreter's zero page. During cold start, the interpreter
consuua.s a JMP long insauaion swting at byte 1 of its zero page. This JMP
instruction may be easily esecured through an elegant three-instruction sequence.

To c:all the inr.erprete:r, an invoka.ble module will JSL to the following three
instructions:

GOBASIC PEA
PRO

RTL

Sf tOO

'Ihe oper.uld of the PEA insuuaion must consist of a routine m1mber, shown above as
Sff, with a low byte of zero. Effeaively, what these insauaions accomplish is a self­
zeloc:ating JMP long to SOOddX>+ 1, where rid is the page address of the interpreter zero
page &em the DP-register, while leaving the routine number on the top of the stack.
This sequence will always wodc., no maaer what zero page wu assigned to the
~ by the System Loader Cit would even work if the zero page isn't page
aligned).

A separate set of these three instructions is required for each internal routine to be
c:alled because they contain the routine's number. Note that this interface h2.s the
important adwntage of not modifying any of the processor registetS, which are often
used as inputs to BASIC inremal routines.

1be JMP long in zero page then gives control to a dispatcher in BASIC, which removes
the routine m1mber &em the sw:k and call.s tbe appropriate internal routine (while
preserving the input registe::s). 'Ibe dispau:her effeaively does a JSR to the BASIC
routine, which returns via an RTS insauaion. Then the dispatCher returns to the
calling external module via an Ril. insauaion. 'Ibis iruerface returns all the registetS
and the processor swus unchanged for use by the invokable module.

Most, if not all, of the routines that can be used within the interpreter can exit through
the error paths of the interpreter and not rerum to the caller. A veaor exists to allow
an invokable module to regain control when this happens. This requires that the
BASIC program calling the invoked module prepare the veaor beforehand to
properly handle such errors.

lnterfcclng with fhe BASIC lnterprerer 375

ProDOS calls can be made direaly to ProDOS from invoked procedures or fwlctions.
Doing so can be useful, and very dangerous, too. DGS BASIC may have flles open,
memory allocated, events armed, and so on, and a change in the assumed state of
these things wiD not be refleaed in the swus information maintained by BASIC. When
BASIC aas on its incorrea information, a system hang or C'2Sh could result. nus
does not preclude making ProDOS calls, but you should carefully select what your
invoka.ble module will do direaly with tbe operating ~

Of particular conczm is the limit on the number of open files allowed under ProDOS
16 version 1.2; an invokable module should never tie up the last available ProDOS
FCB because BASIC assumes that one will always remain available for the CAT,
CAT.Al.OG, DIR, and nPE statements. The COPY command requires that two :FCBs
remain available.

Extemal routine summary
nus table below describes the internal routines currently accessibie through the DGS
BASIC DISPATCH interface. References to specific pointers and work areas are shown
in all capilallettcrs and are defined in a later seaion.

Table 1·5 -
Name Number

CHRG:ET 0

CHRGOT 2
-CB:ETA2 rei) 4

PTRG:ET 6

ERRDIR 8

l!NI.BLG:ET 10

UNNUMGET 12

GOTO 14

GOTOB 16

GE'!'ADRS 18

FINDI.INO 20

DescrlpHon

Increments TX'I'PTR and returnS the next nonspace
program byte.
Retum.s the current program byte (other than a space)
Evaluates an expression; returns type and result in
XACC (a floating-point accumulatOr)
Finds, in the variable tables, the variable or array
element at TX'I'PTR.
Returns if a program is running; otherwise an else illegal
direa error occ:ws.
Converts the line number or label at TXTPTR into
UNNUM/LINI.A.BL
Converts the line number at TXTPTR into UNNUM as
binary integer
ReDlrns TXTPTR at the line given by line number lWei at
TX'I'PTR
Returns TX'I'PTR at the line in ~L if
existent; otherwise an error occurs
Convert numeric expression to double integer and put
in FORP!'n' as address
Search forward from Y -X-A in program for line number
>- linemun used elsewhere in book

FIND LIN 22 Same as FINDLINO (routine mtmber 20), but search
SWtS at the beginning of the prognm

NO'n'lOW 24 Given a pointer to a suing desaiptor, returnS string data
pointer and the length in A register

!nOR 26 lWses the BASIC enor condition given in the X never
retum.s

SEDOR 28 lWses (it possible) the BASIC error matching the
Pro.OOS enor in the A register.

UMSHRINK 30 Requests BASIC to free up A register pages of data
segment memory to ProDOS

UMEXP .A.'ID 32 Inve~Se of SCRUNCH Expand memory for data segment
by A register pages

FREOlOW 34 PJeeS up suing clesaiptor and suing space at pointer in
XACC

GETNA..\1E 36 Converts ASCII data at '!XIPTlt into pa.thname in
NAMBUP

POPEN_AX 38 Opens the filename in NA..\1BUP, with access in the A
register and file type in X

AY2."aNT 40 Creates an integer of A-Y and rerwns it as an integer in
XACC

POSIN"I' 42 Checks XACC for positive and converts XACC to an
integer in A-Y

CVTl'XT2X 44 Converts ASCII data at "!XIPIR into numeric value in
XACC

DATAN 46 Moves "lX"Il"'m to the end of the current tokenized
statement

STRCP 48 Copies your suing data at S'I'RNG 1 into string pool and
builds a temporary string descriptor pointing to it

STS~"¥1 50 Stores a string (pointer in PACP"rn) to a string variable
atFORPNT

STX2V 52 Stores a V2lue in XACC into a variable of type V'T'YPE at
PORPNT.

CONV2S1'R 54 Converts XACC into a suing and returns descriptor
pointer in PACP"rn

Extemcl routfne summery 377

Functions and their results
& discussed previously external funaions in ncs BASIC operate through the EXFN
statement. EXFN is used to return any type of numeric or string resulL All numeric
results are returned on the stack by value. String results are returned by reference; that
is by returning the address of tbe result on tbe stack. Strings an be· returned in the
following three ways:

c A combina.tion of a 3-byte address and a 1-byte length an be returned on the stack.
'Ibis is called the descnptor result mode because of its similarity to BASIC's string
desaiptors. The least significant 3 bytes of the 4-byte result are the address of the
string ~ta, and the most significant byte is the length.

c A pointer to a P-string, or counted string an be returned on the stack.

c A pointer to a C-string, or zero ended sUing, an be returned on the stack.

For all three cases, BASIC converts the resulting pointer and ~ta into a BASIC string
desaiptor and copies the string's ~ into the string literal pooL This interface makes
it very easy to construa string funaions with invokable modules.

The EXFN results must be stored on the stack in the same manner as they are passed,
thai is, with (the least signific:::ant byte)on top of the stack just below the return address.
All integer results are signed two's complement integers, with the sign bit taken as bit 7
CMSBit) of the highest byte.

1be space for a funaion result is preallocated on the stack, below the return address C3
bytes) by the PERFORMI.EXFN interface. The 65816 processor has a stack-relative
address mode that can be used to store dau in the preallocated result space without
having to remove the return address, push the results, and replace the return address.

Real ~ts are formaaed according to the definitions of the 65816 SANE math engine.
Refer to the Apple NumeriCs 11'14nual and the SANE chapter of the Apple DGS Toolbo:c
Reference manual for details. BASIC can accept single, double; or extended­
precision ~ts from an external funaion on the stack. Numeric results can not be
returned by referen~ that is, by returning an address of the numeric ~ta.

lnterfccing with the BASIC interpreter
Invokable modules used with ncs BASIC commonly need to access some internal
subroutines within the interpreter. A special interface, called DISPATCH, is provided
for this purpose; it is the oniy interface that will be supponed in furure releases of the
BASIC interpreter. Use of any other interface may become invalid upon the next
release of ncs BASIC.

CHRGOT retUrnS the ament character at 1'X!'PTR if it is not a space ($20)1 otherwise,
it returns the next nonspace character. 'Thus does the same things as CHRGET, except
that the T.X"''PTR is not inaememed before fetching the character. CHRGOT is
normally only used after a call to CHRGET. When this is the case, CHRGOT will not
change the T.X"''PTR because CHRGET will. never leave 1XTPTR pointing to a space.

Almost all the :zero-page pointerS defined later are 3-byte long-indirea pointerS, so
bewue of INC and STA instruaions in 16-bit mode. A few of them pointers are 4-byte
long-indirea pointers. Before you begin writing invokable modules that use these
routines, you must have a complete understanding of the 65816 long-indirea
addressing mode.

BASIC defines cwo floating point accumulators, known as the XACC and YACC. These
cwo 10 byte areas are in BASICs static data segment, and they contain the values for
integer and real numbers. Each acoJrmJl:ator has a matching packet of status

information, in %etC page, that defines the type, class, size, and numeric status of the
operand cwreruly Stored in the accumulator. The packet includes a 4-byte pointer that
an be used to reference the aco.miUlator's value. 1be packet also contains a string
pointer that always poin~ to a string desaiptor, either a temporary descriptor or one
in the variable/array storage tables.

PointerS to string descriptors are left in PACP'I'R, PACPTR+1 and PACPTR+2 (or
PACl'TRB). Routine 48, STRCP I cre:ues a temporary string descriptor for your string
data (possibly read from a storage volume). 'These temporary descriptors must be
released with PREOJOW before returning to BASIC if they are used by an invoked
module. The temporary descriptor stack is located in zero page, and so an address in
FAc:P'm, left by STRCP I will. be of the form SOOdd:a, where dd is the DP register and
:= is the address of the temporary descriptor in zero page.

IIGS BASIC zero-poge ec;ucrtes

TabJel-4

Addr ...

$00
$01-04
$05
$07,08
SOF
$10
$11
S1B
$1C-1E

Name

MYBANK
DISPATCH
ZPAGREG
BBUSER.ID
VTYPE
VCI.AS
AUTO DIM
SVFII..'lO
DEI.TA

Detertptton

Contains bank address of BASICs code segment
Entry point for BASIC iruemal routine dispatc..~
Bank zero page address of BASICs zero page
User ID assigned to BASIC code segment
Output V1lriable type flag from PT.RGET
Output variable class flag from PT.RGET
Must be $00 for PTRGET and ANYSUBEXPR alls
Save temp for me (FCB) • of current ope~tion
Length temp for memory management subroutines
pointer adjustments

figs BASIC zero-poge equotes 379

SlF-21 VARNAM Temps used by P'TRGET and its subroutines
$22-24 VARPJI-"T Output pointer from P'TRGET and others
$25-27 VARTX"r 'IX'I'P"''R save temp used an over the place
S28-2A D:EFPNT Pointer used in DEP PROCIFN, PROC, PN processing
$30,31 LINNUM Temp for input and output of line numbers
$40-43 INDEX General-purpose pointer used by many routines
$44-46 IND:EX2 GencDJ-pwpose poinrer used by many routines
S47-4A '\VORKPTR General-purpose pointer used by memory management

routines
S4B-4D TXTr.U Pointer to lblfld byte of first line in program segment
S4E-50 TXTPTR Current c:haraaer (or token) pointer in program
$51-53 LCI.END Temporary end of new local Vl.riable table during

argument proc:essing
$54-56 LClTAB Pointer to aurem loc:al simple variable table
$57-59 VAREND Poinier to end of (global) simple Vl.riable table
S5A-5C VARTAB Pointer to beginning of (globaD simple Vl.riable table
note1 PROCTAB Pointer to procedure/funaion name table
S5D-5F ARYTAB Pointer to beginning of array table
$60-62 STREND Poinier to end of local variable table
$63-65 FRESPC '\V ork pointer used in allocating ne:a string literal
$66-68 FRETOP Pointer to lowest address allocated in string literal pool
S69-6B 1.1TEND Pointer to end of string literal pool + 1; same as INV'I'AB
• INVTAB Pointer to begin of invoked segment record table
S6C-6E US REND Pointer to end of data + 1 in user data segment
S6F-72 PROCTAB (temporarily here out of the wzy for BETA 1 release)
Si2-74 UBTAB Pointer to tool set library diaionary (linked list of tables)
$75,76 CURUN Cun-ent line number in binary Oow byte fust)
S7C,7D DATI.IN Line number of cunent DATA statement (for errors)
S7E-80 DATPTR Pointer to program DATA statement text

$84-86 FORPNT Output data from GETADR routine (same as LINNUM)

$87-89 DSCPNT Temporary pointer to Siring descriptor in string routines
S8A FOUR6 Temporary work byte used during P'I'RGET and elsewhere
S8B-8D HIGHDS Address of highest destination byte for move routines; ·

also used during P'I'RGET for variable and array lookup
SSE-90 NDXPTR Record buffer data pointer for disk I/0 operations
$91-93 HIGHTR Address of highest source byte to move for move routines
$94-96 ENDPTR End of table pu in PTRGET search + garbage colleaion

temporary
S97-9A lO'\VTR Block move lowest source address; :FINDUN result
S9B-9E LONGP!R Handle dereference pointer and memory management

routines
S9F-A2 X.PTR Pointer 10 XACC (never changes; don't touch)
SA3 XSDTYP XACC Sane data type byte • 03,03,04,05,02,01,00,-
SA4 XTYPi XACC rype• • 00,01,02,03,04,05,06,07
SA5 XClAS XACC class• • S40,.S40,$40,$40,00,00,00,$80

SA6,.-\7
SA6-A8
SA9
SAA
SAB-AE
$A.P-B2
$B3
SB4
SB5
SB6,B7
$B6-B8
SB9
SBA
SBB-BO
$04
$E7
SP5,F6
SPS-FF

Xl!Y1'S
PACPTR
X.STS
X.SGN
DSCTMP
Y.PTR
YSDTYP
YTYPE
YClAS
YBYTS
ARGPTR
Y.STS
Y.SGN
STRNGl
REPTBL
IMOOE
S\VCHGO
unused

XACC byte count • 01,02,04,08,04,08,$0A,n.a.
Pointer to string desaiptor for X"'YPE • 07 only
Zero/nonzero status for numeric XACC (XIYPE <> 7)
$001$80 sign staiUS for numeric XACC OCTYPE <> 7)
Temporary work string desaiptor length +3 byte address
Pointer to YACC (never changes)
YACC SANE data type byte • 03,03,04,05,02,01,00,­
YACC type~~t • 00,01,02,03,04,05,06,07
YACC dass11t • $40,$40,.$40,$40,00,00,00,$80
YACC byte count • 01,02,04,08,04,08,$0A,n.a.
Pointer to string desaiptor for Y"'YPE • 07 only
Zero/nonzero swus for numeric YACC (YT{PE <> 7)
$00/$80 sign status for numeric YACC CY"n'PE <> 7)
Input pointer for STRCP
Output from P'IltGET, input for ST.X2V
sox - defeaed mode, sax - immediare mode
Temps usec1 only by OISPATOi entry point (above)
An.ilable for invokable module temporary work pointers

+ Note 1: The pointer named PROC'I'AB is going to move from its current temporary
loation to the position indic:ared by the 'note 1' reference. The pointer from
ARY'TAB thN USREND will all move up three bytes when PROC'I'AB is implemented
in the BETA2 rele2se. .

These zero page equates are not likely to need to c::bange after rmal release, but ARE
GOING TO c:HAJ."l'GE IN niE BETA :Z release.

Wamln~

Be sure thot all references to zero-poge locottons are deftned wl1h equates so
1hot lnvokoble modules con eoslly be reossembled when c:honges are required
Jeter.

lntemal subroutine descriptions

CHRGET <rouflne number 00)

Description: CiRGET gets the next sequential nonspace character or token from
the program text by incrementing the 1XIYI'R and then fetching the
next byte from program.

On entry: The routine must be entered in 8-bit native mode, as must all the other
routines desaibed here.

lntemol subroutine desc:rfptlons 381

On return:

Error exits:

Upon return from CHRGET, the A register contains the c:haraaer or
token and the CPU status flags are set as follows:

o Z flag is set CBEQ) if the chanaer is a colon ($3A) or the end-of­
line terminator ($00). Z flag is reset (BNE) otherwise.

o Ca.rry is dear (BCC) if the character is an ASCII digit . It is set (BCS)
otherwise.

o N flag is set (BMI) if the byte is a token with a value more than SB9
and carry is set CSBA and up because CMP .-':' is equivalent to SBA
... -$3A - $80 .•.).

None.

CHRGOT <routine number 02)

Description: CHRGOT gets the current nonspace c:haraaer or token from the
progrun teXt by fetching the byte at tbe 1XTPTR from program.

On entry: The routine must be entered .in 8-bit native mode.

On return.: Upon return from CHRGET, the A register contains the character or
token, and the CPU status flags are set the same as CHRGET above.

Error exits: None .
•

- <routine number 04)

Description: Routine ~t 04 will be changed and doo.lmen~d in the BETA 2 release.

PTRGET <routine number 06

Description: PTRGET searches the variable storage tables for a variable or array
element and rerums the address of a variable or element The variable
name pointed to by the current 1XTPTR is found or created in
memory and a pointer to its value is placed in V ARPNT. nus routine
calls DOSUBEXPR to evaluate array subscripts. DOSUBEXPR may call
PTRGET to locate variables (note the recursion).

On enuy:

On return:

PTRGET always searches the current local variable table, if one exists
If it does not find the variable there, it searches the global simple
variable table. If the variable name is followed by subscripts enclosed
in parentheses, PTRGET searches the array variable table after
searching the local one.

JXTPTR points to the variable to be referenced

VARP~'T points to the variable value.

Error exits:

Table x-x
Tobletttte

Vartaale type

X, Y, and A registers contain the pointer to the variable value.

B register comain.s the value of REF!BL below.

VTYPE and VCIAS determine the variable's type, as shown in the
table below.

REFI'BL is 00 if a simple variable was found, $40 if a local simple
variable was found, or $~ if an array element wu found

Array subsaiprs em be expressions, So most of the DOSUBEXPR
error exits could be t2ken.

VTYP£ VCI.AS XACC value orvanlzatlon

Structure element . 00 $40 XACC CXACC+1 • zero)
Single integer 01 $41 XACC and XACC+1
Double integer 02 $42 XACC .•• XACC+3
Long integer 03 $43 XACC ... FAC+7
Single real 04 $04 XACC .•• XACC+3
Double real OS $05 XACC .•• XACC+7
Extended real 06 $06 XACC .•• XACC+9
SUing 07 $87 Pointer in FACPTR

'!be value of REFTBL indicates which table coruains the address returned by PTRGET.
A suuaure element is only returned for an array reference, and the extended real type
is never returned by PTRGET because extended real is not an explicit BASIC variable
type.

ERRCIR <routine number 08)

Description:

On enuy:

On retUrn.:

Error exits:

ERRDIR Validates that a prognm is executing and returns.

None. Destroys the X register.

In deferred mode, that is, execJting a BASIC prognm.

If in direct mode, the

ILUGAL DIREC'r ERROR

message is sent to the current output stream device, normally the
console. Control then returns to ditea mode.

Internet subroutine descriptions 383

UNLBLGET (routine number 10)

Description: IlNil.GET convens a line number poirued to by TXTPTR into a 16-bit
integer in LINNUM. Alternately, Iml.BLG:ET copies a line label into a
fixed-address work buffer named I.INI.A.Bl, from the program text.
The enuy requirements are met by loading the A-reg via CiRGET or
CiRGOT. LINGE'I' will accept unsigned integers in the range of 1
through 65279. A line number may be tokeni.zed as a binary number,
as ASCII digits, or as a line label.

1bere must be a nondigit or nonlabel cbaraaer following the valid
digits or label c:haraa=s. I.INGE'I' will stop on the first nondigit or
nonlabel chataaer it eru:nmters and retu.m the acxumul:ated result.
Leading zeros will be ignored in line munbef!. When Iml.BLGET
enc:ounrc=s a label, ~ is returned with the value zero. When a
LINNUM is reiUmed, IJNlABL and I.INI.ABL+l will contain zeros.

On enuy: 'IX'I'PTR pOints to the first byte of the line number or to the first
character of a label (a leaer A-Z. a-z) A register contains fU'St
c:haraaer of line number or label. Carry must be dear for a digit in the
A .register. Carry must be set for either a label or tokenized line
number. N &g must be set for a tokenized line number.

On return: LINNUM, llNNUM+l is the 16-bit equivalent, low-high.
"'X'TP'rn will point to the terminating character.
Uses location D'IDEX for work temp.

Error exits: mega} line number/label error will result if a zero or a number higher
than 65279 is input.

UNNUMGET (routine number 12)

Description: I.INNUMGE'I' convens a line number poirued to by TXTPTR into a 16-
bit irueger in I.INNUM. The entry requirements are met by loading the
A register through Cli:RGET or CHRGOT. LINGET will accept unsigned
integers in the range of 1 through 65279. A line number may be
tokenized as a binary number or be input as ASCII digits. ·

There must be a nondigit following the valid AScn digits. LINGET will
stop on the fU'St nonciigit and rerum the ac:cumulated result. Leading
zeros will be ignored in line numbers. When a I.INNUM is returned,
LINLABL and I.INI.ABL+ 1 will be unchanged..

On entry: '!X'IYI'R points to the first byte or AScn digit of the line number.

A register contains the fU'St byte of the line number.

Carry must be c:1ea.r for a digit in the A register.

arry must be set for a tokenized line number.

On return:

Error exits:

N flag must be set for a tokenized line number.

LINNt..'M, LINNUM+l is the 16-bit equiw.Jent, low-high. TX'I"PTR will
point to the te:minating character or the fJtSt character following the
token.ized form of a line mamber.

Uses location INDEX for work temp.

mega! line number/label error will result if a zero or a number higher
than 65279 is input.

GOTO <routine number 14)

Description: GOTO searches the resident BASIC program for the line number or
label at the current !X'!P'Ilt address. The line number or label is setup
for GOTOB by ailing LINLBLGET (described above). The line
mamber or label must be followed by an end-of-staremem $00 or':'.

On enrry: Swus (P register) and A register set by calling CHRGOT or CHRGET.

On rerum: Sets 1'X1'"P'n to point to the end-of-Une token ($00) preceeding the
desired line. IMODE, a zero-page variable, will have had its $80-bit
reset.

Error exits: 'The undefmed srarement error exit is taken if the I.INNtJM or I.INUBL
is nonexistent. IDeplline mamber/label error oc:cws if a line number
of zero or more than 65279 is found.

lntemol subroutine descriptions 385

GOTOB <routine number 16)

Description: GOTOB sea.rc:hes the resident BASIC program for line number given
by LINNUM, I.lNNUM+l, or the label in LIN'lABL. Searches forward in
the program if CUlWN is less than LINNUM; otherwise, it searches the
program from the beginning. When a label is used, the entire
program is always searched.

On entry: LINNUM is the line number to loate, or LIN'lABl is the label to
locate, and LINNUM is zero.

On return: Sets 'I'XTPTR to point to the end-of-line token (0) preceding the
desired line.

Error exits: The undefmed statement error exit is taken if I.INNUM or LINI.ABl is
none.xistenL

GETAORS (routine number 18)

Description: GETADRS convertS the numeric expression beginning at 'I'XTPTR into
the XA.CC accum11laror and then converts XACC into a double­
integer fonnat number. The double integer is then checked to be SUl'e

that the value is in the range of 0 through 2 24-1.

On entry: 'IX'I'PTR points to the fll'St character of the tokenized numeric
expression.

On return:

Error exits:

FORP!\"T contains the adciresS from the numeric expression. XACC
contents destroyed.

An illegal quantity error exit will occur if the numeric value is outside
the range of 0 through 2 24-1.

FINOUNO <routine number 20)

Description: FINDUNO searches through the BASIC program for the line number
given in I.INNUM or the label given by I.INl.ABL lO"WTT{ is set to
point at the label field length byte of the first line encountered with a
line number greater than or equal to UNNUM when searching for a
line number, and points to the line or end-of-prognm when
searching for a label.

On entry: I.INNUM contains the line number to search for in the program, or
I.INLA.Bl contains the label to search for. TheY, X. and A registerS
contain the bank-high-low beginning search address pointer and
must point to the label-field length byte of an existing line.

On return:

Error exits:

LOWI'l{ is a poinrer to the fust line whose number is >- IJNNUM.
Carry is set if a matching line (with LINNUM or I.INIABL) is found;
carry is dear otherwise.

None.

FINDUN croutine na.mber 22)

Description: FINDLIN is the same as PINDLINO, except the search always starts with
the beginning of the program.

On entry: IJNNUM contains the line number to search for in the program or
LINLABL contains the label to search for and IJNNUM is zero.

On retwn: See FINDLINO.

Error exits: None.

NOTNOW <routine number 24)

Description: Given an address in che pointer INDEX to a string desaiptor,
NOTNOW leaves the string length in the A register and an address to
the aaual string data in the pointer INDEX.

On entry: INDEX points to a SUing desaiptor.

On return: INDEX points to the suing data. A register contains the length of che
suing. Desuoys A, X. and Y registers. Preserves the statuS register.

ERROR <routine number 26)

Description: ERROR raises the BASIC error condition given in the X register. If ON
ERR is in effect and execution is in deferred mode,. conuol is
tn.n.sferred to the BASIC program error handler. Otherwise, the error
message is primed. and control is retwned to direa mode. 1bis
routine resets the stack and never returns.

On enuy: X register contains the BASIC error code.

On return: Never rerums.

SERROR <rouflne number 28)

Description: SERROR tnnslares the ProDOS errotS shown below to the
corresponding BASIC errors if they are in the table; otherwise, issues
the ProDOS CALI. ERROR • Sff.

On enrry: A register is ProDOS rt: ...un code.

On rerum: Never returns.

Table 1-X

ProOOS IASIC

error number

$10

$11

$25

$27

$28

.S2B

$2E

S2F

$40

$41

$42

$44

$45

$46

S47

S48

S49

S4D

S4E

.S4F

$50

$51

S52

$54

$55

$57

$58

error number

81

82

43

30

42

32

33

33

34

35
43

36

37

35

3B

39

44

-48

40

49

26

51

27

10

43

45

16

IASIC error meuage

DEVICE NOT FOUND

INVALID DEVICE

IN'l' /FCB/VCB 'l'BL FOI..I..

I/0

DEVICE NOT CONNECTED

WRITE PROTECT

VOLUME SWITCHED

DRIVE EMPTY

BAD PATE

FILE 'l'YPE

IN'!' /FCB/VCB TBL FOI..I..

PATH NOT FOUND

VOLUME NOT FOUND

FILE NOT FOUND

DUPLICATE FILE

DISK FULL

DIRE:CTORY FULL

POSITION RANGE

FILE l.OCKED

FILE CREA'l'E

FILE OPEN

DAMAGED DIRECTORY

VOLUME 'l'YPE

OUT OF MEMORY

IN'l'/FCB/VCB TBL FULL

DUPLICATE VOLUME

'l'YPE MISMATCH

388 lntemol subroutine descriptions

S5B 50 OIF!"ElU:N'r VOLUMES

FRECNOW <rouflne number 34)

Description: It you evaluate a string expression, the temporary string desaiptor
and string space must be freed after use if the string zesult is not going
to be assigned to a string V2riable. PACPTR must point to the
clesaiptor when this routine is called. PREOJOW should be called
after using S'rnCP to all0C21e a temporary work string.

On enuy: PACPTR points to string's desaiptor.

On return: Descriptor deallocated if it w:as a temporary desaiptor, and string
pool space freed up ii a temporary desaiptor w:as deallocated.

£rror exits: This routine does DOt take any error exits, but using it incor:realy
could affect memory almost anywhere.

GETNAME croutlne numeer 36)

Description: GE"'NAME is the filename setup routine used by IIGS BASIC for
processing statement pathnames in either literal form (for i.mmediate
mode) or processing string expressions in deferred mode, and for
aeating a counted string. or P-string. in NAMBUF, a fJXed address
buffer used a.s input for FOPE.."'l_AX and other routines.

On entry: 1X1'P1'R points to the first byte of a string expression to be evaluated
and converted into a ProOOS pathname in. NAMBUP.

On rerum: The value of the string expression has been stored into NAMBL"F with
the count byfe in byfe 0. The address of ~\tBUP is set up in the
PTHP'I'R parameter used by FOPEN_AX to locate and open the me.
T.X!P'1'R points at the terminating c:har.a.aer following the string
expression. The terminating charaaer should be either a colon, end­
of-Une ($00), or comma.

£rror exits: The expression evaluator is called to evaluate a string expression, so
any expression error, such a illegal quantity or overllow error, could
occur.

K>PEN_AX (routine number 38)

Description: POPEN_.AX is the file open primitative in nos BASIC. It locates and
opens a file at the ProOOS level, not at the nc;s BASIC file-number
level. h is used by OPEN, LOAD, SAVE, CAT, INVOKE:, RUN,
CHAIN, and similar stateme.ms. When a file type is specified CX
.register <> 0), the file is aeared if it is not found The memory­
management routine UMSHlUNK is called by POPEN_AX if ProDOS
can't allocate space for the ProOOS PCB and sector buffers.

+ Note: POPEN_AX can only be used to open a disk (block device)
file; it cannot open character device files.

On entry: NAMBUP contains the pathname to locate, and the parameter list
pointer, P'I'HP'I'R, contains the address of NAMBUP. Pnn'TR is set
by calling the GE'I'NAME entry desaibed above.

On return:

.Error exits:

A register contains the open access request parameter as follows:

$01 • Read Only, $02 • Write Only, $03 • Read/Write

X .register contains the open file type request parameter as follows:

$00 - Match any existing file with any file type

SOl .• SFF • Open only if its ProOOS file type • X-register

A register returns the open access request, which is moclifaed to be a
SC3 if the file was aeated. X register will contain the ProOOS
.reference number for the file

Most ProDOS 16 errors can occur, including:

c The access error ($4E) or file locked error

o The wrong type error ($41) or file type etmr

o The not found error ($46) or file not found error

o The file lost error ($4F) or file create error; this error occurs when a
file is successfully created but then can't be opened immediately
thereafter (a very unlikely sequence of events). ·

Refer to the ProDOS 16 Rejenmce manual for all the errors that can
oc01r for G:.e:rrn.:EINFO, OP:EN, and CREATE to complete this list.

A Y2XINT <routine number 40)

Description: AY2Xll'c"''' converts the A andY registers, input as a high-low signed
16-bit number, into a single integer in XACC with X'n'PE, XCI.A.S,
X.STS, and XSGN, and so on, properly set.

On entry: A andY registers are high-low signed 16-bit integer.

390 Internal subrou1tne desertpttons

On return:

Error exits:

XACC is set to single integer with the same value. XTYPE • 1 and
XCIAS • $41.

None.

POSINT Crouflne number 42)

Description: POSINT tests the status of XACC via the contents of XSGN for a
positive number, and then converts XACC to a single integer (X'I'YPE
• 01), as if the BASIC construa CONV%(xacc) were called.

On entry: XACC, XTYPE, XCI.AS, XSI'S, and X.SGN set up for any numeric
type.

On return: XACC, XACC+1 contains the 16-bit vah.le if the number was in the
~ge of 0 through 32767; XTYPE • 01 etc

Error exits: Tile overllow error will result if the numeric value is outside the range
for a 15-bit unsigned integer. The illegal quantity error will occur if
XSGN indicates that the number is negative.

CVTTXT2X (routine number 44)

Description: CVTIXT2X converts the AScn string, pointed to by T.X"'YY'R, into a
binary numeric format in XACC. CVTI'X'I'2X will always leave
1XI'PTR pointing to the first nonnumber cba.raaer that it encounters.
Tile conversion is done in two Steps using the SANE Scanner funaion
FCStr2Dec and then various FDEC2x decimal record to binary
conversions. Tile SANE Sanner recognize +/- INF as the
~thematical concept of infinity and the sequence :'>l'AJ.'l(digits) as an
explidt request to generate a SANE Not a Number.

CVTIXT2X will, generate single or double integers, or single-,
double- or extended-precision real results based on the number of
signifJ.Cant digir, and the presence or absence of a decimal fraaion.

It the decimal form has more than nine digir, or is not integral, a
SANE extended real number is returned. I! the decimal form is
imegral and nine or fewer digits, a double or single integer will be
returned. Note that a long integer (more than nine digits) will be
returned as extended and must be converted to the SANE COMP
format to get a BASIC long integer.

I! the decimal form has a fraaion and seven or fewer significant digits,
a single real is returned; if it has eight through sixteen significant
digits, a SANE double real is returned. Otherwise, an extended real is
returned.

On entry:

On return:

Error exits:

There must be a nonfloating-point number terminator c:haraaer to
end the string. Number characters include the digits, the period, the
plus and the minus signs, and the letters E and e.

'IXTP'I'R points to AScn representation of an integer or real number
with up to 28 significant digits.

XACC contains the bina.ry integer or real format number. X'IYPE.,
XCI..A.S, X.STS, X.SGN, and so on will be·set accordingly. Carry will
be set if a number was found and stored into XACC. Carry will be clear
if a valid number was not found. TX'Il'TR will point to the fust
nonnumber character after the conswu if a number was found, and
remain unchanged otherwise.

Some obsOJte SANE exceptions can occur, but generally almost all
numeric conversion eiTOIS are handled by the preseleaion of the
proper numeric type for the FDEC2x conversion.

DATAN <routine number 46)

Description: DATAN searches forward in the program for the end of the current
statement It stops when it finds the end-of-line token ($00) or a
statement separator colon. DATAN does not use CHRGE'T. DATAN
(which means DATA e.Nd) will properly skip over quoted strings
(ignoring embedded colons) and all single and multibyte tokens.

On entry: 1XTPTR points inside a statement at either an AScn character or the
first byte of a valid token (but not within a multibyte token).

On rerum: Y register contains the byte offset to the end of statement from the
unchanged input TXTPT.R.

Error exits: This routine will loop forever if a $00 or a S3A (:)does not exit within
256 bytes of the input TXIYI"R..

STRCP (routine number 48)

Description: STRCP copies AScn data into BASIC's string data pool and builds a
temporary string descriptor pointing to the data.

1bis routine creates the data part of wh.at BASIC c::alls a string. but it is
a temporary one, not assigned to any va.riable. If this temporary
suing is not to be assigned· to a va.riable (use STS2M for that) it must be
freed up after being used, by using the FRECNOW routine.

392 tntemol subroutine deseript1ons

On enuy:

On return:

Error exits:

Tempor2%T string desaipcors a.re alloc:ued and buill in a zero-page
stack and must be dealloc:ued in most recently alloc:ued order. If you
a.re alloa.ting multiple temporary strings with snta, you must retain
the poinre%s to their rem.pon.ry desaiptors and free them up in the
proper order.

Y register comains the length of the suing. Address of the text to be
copied is in the pointer STRNGl.

A temporary string desaiptOr is built (in zero page) and pointed to by
PACPTR. X'I'YPE is set to $07, XCIAS is set to $87, and a pseudo­
REF'I'BL ft1ue of SOl is stored imo x.srs for use by the expression
evaluator.

1be out of memory error exit could be taken.

STS2M (routine number 50)

Description: STS2M assigns a temporary string to a suing variable or it duplicates
an existing string and assigns the copy to the variable. This routine
assumes tbat the addtess in PAC'TR points to the desaiptor of the
result or source string to be assigned. PORPNT points to the
destination wriable's string descriptor. PORPNT is normally set by
using PTRGET to loare the desired variable in the storage tables and
then saving the address result in PORPNT.

On entry:

On return:

Error exits:

STS2M sets the suing pool back poinrer via the addless _set up in
HIGHDS by a call to snta or its own inremal call executed when an
existing variable's data wu copied.

FORPNT points to the desaiptor of the destination string variable.
REFI'BL is set up to indicaie which table (simple, local or amy)
contains the destination variable. PAC'TR points to the desaiptor of
the new vaJue for the V2riable.

Never returns.

Variable eft'Or exit will be taken if the variable's desaiptor is more
than 64K from ils storage table origin pointer.

STX2V (routine number 52)

Description: S"''X2V assigns a value to a variable. Takes the value in VI'YPE, sets
Va.AS accordingly, and then uses the result in XACC and flags
X"I"XPE, XCLAS to selea either numeric or string assignment. The
variable is defined by the pointer FORPNT and the REFI"BL flag. and
S'I'X2V assigns XACC to the variable. The various XACC data formats
and their XIYPE.s are listed earlier in the description of PTRGET
(routine number 06). 'Ibis routine does not validate its input data and
could store values anywhere in memory. Use it carefully!

On entry: FORPNT points to the variable; VI'YP:E and REFTBL desaibe the
variable's type CVIYP:E • xn-P:E) and base address. XACC has the
variable's new value, or FACPTR points to a string descriptor.
X'IYPE, XCI.AS, XS'I'S, and so on defme the type of the value in
XACC. II the variable is numeric and X"'YPE and V'IYPE are
different, numeric type conversion is performed to the type of the
variable (given by VI'YP:E) before assigning the result.

On return: Never returns.

Error exits: II X"'YPE and VI'YP:E flass do not reflect the aaual type of the variable
at VARP!'o"''', the value will be stored in whatever is there as though it
was the proper variable type. In addition, if XACC does not contain
the type of data specified by XIYPE, whatever is in XACC will be
assigned as though it were correa.

Numeric type conversion may generate overflow or other SANE
errors, and string assignment may c:ause garbage collection or an out
of memory error.

CONV2STR <routine number 54)

Description: CONV2S"''R takes XACC and converts it to an AScn string for any valid
X'IYPE.. Slt is the same as the CONV$ funaion in BASIC. If XACC is a
real. then a S'l'R$-like operation is done, leaving a pointer to the
string descriptor in FACPTR. This routine does nothing if X"'YP:E
already is a string X"'YPE ($07). XACC can contain any valid numeric
type from X"'YP:E • SOO through So6. II CONV2Sn is c:alled with an
integer (single, double, or long), the number is converted to.a string
with all the digits of the integer's value.

On entry: XACC has some value determined by X'IYPE, XCI.ASS, and so on.

On rerum: XACC now has that value expressed in string form xn-P:E • 07,
XCLAS • S87 and FAO'TR will point to a temporary string descriptor.

Error exits: None. The data in XACC must correctly match. the given X'IYPE.

39.4 lntemol subrou11ne descriptions

sedAI 81!J PJCPUCIS

r XIPUeddy

Table J-1

Mnemonic: File Utility
COde type a..c:rtptor DeiCrtpHon

UNK $00 Unknown Uncaregorized file (SOS)
BAD $01 BadBlocks Bad block file
PCD $02 Pascal Code Pascal code file
PTX S03 PascalText Pascal rext file
TXT $04 Ascii Text ASCII rext file (SOS and ProOOS)
PDA $05 PascalData Pascal data file
BIN $06 Binary File General binary file (SOS and ProOOS)
FNT $07 I I I Fontfile 505 font tile
FOT $08 Graphicflle 50S Pote file
BA3 $09 I I I BasicProg Business BASIC program file
DA3 SOA I I IBuicData Business BASIC data file
WPF SOB I I /WordProc: Word processor file
sos soc IIISOSFile 505 system file
SOD. SOD Reserved
SOE SOE Reserved
DIR SOF Direaory Subditeaory me (SOS and ProDOS)
RPD $10 Ill RPSData RPS data file
RPI $11 I I /RPSindex RPS index file
AFD $12 I I I AppleFUe AppleFile discard me
AFM $13 I II AppleFUe AppleFUe model file
AFR $14 I I I AppleFUe App.l.eFile report format file
SCI. $15 Screen library me
ADB $19 AppleWorks DB AppleWorks data base ffie
AWP SlA AppleWorks WP AppleWorks word processor flle
ASP S1B AppleWorks SS AppleWorks spreadsheet me
GSB SAB IIGS BASIC progrun flle
TDF SAC IIG~ BASIC toolbox definition flle
BDF SAD IIGS BASIC data me

396 Appendix J: Standard ftle types

Table J·1

Mnemonic File Utility
code type descriptor DeacrtpHon

SRC SBO AP'\VI' extfile APW text file
OBJ SB1 APWCodeflle APW object file
UB SB2 APVll.ibrary APVl library file
S16 SB3 Systeml6 ProDOS 16 application r11e COMP load)
Rn SB4 APW run-time library flle
EXE SB5 APW shell application file
PPI SB6 ProDOS 16 permanent Init file
rn SB7 ProDOS 16 temporary lnit file
NDA SB8 New desk acressory
CDA SB9 DeskAcc:s Classic desk accessory
TOL SBA System Tool ProDOS 16 tool set flle
DVR SBB ProDOS 16 driver flle
SBC SBC Reserved for OMF
SBD SBD Reserved for OMF
SBE SBE Reserved for OMF
DOC SBF ProDOS 16 docwneni file
sco sco ?? what is this one??
PIC SCl Pic:twe file (Super Hi-Res FOT?)
SEO SEO
WAV SEl DGS BASIC Vlavebank data flle
DTS SE2 ProDOS 16 ??? flle
Rl6 SEE EDASM 816 relative object flle
PAS SEF Pa.sc:al area on a partitioned volume
CMD SFO ProDOS·Cl ProDOS 8 Cl added command me
DSK SFl
o.s SF9 ProDOS-16 ProDOS 16 operating system
Il\"T SFA lntegerProg Integer BASIC program flle
IVR SFB IntegerVar Integer BASIC variable flle
BAS SFC AplSoftProg AppleSoft program flle
VAR SFD AplSoftVar AppleSoft variable file
lW. SFE ReloatableCode :EDASM reloc:atable code me
SYSS FF ProDOS·System ProDOS 8 system program flle

Appendix J: Standard file types 397

TiiE APPLE PUBUSHING SYSTE.\f

This Apple manual w-as wril:r.en.
edited, and composed on a
desktop publishing system using
the Apple Macintoshnl Plus and
Microsoft* Word. Proof and
final pages were aeared on the
Apple La.serWrite~ Plus.
POSTSCRIPT'nl, the I.aserWriter
page-description language, was
developed by Adobe Systems
Incorporated.

Text type is ITC Garamond*
(a downloadable font distributed
by Adobe SystemS). Display type
is ITC Avant Garde Gothi~.
Bullets are ITC Zapf Dingbats~.
Program listings are set in Apple
Courier, a monospaced font.

