€. Apple.ll Apple IiGs~
BASIC

APDA draft
September 11, 1987
Apple® Software Publications

This document contains preliminary
information. It does not include:

e final editorial corrections

e final art work

e index

It may not include final technical changes.

% APPLE COMPUTER, INC.

Copyright & 1987 by Apple
Computer, Inc.

All rights reserved. No parnt of
this publication may be repro-
duced, stored in a retrieval
system, or transmitted, in any
form or by axiy.means, mechan-
ical, electronic, photocopying,
Tecording, or otherwise, without
prior written permission of
Apple Computer, Inc. Printed in
the United States of America.

Apple, the Apple logo,
AppleTalk, ImageWriter,
LaserWriter, and ProDOS are
registered trademarks of Apple
Computer, Inc.

Apple Desktop Bus, Apple OGS,
AppleWorks, Macintosh, and
SANE are trademarks of Apple
Computer, Inc.

ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapf
Dingbats are registered
trademarks of International
Typeface Corporation.

Microsoft is a registered trade-
mark of Microsoft Corporation.

POSTSCRIPT is a trademark of
Adobe Systems Incorporated.

Simultaneously published in the
United States and Canada.

ISBN 0-201-x00cxx-x
ABCDEFGHIJ-DO-8987
First printing, Nnnn 1987

Chapter 1

Introduction to Appie liss
BASIC

Starting up xx

Entering statements xx

Immediate and deferred execution xx
Editing while typing xx

Entering your program xx

Syntax checking xx

Editing your program xx

interrupting @ running program xx

Controlling text on the screen xx

The LIST statement xx

The reserved variable LISTTAB xx

The reserved varniables INDENT and OUTREC xx
The DEL statement xx

The TEXTPORT statement xx

The TEXT statement xx

The reserved variables VPOS and HPOS xx

The HOME sutement xx

The INVERSE and NORMAL staiements xx

System and utllity statements xx

Memory management xx

The NEW command xx

The CLEAR command xx

The reserved variable FRE xx
Loading and saving programs xx

The LOAD statement xx

The SAVE statement xx
Starting and stopping programs xx

The RUN statement xx

The STOP statement xx

‘The END statement xx

The CONT statement xx
Handling large programs xx

The CHAIN statement xx
Debugging programs xx

The TRACE statement xx

The NOTRACE statement xx
Special keyboard functions xx

The Control-C combination xx

The Control-Reset combination xx
-Automatic execution xx

The EXEC statement xx

Deferred immediate statements xx
Creating deferred statemeants xx
Capturing programs as text files xx

Chopter 1: infroduction to Apple lies BASIC

Apple IIGS™ BASIC is an extended version of the BASIC programming language for
the Apple 1IGS computer. The following are some of its more important features:

C The facilities for using disk files are built in, so that progratns can easily read and
write files, including special, easy-to-use type-tagged Data file input and output of
all types of BASIC variables.

C The double-precision real variable tyge provides arithmetic with 15 digits of
precision and a2 aumeric range of 10-308 1o 10308,

C The long-integer variable type provides 19-digit precision, and the double-integer
variable type provides 9 digits for address manipulation.

O The PRINT USING and IMAGE statements are powerful tocls for controlling the
exact format of data displayed or printed by 2 BASIC program.

© The INPUT USING and IMAGE statements are specialized tools for controlling the

input text fields and lines by 2 BASIC program.

Variable names may be up to 30 characters long. Reserved words are recognized

only when they are set off either by spaces or characters other than leners, the

period or digits. This allows you to use reserved words embedded in variable names
without causing svatax problems.

0

0

Any line in a program may have an optional label, and it can be referenced by the
label or by the line number in 2 GOTO, GOSUB, cr similar statement.

A full-featured command line editor, with insert and replace modes, and an EDIT
command for ediling existing program lines one at a time are available.

Complete support for access to the Apple IIGS Toolbox, via CALL, CALL%, and
LIBRARY statemnents, as well as language extension with external assembly-
languages modules, through INVOKE, EXFN, and PERFORM statements.

Z A Window Manager and Menu Manager interface, through EVENTDEF, MENUDEF,
ancd TASKPOLL statements, provides a simple and efficient link to Task Master for
writing mouse-based desktop application programs in GS BASIC.

A special form of the OPEN command can open 2 QuickDraw II GrafPort or a
Window Manager window por for applying PRINT # and PRINT # USING statements
directly to the graphics screen.

0

(]

(]

Starting up

Before you read anv further, load Apple IIGS BASIC so that you can follow along with
the examples in this manual.

1. Begin with the system plugged in and the power switch off.

2. Insent the Apple IIGS BASIC diskente into the system disk drive (use the method
shown in your Appie IIGS Ouwmers Guide).

.

Starting o

3. Tumn the power switch on. The system will start up, and the drive's in-use light will
come on for a few momesnts while the information on your BASIC diskette is being
loaded into the Apple IGS system memory.

4. Soon you will see 2 prompt line at the top of the screen, giving the version of
Apple OGS BASIC that you are running. Below this line is a right parenthesis
character at the left margin of the video display screen, with a cursor to its right.
Apple OGS BASIC is up and running. (See your Apple IGS Qumer's Guide if you
have difficulty starting up your computer.)

If there is 2 BASIC program file named GSB.HELLO on the diskette that you use when

starting up your computer (as there is on the Apple IIGS BASIC diskette), that program

will automatically be executed when the system starts. This feature lets you develop
turnkey systems easily; simpiy name your working program GSB.HELLO.

The right parenthesis is BASIC's prompt character. When it appears on the screen, it
means that BASIC is waiting for you to type something. The cursor, which appears as a
vertical blinking rectungle alternating between the current text color and the
background color, shows you where the next character that you type will appear on the
screen. If you are using a color video monitor, you can change the colors for the text
and the background (and the border) in the Control Panel. (See Appendix A in the
Apple IIGS OQumner's Guide for details.)

Entering sfdfemem‘s

Now that you have the prompt character and the cursor on the screen, you are ready to
begin using the Apple IIGS BASIC language. Before you do anything else, enter the
command NEW and press the Return key. NEW tells your computer that you are
enfering 1 new program.

Then type exactly as shown here:

PRINT "Hi there"

and press Return. Your computer will display
3i there

followed by the prompt and the blinking cursor.

This statement instructed your computer to display all of the characters berween the
quotation marks. :

If you misspell the reserved word PRINT, like this:
PRITN "Hi chere”
You will see this error message:

2SYNTAX ZIRRCR

4 Chopter 1: Infroduction to Apple lies BASIC

The word symtax refers to the rules for constructing statements in the BASIC languzge.
Unfortunately, not all your errors be so apparent You may enter a statement that is
syntactically correct, but does not sav quite what you intended. BASIC will execute the
statement exactly as you typed it For example, if you type

PRINT EiL there
The computer will display
c

Since there were no quotation marks, the computer displayed 2 zero, the value of the
variable HITHERE.

When you finish typing a statement, press the Return key, and BASIC will try to
understand what you typed and carry out your instructions.

Don't press the Return key if you are typing 2 long statement and genting close to the
right margin of the display screen. When you reach the end of the first screen line,
BASIC automatically continues the statement on the next screen line. BASIC will allow
you 1o enter three screen lines of text before reaching its right margin.

The prompt character will not scroll to the bottom line of the screen; it always stays at
least three lines above the bottom.

Immediate and deferred execution

The PRINT suatement example was executed immediately after you pressed the Returr.
key. This is calied immediate execution. Now type
0 PRINT "Hi again"

and press Return. The number 10 is called a line number. Nothing appears on the
screen except the BASIC prompt Now type

RON
and press the Retumn key. You should see this on the screen:

H: agair
)

BASIC has executed the PRINT statement When you typed the PRINT statement wils a
number in front of it, BASIC stored the statement in memory as a one-statement
program. When you tvped the RUN statement, it was executed immediately because it
didn't have a line number. RUN is a statement that tells BASIC to execute whatever
program is currently stored in memory. Execution of statements previously stored in
memory is called deferred execution.

Immedicte and defemed execution

o

Statements without line numbers are executed immediately and forgotten as soon as
they are executed. Statements with line numbers are not executed immediately, but
remain in your computer's memory and can be executed again and again with the RUN
statement. Your computer executes the lines of instructions you type in numeric
order, always beginning with the lowest number. For the time being, number your
program lines by tens (10, 20, 30, and so on). You'll learn why later.

A deferred statement and the line number preceding it are often referred to as a
program /ine. For exampie, consider

30 PRINT "Bye now!"

Line 30 comprises both the PRINT statement and the line number 30.
Let's add another line to the program. Type

20 PRINT "Hi yet again”

and press the Return key. Then type another RUN statement, and press Return. Once
again your screen displays

RCON

3i again

3i yet again
)

You can see that the statement at line number 10 is executed before the statement at
line number 20. BASIC always executes statements in a program in the order of their
line numbers, unless the program statements tell it to alter that sequence. Note that the
order in which statements are executed is not necessarily the order in which vou typed
them.

« By the way: Now that you have learmned that every program line you enter must be
ended by pressing the Retumn ey, we won't bother to include that step in the
remaining instructons.

Editing while typing

You can correct errors that you catch while entering immediate or deferred statements
before you press Return (called command line editing) by using the editing keys
described below.

Left Mand Right () Arrow keys Move the cursor to the error within the text you
have entered. You can retype right over the
mistake.

é Chapter 1: Infroduction to Apple lics BASIC

Delete key Delete unwanted characters by positioning the
cursor just to the right of an incorrect letter and
pressing this key. This will erase the characters to
the left of the cursor. You may repeat, moving the
cursor backwards through the text as you do so.

Control-D Hold down the Control key and then press and
release the D key to perform the same function as
the Delete key.

Conrtrol-F Hold down Control, then type F to delete the

character under the cursor, rather than the one tc
its left You may repeat this to delete forwards
through the text; the cursor will remain stationary,
and the text will shift to the left as characers are
removed.

Control-X Hold down Control, then press X to erase the
entire program line. This will erase evervthing you
have typed since the last time you pressed Return.
You can now retype the entire program line (a
program line can actually be up to three lines on
the screen).

Control-Y . Hold down Control, then press Y to erase all the
characters from the current cursor position to the
end of the text. To use Control-Y, first position the
cursor on the first character you want deleted, and
then press Control-Y. The character under the
cursor and everything to its right will be erased,
but characters to the left of the cursor will remain
unchanged.

Ler's experiment with these editing features now. First, just hold down a lener key until
three lines fill up with the same letter. Note that auto-repeat will speed up the entry of
these leners, following a shon pause after the first letter. When you approach the end
of the third line, release the key, and then press it repeatedly to display one character
at'a time to the end

When the cursor is in the last position of the third line, the computer will beep if you
type another character. You have now reached the right margin. Now try backing up
with the Left Arrow key () to somewhere in the middle of the second line and press
Control-Y. All the letters from the cursor to the end will be erased.

Now press Control-X 1o erase all the remaining characters.

< Note: Applesoft BASIC programmers should be aware that all the characters you
have typed, even those to the right of the cursor, are considered part of your input
line after you press Return.

Editing while typing

Up to this point, our command line editing has been in replace mode, which is
indicated by the blinking block cursor, the replace cursor. In replace mode,
whenever you type a character, it replaces the character under the cursor.

Another mode, called insert mode, allows you to insert new characters between ones
you have already typed. This mode is indicated on the screen by the insert cursor.
To see the insert cursor, press Control-E. The cursor will become a blinking underline
character. Now press Control-E again, and the replace cursor will reappear. The
Control-E edit key functions as the cursor toggle switch.

Let’s see how the different editing cursors work.. Type the line

Try out the old cursor

Move the cursor over the beginning of the word 0ld and type in new.
Try out the new cursor

The word new is typed right over the previous word.

Now change (0 the insert cursor by pressing Control-E. You will see the blinking
underline character. Move to the space between the and new bv pressing the Left

Arrow key and type snazzy.
Ty out tThe snazzy new cCursor

The new word is inserted into the text. Existing characters are shifted to the right as new
characters are typed.

Press Conurol-X to erase the text before you press Return.

Entering your program

What if you make a mistake and don't catch it before you press Return? If it is a
statement for immediate execution, you may get an error message right away. If vou
make 2 spelling or grammar error in typing a statement with a line number, BASIC
may not detect the error until you type RUN and it tries to execute the statement. For
example, if you enter the statement

15 PRINT INPUT =4ELLO"

into vour program, BASIC won't find the syntax error until it attempts to execute line
15. At that point, execution stops, and BASIC displays the message

?SYNTAX ERROR IN 15

where 15 is the line number of the incorrect statement. You should correct the
erroneous statement before you run the program again.

You can make changes o existing program lines in two ways. The first method is to
simply type a new line with the same line number. For exampie, if you type

8 Chapter 1: Infroduction to Apple lics BASIC

185 PRINT "Ei another time"

this new version of line 15 replaces the old one. If you want to delete a stored statement
altogether, type just its line number, then press Return. The second way is to use the
EDIT command as described later in this chapter.

It’'s 2 good idea to leave room for additional line numbers between the numbers you
use when you write 2 program. That way, if you want to insert a2 new program line
betoeen two lines already in memory, you can give it one of the unused numbers. For
example, if you have entered two lines numbered 15 and 20, you cn put a new line
between them by giving it the number 18. Line numbers must be within the range of 1
1o 65279, or a

?ILIEGAL LINE#/LABEL ERROR
message will be displayed on the screen.

The AUTO command provides an easy way to enter lines in your program and have
BASIC automatically generate the line numbers for you. To use the AUTO command,

simply type

AUTO linenum

You must select a linenum as the starting line number for the AUTO command. When
vou enter the auto-edit mode, the screen is split into two parts. The line number you

requested will appear in a four-line entry window at the bottom of the screen, followed
by the cursor. You can now type a statement and then press Return.

The statement will be checked and displayed in the upper 20 lines of the screen. Then
the next line number will be displayed in the entry window. To exit from auto-edit
mode, press the Esc (Escape) key, and the screen split will disappear. Other features of
the AUTO command are described in Chapter 8, “BASIC Reference.®

If you want 1o see your program as currently stored in memory, type

All statements in memory will be displayed on your screen in order of their line
numbers.

If you want to get rid of all stored statements to start a new program, type
NEW

Be sure that you don't want to save the program in memory before you type NEW,
since there is no way to recover the program after you press Return, unless vou first
save the program on a diskerte. If you type LIST after you type NEW, you will see that
the program previously stored in memory is gone.

Syntax checking

Syntax checking

BASIC does limited syntax checking when statements are entered in direct mode.
When error messages are displayed for direct mode entry (but not during an EXEC),
two lines are displayed on the screen below the text you entered. The first line is mosdy
blank, except for the pointer character, the caret (A). BASIC displays one line with the
caret at the position where it failed when scanning the statement.

Usually, but not always, the caret will point at the cause of the error message or at the
end of a reserved word that was used incorrectly. The process of scanning your
statement is called tokenization. This refers to the fact that all the BASIC reserved
words are converted into tokens which only require 1 or 2 bytes instead of 1 byte for
every character in the reserved word (this makes the program smaller that its
equivalent text).

BASIC does a limited check of the syntax of each statement in 2 line, but does not
verify the entire syntax of each statement that you enter. The syntax of a program line
is described as either of the following:

linnum [label:] statement return
linnum (label:lstatement [{: statement) return

The bracket characters are used to indicate that the element they enclose is optional;
vou should not type the bracket or brace characters when entering a line. The simplest
case, shown first, has only one statement in the line. This first description means that
a deferred line consists of a line number optionally followed by a label ended with a
colon, then a BASIC statement followed by a Return.

The brace characters used in the second definition indicate that the eiements they
enclose may be repeated. The second description adds the concept that 2 program
line may have muitipie statements separated by colons; the brackets indicate that the
colon and the second statement are optional, and the braces indicate that the colon-
statement sequence may be repeated as many times as necessary.

The general syntax of a statement is described as:

verb [{(nouns adverbs numbers’ characters})
or variable= {(nouns adverbs numbers charactersi
or variable({ nouns adverbs numbers characters

The vertical-bar characters are used to indicate that the elements they separate are
alternatives; you should not type the vertical-bar, bracket, or brace chararcters when
entering a line. In other words, a satement is either one of the following:

C a verb optionally followed by one or more nouns, adverbs, numbers or any other
valid characters (such as arithmetic operators) in the proper sequences.

0

a variable name followed by either an equal sign or a left parenthsis and some
collection of other elements that make up an implied LET satement

10 Chepter 1: Infroducticn to Apple lies BASIC

For the purposes of this description, nouns and adverbs are specific subsets of the list
of reserved words known to BASIC. Generally, 2 BASIC noun is a reserved word that
has 2 value, or retumns a value. For example the reserved word SIN is a function that
retums a value but SIN is never 2 valid verb or a variable name and cannot be used to
begin a statement

BASIC adverbs are reserved words used 1o separate clauses within the symax' ofa
statement begun with a verb. For example, the statement

FOR I =« 1 TO 20 STEP 3

contains the verb FOR and the two adverbs TO and STEP. Adverbs are like nouns in
that they never begin a statement Some verbs, like FOR, are also used as adverbs by
some other verb, as in

OPEN ... FOR UPDATE

The BASIC tokenizer requires that statements begin with a2 verb or a variable name
followed by an equal sign or a left parenthesis. If you begin a statement with a2 noun or
an adverb BASIC will display the caret pointing at the last character of the invalid
word, followed by the message

PRESERVED WORD ERROR

on the next line. If you use a verb that can only begin a statement as an adverb, this
same message will appear. The specific reserved words in each subset considered here
are described in Appendix C, “Reserved Words.”

Starting and stopping programs

You may want to stop a program while it is running or restart a stopped program. The
statements that allow you to stop and restart programs are described below.

The RUN statement

RUN is used to start running a program. When you enter 2 RUN statement, BASIC
clears all variables, closes all open files (except executing text files), and begins to
execute the program in memory, beginning with its smallest line number.

If there is no program in memory, the cursor drops to the next screen line, and BASIC
redisplays the prompt. For example, (0 execute whatever program is currently in
memory, type

RTN

You can specify program execution to begin at a line other than the smallest line
number by following the command with that number. For example, to begin
execution at line 205, type

RON 205

If you specify a nonexistent line number, the
2UNDEF'D STATEMENT ZRROR

message appears.

If vou want 1o run a program that is in a disk file rather than stored in memory, vou can
specify the program to be run by giving its pathname. For example, to run the
program stored in a file named ASSETS, use

RON ASSETS

And if you wanted to begin execution at line 7254 of that program, use

RON ASSETS, 7254

If BASIC cannor find the file that you specified after searching the disk, it displays the
?FILE NOT FOUND ERROR

message. If the file is found, the current program and all of its variables are erased
from memory, and all open files (except an executing text file) are closed. The
program specified in the RUN statement is then stored in memory, and BASIC begins
executing it at either the lowest numbered line or at the specified line.

The RUN sttement is the last statement executed in any line. For example, in the line

IF X=1 THEN ROUN 1000 : Is=]

Chapter 1. infroduction To Appile lics BASIC

the varable I will never be assigned the value 1.
Trving to run a program that is not written in BASIC generates a
?FILE TYPE ERROR

~ message.

The STOP statement

IF BASIC encounters the STOP statement while a program is running, it halts execution
of the program, closes any executing text file, returns BASIC to immediate execution,
resels the output file to the console, redisplays the prompt, and displays 2 message.
For example, the message

?PROGRAM INTERRUPTED IN 8712

will appear if 8712 is the number of the program line containing the STOP statement
The program in memory is not altered in any way. STOP has no options associated
mvith it

The END statement

END is the same as STOP, except that no message is displaved when it is executed. The
END suatement has two options used in conjunction with the DEF statement. See

Chapter 7, *"Advanced Topics,” and Chapter 8 “BASIC Reference,” for more details.

The CONT statement

CONT causes execution of a program that has been halted by a STOP or END
statement, or bv a2 Control-C, to resume. The CONT command resumes execulion at
the statement immediately following the one at which execution was suspended, not
with the first statement in the next program line. For example:

)& PRINT"Program becgins"?
)2C END: PRINT "Back again"?
)2C PRINT “A_X Done"

) RUN

Program begins

) CONT

Back acain

A_l Done

)

CONT does not clear the program or reset the variables in memory, and there are no
options associated with it CONT has no effect if there is no program in memory.

Starting and stopping programs

You can continue a program halted by an error by using the CONT command. BASIC
will attempt to continue execution starting with the statement in which the error
occurred. An error made in immediate execution will not prevent a program from
being continued.

A program that has had any of its statements altered, or any new statements added,
cannot be continued with the CONT command. If you try, you will see the message

?CAN'T CONTINUE ERROR

Variables in a2 program can be changed using assignment statements in immediate
execution. For example:

)10 X=4 : PRINT X
)20 STOP

)30 PRINT X

) RON

4

3REAK IN 20
) X=X+2
) CCNT

€
)

The CONT command can only be used in immediate excecution mode, and it will
display an error message if you use it within a program.

Handling large programs

Even with the large amount of memory available for Apple [IGS BASIC programs, you
may find ways to fill it up. Then too, it is usually not a good idea to pack thousands of
program lines into a single program, since the result is hard to read and difficult t0
modify. The flexibility to divide large programs into easier to handle pieces is
provided by the CHAIN suatement, described below.

The CHAIN statement

If 2 program requires more memory than is available on your computer, or you want
to divide it up logically, you can split the program into smaller pieces and execute
them individually with the CHAIN statement

Chopter 1: Infreduction To Appie lics BASIC

CHAIN automatically loads and runs a specified program, without clearing the values
of the variables left over from the previous program or closing any files the previous
program left open. This allows variables used in one program to be used in another.
The pathname of the program to chain must follow the reserved word CHAIN. For
example, to chain to a program named Tires, use

CHAIN Tires

If the program specified in the CHAIN statement does not exist on the diskette, then a
?FILE NOT FOUND ERROR

message will be displayed

Execution of the specified program begins at the smallest line number, unless you
specify otherwise. Therefore

CEAIN /link/Fence, 800

causes execution to begin at line 800 of the program named Fence on the volume
/Link.

If the chained program uses a variable that was not used in the program executed
before it, a2 new variable will be created; otherwise, the old variable will be used.

If the chained program dimensions an array that was dimensioned in the previous
program, a

?DUPLICATE DEFINITION ERROK

message appears.
Here is an example of how you might use the CHAIN statement:

) NEW

12C PRINT "Program Twc speakinc"
)20 PRINT "A(32) 4is ";A(32)

)3T A(32) = 42

)4C CEAIN ProgramOne, 7C :REM Gc back to Program One
)Save ProgramTwe

)NEW

)2C PRINT *"Program One"

)20 DIM A(44)

)3C FOR i=1 TC 44

Y4C A(l) = 3

)EC NEXT <

) 6C CHAIN ProgramTwe : REM Now Program Twc will be run

)7C PRINT "Back to Program One" : REM Back from Program Twc
y8C PRINT *A(32) is now ";A(32)

)90 END

)Save ProgramOne

Running this program displays:

Handling large programs

18

) RON

Program One

Program Two .speaking
A(32) is 32

3ack to Program One
A(32) 4is now 42

)

Notice that you may chain back and forth between separate programs, and variable
values are preserved throughout.

Debugging programs

Although Apple IIGS BASIC can easily detect errors such as unknown verbs and faulty
syntax, you will have to find the more subtle sorts of errors such as slightly misspelled
variable names. The TRACE statement tan help you 1o catch these types of errors.

The TRACE statement

TRACE functions while a program is executing. It prints a2 number sign (#) followed by
the number of each line of the program as it executes. It is very useful when tracing
parts of the program that do not follow in sequential order.

TRACE used without any options displays the line numbers on the screen. If the
program that you are running displays characters on the screen, the output of TRACE
combines with that display in unpredictable ways. The line numbers may appear
around and within, or even be overlayed by the program’s display.

Fortunately, the TRACE statement has an option for directing its output to a file or
another device, such as a printer. The syntax for this is:

TRACZ 70 #filenum

This option allows you to open a file or a device with the open command, and then
send all the trace information to a disk, RAM disk file, or printer. You could even sead
the trace information through a serial connection to a separate terminal or computer
and display the trace information on another screen

If you trace a program that uses the OUTPUT# statement, the line numbers listed by
TRACE will be included in the file written to by OUTPUT*.

TRACE is canceled by NOTRACE, RUN NEW followed by a pathname, or by LOAD
followed by a pathname. TRACE is not canceled by CHAIN or RUN alone.

Chaopter 1: Infroduction To Apple lics BASIC

Warning:

Using TRACE with o program that includes an ON KBD statement can be risky
becouse TRACE slows program execution, and many keys could be pressed while
the ON KBD statement is being executed. This might cause ¢ stack overflow
efrror, giving o faise eror message for the program.

The NOTRACE statement

NOTRACE simply cancels TRACE, stopping the display of the line numbers of
executing program staiements. To use it, type

NCTRACE

There are no options associated with NOTRACE.

Special keyboard functions

Control-C and Control-Reset have special functions for users of Apple IGS BASIC, as
described below. Refer to your Apple IIGS Owner’s Guide for information about other
key combinations that have special functions.

The Control-C combination

Pressing Conurol-C while 2 statement in 2 program is being executed is equivalent 1o
inserting a STOP statement immediately after the statement. Control-C can be used to
stop the execution of any statement. For example, you could use it to terminate the
display generated by a LIST statement

Pressing Control-C while a program is waiting at an INPUT statement, before the
Return key is pressed, will abort that program.
Conrtrol-C will not stop execution of a program in the following cases: '

= A BREAK OFF or ON BREAK suatement has been executed (Control-C is handled by
ON BREAK; see Chapter B, “BASIC Reference,” for details).

= An ON KEBD suatement has been executed (ON KBD causes Control-C to be treated
like any other keystroke). However, the statement executed by ON KBD can issue an
END or STOP command if Control-C is pressed.

Special keyboard functions

17

= The program is waiting for an input/output (VO) operation to be completed. For
example, if the printer is not properly connected while the program is trying to
print, Apple IGS BASIC will not recognize Conurol-C. The printer connection must
be adjusted before the program can continue or be aborted by Control-C.

The Control-Reset combination

Pressing the Reset button while holding down the Control key halts /O operations and
reboots your computer. Control-Reset causes an electrical reset of the entire system.
Anything stored in memory is lost after pressing Control-Reset, including your
program and Apple OGS BASIC.

Automatic execution

In addition to immediate execution (directed from the kevboard) and deferred
execution (directed by programs stored in memory and started by a RUN command),
Apple IIGS BASIC ailows operation to be directed from a text file. You use the EXEC
stalement for automatic execution of instructions.

The EXEC statement

EXEC simulates keyboard input by reading the contents of a text file and executing its
instructions. To use this statement, enter the reserved word EXEC, followed by the
pathname of the text file containing the commands to be executed. For exampie:

IXEC /Workdisk/Business/Gamestar<ter

If the file you have specified is not a text file, the

message is displayed.

Apple IIGS BASIC accepts input only from the file spedﬁed in the EXEC statement
undl one of the following occurs:

Control-C is pressed

a STOP statement is executed

an error message is displayed

= the end of the file is reached

After any of the above events, BASIC returns control to the kevbcard

0

0 a

Chapter 1: Infroduction To Apple lics BASIC

EXEC automatically opens the file that it uses, but BASIC does not consider this file as
one of the total of six files that may be open at one tume.

Deferred immediate statements

You may have an application that is actually a series of programs, running one after
the other. If the individual programs require no user interaction, you can use EXEC to
run the sequence of programs, and then leave the operation unattended while the
computer works. You can do this by creating a text file that contains the RUN
statements, and then issuing an EXEC statement specifying that file. For example, you
would type

EXEC Runner

where Runner is a text file containing the lines

RUN Progr-aml
RUN Programl
RUN Programl

You can write programs that produce Files to be run by the EXEC statement. The
following program, called TextfileMaker, is an example of such a program:

10 REM Program "TextIileMaker™

20 OPEN ™"Runner",FILTYP= TXT FOR OUTPUT AS #3

30 INPUT ®=-%; SS : REM Get a line of text

4C IF LEN(SS)=C TEEN 7C : REM Was only Return pressec?
SC PRINT #3; SS : REM Write the line intoc the £ile

6C CTC 30 : REM Gc back anc get another llne

70 CLOSE #3

B8C ZIND

TextfileMaker displays a2 hyphen to prompt you 1o enter lines of text, one at a time,
until you type nothing but a2 Return. The lines will be written into 2 text file named
Runner. If you run TextfileMaker and enter the following responses:

RUN

=RUN ProchA
-RUN PreogB
-RUN ProgC

Apple [1GS BASIC will create the desired EXEC file. When you type
EXEC Runner

the contents of the Runner file will be output, one line at a time, exactly as though you
were entering the data from the keyboard. When the line containing RUN ProgA is
output, BASIC executes that line as a RUN statement, and runs ProgA. When ProgA is
finished running, the next line of text is output, causing ProgB to run. After ProgB
finishes, ProgC is RUN. After ProgC finishes, control returns to the keyboard.

Automatic execution

16

Note that you would not get the same result by writing a program to run the three
programs. A program containing the lines

10 RON "ProgA"
20 ROUN "ProgB"
30 RON "ProgC"™

runs only the first program because executing the RUN statement clears the current
program in memory, thus wiping out lines 20 and 30.

EXEC accepts any legal statement in BASIC, including conditional statements. This
allows you 0 make the order of program execution dependent on the result of a
program's execution. For example, you might want to run ProgB after ProgA only if
the value of X as determined by ProgA is negative. If X is positive, you might want to
run ProgC instead. To do this, your Runner file should contain the following:

RON ?2TogA
IF X<0 THEN RON ProgB : ELSE RON ProgC

Remember that an executing text file replaces keyboard input If an INPUT or GET
statement occurs in a program, it takes its input from the next line of the text file, not
from the keyboard.

If you call an EXEC file from a program, the EXEC statement must be followed by
END, as shown below:

10 AS="WoodFile"
20 EXEC AS : END
25 INPUT AS
30 GSTO 10

You can reenter the calling program after the EXEC file is finished by using either RUN
with a line number or GOTO with a line number as the last line of the EXEC flle.

You can force the computer to take input from the keyboard while a text file is
executing by opening the file .CONSOLE in your program or in the text file and doing
file input (see Chapter 5 “File Handling").

Creating deferred statements

When a deferred statement (one with a line number) occurs in an executing text file,
the effect is just as if you typed it on the keyboard. The line is stored in memory, and it
can be run or saved

Suppose that you have a program in memory (either one that you have just typed or
one previously saved) and you execute a text file conuaining deferred statements. If
these statements have line numbers different from those already in the program, the
effect is to add the new statements to the program. If any new line has the same number
as a line in the program, the new line replaces the old one.

Chapter 1: Infroduction To Apple lics BASIC

Suppose that you write a set of programs using modulo functions defined for real
variables. A modulo function takes the first expression and retumns the remainder after
dividing the first expression by the second expression, called the modulus. (The
value returmed by 7 modulo S is 2. 8 modulo 2 returns 0.) This is the same as the MOD
function in Apple IIGS BASIC.

If we call the real variable A and the modulus B, we can define 2 function named ModB
as follows:

30 DEF FN ModB(A)=(A/B - INT(A/B))*B

where B is replaced by an actual number. The result is meaningful only if A has a
positive value.

If you wanted to have Mod12, Mod1S, and Mod255 functions, you could begin each
program with the lines

1 DEF FN Modi2 (A)=(A/12 - INT(A/12))*12

2 DEF TN MocdlS(A)=(A/15 - INT(A/15))*1E%

3 DEFT FN Mod255 (A)=(A/255 - INT(A/255))*25%

Instead of tvping these lines into each program that uses these functions, you can
create 2 text file called Mods that contains them, and then enter

EXEC Meods

A program like TextfileMaker (shown in the previous section) could be used to create
the Mods file. Before running TextfileMaker, alter line 20 to produce 2 file named
Mods instead of Runner. When prompted, enter

=2 DET FX Mocdlz{(A)=(A/lZz = INT(A/12))*1
-2 DEF FN Mocli(A)=({(A/1E - INT(A/15))*l

=3 DEX TN Mocd2SE(RA)j=(A/2E5%2 - INT(A/255))+283

Now whenever you want 10 wrile a program using these MOD functions, start by typing
EXEC Mods (enter this command before running the program, but after loading it).

The same principle can be used whenever you have some lines to insert in several
programs. Make sure that the line numbers in the text file and the line numbers in vour
program don't overlap.

Automatic execution

21

Capturing programs as text files

Some of your programs may contain lines that you would like to insert in other
programs. To do this, you must convert the lines into a text file, then insert them into
other programs by using EXEC as described above. Use the OUTPUT# statement to
send console output to a text file instead of to the video screen. If you then use LIST, all
the output is written to the text file.

The resulting text file may be edited with any Apple IGS editor that accepts an ASCII
file. After editing and saving the text file, you can use EXEC to read the edited program
back into memory, and save the program from memory into a program file.

Suppose that you want to save lines 20 through 150 of 2 program starting at line 10 in a
text file name Goodlines. First load the program, then type the following:

)OPEN "Goodlines”", FILTYP=TXT FOR OQOUTPUT AS #3
)OUTREC=0 : INDENT =0

)OUTPUT #3 : LIST 20 - 150 : QUTPUT #0

) COTREC=80 : INDENT =2

)CLCSE #3

This creates a text file that you can insert into other programs with the command

EXEC Goodlines

Chapter 1: infroduction To Apple lics BASIC

Chapter 2

Tools of Your Trade

Variable types xx

Integer variables xx
Double-Integer variables xx
Reals xx

Strings xx

Reserved words and variables xx

Arrays xx
The DIM statement xx

Statements xx

Expressions xx

Arithmetic Expressions xx

Arithmetic operator precedence xx
Logical expressions xx

Logical operator precedence xx

Functions xx

Sting Functions xx

The LEN function xx
The STRS function xx
The CONVS function xx
The VAL function xx
The CHRS function xx
The ASC function xx
The HEXS funciion xx
The TEN funcuion xx

The ERRTXTS function xx
The SPACES function xx
The REPS function xx
The PFXS function xx
The UCASES function xx
The LEFTS function xx
The RIGHTS function xx
The MIDS$ function xx
The INSTR function xx
The SUBS function xx
Numeric functions xx
The SIN function xx
The COS functions xx
The TAN function xx
The ATN function xx
The INT function xx
The RND function xx
The SGN function xx
The ABS function xx
The SQR function xx
The EX?, EXP1, and EXP2 functions xx
The FIX function xx
The LOG, LOG1, LOG2, and LOGB% functions xx
The NEGATE function xx
The ROUND function xx
The SCALB function xx
The CONV& function xx
The CONV function xx
The CONVS function xx
The CONV% function xx
Miscelaneous functions xx
The BTN function xx
The FILE function xx
The JOYX and JOYY variable xx
The PDL function xx
The PEEK function xx
Defining your own functions xx
The DEF FN statement xx
Using a defined function xx
Remarks about defining functions

24 Chapter 2: Tools of Your Trade

This chapter describes the tools that Apple IIGS BASIC provides for effective
information handling. Here are some terms that you should know before continuing:

s A variable is 2 container to store 2 value. It can be thought of as a2 box that can hold
a single value. Variables have limits on the types of things they can contain (just as a
box can contin only things of a certain size). Also, there are cenain tasks for which
some variables are better suited than others; for example, a filing cabinet is not a
suitable place to store fruit, but 2 wooden crate may be.

® Variables are referred to by their names. The box in the example above might be
labeled junk; the fruit crate could be labeled apples2. Both junk and apples2 are
legal variable names. A variable name is 2 sequence of characters beginning with 2
letter and followed by from 0 to 29 additional leners, digits, or periods. Lowercase
letters in variable names are considered equivalent to their uppercase counterparts.
For example, the names junk and JUNK refer to the same variable.

B Not all possible names can be used. Some reserved words are used by IIGS BASIC
to refer 10 the language’s statements and functions.

8 A constant is an unchanging, or fixed, value. There are two kinds of constants in
BASIC: numeric and string. A numeric constant is a value written as a number; a2
string constant is any sequence of characters enclosed in quotaton marks. For
example, 3.14159265 is 2 numeric constant; “dangle” and “463" are string
consuants. The numeric constant 463 and the string constant *463" do not represent
the same value.

Variable types

There are six variable types in Apple IIGS BASIC: single-precision reals, (generally
referred to simply as reals), double-precision reals (called double), integers, double
integers, long integers, and strings. The first five types represent numbers of various
kinds, the last type represents sequences of characters.

The type of a variable is determined by the last character of its name: $ for string,

for double precision, % for integer, € for double integer, and & for long integer. In
the absence of any of these special trailing characters, the variable type is considered
to be real (singie precision) by default

Here are examples of names of the six variable types:

Tabie 2-1

Name Type

Myname$ string

Lencgth . real

Bignum# double precision
rbles% integer

Varigble types

GPaddress@ double integer
Light.Yearsé long integer

Simple variables are created when they are first used in a program. When BASIC sees a
variable name in a statement, it first checks to see if it already has a variable with that
name. If it finds the name, it knows where in memory to find the value stored in the
variable.

If BASIC doesn't find a simple variable matching the name already in memory, it
immediately creates the new variable. It places the new variable name in the directory
of variable names so it can be found later, then finds free space in memory to store the
value that the variable will conuin. It also notes the type of the new variable.

For numeric variables, BASIC stores the value 0 in the varable; for string variables, it
stores an empty, or null, string in the variable.

Integer variables

Generally, an integer is any positive or negative whole number without a decimal
point. [IGS BASIC supports three sizes of integer variables and converts integer
constants in a program into four internal binary formats when an integer constant is
found in a2 program statement The numbers 3, -3, and 20,000,167 are examples of
integer constants.

The first, or smallest size, integers are usually referred to as integers without any
qualification; you should think of them as word integers.

An integer variable name must end with a percent sign (%). For instance, % is the
name of an integer variable. Integer variables can store values up to five digits long,
from -32768 10 32767. Auempting to assign a value beyond this range (0 an integer
vanable generates the message

?0VERFLCOW ERRCR

Integers are displayed without leading zeros (with a leading minus sign if negative),
followed by up to five digits without 2 decimal point

Integers are useful when fractional parts of numbers are not needed. They can also be
used to speed up some types of calculations where real numbers are not required, and
they take up significantly less space in memory.

26 Chapter 2: Tools of Your Trade

Double-integer variables

Double integers are similar to ordinary integers, except that they may be up to ten
digits long and they require twice the storage space of single integers. They can be
mixed in arithmetic expressions with regular integers or reals, but some loss of
precision may occur, depending on the range of the result Double-integer variable
names must end with an at sign (). A double-integer value can range from -
2147483648 to 2147483647. Exceeding this range causes the message

?0VERFLOW ERROR
to be displayed.

Long-integer variables

Long integers are similar to ordinary integers, except that they may be up to 19
digits long. Theyv can be mixed in arithmetic expressions with regular integers or reals,
but some loss of precision may occur, depending on the range of the result Long-
integer variable names must end with an ampersand (&). A long-integer value can
range from -9223372036854775807 to 9223372036854775807. Exceeding this range
causes the message

20VERFLOW ERROR
1o be displayed.

Long integers are displaved without leading zeros (with a leading minus sign if
negative), followed by up to 19 digits without 2 decimal point ’

Many types of financial programming could profit by using long integers and doing all

calcuiations in pennies. The decimal point could be inserted later when reporting
results by using the SCALE function, described later in Chapter 3.

Reals

Reals are any positive or negative number within the allowed range. The allowed range
varies depending on whether the real type is single precision or double precision.
Unlike integers, reals can have a fractional part The numbers 3, 33, 3.3 .33 3, .
3.0, .3, and -.3 are examples of real constants. A numeric constant with a2 decimal
point is always of type real, even if it has only zeros to the right of the decimal point.
For example, 3. is a real constant. Constants with more than nine digits and any
constant with either a decimal point or an exponent remain as characters and are not
tokenized when program lines are entered into a program.

Varigble types

27

All numbers within a selectable range are printed in conventional or fixed-point
notation (also called fixed format) by the PRINT statement. For example, 1, +1, -1,,
3.14, 999.999, and -0.2 are real numbers expressed in fixed-point notation. The limits
of the range are set by the modifiable reserved variable SHOWDIGITS The default
value of SHOWDIGITS is 7.

The SHOWDIGITS variable controls the binary to ASCII conversion of all numbers
output by PRINT, mclud.mg double or long integers. The default setting will format
numbers less than 107 and greater than or equal to 10-7 in fixed formart; this is the
nominal precision for single real numbers.

When fixed-point notation does not represent the real number accurately, BASIC
converts it to scientific, or E (for exponent) nouation. The number .0000001 wiil print
in fixed format, but .00000012 will print in scientific notation (as 12E -6), since a
significant digit would be dropped if only seven digits were shown.

You can enter from the keyboard any real number within the allowed range in
scieatific notation. For exampie, you could type 5.3E12 to represent 5.3 times 10
raised to the twelfth power. When a number is formatted in scientific nottion, trailing
zeros are not displayed in the mantissa of the number, even if the result is fewer digits
than the value of SHOWDIGITS. Here are examples of fixed-point notation versus
scientific notation.

Table 2-2

Fixed-point notation Sclentific notation
300 3E+2 = 3°(10A2)

1320 3.2E2 = 3.2°(10A2)
.44 4.4E-1 = 4.4°(10A-1)
-.033 -3,3E-2 = 3.3°(10A-2)
1000000000000 1E+12 = 1*(10A712)

Apple IIGS BASIC considers a single-precision real whose absolute value is less than
1.5E-45 as equal to zero. Double-precision reals with a value smaller than 5.0E-324 are
considered equal to zero.

When BASIC displays a real, it displays SHOWDIGITS digits, excluding any exponent
Any significant digits beyond the value of SHOWDIGITS are rounded off. Leading
zeros to the left of the decimal point and trailing zeros to the right of the decimal point
are not displayed. The decimal point and SHOWDIGITS digits are always displaved,
even if the fraction is zero.

Single-precision reals must be within the range of -1.7E38 to 1.7E38. Double precision
reals must be within the range of -1.7E308 to 1.7E308. If you enter a number outside
those ranges, the message

?0VERFLCW ZIRROR
will be displayed.

28 Chapter 2: Tools of Your Trcde

Strings

A string is a2 sequence of characters enclosed within quotation marks. String variable
names must end with a dollar sign ($). Strings may contain from 0 (the null string) to
255 characters. The number of characters in a string is referred to as its length. Strings
are not fixed in length; they may grow or shrink as necessary.

Strings must be bounded by quotation marks, but they can not contain quotation
marks. For example, the statement

PRINT "What does "FOO" mean?"
prints
What does 0 mean?

The quotation marks cause BASIC to assume that FOO is a real variable with a value of
0, since it has not been assigned a value. However, strings can contain single
quotation marks; the statement

PRINT *"What does 'FOC' mean?"
will be printed as it appears.

If you need to print quotation marks, you can use the CHRS function with the ASCHI
code 34 to produce them. For example, this statement will print with quotation marks;

PRINT CERS(34);"One small step for a man...";CHRS(34)

‘The CHRS function is described in detail in the section *String Functions” later in this
chapter. ’ '

When a program is run, all string variables initially contain the null string.

Reserved words and variables

Some names cannot be used for variables because they have special meanings for
BASIC. For example PRINT, HOME, and OPEN are reserved words in BASIC; they
cannot be used as variable names or line labels.

If you anempt 10 use a reserved word, you will see the
?SYNTAX ERROR
message

One group of BASIC reserved words are known as reserved variables. The reserved
variables are

AUXID@ KBD

Reserved words ond variabies

29

EOF JOoYYy

ERR PDL9
ERRTOOL SECONDS@
ERRLIN PROGNAMS
FRE DATES
TIMES

Your program can refer to the values of these variables, but you cannot assign values to
them. For example:

PRINT ERRLIN

is a legitimate statement, but

TRRLIN=50

is not

You can assign values to BASIC's modifiable reserved variables
HPOS OUTREC

VPOS PREFIXS
INDENT PROGRAMS
LISTTAB SHOWDIGITS

Chapter 4, “Controlling Program Execution,” explains how to use assignment
statements to change the values of these reserved variables. An alphabetical list of all
BASIC reserved variables appears in Appendix C, “Reserved Words."

Arrays

An array is an ordered collection of single variables, all of the same type. The name
of the whole collection, called the array name, can be any legal variable name. The
last character of the name determines the type of all the variables in the array.

In addition to the normal types, a spedial type of array, called a structure, is
supported by IIGS BASIC. The type character that defines structure arrays is the
exclamation point (D), as in DRECORD!. The individual variables in a structure are
bytes. A structure variable is treated as a short, unsigned integer in 2 numeric
expression, with values from 0 through 255. Structures may only be defined with the
DIM statement (as discussed in the next section) and are not allowed as simple
variables.

30 Chapter 2: Tools of Your Trcde

The individual variables (or elements) within an array are numbered, starting with 0.
To refer to anyv element within an array, you specify the name of the array, followec by
the number of the element endosed in parentheses. For example:

PRINT AR(3)
displays the contents of element number 3 in the array named AR, and
PRINT PRICES (147) '

displays the contents of element number 147 in the array named PRICES. The
numbers in parentheses following the array name are called the array’s subscript. The
subscript specifies one unique element within the array.

An array can have three or even more dimensions. The number of dimensions is the
number of subscripts needed to specify an individual element within it. A one-
dimensional array can be viewed as a single list of variables, one after the other in a
line. The variable name for such an array needs only one number to specify each
variable. For example, a2 one-dimensional array named Hdoz with six elements
includes the elements

Bdoz (0), HEdoz2(l), Hdecz(2), Hdoz(3), Bdoz(4), Hdecz(5)

Note that the largest subscript value is one less than the total number of elements in
that dimension of the array.

In 2 two-dimensional array, two subscripts are needed to specifv an individual
element For example, 2 two-dimensional integer array named D% might include the
elements

o8 (0,0 Ty (2,0, D& (2,0,
Ds(C,2), Dy (3,2), Dy (2,2),
2%(0,2), Dy (2, 2), D% (2,2)

D%(2,1) specifies the element in the third column and second row.

Here are some examples of arrays:

Table 2-3

Array Type Dimensions Element referenced
Fudge%(3,2) Integer 2 4th column, 3rd row
Addrs@(44) Double integer 1 44th element

Frowz&(77,0) Long integer 2 78th column, 1st row
STATS(200) Real 1 200th element

BIG#(300) Double real 1 44th element
Mumble$(7,3,1) String 3 8th column, 4th row, 2nd plane
MYRec!(23,10) Structure 2 24th column, 11th row

Arrays

31

The DIM statement

To create an array, you must first tell BASIC the maximum number of elements and
dimensions you want the array to accommodate. To do this, you use a DIM (for
dimension) statement. For example, the statement

DIM Mind%(7,2,3)

creates an array named Mind% with three dimensions, with the first subscript ranging
from 0 to 7, the second from 0 to 2, and the third from 0 to 3. The character %
specifies that this will be an integer array.

Remember that the list of dimensions for all arrays begin with subscript number 0, so
the number of elements in each dimension is always one greater than the greatest
subscript value. Thus, the number of elements in the array Mind% is equal to

T+ 1x(2+1)x(3+1), or 9.

Before you dimension any large arrays, you must expand the data segment so enough
memory is available to accommodate the size of the array. The data segment is
expanded by using the CLEAR statement with the size option, as described in Chapter
1 and in more detail in Chapter 7.

More than one array can be defined with a single DIM statement by separating the
arrays with commas. For example:

DIM Light%(78,9), Bulbs$(2,45), Lanterns#(9,2,8), LY (16)

creates an integer array named Light%, a string array Bulbs$, a double-precision array
Lanterns#, and a real array LY.

Subscripts can range from 0, which is always the first element of each dimension of the
array, to a maximum value of 32767. Subscripts may be any integer or real expression;
however the resulting value is converted (0 an integer before the particular element is
actually accessed.

If you assign a value to an array element before defining it with a DIM statement,
BASIC automatically creates an array having 11 elements per dimension, with
subscripts numbered from 0 to 10. For example, when the statement

LET TMS(0,0,0) = 29

is executed, BASIC defines an array TMS, just as if the statement
DIM TMS(10,10,10)

had preceded the LET statement

If the statement

PRINT 2&:{23,10CPS)

32 Chapter 2: Tools of Your Trade

is executed before the array D& is defined, a zero is displayed. Unlike other BASICs,
OGS BASIC only automatically defines the dimensions of an array when an assignment
occurs, not when a reference occurs. A dummy zero is returned for all array
references, regardiess of type, if the array has not been dimensioned.

If the value of a subscript refers to either 2 nonexistent dimension or 2 nonexistent
element (one that is greater than the highest numbered element in 2 given
dimension), the

2?BAC SUBSCRIPT ERROR

message is given In the example below, both of the statements after the DIM
statement will cause this error.

)DIM RealArzay(i,2))

}PRINT RealArray(l,3) (CIM statement did not 4include 3)
yPRINT RealArray(l,1,0) ({DIM did not create 3 dimensiorns)
Statements

Statements can be used in either immediate or deferred execution. Immediate
statements have no line number or label, and they are executed immediately when
entered. Deferred statements have line numbers and they may have a label, and
are stored in memory (as part of a program) for later execution.

A list of statements may share one line number. In this case, adjacent statements must
be separated by a colon (:). The last statement in the list must end with a return. This is
called 2 statement list. For example, the following are both legal statement lists:

) Xind=4:¥ind=S:2IF ¥val>i0 THEEN rval=xind/yind ELSE rval=xind*yind

)10 FOR index%®=. TC 7:Avalue (index%)=index¥:NEXT index%

No deferred line, statement or statement list may exceed 239 characters. After

tokenization, a program line, including the line number and 4 overheac bytes, may
not exceed 255 characters plus a label of up to 30 characters.

Expressions

There are three kinds of expressions: arithmeltic, string, and logical. An expression
can be a single constant or variable, or it can be an elaborate mathematical grouping
of operators and operands. Operators are symbols representing mathematical
operations. Operands are the variables and constants that operators work on. For
example, in the expression 2+3, the operands are 2 and 3 and the operator is the +
svmbol.

Expressions

33

Arithmetic expressions

The operands of arithmetic expressions can be reals, doubles, mtcgers, deuble
integers, or long integers. There are ten arithmetic operators:

Table 2-3

Symbol Mecning Example Vaiue
+ Unary plus +5 +5
- Unary minus -2 -2
A Exponentiation 274 16
. Multiplication 4°6 24
/ Division 5/2 2.5
Drv Integer division 7DIV S 1
MOD Modulo 7 MOD 5 2
REMDR SANE™ remainder S REMDR 3 -1
+ Addiudon 4+7 11
- Subtraction 9-2 7

Arithmetic operator precedence

In a simple expression like

4+8/2

you can't tell whether the answer should be 6 or 8, until you know the order (or
precedence) to carry out the arithmetic operations. Your Apple IIGS computer gives
the answer as 8 because it follows these rules of precedence:

1

34

. Any part of the expression enclosed in parentheses will be computed first,

according to the following rules. Sets of parentheses grouped one inside another
are evaluated from the inside out First the innermost set is evaluated, then the
second innermost, and so forth. For example, the expression 2°(4+3) is equal to
14, while 2°4+3 equals 11.

. When the unary minus sign is used to indicate 1 negative number, for example:

-3+2

your computer will first apply the minus sign to its operand. Thus -3+2 evaluates to -
1. It is perfecly legal to use the unary plus sign, but it is always ignored as an
operator. For example, the expression

+(=4)

evaluates to -4, not +4.

. After applying a unary plus and minus sign, your computer does exbonenu‘ation.

The exp-=ssion
4-3-2

Chapter 2: Tools of Your Trade

is evaluated by squaring 3, and then adding 4. When there are a2 number of
exponentiations, they are done from left to right, so that
2-3-z
is evaluated by cubing 2, and then squaring the result

4. After all exponentiations have been calculated, all of the multiplication and
division operations are done, from left to right The multiplication and division
operators have equal precedence. For example:
2¢/6/2
evaluates to 2.

S. After multiplication and division operations have been calculated, DIV, the integer
division operator, evaluates the integer quotient of the division of the first operand

* by the second For example:

7 DIV 2
evaluates to 3.

‘6. After DIV operations are calculated, the MOD and REMDR operations are done,

lefi 1o right MOD evaluates the integer remainder of the division of the first
operand by the second. For example:

7 MO 3

evaluates to 2. REMDR, the SANE (Standard Apple Numeric Environment)
remainder operator, returns a remainder of the smallest possible magnitude. The
SANE remainder function differs from the MOD function; its exact definition is
inciuded in Appendix K, “SANE Considerations.” MOD and REMDR have equal
precedence. -

7. All additions and subtractions are done last, from left to right. Addition and
subtracton have equal precedence.

Logical expressions

Logical expressions, also called relational and Boolean expressions, are similar to
arithmetic expressions, but use additional operators. Where an example of an
arithmetic expression might be 2+2, 2=2 is an example of a logical expression. The
value of the first expression is 4, while the value of the second expression is true
because 2 does equal 2. Likewise, the value of the logical expression 2=3 is false
because 2 does not equal 3.

Since BASIC doesn't understand the meaning of truth as such, but only the value of
numbers, true and false have been assigned the integer values 1 and 0, respectively.
Thus the expression 2=2 returns an integer value of 1 to represent true; 2=3 rerurns an
integer value of O 1o represent false.

Expressions

w
wm

Any arithmetic expression with 2 nonzero value has a truth value of true. Any
arithmetic expression with a value equal to 0 has a truth value of false. For example, the
logic expression 2+2 has the truth value of true and returns an integer value of 1.

There are eleven logical operators, as described below:

Table 2-4

Symbol Meaning Example Vaiue
- Equal to 3=3 True
< Less than 3<1 False
> Greater than 7>4 True
<= Oor =< Less than or equal to S<=4 False
>= or => Greater than or equal to 8>=5 True
<> or >< Not equal to 4<>4 False
<=> Ordered (vs unordered) 4<=>NaN False
AND Conjunction S AND 0 True
OR Inclusive disjunction 8OR 3 True
XOR Exdusive disjunction 8 XCR 3 False
NOT Negation NOT 4 False

Logical operator precedence

The precedence of operators in logical expressions is listed below in order of
execution from highest to lowest priority. Successive operators of the same priority are
executed from left to right

)

- = NCT

-/

oIv

MCD REMDR

> < ® >m= &> <= =< <> >< <=>
AND

OR XOR

Here are some additional examples of logical expressions, all true:

36 Chapter 2. Tools of Your Trcde .

NOT (4=5)

(3-2) OR (NCT=4)
5¢<>2 AND (€ OR 4)
(2+2)

-2

-(2+2)

NOT © AND 6

2*3 «+ 3/2

9.3

(3.414) = (1.707 + 3.41%4)
-(2.6)

3 + =(2.5-7)
3<>23444

33 MOr 7

Be careful when writing arithmetic expressions. The expression 3<2 is false, and the
expression 2<1 is also false, but the expression 3<2<1 is true! This is because BASIC
first tests the expression 3<2, and finds it false. False has the integer numeric value 0. It
substitutes the value of 0 for 3<2. The expression evaluator then tests the expression
0<1, which is true. The last truth value found is assigned to the expression result, in this
- case the integer 1.

1t is possibie to use logical operators in string expressions. For example, *alpha" <
"beta" is true.

The ASCI values of the strings to be compared are tested one character at 2 time, and
the first pair of nonidentical characters determines the ranking of the strings. (See
Appendix A *ASCII Characters Codes,” for a table of these codes and their numeric
values.) While simple comparisons of uppercase letters present no problem, the result
of comparing mixed-case letters and digits is less straightforward. In every case, the
dedision will be based on the ASCII code vaiues.

Here are some examples. These string logical expressions are all true:

ﬂA" <ClB'I

'lAll <'3AA"
"Z">"Antidisestaktlishmentarianism"”
"Antim"<"Antidisestablishmentarianism"”
OIAO')'!CG

’laﬂ>"A'l

g gnyn

The Ordered operator

Triple comparisons, such as >=<, <=> and <>=, are legal constructs in Apple

IIGs BASIC. All the combinations are treated as the same operator, the Ordered test,
which tests for a relationship peculiar to IEEE (Institute of Electronics and Electrical
Engineers} numerics, as implemented by SANE (SANE is further discussed in
Appendix K and described in detail in the Apple Numerics Manual.)

Expressions

Two mathematical concepts are supported by SANE to minimize problems created by
representation of numbers by a2 computer. These concepts are internal
represenuations for infinity and the concept Not 2 Number, or NaN. Most BASICs
do not support representations for these concepts in real numbers. Thus, in

TGS BASIC, when you try to divide by zero, infinity is returned as the result.

The concept of NaN is more complex than infinity, but generally NaNs are generated
as the result of impossible or meaningless operations. The simplest example of a NaN
is the result of trying to take the square root of a negative number. Some other
examples are 0°INF, (+INF)+INF), 0/0, and X MOD 0; all of which are meaningless
operations.

1IGS BASIC generates a result of NaN if it encounters these and other impossible
operations during expression evaluation. If you then assign the expression result to a
real variable, that variable will not have a numeric value, but a concept value instead.
The Ordered test checks to see if both its operands are numeric values, that is that
neither operand is a2 concept value. The <=> operator returns true if both operands
are numeric representations and false if eithes operand is a NaN.

A computer cannot always represent the exact mathematical value of a number. An
example of this is the value one-third, (1/3). This number is called a repeating
decimal, and it is represented in binary as an approximation of the value 1/3 to a finite
amount of precision. Thus 1/3 is represented as .33333333333333333333000 when it is
calculated by BASIC.

Moreover, when the expression 1/3 is assigned to a single-precision real variable,
some precision is lost and the value represented becomes closer (0
.333333343267440795 than to 1/3. As you can see, the first seven digits are correc:, but
the eighth and later digits are not, and the value is slighty larger than 1/3.

This loss of precision also occurs if the value is stored in 2 double-precision variable.
The expresssion 1/3 becomes closer to the value .33333233233323333]1483 when
assigned (with the LET statement) to a double-precision real variable.

These differences in precision between an expression result (19 to 20 digits of ’
precision) and the precision of variables (7 and 15 digits) can cause problems if you
compare an expression to a variable. Thus, the statement

1000 IF A#=1/3 THEN .
will not be true, even if A# was assigned the value of the expression 1/3.

The loss of precision caused by assignment to a variable must be taken into account
when comparing variables with expression results. You can round an expression result
to the precision of a variable with the CONV and CONV# functions to eliminate this
type of problem in the logical expressions of your [F statements (see the description of
IF in Chapter 8).

38 Chapter 2: Tools of Your Trade

Functions

Most of the programs that you will write in BASIC will use a relatively small number of
tools to solve a large number of different problems.

For example, many scientific and engineering problems require the use of logarithms
or trigonometric functions for their solution. You could probably solve these with the
use of tables built into your program, or with some equally tedious means, but

IGs BASIC includes a set of tools, called functions, to make these calculations easier.

A function takes one or more expressions, called arguments, performs some
defined operation on them, and returns a single value. A function’s arguments are
arithmetic expressions, except in string functions (described later in this chapter in
the section “String Functions™) Arguments are enclosed in parentheses following the
function name. The returned value is substituted for the function name in the same way
that the value of a variable is substituted for the variable name when used by a

program.

A function is not a statement itself, but is used as part of a BASIC statement. Functions
simply return values; statements tell BASIC what to do with the value returned by the
function.

You can either use the functions built into Apple IIGS BASIC, or you can define and use
your own functions. The functions built into BASIC perform certain standard
operations, such as trigonometric functions, removing fractions from real numbers,
finding the absolute value of a number, and so on.

Values returned by functions have types, just as variables and constants have types. All
built-in string functions return strings. Most other functions return numbers of type
real, but some functions return integer or double-integer results. For example,
CONV%, CONV@, and CONV& return regular integers, double integers, and long
integers, respectively. IIGS BASIC allows you to freely mix the numeric functions of all
types in numeric expressions without generating any errors. However, mixing
functions can cause a Joss of predision if used incorrectly.

You can assign a real value (returned by 2 function) to an integer variable, provided it
is within the range of -32768 to 32767, since reals are automatically converted to
integers by BASIC for this purpose. *

For example, the INT function rounds a fractional number to the next lowest whole
number (real):

)X==3.3 : ¥Y=7_,95
YPRINI INTI(X), INT(Y)
-4]

This is equivalent to using

)Xe=q : Ym=7 -

Functions

3¢

When a function is included in an expression, BASIC first returns a value for the
function, and then evaluates the rest of the expression using the function result. For
example, BASIC treats

WIDTH=3.3
A=S*INT(WIDTE)-3

as
A=5%3+3

If you want to use or display the value returned by the function, you must include
statements in your program to that effect. For example, if you want to display the sine
of e, you must first use the SIN function, and then use a PRINT statement to display the
returned value:

) Z=2.718
)PRINT SIN(E)
.412038

)

String Functions

Not all functions operate on numeric arguments; some of them work on strings. A
string is a sequence of characters and can exist in three forms: as a string constant
enclosed in quotation marks, as the content of a string variable (a variable whose
name ends with the $ character), or as the value of a string expression.

A string expression’s operands are strings and it retumns a sting value when evaluated.
The only operator allowed within a string expression is the concatenation operator, -,
which joins strings together. Here are three examples of string expressions:

Table 2-5

Expression Vaiue

Message$ Whatever has been assigned to MESSAGES
Message$+"123" Value of MESSAGES with "123" appended to it
"Ap"+"ple"+" IIGS BASIC" "Apple 1IGS BASIC"

An expression having strings as operands but containing any operators other than + is
a logical expression, rather than 2 string expression. For example, the value recurned
by

MSG1S > MSG2S)
is not a string, but an integer with 0 for false or 1 for true.

A string containing zero characters is cailed a null string and has a length of 0. A aull
string is written "". For example the statement

" 40 Chapter 2: Tools of Your Trace

YAS=""
assigns a null string to AS.
The names of BASIC string functions that return string values end with the $ character.

The LEN function

LEN returns an integer value equal to the length of the string expression, in the range of
0 to 255. For example: '

)PRINT LEN("ABCD")

4

)BS="Farm™:PRINT LEN(BS+"House")
S

)

If the string expression contains more than 255 characters, the message
?STRING TOO LONG ERROR
is displayed.

The STRS function

STRS evaluates 2 given arithmetic expression and returns the value as a string. For
example:

)PRINT STRS (25/3)

B.333333
JPRINT STRS(100000000000)+"More™
lZ-1lMcre

)

The CONVS function

CONVS evaluates any type of argument and returns a string result If the expression
resull is 2 real type, the string result will be the string that would have been generated
bv the PRINT statement. If the argument is a string expression, no conversion is
performed.

If the expression result is of type integer, CONVS always returns a fixed-point
formaned string of 1 to 19 digits, regardless of the value of SHOWDIGITS. This
treatment of integer results is different from the STR$() function. Notice the different
output from STRS and CONVS in this example:

JAE=21223344E5566778899
)PRINT STRS (Aé),CONVS (AL)
.2.122334E+17 112233445566778899

Functions

The VAL function

VAL evaluates a given string expression and retums the value'as a real or an integer
number. For example:

)PRINT 10*VAL("1.3E4"™)
130000

)PRINT VAL("13"+"77"™)
1377

)

If any character of the string expression value evaluated is not a legal numeric
character (leading spaces are acceptable), the message

?TYPE MISMATCH IRROR
is displayed

If the absolute value of the number represented by the value of the string expression is
greater than 1.7E308, the message

2CVERFLCOW ZIRRCR

is displayed.

If the string expression value contains more than 255 characters, the message
?STRING TCO LCNG ERROR

is displayed.

The CHRS function

CHRS takes an arithmetic expression as an argument and returns a one-character
string corresponding to the ASCI value of the evaluated arithmetic expression. For
example:

)PRINT CERsS(66.8)

<

) R§S="68":PRINT CHRS (VAL(RS))
0

)

The value of the arithmetic expression is rounded to the nearest whole number if it is a
real. It must be in the range 0 to 255, or the message

?2ILLEZGAL QUANTITY ERROR
is displayed. (See Appendix A, “ASCI Character Codes.™

42 Chapter 2: Tools of Your Trace

The ASC function

ASC returns the ASCI character code corresponding to the first character of the given
string expression. If the string expression value is a null string, then the value -1 is
retumed. For example:

)PRINT ASC(“BEEP")

€6

)dS="BEEP" : PRINT ASC(dS+"S")
66

)

The HEXS function

HEXS returns as an eight-character string equal to the hexadedimal (base 16), called
hex, value of the given arithmetic expression. For example:

)PRINT EZXS (780)
0000C30C
)PRINT EEXS (-1024%)

.....

)

The value of the given arithmetic expression is rounded down to the nearest whole
number if necessary. It must be in the decimal range of -2147483648 to +2147483647;
otherwise, the message

?ILLEGAL QUANTITY ERROR
is displaved.

The TEN function

TEN returns the decimal (base 10) equivalent of the last eight or less characters of the
given string expression. The value returned will be in the range of -2147483648 10
+2147483647, as a double integer. For example:

YPRINT ITEN("030C™)
78C

JPRINT TEIN("CCCCT)
£2428

)PRINT TEN("FFFFCCCCT)
-13108

)

If the first character in an eight-character hex number is a2 hex digit 8 or greater, then
the result of the function will be negative, since the leftmost bit of the number is a 1.
The trailing eight or less characters of the vaiue of the given string expression should
represent a2 hex value.

Functions

The characters of the string are scanned from last to first and digits and the letters A
through F (or a through f) are considered part of the hex string to be converted until a
nonhex digit is encountered. The hex string may have zero to eight hex digits. If no
hex digits are found in the string, the value zero is returned.

The ERRTXTS function

ERRTXTS takes an arithmetic expression, in the range of 1 through 255, and returns a
string. The text of the string is copied from the error message tables within IGS BASIC.
The argument is the error number of the error message, as defined in Appendix B,
“Error Messages.” If the value of the argument is larger than the last defined BASIC
error number, the text PROGRAM is returned. Upon initial release, IGS BASIC has
defined errors 1 through 88.

You can construct a string exactly like 2 BASIC error message like this:

1000 LET EMS = "27"+ZRRTXTS(67)+"ERRCR"

The SPACES function

SPACES returns a string of spaces with the length given by the argument, an arithmeric
expression. The value of the expression must be in the range of 0 through 255. If the
value is zero, a null string is returned.

The REP$ function

REPS returns a string composed of the first character of the given string argument,
repeated the number of times given by the second arithmetic argument. For example:

- - " - - - - - - - - - = - - - - - - - - - - - - - -

The value of the arithmetic expression must be in the range of 1 through 2553, or the
message

?ILLEGAL QUANTITY ERROR
is displayed.

The PFX$ tunction

PFXS is a string function that returns a string with the value currently assigned to the
ProDOS® 16 prefix given by the numeric argument. The argument must be in the
range of 0 through 8. ProDOS 16 supports prefixes 0 through 7, and PFXS will return
the read-only boot-volume name for PFXS(8).

PFXS will rerurn a null string if the requested prefix is not defined.

a4 Chopter 2: Tocls of Your Trade

The UCASES function

UCASES is a string function that shifts all the lowercase letters (a through 2) in its input
string argument to uppercase (A through Z) and returns the string result

The LEFTS function

LEFTS returns a string composed of the leftmost characters of the given string
expression. The length of the string returned is defined by an arithmetic expression
that immediately follows the string expression in the LEFTS argument list For
example:

)PRINT LEFTS ("Appleskin”,5)
Apple

)PRINT LEFTS ("Sparkling",3)
Spa

)

If the value of the arithmetic expression exceeds the length of the string expression
value, all the characters of the string expression value are returned.

If the string expression value contains more than 255 characters, the message
?STRING TOO LONG ERROR

is displayed The value of the arithmetic expression is rounded down to the nearest
whole number if necessary. It must be in the range of 1 to 255, or the message

2ILLEGAL QUANTITY ERROR

is displaved.

The RIGHTS function

RIGHTS returns a string composed of the rightmost characters of the given string
expression.. The length of the string remrned is defined by an arithmetic expression
that immediately follows the string expression in the RIGHTS argument list. For
example:

)PRINT RIGETS ("Appleskin®" + "Ware®, 8)

skinWare

) BS=RIGETS ("Fruitbat", 3) : PRINT BS

bat

)

If the value of the arithmetic expression exceeds the length of the string expression
value, all the characters of the string expression value are returned.

If the string expression value contains more than 255 characters, the message

?STRING TO0 LONG ERROR

Functions

48

is displayed. The value of the arithmetic expression must be in the range of 1 through
255, or the message

2ILLEGAL GQUANTITY ERRCR
is displayed.

The MIDS$ function

MIDS returns a substring of a given string expression. You must specify exactly where
in the value of the string expression the substring should begin by following the string
expression with an arithmetic expression. For example, if you want to retrieve the
substring keeping from the string Bookkeeping, use

PRINT MIDS ("Socokkeeping”,$)
because the first character in keeping is the fifth character in Bookkeeping.

You may optionally specify the exact number of characters to be rewrieved from the
string expression value by including a second arithmetic expression. For example,.if
you only want the four-character substring keep from Bookkeeping, use

PRINT MIDS ("Sookkeeping”, 3, 4)
because keep is four characters in length.

If the value of the first arithmetic expression exceeds the length of the string expression
value, then a null string is returned. If the value of the second arithmetic expression
specifies a greater number of characters to be retrieved from the string expression
value than exist, all of the characters from the position specified by the value of the
first arithmetic expression to the end of the value of the string expression are returned.
For example:

PRINT MIDS(AS,2535,253)

will display one character if the length of AS is equal to 255; otherwise, a null string is
displayed.

If the string expression value contains more than 255 characters, the message
?STRING TOO LONG ERROR

is displayed. If the value of either arithinetic expression is outside the range of 1
through 255, then the message

?ILLEGAL QUANTITY ERROR
is displayed.

The program below is an example of the use of MIDS function. Try to figure out what it
will do, and then run it

46 Chapter 2: Tools of Your Trade

AS="ABCD"

FOR loopl = 1 TO ¢4

FOR loop2 = 1 TO 4§

PRINT MIDS (AS, Loopl, Loopl)
NEXT Loop2

NEXT Loopl

n s W e
(LT BT VT

[
n

The INSTR function

INSTR retumns the position of the beginning of a specified substring within 2 given
string. For instance, if you want 1o know where the substring &f is in the string Rain in
Spain on the plain, use

)PRINT INSTR("Rain in Spain on the Plain", "ai")
2
)

The first occurrence of ai is at character position 2. The substring can be the value of
any string expression. Note that ai occurs at two other places within the string. To find
their positions, you must include an optional arithmetic expression after the string
expression to begin the string search at a position other than its first character. For
example:

JPRINT INSTR("Rain 4in Spain on the plair®, ™aiv", 9)

- -
- -

)

The arithmetic expression (9 in the example) specifies the character position at which
the search should begin. If no arithmetic expression is specified, the search begins
with the first character position of the string expression. If the substring is not found
within the string expression, the value 0 is returned.

If the arithmetic expression is greater than the length of the string expression or less
than 1, then the message

?ILLEGAL QUANTITY ERROR
is displayed

The SUBS function

SUBS lets you replace any part of a string with 2 specified substring. The string to be
changed can be any string variable, and the substring may be the value of any string
expression. You must specify the first character in the string to be changed by
following the string with an arithmetic expression. For example:

)yFS="Hardware” : SUBS(FS,l)="Soft"™ : PRINT TS
Software
)

Functions

In this example, the new string Sos replaces part of the string Hardware contained in
the string variable FS. The replacement begins at the first character of F$, and
continues until all the characters of the substring Soft have been placed in position.

You may optionally include a second arithmetic expression to specify the number of
characters in the substuring to be used in changing the original string. For example:

)FSe~Hardware" : BS="Soft" : SUBS(FS,1,2)=8S : PRINT FS
Sordware
)

Here are some additional examples of the use of the SUBS function:

) AS="ABCDEFG" :BS=AS:CS=35:DS=CS:ES=DS:FS=ES
) SUBS (AS,3) ="+*":PRINT AS

AB=-EFG

) SUBS (BS, 3, 1)="*=":PRINT 35§

AB*DEFG

) SUBS (CS,3,100) ="==":BRINT CS

AB*-EIFS

) SUBS (DS, 3) mtwwwewwwwewwen :DRINT DS

ABrrerrreverrww

)SUBS(ES,3,9)m*w=wwwxwwwn . DRINT =S
ARrverevewe

) SUBS (FS,3,2)m e rwwmwsewn DRINT TS
AB**EFG

Numeric functions

Numeric functions may be used in either immediate or deferred execution. The
argument to ail numeric functions must be an arithmetic expression, except for the
SCALB function. Two additional functions, ANU and COMPI, are described in
Chapter 8.

All floating-point arithmetic in GS BASIC is done with 64-bits of precision using
SANE). This sets limits on the accuracy of the results returned by numeric funcions.
For most work, the potential rounding off errors generated will not be a problem (or
even detectable), but you should be aware that there is a limit. More information can
be found in Appendix K, “SANE Considerations,” and in the Apple Numerics
Manual.

The SIN function
SIN returns the sine of an angle given in radians. For example:

YPRINT SIN(2.718)
.4.2038
)

48 Chapter 2: Tools of Your Trade

The COS tunction
COS returns the cosine of an angle given in radians. For example:

)PRINT CCS(1.571)
-2.03673E-04
)

The TAN tunction
TAN returns the tangent of an angle given in radians. For example:

JPRINT TAN(3.141)
-5.92653E-04

The ATN function

ATN returns the arc tangent, in radians, of the given argument The value rerurned
represents an angle in the range of -pi/2 to +pi/2 radians. For example:
)PRINT ATN(.3456)

.3327%
)

The INT function

INT returns the largest whole number value less than or equal to the argument value.
For example:

)PRINT INT(3.23)

) X=INT (=2.3) : PRINT X
-4

)

Notice that we said whole number, not integer. This is because the INT function
actually returns 2 real number (note the decimal point and trailing 0 in the examples
above).

The RND function

RND rerurns a random real positive number less than 1. It generates 2 new random
number each time it is used if the argument value is greater than zero.

Functions

a4

If the argument value is negative, RND generates the same random number each time
it is used with the same argument. If a given negative argument is used to generate a
random number, then subsequent random numbers generated with positive
arguments will follow the same sequence each time. A different random sequence is
initialized by each different negative argument. This is particularly helpful in
debugging programs that use RND. '

If the argument value is 0, RND returns the most recent previous random number
generated (the CLEAR and NEW statements do not affect this). Sometimes this is easier
than assigning the last random number to a variable in order to save it. For example:

)10 INPUT X : PRIT RND(X);" ";RND(X);"™ ";RND(X) : SOTO 110
) RUN

23

.73643 .21479 .537s4
23

.23458 .65986 .54193
2-4

.35754 .95754 .95754
20

.95754 .3857S4 .95754
?

?BREAK IN 10

)

For example, to get 2 random whole number, between 50 and 100 inclusive, combine
the INT and RND functions in one expression:

PRINT INT(RND(8) *S1l)+S50

The SGN function

SGN returns -1 if the argument value is negative, 0 if the value of the argument equals 0,
and 1 if the argument value is positive. For example:

JPRINT SGN(-234)

-1
) PRINT SGN(2496+234)
1

) PRINT SGN(SE4-SE4)
9

)

The ABS function

ABS returns the absolute value of the argument; in other words, the value of the
argument if it is positive, 0 if the value is zero, and the negative of the argument value if
it is negative. For example:

0 Chapter 2: Toois of Your Trcce

YPRINT ABS (345)
345

YPRINT ABS(24-363)
338

The SQR function
SQR returns the positive square root of the argument value. For example:

) PRINT SQR(372+4°2)
)
)

The EXP, EXP1, and EXP2 functions

EXP raises e (1o 6 places, e=2.718282) to the power indicated by the argument value.
For exampile:

YJPRINT EXP({3)
20.0e%88
)

EXP1 raises e to the power indicated by the argument value minus one. EXP1(%)
accurately computes e*X-1. If the input argument x is small, then the computation of
EXP1(x) is more accurate than the straightforward computation of eX-1 by
exponentiation and subtraction.

EXP2 raises 2 to the power indicated by the argument value.

The FIX function

FIX returns the integral portion of the value of the argument, truncating the fraction of
the absolute value of the argument FIX differs from INT in that FIX does not return the
next lower number for a negative argument FIX is equivalent to the statement
SGN(x)*INT(ABS(x)). For example:

YPRINT FTIX(2.333),FIX(-3.333)

3-3
)

The LOG, LOG2, and LOGB% functions
1OG returns the natural (base e) logarithm of the argument value. For example:

JPRINT 10G{20.08553}
3
)

Functions

1OG1 returns the natural logarithm of one plus argument value. LOG1(x) accurately computes
LOG1(1+x). If the input argument X is small, then the computation of LOG1(1+x) is more accurate than
the straightforward computation of LOG1(1 + x) by adding xto 1 and taking the natural logarithm of the
result For example:

)PRINT LCG1(20.08833)
3.048587
)

LOG2 returns the base 2 logarithm of the argument value.
LOGB% returns the binary exponent of the argument value as a signed integer.

The NEGATE function

Negate returns the value of the negative arthmetic expression. This seemingly simple
function is included due to the presence of the specialized SANE data type
representations for infinity and NaN results, which are returned as the result of a
meaningless calculation, such as -0/+0. You should use NEGATE rather than -1° the
arithmetic expression to properly negate floating-point values.

The ROUND function

ROUND returns the integral value nearest the value of the arithmetic expression,
according to the rounding direction of SANE settings. ROUND should be used in place
of the common INT(arithmetic expression+.5), because it will return a result
consistent with the other capabilities of SANE.

The SCALB function

SCALB is 2 two-argument function whose first argument, a single-integer expression is
used as a base 2 scale factor for the value of the second argument SCALB scales the
arithmetic expression by 2 to the power of the single-integer expression, effectively
rerurning the operand shifted left or right in the binary places specified by the single-
integer expression. For example: '
)PRINT SCALB(4,10): REM 10 * 2-4 = 160

160
)

LOGB% is related to SCALB, returning the single-integer expression for a given
arithmetic expression.

-

The CONV& function

CONV& evaluates the given argument and returns a long integer value. For exampie:

52 Chapter 2: Tools of Your Trade

)PRINT CONV (2178-7954)
-5776

) PRINT CONV§ ("4.214™)

4

)

If the argument is a string, then the effect is the same 2s using VAL followed, by
CONV& (the VAL function is described ealier in this chapter, under the heading
*String Functions™). The value returned must be within the range of
922337203685775807 to -9223372036854775808 (-9223372036854775807 from the
keyboard), or the message

?OVERFLOW ERROR
is displayed.

The CONY function

CONV evaluates the argument and returns a real value. The value may be assigned to a
regular integer. The conversion from real to integer is automatic in the latter case. If
CONYV is used with 2 string expression, the effect is the same as with the VAL function.
For example:

)GEé=234234 : Bé=523523 : PRINT CONV(HE-Gé)
28928¢
)

The CONVE function

CONV@ evaluates the given expression and returns a double-integer value, rounding
off to the nearest whole number. The value must be within the range of -2147483648 10
+2147483647. For example:

YPRINT CONVE (223456788.12)
123456789
)

The CONV% function

CONV% evaluates the argument and returns an integer value, rounding off to the
nearest whole number. The value returned must be within the range of -32768 to 32767,
or the message

?0VERFLOW ERROR

is displayed. For example:

Functions

&2
v~

)PRINT CONV%¥(423.94)

424

YAE=7656 : B&=364 : PRINT CONVS(A&/B&)
21

)

Miscellaneous functions

This section describes some Apple IIGS BASIC functions that cannot be classified as
string or numeric, These miscellaneous functions have 2 wide range of applications.
Some use arguments not allowed in most functions, and some allow optional
arguments.

Other BASIC functions are described in Chapter 7, “Advanced Topics,” or in Chapter
8, “BASIC Reference.”

The BTN function

BTN returns the state of the three sense inputs ($E0C061, 62, and 63) as 0 or 1. Various
devices, such as the buttons on paddles or joysticks and the Apple and Option kevys,
can conurol the state of these inputs.

The FiLE function

FILE returns the value 1 if the file given by the first argument, a pathname string
expression, exists or the value 0 if the file does not exist If any error other than FILE
NOT FOUND is encountered that error will be displayed. If the optional second
argument, FILTYP= filetype, is not specified, a result of true will be rerurned for any
file rype. The synuax for the FILE function is:

TILE (sexpr(,FILTYP= TXT SRC 'BDF ubexpr)

Where sexpr is a string expression and ubexpr is an unsigned byte expression.
If the file type that you spedify is not the same as the file’s actual type, a

?FILE TYPE ERROR

message will be displayed.

The reserved variable AUXID®@ will contain the subtype from the directory entry of the
file. The function FILTYP(0) will return the file type of the file.

54 Chapter 2: Tools of Your Trace

The JOYX and JOYY variables

JOYX is 2 function that reads two of the four game paddle inputs (if they are plugged in)
specified by the integer argument The integer expression must result in 2 number
from 0 1o 2, otherwise an

2ILLEGAL QUANTITY ERROR
message is displayed. JOYX retumns the value for the paddle given by the expression.

In addition, the reserved variable JOYY is set with the value of the paddie unsigned
byte expression+1 when the JOYX function is called. This function eliminates the
interaction berween paddles due to the coupling of the hardware one-shot timers by
timing both paddles in parallel. Both JOYX and JOYY return a result with 8 significant
bits.

The PDL function

PDL reads the position of the game control paddle (if it is plugged in) given by the
argument, 2 number from O to 3. PDL returns 2 value in the range of 0 through 255. The
reserved variable PDL9 will return the 9-bit result calculated by the prior execution of
the PDL function

The PEEK function

PEEK reads 2 byte from memory at the address given by the integer expression and
retuns an unsigned integer in the range of 0 through 255. The integer expression must
be a positive integer less than 224 Care should be exercised in using PEEK, since
improperly reading many /O devices and control registers can crash the system.

Programmers concerned about writing programs that will run on newer versions of the
Apple I product family should avoid the use of the PEEK function because it contains a
hard-coded address that may not be supported in the future. PEEX is provided for
those who want to build nontranspornable, locked-in programs.

Defining your own functions

You can define your own functions to perform operations that are not provided by any
of BASIC's built-in functions. Once a function is defined, it is also available in
immediate execution, as long as the defining program is still in memory and the
program containing the DEF FN statement has been executed but has not been edited
or expand with new lines. A user-defined function may not be defined in immediate
mode.

Defining your own functicns

If your program defines a user function and a CHAIN statement calls 2 new program,
the old functions are discarded and the new program may not use them. If you try to
do this an

20NDEF'D PROC/FUNCTION ERROR
message will be displayed.

The DEF FN statement

The DEF FN suatement is used to let the user define simple functions. The name of the
function and its parameters must follow the reserved word FN. The parameter list
consists of one or more simple variables enclosed in parentheses and separated by
commas. Parameters named in 2 DEF FN statement are isolated from variables with
the same names used elsewhere in 2 program. The statement must conclude with a
defining expression.

Simple functions can be of any type, including string functions and a function can
have one or more parameters, including string parameters. The parameter variables
are allocated in a separate, temporary local symbol table when a function is used and
discarded after the expression is evaluated. The syntax for a simple function definition
is

DEF TN name (paramlist) = arithmetic expression

oT DEF FN name$ (paramlist) = arithmetic expression
or DEZ FN namel@ (paramlist) = arithmetic expression
or DEF FN name& (paramlist) = arithmetic expression
or DEF TN name# (paramlis.) = arithmetic expression
er DEF FN name$S (paramlist) = string expression

The defining expression may be any legal arithmetic or string expression, as shown
above. The defining expression may contin the parameters as well as any other
integer or real variables. The type of the expression must match the type of the
function.

For exampile, this statement defines a function named RECIP, with X as the argument
and 1/X as the defining arithmetic expression:

)55 DEF FN RECI?(X) = 1/X

Here are some more examples:

)10 DEF FN MINUS(X) = =-ABS(X)

)20 DEF FN SWORDED.4(C) = INT(RND(3)*100)

)30 DEF FN MSBY7.MAT#(DED#,7%) = DED#"LOG(33)-ABS(FY%)
140 DEF FN ENDSS(AS,8S,S%)=LEFTS (AS,S%) -RIGHTS (3S,5%)

In addition to the single-expression functions described here, GS BASIC aiso supports
multiline numeric (but not string) functions and procedures. These advanced
programming tools are described in Chapter 7, “Advanced Topics.”

56 Chapter 2: Tocls of Your Trade

Using a defined function

Once a simple function has been defined, you can use it anywhere that an arithmetic
expression can be used. After you enter function definitions in a program, the
functions are still not available 1o be used until the program is run.

When a RUN or CHAIN statement is executed, the entire program is scanned for DEF
statements (referred to as 2 DEF scan) and a2 special entry is made in the variable table
for each DEF function in the program. This entry contains a pointer to the parameter
list in the DEF statement; the pointer is used when the function is referenced.

Using (or referencing) a function requires that its name be preceded with the reserved
word FN. Here is an example of how you might use the Minus function:

120 A =« FN Minus (2)
In this example, the real variable A is assigned the value -2.
Here is another example:

)3C PRINT 4*FN Minus (A)*3

If the value of A was -2, then -24 would be displayed on the screen.

Remarks about defining functions

The defining expression used to define a2 function can refer to any real or integer
variabie and any or all of the parameters. For example, consider the following
sequence:

2=3

C DEF TN Too(A)=2=CT

p "{:}\’: FN Foo(B) : REM disp.ays C because C is undefined
)2C C=% : REM C now exists and eguals £.0

)28 PR-N‘.‘ FN Foc(B) : REM displays 1S

)
)

[]

The parameters to the function need not appear in the defining expression. In this
case, the function's argument, B, is ignored in evaluating the expression.

When 2 function is referenced, the value of an argument is assigned to the parameter
in the parallel positon. Even if a2 parameter is not used in the defining expression, the
argument in a reference will be evaluated and assigned to the parameter, so it must be
something legal.

For example the formal argument Zilch in the next example is real, even though itis
not used in the expression:

)20 DEF FN BAZ(2ilch)=2+2

Functions may not be defined more than once in 2 program.

If 2 funcuon is used in an immediate statement before the program containing the DEF
FN suatement is run, the

Defining your own functions

(4]
N

?UNDEF'D PROC/FUNCTION ERROR

message is displayed.

The entry made by the DEF scan (of 2 RUN or CHAIN statement) for each DEF FN
statement uses 1 byte per character in the function name, 2 overhead bytes, and 6
bytes for information about the function as follows: a byte containing the parameter
count, 3 bytes for program relative offset, and 2 bytes for the DEF statement line

number.

58 Chapter 2: Tools of Your Trade

Chapter 3

Entering, Displaying, and
Formatting Data

Displaying text on the screen xx

The PRINT statement xx
TAB and SPC specifications xx

Entering data xx

The INPUT statement xx
Entering numbers xx
Quotation marks and commas in string input xx
Null strings xx

The GETS Suatement xx

Storing dota within your program xx

The DATA and READ sutement xx
The RESTORE statement xx

Formatting Information xx

The PRINT USING and PRINT# USING statements xx
The IMAGE statement xx
Output format specifications xx
String specs xx
Literal specs xx
Numeric specs xx
The Fixspec xx
The Scispec xx
The Engrspec xx
The SCALE function xx

e

This chapter describes the tools that are provided by Apple 1IGS BASIC for entering,
displaying, and formatting data.

Your computer’s keyboard and display screen are collectively termed the console.
Console I/O statements allow you to control when, where, and how specific characters
are displayed on the screen or read from the keyboard.

The screen is divided by five 16-character-wide b fields. If you have typed or printed
a character at the last character position of tab fields one through four, abbing will
move the cursor to the beginning of the second field following that character.

If the text window is less than 80 characters wide, tabbing may send the cursor down
one or more lines.

Displaying text on the screen

The PRINT statement is used to display text on the screen. TAB and SPC specifications
provide further conurol over the appearance of the display.

. The PRINT statement

To display text on the screen, follow the reserved word PRINT with a list of the items
that you want 10 appear. The item list can include any expression, comma,
semicolon, or TAB or SPC specification. (TAB and SPC are discussed in the next
section.)

BASIC evaluates the expressions in PRINT statements and displays their values in
sequence. A PRINT statement without an itemn list causes the cursor to move to the
begzinning of the next screen line.

If a comma separates two expressions, a tab space separates their values on the screen;
if a semicolon separates them, the second value is displayed after the first, with no
intervening spaces. For exampie:

) PRINT "Ian";"divisible™; 543, 598/754.42
ZndivisibleS43 .792662
)

You can follow the last expression in 2 PRINT statement with a semicolon, comma, or
nothing. If there is nothing after the last expression, the cursor moves to the beginning
of the next screen line. A comma causes the cursor to move to the next tab field, and a
semicolon leaves the cursor in the position immediately following the last characrer
displayed (suppressing carriage retumns).

Here are a few examples of PRINT sutements:

&

Chapter 3: Entering, Displaying. and Formatting Data

YPRINT =X~

X

) X&=3 : PRINT X&

3

yPRINT 10, 290

i02¢

yPRINT 10;" *; 20
10290

JAS="Apple™ : PRINT AS
Apple

)AS="Johnny" : BS="Apple™ : CS="seecd"” : PRINI AS;" ";BS;CS
Johnny Appleseed

Wwarning:

If you don’t use elther commas or semicolons to separate expressions in @ PRINT
statement, BASIC will atempt to figure out where one expression ends and the
next one begins. If It succeeds, the effect is the same as using c semicoion. If it
doesn't succeed. elther @ '

?SYNTAX ERROR

messoge appears, or the wrong values are dispiayed. You should use the
semicoion to avoid confusion.

< Note: The statement
yPRINT AS+BS
will give
2?STRING TOC LONS ERROR

message if the combined length of the two strings is greater than 255 characters.
However, you can display the apparent combined string using

)PRINT AS;BS
without worrying about its length.

When you are entering PRINT statements into a program, you ¢an use a question mark
instead of the reserved word PRINT (it lists as PRINT). You don't save any memory by
.using abbreviations, only typing time.

TAB and SPC specifications

You can insert spaces into text displayed by a PRINT statement by putting a TAB or .
SPC specification into the PRINT statement

A TAB or SPC can be inserted immediately before or after any expression, comma, or
semicolon in 2 PRINT statement's expression list

Dispigying text on the screen

61

TAB and SPC are followed by an arithmetic expression enclosed in parentheses. The
integer value of the expression following the word TAB defines the number of spaces
from the left margin of the text window to begin printing text. If you specify an
expression that is less than the number of the current print position, no spaces will be
inserted before the next character to be printed.

The integer value of the expression following the word SPC defines the number of
spaces to be inserted after the character last printed. Examples of the use of TAB and
SPC are given below.

) PRINT "Great™; TAB(8); 347

Great 347

) PRINT "Underhanded®™; TAB(8); 8353
UnderhandedS33

) PRINT "A"™; SPGC(1l); ™B"; SPC(2); "C"
A B3C

JPRINT "D"; TAB(S); “E"; SPC(S); "F"
> £ °F

Each SPC statement is limited to 2 maximum value of 255, but you can insert as many
spaces as you need by stringing together a series of SPC statements like this:

) SPC(250)SPC(139)SPC(285)

< Note: The PRINT ... USING statement gives you greater control over the display of
text on the screen See the section titled, “Formatting Information” later in this
chapter.

Entering data

You use the INPUT statement to enter numbers or text and the GETS statement to |
assign a keyboard character to a string variable in a program.

The INPUT statement

INPUT accepts numbers or text typed at the keyboard and assigns them to variables
specified in the INPUT statement. For example, if you wanted users of your program to
input their age in years, you could use

20 PRINT "Enter your age in years”
25 INPUT AGE

When INPUT is executed in this form, BASIC automatically displays a question mark
on the screen and waits unul the user types something. For example:

&2 Chcpter 3: Entering. Displaying. cnd Formatting Dcta

) RON
Enter your age in years
?38)

You may optionally include a string in an INPUT statement, like this:
20 INPUT "Enter your age in years™; AGE

The optional string must be a2 sequence of characters in quotation marks, followed by a
comma Or semicolon; it cannot be a string variable or expression. When you use an
optional string, it is displayed exactly as you specified; BASIC does not add 2 question
mark, spaces, or other punctuation after the string. You can include only one optional
string.

After the optional string, you must include one or more variable names, separated by
commas, like this:

100C INPUT "Please type three words"; AS, BS, CS

INPUT expects you to type a number for each numeric variable and a string for each
string variable in the INPUT statement. The numbers and strings are expected in the
same order in which the variables occur in the statement

The numbers and strings that you type in response to an INPUT statement must be
separated from each other by commas or by pressing Return. If you use Return and
another number or string is still expected, BASIC will display not one, but two
question marks on the next screen line. The input numbers and strings are assigned to
the variables in sequence. For example:

200C INPUT "Please type four numpers: ";A,B,C,D

This statement expects vou to either enter four numbers separated by commas like
this:

100, 2CC, 300, 400 {(followed Dby Return)

or by returns, like this:

Please type four numbers: 100
2220C
22300
22400

You can halt execution during an INPUT statement by pressing Control-C any time
before you press Return. BASIC will recognize the Control-C immediately and discard
any input entered before Control-C was pressed.

Entering darc

Entering numbers

For arithmetic variables, INPUT will accept only numbers. Remember that the plus
sign, space, hyphen, period, and E characters are all legitimate parts of numbers.
Any leading or trailing spaces in numbers are ignored, but embedded spaces are not
allowed.

Input that is not a legitimate number (such as a string or 2 return) will cause the
message

2REENTER
to be displayed, and BASIC will reexecute the INPUT statement from the beginning.

If an input number is not the same type as the corresponding variable, it will be
automatically converted to the same type; if necessary, the number will be rounded.
For example:

})S INPUT G%
)10 PRINT G%
) RON
26.87

-
)

Quotation marks and commaeas in string input

Quotation marks and commas in string input are handled differently, depending on
the position of the string variable in the INPUT statement to which the string will be
assigned. .

If the string variable is the last (or only) variable in the INPUT statement, any
quotation marks or commas are treated as ordinary characters in the string.

If the string variable is not the last variable in the INPUT statement, the comma and
quotation mark characters are treated specially. The comma separates strings in the
same manner as it separates numbers. By enclosing a string in quotation marks, you
can include commas in it without affecting the spacing. The quotation marks are not
considered part of the string.

The closing quotation mark of a string can be omitted if the Retumn key is used to end
the string. If 2 quotation mark is not the first character typed, then a quotation mark
can be included anywhere else in the string without being treated spedially. Here are
some examples of the effects of quotation marks: (remember that a program can be
halted by typing Control-C as response t0 an INPUT statement):

64 Chapter 3: Entering. Displaying, and Formatting Data

)10 INPTT XS, ¥S : PRINT XS, ¥$: GOTO 10
) RUN

?is, is

is is

?2~is, "is is, "is
?REENTER

?%is", ‘is’

is 'is’?

?2is", is=

is™ is™

?=nis, ""is
2?REENTER

2is"™", is""

isnm is""

?nisﬂu' ﬂisﬂn

?REENTER
?2"is,isn'zt", "is,isn't"
is,isn't n"is, isn't"

2

?PROGRAM INTEIRRUPTED IN 10
)

Null strings

If the user simply presses Return key, without typing any characters, when 2 string
response is expected, BASIC interprets the response as a null string.

< Note: Pressing the Control and Option keys in combination with 2 letter key will
pass the control code character 1o BASIC as an input character.

The GETS statement

GETS is used to assign a single alphanumeric character from the keyboard to a
specified string variable in your program, without displaying it on the screen and
without requiring that the Return key be pressed. The specified variable must follow the
reserved word GETS. For example:

}10C PRINT "Press any key";

)21C GETS PRESSS

)22C PRINT ". VYou pressedc the ";PRESSS;"” key!"
})130 GOTO 100

Note that GETS, unlike the GET statement in Applesoft BASIC, does not allow you to
use a2 numeric variable; vou can only use a string variable with GETS.

Entering gata

If you want to use GETS to input numbers, you must get a suing variable, and then
convert the resulting string to 2 number with the VAL function (as described in the
*String Functions” section of Chapter 2). In most cases, it is more convenient to use
the INPUT statement for number.

You can only use the GETS statement with deferred execution.

Warning:

if you dispigy the value of a string variable that contains @ control cheracter,
that control character can affect operation of the .CONSOLE device driver. For
exampie. If you pressed Control-L os @ response in the program example above,
the text screen would be clecred when line 120 dispiayed PRESSS.

% Note: If 2 program that uses GETS is called by an EXEC file, the input for the GETS
statement will be taken from the EXEC file instead of from the keyboard.

Storing data within your program

The DATA and READ statements allow you to store data within a program itself. The
RESTORE statement can be used in conjunction with the DATA statement. Although
these are not actually console /O statements, they are included here because their
effect is similar to that of INPUT and GET statements.

The DATA and READ statements

The DATA statement is used to provide a list of data elements 10 be read bv a READ
statement DATA statements do not have to precede READ statements in a program.
Data elements can be strings, reals, integers, double integers, and long integers.
String data eiements do not have to be bounded by quotation marks. For example:

)1220 DATA WHEN, S, =4, <“EQUALS", 1.000

The DATA statement can only be used in deferred execution, or an
?ILLEGAL DIRECT ERROR

message appears.

A data element list consists of all of the elements in all of the DATA statements in a
program. READ statements are used to read from a data element list and to assign the
values to variables. When BASIC executes the first READ statement in a program, it
assigns the value of the first data element in the list to the first variable in the READ
statement The second variable in the READ stat_.nent (if there is one) is assigned to
the second element in the dam list, and so on. For exampie:

66 Chopter 3: Entering, Displcying,' and Formatting Data

130 READ AS, B&, C¢, DS, E

)4C PRINT AS;™ ™;B%; C&;" ";Ds;" ";E
)S0C DATA When, &, -4, “"Equals", 1.000
) RON

When 5-4 Eguals 1.000

)

Datz elements assigned 10 arithmetic variables generally follow the same rules that
numbers assigned to arithmetic variables by INPUT statements follow.

If you use Control-C as a data element, it does not halt execution of the program, even
when it is the first character of an element With this exception, data elements read
into string variables follow the rules for INPUT responses assigned to string variables:

T Either literal or quotnation-mark-enclosed (quoted) strings may be used.
= Quotation -marks appearing within 2 quoted string cause the
?SYNTAX ERROR

message, but all other characters, including commas, are accepted as characters in
that string.

= The colon and comma are accépted only in quoted strings.
T Control-M (the Return character) is never accepted as a data element.

If 2 READ statement attempts 1o assign a string data element value to an arithmetic
variable, 2

?SYNTAX ERROR IN 999989
message appears, where 99999 represents some valid line number.

In reading a data element, BASIC assigns a value of zero or null string (depending on
the variable’s type) under any of the following conditions:

T A comma is the first character (excluding spaces) following the reserved word
DATA

= There is no data element berween two commas.

T The last character in 2 DATA statement is a comma (when the comma is being read
as a datz elemeno.

For example when this statement is read:
10C DATA ,
it can result in up to two element assignments consisting of zeros or null strings.

When variables in 2 READ statement have been assigned values from the data element
list, BASIC leaves a darta list pointer immediately following the last element read.
The next READ statement executed (if any) begins using the data list from the pointer
position. A RUN, CLEAR, or RESTORE statement moves pointer back to the first
element in the data list.

Storing datc within your program

Whean all of the elements in 2 DATA statement have been read, the pointer moves on
to the next DATA statement with a2 higher line number, and reading continues with the
first element listed. An attempt to read past the end of the data list produces an error
message. For example, you might see

200T OF DATA ERROR IN 3400
When 3400 is the line number of the READ statement that asked for additional data.

In immediate execution, you can only read elements from DATA statements in a
program that is currently in memory that is, one that has been typed in, loaded, or
run. If no DATA statement is in memory, the message

200T OF DATA EIRRCR

is displayed. Execution of a READ statement does not reset the dawa list pointer back to
* the first element in the data list after BASIC reads the last element in the list.

<& Note: You cannot follow DATA with any executable statements on the same
program line. Anything following a DATA statement until the next line number is
considered to be part of a data list

The RESTORE statement

RESTORE moves the data list pointer back to the beginning of the data list. This allows
you to read the same data more than once. You can use the optional parameter, a line
number or label, to set the data list pointer to the beginning of 2 DATA statement
anywhere in a program. The line number or labe! you use must be the line number of
an existing line; otherwise, the message

2CNDET'C STATIMENT =ZRROR

will be displayed. After 2 RESTORE line number is executed, the data element list is
read forward through all the DATA statements with the given and higher line numbers.

Formatting information

Apple OGS BASIC provides several tools for formatting its output You can use the
PRINT USING and PRINT# USING statements with 2 variety of specifications to produce
different formats.

58 Chapter 3: Entering. Dispiaying, and Formatting Data

The PRINT USING and PRINT# USING statements

PRINT USING allows you to control the format of information displayed on the screen,
and PRINT# USING controls the format of data written to files. We will refer to these
statements collectively as PRINT(#) USING. Both statements work with either numeric
or string data.

Printing fields, defined by format specifications (called specs), outline the way that
information is formated.

Specs can be included with the PRINT(#) USING statement in the form of a string
expression, or they may be part of an IMAGE statement elsewhere in the program that
the PRINT(#) USING statement references. They appear as codes of letters, numbers,
and/or symbols. When the specs are used in an IMAGE statement, the PRINT(#)
USING statement must include its line number. Here are some examples of PRINT
USING sutements.

)1C PRINT USING 100; AS, By, C
)100 IMAGE 6A, 5#, #.6Z4E

)2 BS="6an, 5%, #.6Z4E"
)10 PRINT USING BS; AS, Bs, C

)10 PRINT DUSING "6A, 54, #.6Z4E"; AS, Bs, C

All three of these examples do the same thing—they display the values of the variables
AS, B%, and C, formaned according to the specs supplied by the user. The types of
BASIC format specs and how to use them are described later in this chapter.

Note that the commas in a PRINT (#) USING statement expression list simply serve to
separale the expressions they do not cause the cursor to move to the next b field, as
in a PRINT statement item list. However, a semicolon at the end of the expression list
suppresses a carriage return, just as it does with PRINT.

If the number of expressions in the expression list exceeds the number of specs as in
)10 PRINT USING, BASIC will use the spec list again from the beginning unl all the
expressions have been evaluated and used A single spec will be used by all
expressions in the list This means that if you have a2 number of values to be displayed
using the same spec, you only have to write the spec once.

The following errors can occur when a PRINT(#) USING statement is executed:

If the USING clause references an IMAGE statement, and the IMAGE statement does
not exist, the

?UNDEF'D STATEMENT ERROR
message is displayed

T If the USING clause references a string variable or contains a string, and the string
value is null, 2

Formatting Information

6%

?SYNTAX ERROR

message appears. An IMAGE statement that does not contain specs will result in the
same error message. When a syntax error occurs in an IMAGE statement, the
message gives the line number of the PRINT(#) USING statement, not that of the
IMAGE suatement

If the type of an expression does not match the type of its spec (for example a string
expression with 2 numeric spec) a

0

2TYPE MISMATCI EZRROR
message is displayed.

The IMAGE statement

An IMAGE statement contains a sequence of specs separated by commas. Each spec
corresponds to an expression in 2 PRINT(#) USING statement, and controls the
printed or displayed format of the expression value. (An exception is the literal spec,
which does not correspond to an expression.)

You can use the IMAGE statement only with deferred execution, and it must be the
only statement on the line. Here is an example of an IMAGE statement with three
specs:

10 IMAGE +5#.3#%,10X,~-#%.5#4E

The following example show the output generated by the IMAGE statement in line 10
with two specs:

10 IMAGZ <434 434, 3"."

100 PRINT GUSING 10; 1.3, 3.14159, 172.9, §
) RUN

+ 1.500...+ 3.142...+172.900...+ 5.000...
) .

Output format specifications
There are three kinds of format specs:
8 String specs control the format of string values in 2 PRINT(#) USING statement

8 Literal specs insert one or more spaces, line returns, or copies of a specified
string into the text displayed by the PRINT(#) USING statement.

s Numeric specs control the format of a numeric value displayed by a PRINT(=)
USING statement. Numeric specs can be fixed-point, scientific notation, or
engineering notation.

70 Chapter 3: Entering. Dispiaying. and Formatting Data

String specs

A string spec defines the field format and width for a string value, and specifies
whether the string value is to be left-aligned, right-aligned, or centered within the
field.

The codes are as follows:

A Left-aligned
R Right-aligned
C Centered

If the string has fewer characiers than the field allows, the empty positions are filled
with spaces.

You can set the width of the field either by specifying the number of characters to be
used in the field, or by preceding the spec with a positive integer equal to the length in
characters of the field. For example, a six-character, right-aligned field could be
defined either by RRRRRR or 6R. The specs 9C and CCCCCCCCC produce the same
result: 2 nine-character field with its text centered in the field. These numbers are
called repeat factors. a repeat factor can be any positive integer from 1 through 255.
It affects only the single character immediately following it. (Thus, SAA or ASA means
the same thing as 6A. A repeal factor greater than 255 causes an

2ILLEGAL QUANTITY ERROR

message.

Here’s an example of using string specs to format string output into three columns:
2C IMAGE 15A, 15C, I0R

18 PRINT

10C PRINT USING 10;"COMPOSER", "TITLE", "KEY"

262 PRINT USING 1C; "GRINSZ", "SONATA FOR HARP","F SEHARP"

30¢ PRINT USING 10; “RIBBITT", "WATER SONG", "E FLAT"

400 PRINT

‘The IMAGE statement in line 10 defines three fields: a 15-character field with a left-
aligned string in it, 2 15-character field with a string centered in it, and a 10-character

field with a right-aligned string in it Note that these add up to 40 characters, so they
will fill one half of a line on the screen. This program runs as follows:

) RON

COMPCSER TITLE KEY
GRINSZ SONATA FOR HARP F SHARP
RIBBITT WATER SONG E FLAT

If a string value exceeds the length of its field specification, BASIC truncates it. For
example,

changing the string spec in the program fragment above to

Formatting information

)10 IMAGE SA, S5C, SR
has the following effect
) RON

CCMPOTITLE KEY
GRINSSONATF SEHA
RIBBIWATERE FLA

)

Literal specs

A literal spec does not format the value of an expression; instead, it inserts spaces,
line returns, or a fixed string into the output The codes are as follows:

X Prints a2 space
/ Prints a line return
- Encloses a literal string to be printed

For example, the spec

41X

inserts four spaces into the output, and the spec
2/

inserts two line retumns.

When you place a repeat factor in front of a literal spec string, it affects the entire
string. For example, the spec

3 " As "
inserts
ABABAB

Separate spec values are necessary for each type of insertion. For example, two spec
values are needed to insert three spaces followed by five asterisks:

33X, Sne"

Numeric specs

You can format a numeric value, regardless of its type, in fixed-point, scientific, or
engineering style. There is a separate kind of numeric spec for each of these formats.

All three numeric formats use the following digit specs:

72 Chapter 3: Entering. Dispiaying, and Formatting Data

4 Reserves one numeric digit position and suppresses leading zeros.

& Reserves a position for a digit or comma (at least five digit positions
must be reserved 1o the left of the decimal point).
A Reserves one numeric digit position and prints leading zeros.

The fixspec: The fixed-point specification, called fixspec, controls the format of
fixed-point numbers. Fixed-point numbers are any numbers displayed without
exponents, including integers, long integers, and real numbers.

In addition to the digit spec characters, the fixspec uses the following characters.
(Note that if Z is used, $S, ++, and — may not be used.)

+ Reserves a2 character position for number sign

- Reserves 2 position for a minus sign if the number is negative

$ Reserves a position for a dollar sign (§)

® * Prints asterisks instead of leading spaces

+«+ Reserves rightmost positions for a number sign and dollar sign (if any)

-- Same as ++, except the sign is printed only if the number is negative

$5 Reserves lefumost unused position for a dollar sign and number sign (if any)

Here is an example of a simple fixspec appearing in a PRINT USING statement:

YPRINT USING “"+###.###"; 3.141589
+ 3.142

You can use repeat factors with all the digit-spec characters. The # character reserves
one numeric digit position. Leading zeros (if present) are replaced with spaces. For
example:

) PRINT TSING “+6#.3#%; Dg9°¢
- 98%¢.00C

A Z reserves one numeric digit position, just like a #, but prints leading zeros. For
example:

)PRINT USING ™+62.32Z™; 09998
+00922925,.00C

An & character reserves one position for 2 numeric digit or comma. Commas are
inserted after every third digit left of the decimal point, and they are included in the
character count: leading zeros are replaced with spaces. At least five digit positions
must be reserved 1o the left of the decimal point when using &. For exampie:

JPRINT USING ®-+6&.38"; 0998¢
+ 5,995.000

The examples above all show 2 decimal point with digits to the left and to the right.
However, you can also specify no decimal point, a2 decimal point with nothing to the
left, or 2 decimal point with nothing to the right Remember that integer expressions
can have no fractional part If you specify a fixspec with a fractional pant and apply it to
an integer expression, only zeros will appear to the right of the decimal point, unless
you use the SCALE function (described later in this chapter).

Formatting information

BASIC will round off the value to be displayed, if necessary, to fit the number of digits
specified to the right of the decimal point However, if the number exceeds the
number of digits specified to the left of the decimal point, the entire field is filled with
exclamation points. :

< Note: You can mix the digit spec characters &, #, and Z in a spec list, but those
appearing to the left of the decimal point yield to the character with the highest
precedence. Their order of precedence is &, #, Z. If an & appears, the formatted
output will have commas inserted and leading zeros suppressed.

In all the examples of fixspecs so far, we have shown a +, which reserves a position for
the sign of the number. The + causes the sign to be printed in all cases. A - causes the
sign to be printed only if the number is negative; a space is printed with positive
numberss. The sign of the number can also follow the last digit

For finandal output, use 2 $ to reserve 2 character position for a dollar sign. A pair of
asterisks (**) causes asterisks to be printed instead of leading spaces when there are
unused digit positions in the output field. For example:

) PRINT USING " =+6#.3#"; 09999
-**9999,.000

) PRINT USING "=~*S6#.3#4-"; 09999
***$9999,000

) PRINT USING "+$S6#.2%"; 09999

+ §9999.00

Note that the ** must be the first spec in the fixspec. Also ** cannot be used along with
Z because Z leaves no unused digit positions.

% Note: If you do not reserve a character position for the sign, and the value in the
PRINT(#) USING statement is negative, the sign will be displayed in the rightmost
unused character position. If there is no unused position, the 2atire field will be
filled with exclamation points, indicating that the number of digits exceeds the
number of places specified for them. Therefore, most numeric specs should
include a character that reserves a position for the sign.

You can print the dollar and number signs in the rightmost position by using $$§ or ++,
or in the leftmost position by using —. For example:

) PRINT USING “$S+6#.38"; 09999

$+9999.00

) PRINT USING "++6#.3#"; 09999
+9999.00

) PRINT OUSING ”S--6#.3%"; 09999
$9999.00+

You can also place the sign of the number at the end of the fixspec to have it appear
and the end of the output:

)PRINT USING ©~SS$S6#.34+"; 09999
S 9999.00+

74 Chapter 3: Entering. Displaying. and Formatting Data

Because Z prints leading 2zeros, taking up all unused positions, you cannot use it with
$$, ++, =, or —, which shift characters to the right, displacing any spaces. (The
spaces remain to the left of the field so that its width does not change.)

The best way 1o learn about using fixspecs is to experiment with various formats. Here
is 2 program that can help:

5 REM NumericSpecTester

10 INPUT "Enter desired spec: "; SPECS

15 ON ERR PRINT "You entered a bad spec, try again!™ : GOTO 10
20 F=]000:PRINT

30 X=1: GOSUB 100

4C X=12: GOSUB 100

S50 X=123: GOSUB 100

€60 X=1234: GOSUB 100

70 PRIKT: PRINT " Spec was: "; SPECS: PRINT
80 GOTO 1O

1200 PRINT USING SPECS; X:;: PRINT ,X

120 PRINT USING SPECS; <~X;: PRINT ,=-X

120 PRINT USING SPECS; X/F;: PRINT ,X/F

23C PRINT USING SPECS; -X/F;: PRINT ,-X/F
200 RETURN

The NumericSpecTester program first asks you to enter a spec from the keyboard. It
then displays two columns of numbers. The left column lists values displayed
according to the spec you entered, while the right column contains the same values
output by 2 PRINT statement using no format statement You can also use this program
to study scispecs and engrspecs, which are described in the next section.

The sScispec: The scientific-specification, called scispec, formats numeric output in
scientific notation. The scispec is simpler than the fixspec; it has only either one digit
or none to the left of the decimal point The number of digits to the right of the
decimal point is defined by # characters, either stated explicitly or by using a repeat
factor. The lener E defines the exponent position, and you can use a repeat factor with
this character as well. You must allow either three or four character positions for the
exponent. For example:

YPRINT DUSING "+#.4#4E"; 2.141592¢
+32.141€6E+0C

)PRINT USING "<+, 4#4FE"; 3.141582¢
+.3142E+021

When the spec calls for one digit position to the left of the decimal point, the first
significant digit of the value is placed there; when there is no digit position to the left of
the decima! point, the most significant digit is placed to the right of the decimal point.
In either case, the exponent is then calculated to make the displayed value correct.

Formgtting information

75

Notice that with four character positions for the exponent, only two are available for
the exponent's digits; with three character positions for the exponent, only one is
available for the exponent's digit If the calculated exponent will not fit in the available
space, the entire numeric field is filled with exclamation points.

The leer Z can be used instead of # in a scispec, but the effect is the same. Note that if
the sign is not explicitly specified in a scispec, the sign of the value will only be printed
if there are enough available character positions and the value is negative.

The engrspec: The engineering specification, called engrspec, is closely related 1o
the scispec. It forces the exponent's value to be a multiple of 3, and has 2 maximum of
three digit positions to the left of the decimal point

You can use either a # (o replace leading zeros with spaces or a Z to print leading zeros.
For example:

) PRINT USING ©+3#.4#4E"; 1729
+ 1.7290E+03

) PRINT USING "+32.423E"; 1729
+01.729E+3

The SCALE function

SCALE is used in conjunction with PRINT (#) USING to shift the decimal point of a
displayed value to the left or the right SCALE uses two arithmetic expressions as
arguments. The first argument defines the number of places to the right (or left, if
negative) that the decimal point should be moved. The second argument is the actual
numeric variable to be output

SCALE ukes ten raised to the power equal to its first argument and multiplies that by
the value of its second argument. If the first argument value is S and the second is equal
1o 22435, the value output will be equal to 22435.0ES in the format specified by the
PRINT(#) USING statement. For example:

)AE=12345678901234567
) PRINT OSING "S$S5204##";SCALZ (-3,As)
$12,345,678,901,235 (Note rounding of cents)

SCALE enables GS BASIC to handle calculations in cents using long integers, and then
to output the resuits with the decimal point positioned to indicate dollars and cents.
You can take the same characters given in the example above and, with a slight
change, convert cents to dollars:

YAE=12345678901234567
) PRINT USING ©S$S20¢.%##";SCALE(-2,A%)
$123,456,789,012,345.67 (Note cents)

The first SCALE argur.ent must be in the range of -128 to 127, and the resulting
exponent of the value must be between -99 and +99, or the

76 Chaopter 3: Entering. Displaying. and Formatting Data

L

UonDWIo| Bulouliog

Ppadeidsp 3q 4 s8esssw
YO¥¥I AIIINVAD T¥OITIIC

Chapter 4

Controlling Program Execution

Assignmebt statements xx

The reserved word LET xx
The reserved word SWAP xx

Remark stolements xx
The reserved word REM xx

Branching xx

Unconditional branching xx
The GOTO statement xx

Conditional branching xx
IF ... THEN statements xx
ELSE clauses xx
Multiline IF ... THEN ...ELSE statements xx
Nested conditional statements xx
Conditional statement considerations xx

Looping xx
FOR ... NEXT statements xx
STEP clauses xx

Do ... WHILE ... UNTLL statements xx
The reserved verb UNTIL xx
The reserved verb WHILE xx
The reserved verb DO xx

Subroutines xx

GOSUB suatements xx
RETURN statements xx

79

POP statements xx

Computed branching xx

ON ... GOTO statements xx

ON ... GOSUB statements xx

ON KBD and OFF KBD statement xx
The reserved variable KBD xx

Handling errors xx

ON ERR and OFF ERR statements xx
RESUME statements xx
The reserved variables ERR and ERRLIN xx

Error-recovery strategies xx

80 Chapter 4: Controlling Program Execution

This chapter describes the statements and functions supplied by Apple IIGS BASIC to
help you control the path of execution of your programs. Even a short program will
use one or more of the items described here, and a large program might use all of
them.

Assignment statements

You use assignment statements 1o assign the values of expressions to variables.
The variable to the left of the equal sign is assigned the value of the expression on the
right side. For example:

JRipple=Zt+*4~1/2
JPRINT Ripple
10

)

The following are examples of assignment statements:

) IVE=S+PMT

)DSJ&=234324

)10 BodyS (Arm, Leg)="Bone"

)1C ReassuringWords=Comforting-12

You can use variables and expressions of any type in an assignment statement.
However, if the type of the variable on the left side of the replacement sign is different
from the one on the right side, type conversion must occur. BASIC automaticallv
converts integer and real variables and numeric expressions, but you must handle
string-numeric cases explicitly. A string expression may not be assigned directly t0 2
numeric variable or vice versa. (See the section tided “Functions” in Chapter 2 for an
explanation of type conversion functions.)

The reserved word LET
LET may optionally precede an assignment statement. For example:
) LET BHenryveFathercfJack

Although the reserved word LET is not required, it can make 2 program listing
somewhat easier to read and understand. If the variable on the left side of the equal
sign is a string variable, the expression on the right must be a string expression. If the
variable is a2 numeric variable, the expression must be 2 numeric or logical
expression. Otherwise, you will see the message

2TYPE MISMATCE ERROR

< Note: You can make only one assignment per statement For example, the
statement

Assignment statements

81

) A=3=0

does not assign the value 0 to both A and B; instead, BASIC evaluates the logical
expression B=0 and assigns the result to variable A. (See the discussion of logical
expressions in Chapter 2.) :

The reserved word SWAP

SWAP exchanges the value stored in one variable for the value stored in another. The
names of the two vanables whose values are 1o be swapped must follow the reserved
word SWAP. For example, the statements

)A=4 : Bm=w8 : C=A/B

store the value .5 in variable C. But
JA=4 : Bw8 : SWAP A,3 : C=A/B
stores the value 2 in variable C.

You can use string, integer, double-integer, long-integer, and single- or double-real
variables with SWAP, but both of the variables to be exchanged must be of the same
type. If the two variables are not the same type, a

?TYPE MISMATCE ZIRRCR

message appears.

Remark statements

Since programs are not written in natural languages such as English, they are not
always easy to understand. Remarks clarify the purpose and methods of your
programs. Use them generously to allow other programmers to maintain your
programs, as well as to remind yourself what your programs are supposed to do and
how thevy do it

The reserved word REM

REM allows you to insert remarks into your program. BASIC ignores everything in a
program line following the reserved word REM, but carries this text along with the rest
of the program. For example, if you type:

REM Munge 3ASIC : Bake Aprle : Inverse : 2RINT

82 Chapter 4: Confroling Progrem Execution

BASIC will not execute any of the words or statements following the reserved word
REM. You can tell that this is so by entering reserved words in lowercase; executable
reserved words are displayed by the BASIC LIST command in uppercase.

The reserved word REM must be the first thmg in a saatement, or BASIC will not treat it
as a remark. For example:

)EPOS REM arkably Tall Buildings

is not a legal statement; however, the statement:

)REM EPOS kyscraper

is leagal

Like all other statements, REM statements must not exceed 239 characters in length. If
you comment your programs heavily, use several REM statements in successive lines.

Branching

A program is said 1o branch when it does not execute the next higher numbered
statement in sequence but, fumps to some other line instead. There are two kinds of
branching: conditional and unconditional.

Branching in GS BASIC can be by reference to line numbers, and programs can get
quite confusing if you are not careful. Because line numbers alone are not very
meaningful, BASIC allows an optional label to be included on any line in your
programs, and those labels can be used in place of line numbers in branching
statements. It is good programming practice to give only the beginning line of a
related group of statements a label—one that is descriptive of the function of the entire
group.

Unconditional branching

A statement causing program execution 10 branch each ume it is executed, under all
conditions, is known as an unconditional branch.

The GOTO statement

GOTO causes execution of the program to jump to the beginning of a specified
statement list You specify the statement list to which execution should jump by
following the reserved word GOTO with the line number or labe! of the statement list.
For exampile:

Branching 82

)10 PRINT 10 : GOTC PGMEND
)20 PRINT 20

)30 PRINT 30 : STOP
)40 PGMEND: PRINT 40
)S0 PRINT S50 : GOTO 20
) RON

0

40

S0

20

30

PROGRAM INTERRUPTED IN 30
)

Most verssions of BASIC begin at the lowest line number and search sequentially until
they find the desired line. Apple IGS BASIC uses a2 more expedient method. If the line
number referenced by the GOTO statement is greater than the number of the GOTO, it
begins searching at the current line; otherwise, the search begins at the start of the
program. However, a if a label is used, Apple IGS BASIC always searches the entire
program.’

If the line number given in the GOTO statement does not exist, or if there is no line
number given, you will see an error message. For example, the message

2UNDEF'D STATEMENT EZIRROR IN 5293

means that 5293 is the line number of an erroneous GOTO statement Immediate
execution of a similarly illegal GOTO staatement such as

) GOTO 45
when there is no program in memory will generate an
?0NDEF'D STATEMENT ERROR

message.

Conditional branching

A statement causing program excecution to branch only under cerain conditions is
called conditional branching.

84 Chapter 4: Controlling Program Execution

IF ... THEN statements

IF statements allow the order of execution of statements to depend on the truth value of
a logical expression. The IF statement must include both a logical expression to be
evaluated and instructions for BASIC to follow if the expression is true. If the
expression is false, execution passes to the next program line beyond the entire IF
statement in the program, and BASIC ignores the instructions given in the IF
statement.

The logical expression to be evaluated must follow the reserved word IF, and the
instructions must follow the reserved words THEN. BASIC also allows the verb GOTO
10 be used in place of the words THEN, but GOTO must be followed by a line number
or a label; unlike THEN, GOTO may not be followed by 2 statement.

BASIC also allows you to follow THEN thh a line number or a label in addition to a
statement list For example:

)ICE30 IF A=¢ TEEN PRINT.REPORT
) 370C IF KP+BE GOTO 378%
) 10C IF¥ G& MOC F&¢ >2 GCOTC 121

In an IF ... THEN sutement, the THEN or GOTO can be followed by any line number
to which execution should branch or 2 statement list for BASIC to execute. For
example:

)IF¥F O TEEN PRINT 1

}50 IF 242 TEEN 250C

YIF S/4>=17 = NOT 2 TEEN GCSUB 300C : INVERSE : PRINT "Ei"
j=F language=Germar TEEN PRINT "Gesunchei:"

Sneezes = Sneezes -~ _

)2C IF¥ language=English THEN PRINT "Bless you!"

Sneezes = Sneezes =+ 1

These are all equivalent statements:

)IF G=f£ TEEN 200
)IT G=: GOTC 200
)IT Ge% IHEN GOTO 200

ELSE clauses

The ELSE clause of the IF statement allows you to specify instructions for BASIC to
execute if the truth value of the logical expression is false. In other words, when the
expression is false, instead of having execution pass to the next line after the IF
statement, you can have BASIC execute some other instructions.

The instructions following the reserved word ELSE can be a line number to which
execution should branch or a statement list to execute. If the logical expression is true,
BASIC will skip the ELSE clause and any statements following on that line. For
example:

Branching

)IF X=1 THEN Y¥Y=2 : ELSE Y¥Y=3

)IF 3<PLS THEN PLS=-PL5 : ELSE NORMAL : GOTO 376

)718 TEXT : IF NOT Y THEN 3200 : EZLSE TEXTPORT 1,1 TO 4,4
: GOTO 4357

and

)10 IF 0<S THEN PRINT 101 : ELSE PRINT 100
)20 IF 0>5 THEN PRINT 201 : EZLSE PRINT 200
) RON
101
200

BASIC treats an ELSE clause that does not immediately follow an IF ... THEN statement
as if it were 2 REM statement For example, BASIC would ignore the line

JELSE Whatever you want to remark about here!

Muitiline IF ... THEN ... ELSE statements

IF statements with long statement lists in either the THEN or ELSE clauses may not {it
on a single program line. In GS BASIC you can separate an [F statement into two or
three program lines by breaking it at the THEN or ELSE verbs. For example, the
statement

IF RTYP=7 THEN PRINT “NAME:";RNAMES
ELSE PRINT "WRCNG RECORD TYPE"

or
200 IF RTYP=?
21C THEN PRINT "NAME:";RNAMES
220 :ZLSE PRINT “WRONG RECORD TvYPE"

will execute as if it had been wnizen on a singie line.

The [F statement can be continued on the next line of a program only if the
continuation lines begin with the verb THEN or ELSE. Furthermore, any line
beginning with THEN or ELSE that directly follows an [F statement is always treated as
part of that statement Note that the continuation of an [F statement only occurs at line
boundaries, not at statement boundaries within a2 program line.

The next section discusses IF statement nesting, which can be done within 2 multiline
IF statement Remember that the line continuation must always occur at the THEN or
ELSE verb of any IF statement, no marter how deeply nested. ..

By combining multiline IF and nested [F statements, you can build an [F statement that
spans many program lines. Although it may appear that you can branch into the
middle of an [F statement, you cannot do this; since, the THEN and ELSE clauses act
exactly like REM statements unless they are executed by an immediately preceding [F
satement

86 Chcopter 4: Controlling Progrem Execution

Nested conditional statements

The statement list following a THEN or ELSE clause or continuation line can contain as
many additional IF ... THEN or IF ... THEN ... ELSE statements as the 239-character
limit will allow. Conditional statements contained inside other conditional statements
in this manner are said to be nested. In these cases, BASIC matches each ELSE with
the most recently encountered and unmatched THEN. For exampie:

)IF INNING=S AND TEAM=BEOME THEN IF MEN.ON.BASE=3 TEEN PRINT "bunt"
: ELSE PRINT *"swing at it!!'"

In this example, the ELSE clause goes with the second THEN, which is the one most
recently unmatched. As another example:

)IF toothache TEEN IF dentist is on vacation TEEN suffer
: ELSE call for appointment : ELSE smile!

This example could be organized into multiple lines, as follows:

100C IF¥ toothache

1002 TEEN IF dentist is on vacation
1002 THEN suffer

1002 ELSE call for appointment

1004 ELSE smile!

Conditional statement considerations

The following IF siatements have legal logical expressions:

"

. < EIN PRINT "Yup"

o
O

)2z 2 7

)2 TEEN PRINT "Nope"

JI¥ A<B TEEN PRINT "Yup”"™ : ELSE PRINT "Nope"

)IF TA"<"B" TEEN PRINT "Yup"

)JIF¥ 1+2+*2 TEEN PRINT “"Maybe so" : ELSE PRINT "Maybe not"

Unlike in most other versions of BASIC, the following IF statements are also legal in
Apple IIGS BASIC:

)IF¥ *Frec"™ THEEN PRINT *Fred"
)IF KARENS THEN PRINT "Frec's £friend"
)IF “Frec"+KARENS THEEN PRINT "Frec 'n Karen"

Normally, a logical expression can be either 2 comparison of arithmetic expressions
or a comparison of string expressions. It is important to remember that logical
expressions reduce 1o a truth value of true or false, represented by an integer value of 1
and 0, respectively.

It is legal 1o substitute 2 single arithmetic expression for a logical expression. However,
you can only substitute a single string expression for a logical expression in the
conditional expression of an IF statement.

Branching

All BASICs standardly treat the value of an arithmetic expression as true or false or
nonzero or zero. GS BASIC has similar rules for string expressions. It recognizes a
string result and uses the length of the string, 2 number from 0 through 255, as the

logical result. A length of zero has a truth value of false and a nonzero length has a truth
value of true. v

Thus, IF string THEN is an intuitive language extension, and it functions the same as if
you used the LEN function (described in the *String Functions” section of Chapter 2).
For example:

) IF¥ LEN(KARENS) THEN PRINT "Xaren exists!"
: ELSE ?PRINT "No Karen”

An [F without a matching THEN or GOTO generates a
2SYNTAX ERRCR
message.

ELSE must be preceded by a colon when it follows a2 THEN clause on the same program
line. For example:

10C IF X=12 THEN 10C0 : ZLSE 2000

However, ELSE need not be preceded by a colon when it begins a separate line in a
multiline IF ... THEN ... ELSE statement, as follows:

200 IF MinnowS=FishS THEN Answer=True
210 ELSE Answer=False

Looping

Looping is the process of carring out one or more operations repetitively. Loops can
be divided into two general types: those operating 2 determined number of times and
those operating either as long as a specified condition is true or unl a specified
condition is true. The first type uses the FOR ... NEXT structure described below, and
the second type is accomplished with the WHILE ... UNTIL or the DO ... UNTIL locp
statements, described later in this chapter.

FOR ... NEXT statements

The verbs FOR and NEXT allow a group of statements to be executed a specified
number of times. The FOR statement defines the beginning of the statement list
making up the body of the loop and sets the number of times it is to be executed, and
the NEXT suatement defines its end. For example, if you wanted to display the numbers
1 to 5, you might write a program like this:

88 Chapter 4: Controlling Program Execution

)1C Numberesl
)20 PRINT Number
) 3C Number=Number<+l : IF Number<€ TEEN 20

Alternatively, you could use the FOR and NEXT statements like this:

)10 FOR Number=l TO S
)20 PRINT Number

)30 NEXT Number

) RUN

1

- e N

In line 10, the control variable Number is assigned a beginning value of 1 and an
ending value of 5. The NEXT statement in lime 30 of this program functions the same as
the siatements in line 30 of the previous program. It increments the value of Number
by 1, and then checks to see if the value of Number is greater than the ending value that
was spedified in the FOR statement.

If the value of Number is less than the ending value, execution loops back to the
sutement immediately following the FOR statement (line 20). If the value of the
control variable is greater than the ending value, execution continues with the next
statement immediately following the NEXT statement

The control variable can be any type of numeric variable, either real or integer. but it
cannot be a string variable. The beginning and ending values assigned to the control
variable in the FOR statement can be the result of arithmetic expressions. For
example:

YTOR Repeat$=T+44-F6/D*NOT R TD D54*5/FC : NEXT Repeatt
is perfectly legal, if somewhat obscure.

BASIC supports five types of numeric variables, single- and double-precision reals,
and regular, double, and long integers. The initial value, limit value, and optional
increment value of a FOR loop are all converted to the type of the control variable
when the FOR statement is executed. The conversions are performed as if the FOR
statement were written like this:

A0 FOR I& = CONVS(init) TO CONVS(limit) STEP CONV& (increment)

A similar statement could be written if the control variable were 1, I#, 1@, or I& by
substituting the functions CONV, CONV#, CONV@, and CONV&, respectively. These
forced conversions (type coercion) allow maximum speed during the NEXT addition
and compare operations.

Looping

89

Due to these coercions, 2 FOR loop with a regular integer control variable will execute
up to six times faster than a real or long-integer control variable. Double-integer
loops will operate up to three times faster. This design allows for speed optimization,
but it creates a restriction.

A FOR loop with an integer control variable cannot have a nonintegral initial, limit, or
increment value. If one is used, it will be rounded to the nearest whole number by the
FOR statement, and the rounded result will replace the value given during loop
execution. This rounding is done without any warning or error message.

FOR ... NEXT loops may contain other FOR ... NEXT loops; loops contained within
other loops are said to be nested. For example:

)10 FOR Rows=1 TO 3
)20 FOR Column=2 TO 3
)30 PRINT Row, Column
)40 NEXT Column

)5S0 NEXT Rows

Nested FOR ... NEXT loops will align with the other statements when you enter them (as
shown above), but they will be indented when displayed by LIST. For example:

IsT

10 FCR Row=1l TO 3

20 FOR Column=2 TO 3
30 PRINT Row, Coclumn
40 NEXT Column

S0 NEXT Row

)

[SIN &

Nodce that the NEXT statements are lined up undemeath the matching FOR statement,
the inner loop is indented, and the body of the inner loop is indented again. The
number of characters for each indentation level is controlled by the modifiable
reserved variable INDENT, as described in Chapter 1, in the section tided “The
reserved variables INDENT and OUTREC.”

NEXT statements can confain as many variable names as you would like. For example:

) 60 FOR Loopl=1 TO 4 : FOR Loop2=4 TO 55
)70 FCR Loop3==4 TO S5
)80 NEXT Loop3d, Loop2, Loopl

The first control variable given in the NEXT statement must be the same as the one
named in the most recently executed FOR statement; the second control variable
given must match the second most recently executed FOR statement, and so on.
Incorrectly matched FOR and NEXT statements cause the message

INEXT WITHOUT FOR ERROR
to be displayed. The following example contains incorrectly nested loops:

)90 FOR A=1 TO T%
)100 FOR B=1 TO 43
)120 NEXT A, 3

90 Chapter 4: Controlling Program Execution -

The FOR statement scans forward in the program, searching for the matching NEXT
statement before the body of the FOR loop is executed. If the NEXT statement is not
found, the message

2FOR WITEOUT NEXT ERROR

will appear. This look-ahead scan properly accounts for nested FOR ... NEXT loops
when locating the matching NEXT statement, but it only considers NEXT verbs that
begin a statement A NEXT verb embedded in the THEN or ELSE clause of an IF-
statement is ignored. This allows a2 FOR statement to have more than one NEXT
statement. Some additional details on the look-ahead matching are described in
Chapter 8, “BASIC Reference.”

STEP clauses

FOR statements may optionally include a STEP clause, allowing you to specify the
amount to increment the control variable with each iteration of the loop. For
example:

FOR BYTEI=2 TC 10 STEP 3 : PRINT BYTE : NEXT BYTE

~ o " N -

If vou do not use a STEP clause, the control variable is incremented by 1, by default,
when the following NEXT statement is executed. You can use any arithmetic
expression to specify the value to increment the control variable. If the control
variabie is any tvpe of integer, the value of the arithmetic expression will be rounded
10 the nearest integral value by the implied type conversion.

If you specifv a negative value in a STEP clause, the Joop counts backwards. For
example:

'

OR loocp=lC TO I STEP -2 : PRINT Lloop : NEXT Loop

o

-~ N S 0

If there is a negative increment value in a STEP clause, and the value of the control
variable is less than the ending value after it has been incremented by a NEXT
statement, execulion passes to the statement following the NEXT; in other words, the
loop is terminated when the NEXT statement is reached. For example:

JFOR Locp=2 TO 1C STEP -2 : PRINT Loop : NEXT Loop

)

Looping

Q1

If the increment value is 0, the control variable is incremented by 0 each time a NEXT
statement is executed. This means that the value of the control variable will never be
greater than the ending value, and the statements berween FOR and NEXT will be
repeated indefinitely (unless the ending value is less than the control variable at the
start). This is known as an infinite loop. The only way to stop the looping is to press
Control-C. :

< Note: The control variable is incremented and compared to the ending value only
when the NEXT statement at the end of the FOR ... NEXT loop is executed. This
means that the statements between the FOR and NEXT are glways executed at least
once.

A NEXT statement without a specified control variable defaults to the control variable
given in the most recenty executed FOR statement still in effect, and it executes faster
than one with a specified control variable. For example:

)FCR G6=4 TO REV3/21 : NEXT
If there is no FOR ... NEXT loop in effect, executing a NEXT statement generates a
INEXT WITHOUT FOR ERROR

message. The same message is displayed if the control variable specified by a NEXT
statement is different than the control variable given in the most recenty executed
FOR statement.

Nesting more than nine FOR ... NEXT loops inside one another results in the message
?STACKX OVERFLOW ERROR

If a deferred execution FOR statement is still in effect, an immediate execution NEXT
statement can cause a jump to the deferred execution program, where appropriate.

DO ... WHILE ... UNTIL statements

The verbs DO, WHILE, and UNTIL can be ct nbined in six useful combinations to
create conditional looping logic similar to FOK ... NEXT loops. WHILE ... UNTIL loops
do not have explicit control variables like FOR loops, but they do have a body of
statements that can be executed repeatedly. An e-ample of each general type is show
below:

100 DO : statements .. : UNTIL G& > 29
14000 WHILE GH >= 299: statements . :UNTI.
S50 DO : statements : WHILE twgy > 11 : statements : UNTIL

The type in the first example is called a DO ... UNTIL 'oop, the tvpe in the second
example is called a WHILE ... UNTIL loop, and the last exampile is called 3 DO ...
WHILE ... UNTIL loop.

92 Chapter 4: Controling Program Execution

The reserved verb UNTIL

UNTLL is used in conjunction with DO and/or WHILE to create various types of
conditional loops. The verb UNTIL marks the end of the loop construct and can be
used with or without 2 logical expression.

If you use UNTIL without a logical expression, it loops back to the most recently
executed DO or WHILE sttement (DO takes precedence if both a DO and a2 WHILE
‘precede the UNTIL). When you use a logical expression, UNTIL loops back if the
expression is false (zero) and proceeds to the next statement if the expression is true
(nonzero). Thus, a DO ... UNTIL loop always executes the body once and continues 1o
loop until the condition becomes true. If the condition is true when the DO is first
executed, the body of the loop will be executed only once.

You can construa an infinite loop with 2 DO ... UNTLL statement by omitting the
logical expression following the reserved word UNTIL. DO and UNTLL need not be on
the same program line. A DO ... UNTILL loop displayed by the LIST command is
indented, like a FOR ... NEXT loop.

You can easily duplicate the WHILE ... WEND or REPEAT ... UNTIL constructs
implemented by other versions of BASIC with WHILE ... UNTLL statements by simply
including or excluding the logical expression. Furthermore, you can use the WHILE ...
UNTIL construct in new combinations. The following common combinations are

possible:

Apple IIGs BASIC loop construct Common name
WEILE lexpr : .. statements .. : UNTIL lexpr WHILE ... UNTIL
WEILE lexpr : .. statements . : UNTIL WHILE ... WEND
WEILZ : .. statements... : UNTIL lexpr REPEAT ... UNTIL
DC : .. statements .. : UNTIL lexpr DO ... UNTLL
WEILEZ : . statements .. : UNTIL infinite loop

In addition, there are two DO ... WHILE ... UNTIL constructs:

DC : statements : WHILE lexpr :.. statements ..:UNTIL
DO : statements : WHEILE lexpr :.. statements ..:UNTIL lexpr

in 2 DO ... WHILE ... UNTL loop, BASIC a/ways executes the statements before the
WHILE and conditionally executes the statements after the WHILE. This effectively
separates the body of the loop into two parts; the prefix pan is unconditionally
executed at least once, and the conditional part may be executed zero, one, or more
times.

UNTL examines the control stack for the WHILE information. If it cannot find a prior
DO or WHILE statement, the message

PUNTIL w/c WEILE ERROR

appears.

Looping

The reserved verb WHILE

The verb WHILE marks the beginning or midpoint of 2 loop construct and can be used
with or without a logical expression. Using WHILE between DO and UNTIL without 2
logical expression is a meaningless (although valid) construct

If you use WHILE without a logical expression, it behaves as if a true expression were
present. When you use a logical expression, WHILE executes the following statements
if the expression is true (nonzero), and skips to the statement following the UNTLL if the
expression is false (zero). The logical expression in the matching UNTIL siatement
does not influence the behavior of WHILE.

WHILE searches forward in the program for a matching UNTIL and will display the
message

WHILE w/o UNTIL EZRROR
if the UNTIL is not present.

The reserved verb DO

The DO statement defines the beginning of a DO ... UNTIL loop or a

DO ... WHILE ... UNTIL loop. The DO suatement does not look ahead for the UNTIL
statement, but an intervening WHILE statement will search for a matching UNTIL
statement.

Since DO doesn’t look ahead, 2 DO ... UNTIL construct may have muitiple UNTIL
statements, some of which are conditionally executed within an [F statement. A DO ...
UNTIL loop with multiple UNTIL statements must be carefully coded so that one
conditional UNTIL statement doesn't lead to another unconditional UNTIL statement.
When this occurs, the message

20NTIL w/o WHILZ EZRROR

appears.

Subroutines

A subroutine is 2 group of statements that perform some spedalized or frequendy
repeated task. BASIC allows you to include 2 descriptive label on the beginning line of
a subroutine so that your programs can reference the subroutine by name instead of by
line number. Such labels make your programs much easier to understand.

OGS BASIC supports another type of subroutine, called a procedure, which is
described in Chapter 7, “Advanced Topics.®

94 Chcpfer 4: Controlling Program Execution

GOSUB statements

GOSUB causes BASIC 1o branch to 2 subroutine. You must follow the reserved word
GOSUB with the line number or label of the first statement in the subroutine. When
BASIC executes 2 GOSUB statemenyt, it places a pointer to the statement immediately
following that statement it places at the top of a list of pointers, called 2 Control
stack, then transfers execution to the line number given in the GOSUB statement

If the line number or label given in 2 GOSUB statement does not correspond to an
existing line in the program, BASIC displays a message. For example

PUNDEF'D STATEMENT ERROR IN 746

means that line 746 contains an erroneous GOSUB statement.

RETURN statements

RETURN has no parameters when paired with GOSUB. In executing a RETURN
statement, BASIC removes one pointer from the top of the Control stack and branches
to the statement indicated by the pointer. This is normally the statement immediately
following the most recently executed GOSUB statement. For example, in this
program:

)10 GCSUBR 20°C

)20 PRINT ™Back”™

)3C END

720C REM The subroutine goes here
)220 RETURN

line 10 places a pointer to the next statement (line 20) on top of the Conurol stack, and
branches execution to the subroutine at line 200. After line 200, execution transfers to
line 210, where the RETURN statement causes BASIC to remove the top pointer from
the control stack and branch to the line indicated (line 20).

Here is another example of GOSUB and RETURN sualements:

)10 PRINT "Now executing subroutine 10C"

)2C GOSUR 10C

)3C PRINT "Hellc again”

)4C ENT :

)10C PRINT "Subroutine 10 speakinc”

)10 RETURN : REM line 30 will now be executed.

A program can have nested subroutines (subroutines calling other subroutines) up to
about 40 levels deep. If GOSUB statements are nested more than about 40 levels, the

?STACK OVERFLOW ERROR

Subroutines Qs

message is given. For example, here is 2 program with subroutines nested three levels
deep:

Y10 GOSUB 100

)20 END

)S0 GOSUB 200

)60 RETURN : REM Branch to 120
)100 GOSUB SO

)120 RETURN : REM Branch to 20
)200 RETURN : REM Branch to 60

Note that the BASIC statement RETURN is not the same as pressing the Return key. The
RETURN associated with subroutines is a2 normal BASIC statement, and the word is

spelled out

If BASIC atempts to execute one more RETURN statement than it has encountered
GOSUB statements, the

?RETURN WITHOUT GOSUB ERROR

message is displayed

POP statements
POP allows you to jump out of one level of subroutine nesting.

When a POP statement is executed, BASIC removes (pops) the top pointer from the
program stack and discards it, without causing execution to branch anywhere. When
BASIC encounters the next RETURN statement after 2 POP statement is executed,
instead of branching to the first statement beyond the most recently executed GOSUB,
it branches to the first statement beyond the second most recently executed GCSUB.

If 2 POP statement is executed before 2 GOSUB has been encountered, or if more POP
statements and RETURN statements are encountered than GOSUB statements, BASIC
displays the message

?RETURN WITHOUT GOSUB EIRRCR
because more pointers have been removed from the stack than were placed on it
Here is an example of the use of POP:

96 Chapter 4: Controlling Program Execution

)NEW

)10 GOSUR 10C

120 PRINT "Encd of program”

)30 END

Y100 REM This subroutine has no RETURN statement
)110 PRINT *"Subroutine 100 speaking"”

1120 PRINT "About to branch to subroutine 200"
)130 GOSUB 200

)140 REM This line s never executed

)200 PRINT "Subroutine 200 speaking”

}21C PRINT ®"Popping to avoid returning to line 140"
)220 POP : REM Removes pointer to line 140 from stack
1230 RETURN : REM Execution now resumes at line 20
) RON

Subroutine 100 speaking

Abocut to execute subroutine 200

Subroutine 20C speaking

Popping To avecid returning to line 14C

End of program

)

Computed pranching

Many programs require 2 different set of operations for each possible value in a range.
Computed branching allows you to tailor your program to respond to a number of
possible conditions.

ON ... GOTO statements

ON ... GOTO statements are used to specify different program branch points, based
on the value of an arithmetic expression. The arithmetic expression must follow the
reserved word ON, and the line numbers or labels to which execution should branch
must follow the reserved word GOTO. For example:

1000 ON X GOTC 10C, 10, 30C, 40, PRINT.REPORT

If X=1, execution branches to the first line in the list of numbers (line 100); if X=2,
execution branches to the second line in the list (line 10),; if X=3, execution branches
1o line 300 (the third line in the lisD); and so on. Remember that you can use 2 label in
place of a line number to make your programs more readable.

The value of the arithmetic expression must be within the range of 0 through 255, or
you will see the message

?ZLLEGAL QUANTITY ZRROR

Computec branching

If the value of the arithmetic expression is 0 or greater than the number of line
numbers or labels given in the ON ... GOTO ‘statement, BASIC ignores the list of line
numbers, and execution continues with the next statement in the program.

ON ... GOSUB statements

ON ... GOSUB statements are identical to ON ... GOTO statements, except that the
line mumbers or labels following the reserved word GOSUB must reference subroutine
entry points. For example:

)1000 ON X GOSUB 1000, 2000, 3000, INIT.DISX

When BASIC executes 2 RETURN statement within the subroutine, execution branches
to the statement immediately following the ON ... GOSUB statement

As with ON ... GOTO statements, the value of the arithmetic expression must be within
the range of 0 through 255, or you will see the message

?ILLEGAL QUANTITY ERROR

If the value of the arithmetic expression in the ON...GOSUB statement is 0, or greater
than the number of line numbers or labels given, BASIC ignores the list of line
numbers, and execution continues with the next statement in the program.

ON KBD and OFF KBD statements

ON KXBD causes BASIC to execute 2 specific statement list immediately when any key is
pressed. The statement list to be executed must follow the reserved word KBD.

After an ON KBD statement has been executed, BASIC continues executing the
program normally——but as soon as any key is pressed, execution branches back to the
most recently executed ON KBD statement Then t.he statement list pointed to by the
ON KBD statement is executed.

BASIC treats the branch to the ON KBD statement list 2s 2 GOSUB statement branch to
a subroutine, so the program segment that ON KBD czauses to be executed must end
with 2 RETURN statement To enable ON KBD to handle more than one keystroke, the
last statement in the list should be another ON KBD statement. For example:

10 ON XBD GOTC 100 : REM 'GOSUB 10' when any xkey is pressed

20 PRINT "."; : REM Print periods while not handling key-strokes
30 GOTO 20

100 PRINT KBD : REM Display the ASCII value of the xey pressed
110 ON KBD GOTO 100 : REM Reenable ON KBD before RETURN

120 RETURN : REM Program continues executing wherever it was

This program displays many periods, and whenever a key is pressed, BASIC executes
the instructions in the ON KBD statement

98 Chapter 4: Controlling Program Execution

BASIC forgets the last ON KBD statement as soon as a key is pressed, even before it
executes the statement list in the ON KBD statement This is why the program above
includes another ON KBD statement in line 110. BASIC also forgets the last ON KBD
statement executed if the program returns to immediate execution.

Execution of an OFF KBD statement causes BASIC to forget the last ON KBD statement
that was executed

An ON KBD statement must be executed just prior to the RETURN statement, or a
?STACK OVERFLOW ERROR
message may appear.

© Note: When ON KBD is in effect, you cannot halt the program by pressing Control-
C because it is treated like any other keystroke. However, the ON KBD smtement
could cause 2 branch to 2 STOP or END statement if a control-C is pressed.

The reserved variable KBD

Apple IIGS BASIC allows you to read, but not write to, its reserved variables. KBD
conuins the ASCI value of the last key pressed (see Appendix A, *ASCH Character
Codes”™). When you use the reserved variable KBD in an ON ... GOTO or ON ...
GOSUB statement, you must enclose KBD in parentheses, so that BASIC will not
confuse it with an ON KBD statement For example:

JON (KBD)=-64 GOTC 100,200,300

Handling errors

Apple IIGS BASIC provides several tools that allow your programs to handle
anticipated errors. These are especially useful if other people will be using your
programs.

ON ERR and OFF ERR statements

ON ERR is used to force BASIC to let your program handle any errors that might occur.
When an ON ERR statement is not in effect and an error occurs during deferred
execution, BASIC displays an error message on the screen and halts execution. ON
ERR is typically used to give 2 more informative error message or 10 provide the user
with a2 chance to avoid causing another error. The ON ERR statement should not be
used as a tool for finding errors in programs. (Use the TRACE statement, described in
Chapter 1 for this.) -

Handling errors

@9

A statement or statement list must follow the reserved variable ERR. Execution
branches to the subroutine referenced by the statement list whenever an error is
encountered; BASIC does not display its error message or halt execution.

For the ON ERR statement to be most effective, it should appear near the beginning of
the program (BASIC must execute it before it can use it). Errors that occur before an
ON ERR statement result in BASIC's normal error responses.

If a program contains more than one ON ERR statement, only the most recenty
executed one will be used.

OFF ERR cancels the most recently executed ON ERR statement There are no
parameters or options associated with this statement After an OFF ERR statement has
been executed, BASIC resumes displaying error messages and halting execution in
response [0 an error, just as it did before the ON ERR statement was executed.

waming:

The statements that ON ERR couses to be executed must themseives be free of
errors, or an endless loop May result. You can halt the endless loop by pressing
Control-C. (Control-C is handled separateiy by the ON BREAK statement.) For a
complete list of BASIC efrors, see@ Appendix B, “Efror.”

The following program ilustrates one simple way to use the ON ERR statement In this
example, the computer is expecting the user to enter 2 number. The error-handling
statements are executed if 2 letter or word is typed instead.

10 REM EXAMPLE OF ERROR HANDLING

20 ON ERR GOSUB 1000

30 INPUT "Please type a single number between 1 and 100 ";X
40 2RINT "The aumber you typed was ";X

SOEEND

1000 REM ZRRCR HANDLING SUBROUTINE

1010 PRINT : PRINT "I'm very sorry, but only a number will do. ?Please :=ry agaia."

1020 RETURN

RESUME statements

If your error-handling routine ends with 2 RESUME statement, execution will begin
again at the statement where the original error occurred. In additon o RESUME with
no options, you can execute RESUME NEXT in your error-handling routines.

RESUME NEXT skips the statement that caused the error and remurmns control © the next
statement within the program. Using RESUME NEXT requires care to ensure that the
program will function in 2 useful manner when 2 given statement is ignored. You can
control this behavior by only using RESUME NEXT for specific cases in your program
and checking for them by examining the reserved variable ERRLIN, described beiow.

100 Chapter 4: Controlling Progrem Execution

Apple IIGS BASIC ignores any RESUME statements that it encounters until an error
ocaurs. If you try to use RESUME in immediate execution, an

?ILLEGAL DIRECT ERROR

message appears.

warning:

ON ERR subroutines using RESUME must be efror-free. Errors in your efror routines
may lock up your system. If this happens, you will have to reboot BASIC, and
anything In memory will be iost.

The reserved variagbles ERR and ERRLIN

When BASIC encounters an error, it assigns the reserved variable ERR a code number
corresponding to the type of the detected error. You can then refer to the reserved
variable ERR 10 determine what kind of error occurred. For a list of these codes and the
corresponding error messages, see Appendix B “Error messages.”

Your error-handling routines called by an ON ERR statement can check the reserved

variable ERRLIN to determine which line contained the error.

< Note: Because muitiple statements may appear on a single line, ERRLIN does not
determine exactly which statement caused an error. It is advisable to place only one

mmmempe:hnewhaemmmosthkdysomatyoumsecmcﬂywmch
statement caused the error.

Error-recovery strategies

You can ask an ON ERR suatement to execute any legal BASIC statement For example,
you can use the reserved variable ERR in an ON ... GOSUB statement to handle the
individual errors that can occur. Each subroutine could handie the particular error
conditions in the most appropriate manner. When the subroutine returns, the last
statement in the ERR statement list could be 2 RESUME statement

Unformunately, the concept of restarting statements (using RESUME) in a program is
often not a very practical approach to error handling. For exampile, if the user has
entered a filename that doesn't exist, using the RESUME statement to return to an
OPEN statement, after issuing a

FILE NOT FOUND ERROR

message, will just cause the same error 10 occur again.

Error-recovery strategies

101

A large program will probably need many ON ERR statements for different
circumstances; there is seldom one generalized approach that can work effectively in
all error-handling contexts. You should use ON ERR whenever you expect an error
during a spedific activity within a program and treat unexpected errors elsewhere in a
program as major problems that require the program to restart everything from a well-
defined beginning point

When an unexpected error occurs, you should atempt to preserve any user data that
you can by deleting half complete changes to linked tables or files and closing any
open disk files to ensure that the data in disk buffers is writen to the media.

102 Chapter 4: Controlling Program Execution

Chapter §

File Handling

Fllencmes xx

The PREFIX command xx
The modifiable variable PREFIXS xx

Crecting files xx
CREATE statements xx

Manipulating flles xx

The CATALOG command xx
DELETE statements xx

RENAME statements xx

LOCK and UNLOCK statements xx

Flle types xx

Opening and ciesing flles xx

OPEN stuatements xx
The FOR options xx
The FILTYP= oplion xx
CLOSE statements xx

Accessing text and character flles xx

The INPUT# statement xx
The OUTPLUT suatement xx
The PRINT# statement xx

Accessing data flles xx

The READ# statement xx
The WRITE# statement xx

103

Sequential and random access xx
Sequential access xx

Sequential access considerations xx
Random access xx

Random access considerations xx

Flle statements and functions xx

The ON EOF# statement xx
The OFF EOF# statement xx
The reserved variable EOF xx
The EOFMARK function xx
The FILE function xx

The FILTYP function xx

The TYP function xx

The REC function xx

An exampie of a flle |/O xx

104 Chapter S: File Hancling

This chapter explains how to use devices and files with Apple IIGS BASIC. You should
read the chapter in your Appie OGS Owner's Guide dealing with files to understand files
in general and the terminology describing ProDOS files, volumes, and pathnames.

Apple TGS BASIC treats each peripheral device connected to your computer as a file,
including the keyboard, screen, printer, and disk drives. This means that there need
be only one method of doing input or output for all the different peripherals
connected to your computer. Files on disk volumes are referred to as disk files, and
files on nondisk devices are referred to as character files.

BASIC is designed to support a total of 32 character or disk files. Three of these files are
dedicated to fixed purposes: file #0 is used for the .CONSOLE file (consisting of the
keyboard and the 80-column text screen display), file #30 is used by the EXEC
statement, and file #31 is used by the CAT, CATALOG, and DIR statements.

ProDOS 16 version 1.0 currently allows you to have 2 maximum of six disk files open at
one time, plus one EXEC file, for a total of seven disk files. Although ProDOS 16 allows
eight files open at one time, BASIC reserves one for the TYPE, CATALOG, INVOKE,
and LIBRARY statements. If you open eight disk files, and then try to use one of these
statements, you will see the message

2INT/FCB/VCB TBL FULL ERROR
indicating that the FCB (file control block) table is full.

€ Note: Apple IIGS BASIC actually allows up to 29 open disk files. A funure version of
ProDOS that supports more simultaneously open files will let you take advantage of
this capability.

Filenames
To use any given file, you must refer 1o it by its local filename or pathname

Local filenames can be any sequence of 15 or fewer leners (A through Z), digits, or
periods, beginning with an alphabetic character. They may not begin with a slash
character (/) or contain spaces.

The local filenames of character devices always begin with a period (). For instance,
_PRINTER, and .CONSOLE are the filenames assigned by BASIC to refer to the siot 1
device, and the slot 3 device (the text screen and keyboard), respectively.

Pathnames may be up to 128 characters in length. The Apple IGS Oumer’s Guide
describes pathnames in detail.
© Note: You can refer to a specific disk drive by using the device names .D1, .D2,

.D3, or .D4 as a partial pathname. The name .D1 will always refer to the drive that
contained the boot disk, aithough the boot disk may not still be in that drive.

Fllenames

Diskeues get their volume names and root directories when they are formaaed To
format diskettes, you can use the INIT command, described in Chapter 8.

To create BASIC program files, you must use the SAVE statement To create BASIC text
files, data files, or subdirectories, you must use the OPEN or CREATE statements.

The PREFIX command

The PREFIX command allows you to display and set the eight prefixes supported by
ProDOS 16. The current settings for all the prefixes can be displayed if you type

PREFIX ?

The display will look something like this:
/GSBASIC/

/GSBASIC/

e}
1
2 /GSBASIC/SYSTEM/LIBS
3
3
S
6
7

/GSBASIC

You can view the current value of any individual prefix by following the reserved word
- PREFIX with a parameter of a single digit from 0 through 7: BASIC will then display the
that prefix value on the next line of the screen. PREFIX can be used without the digit or
the ? options to display the value of prefix 0.

You can also change any of the eight prefixes using the PREFIX command by following
the reserved word PREFIX with a digit, 2 space, and the pathname of the directory to
set into the specified prefix.

To set prefix 0 so that you can use partial pathnames (o refer to files, assign a pathname
to it with the PREFIX command. For example:

)JPREFIX 0 /Personnel/Communication/Internal

After you have set the prefix, you can refer to files by using either partial pathnames or
local filenames. If you wish to access another disk and override the prefix, use a full
pathname.

> Note: When you boot Apple Business BASIC, refix 0 is automatically set to the
volume name of the diskette that was used to boot the Apple OGS BASIC interpreter.

Prefix 7 serves a spedial purpose for BASIC, and its value is changed by the LOAD,
SAVE, SAVE AS, RUN, and CHAIN commands.

106 Chapter 5: File Handling

The modifiable reserved variable PREFIX$

Pathnames starting with any character other than a period, digit, or 2 backslash (that
is, partial pathnames) are interpreted by BASIC as the contents of the modifiable
reserved variable PREFIXS (which is the same as Prefix 0) concatenated with the partial
pathname entered.

A pathname beginning with any alphabetic character is 2 partial pathname that refers
to 2 file defined by the contents of PREFIXS plus the partial pathname supplied. A
pathname beginning with a / is assumed to be the complete pathname of a file. A
prefix beginning with a digit is a partial pathname that refers to a file defined by the
contents of prefix n plus the partial pathname supplied.

Creating files

CREATE statements

You use CREATE to make root directories, subdirectories, text files, data files, and any
other file types. You must specify the file's name and type in the CREATE statement.
The reserved word CREATE is followed by the new pathname, 2 comma, and the
reserved word FILTYP= plus a file type reserved word The following are the file types:

Table 5-1

Reserved word Type

TEXT, TXT, or SRC Text file
BDF or DATA Dana file
DIR or CAT Subdirectoy

For example, to create 2 text file called APPLEPIE on 2 diskette whose volume name is
PIES, you would type

CREATE */Pies/Applepie”™, FILTYP= TEXT

Remember that you can use any of the eight prefixes maintained by ProDOS by leaving
off the initial backslash of the parnial pathname. For example,

)PREFIX 5 /PIES °
)CREATE S/Applepie, FILTYP= TXT

causes the full pathname to be /PIES/APPLEPIE. The statement

) CREATE Fruitpies, CAT

Creating files

107

creates a subdirectory called Fruitpies (using the prefix specified in prefix 0 as the first
part of the pathname) that can contain files.

You can specify the size of each record in a file by appending an arithmetic expression
10 the CREATE argument list. (A record is a2 sequence of bytes storing data or text)
The record size is required only for random-access files (described later in this
chapter), and it must be in the range of 1 through 32767 (BDF files must be in the range
of 3 through 32767). For example: '

) CREATE Attache, TEXT, 4096

creates a file with the local filename Amache, having records of 4096 bytes each. If you
do not include a record size expression, the files record size defaults to 512 bytes.
When creating subdirectories, the arithmetic expression is not allowed.

An attempt 10 creale an already existing file generates 2
2DUPLICATE FILE ERRCR
message.

As a2 convenience in immediate execution, you can enter the pathname direclly in
CREATE and OPEN statements rather than as a string variable or as a literal enclosed
by quotation marks. For example, in immediate execution, the statements

) CREATE /Foo/Fighter, FILTYP= B3DF
and
)CREATE "/Foo/Fighter”, FILTYP= 3DF

are equivalent In deferred mode, the quotation marks are required. Not using them
results in the message

2TY2E MISMATCH ERRCR

Manipulating files

BASIC provides several statements for directly manipulating files. By using these
statements, you can see what files are on a2 volume, remove unwanted files, rename
files, and lock and unlock files.

108 Chapter §: File Handling

The CATALOG command

CATALOG displays a listing of a root directory or subdirectory specified by the
pathname following the reserved word CATALOG. If the specified pathname is a
diskette volume name, the names of all files in the diskette root directory, as well as
those of any subdirectories of the root directory, are displayed. For example, to see 2
catalog of a diskette named APPLE], enter

CATALOG /Applel

If the pathname specified is 2 diskette subdirectory, the names of all files in that
subdirectory are displayed For example, if APPLEKIND is a subdirectory, the
statement :

)CATALOG /Applel/Applekind

will list the names of all the files that it contains.

If vou specify 2 partial pathname as the CATALOG argument, the prefix stored in
prefix 0 is used If you spedify a single digit from 0 through 7, that prefix is used.

CAT is a short version of the CATALOG command. It displays the first 40 columns of
the 80-column display generated by CATALOG. This shorter display generally
contains the most useful information from the longer display.

The CATALOG and CAT display information includes a three-character file type field
labeled TYPE in the title line. BASIC displays more than 60 of these predefined file
type descriptors from an internal table. A complete list of file type descriptors (and
the associated value of the file type attribute as stored in the directory entry) is
presented in Appendix J, “Common Fiie Types.” File types are also discussed in detail
later in this chapter.

DELETE statements

DELETE statements are used to remove the subdirectory or file specified as its
argument You can remove a subdirectory only if all the files in it have been deleted. If
the last file in a2 root directory is deleted, the empty root directory will still remain. For
example, to delete a file named Banana in a2 root directory named Tree, you would
enter

DELITE /Tree/Banana

A number of errors can occur when improper pathnames are used with the DELETE
siatement They are summarized below.

Manipulating files

109

Table $-2

Message Cause

?VOLUME NOT FOUND ERROR Volume name given does not exist

?PATH NOT FOUND ERROR Subdirectory does not exist.

?FILE NOT FOUND ERROR Local file name given does not exist

?FILE LOCKED ERRCR Subdirectory contains files, or specified file, is
locked.

2WRITE PROTECTED ERROR Diskente is write-protected.

?FILES OPEN ERRCR The requested file is now open.

RENAME statements

RENAME is used to change the names of volumes, subdirectories, and local files.
RENAME's argument list is composed of the old pathname, followed by a comma,
followed by the new pathname. For example:

) RENAME /Floppy2/Animals/Dogs, /Tloppy2/Animals/Pigs

changes the name of the file Dogs in the subdirectory Animals of the diskeae with the
volume name Floppy2 to Pigs.

If the second pathname specified indicates 2 file that already exists, the item is not
renamed, and the

?DUPLICATE PATENAME ERROR
~ message is displayed.
Remember that using prefixes reduces the length of the pathname you must type.

You cannot use the RENAME statement to create a file or subdirectory, only to rename
an existing one. Use the CREATE statement to make new files and root directories.

A local filename or subdirectory may not be changed to another volume name. For
example:

)RENAME /Thisdisk/Tweedledee/Filel, /Thatdisk/Tweedledum/File2
will ause the message
?8AD PATH ERRCR

LOCK and UNLOCK statements

LOCKX prohibits writing to, saving, or deleting the file named as its argument. Locked
files are shown with an asterisk to the left ot their file type when cauloged. You can lock
subdirectories, but not volume names.

110 Chapter S: File Handling

You cannot delete, rename, change, or save 2 locked file until you have unlocked it
with the UNLOCK statement The reserved word UNLOCK must be followed by the
file's name. v

To protect all the files on 2 diskete, you can place a write-protect tab over the write-
protect cutout on the upper right edge of the diskene,

File types

Your most useful programs are likely to be those that read from or write to files. The
two types of files that your programs will be using are text and dat files. Text files
contzin only text in the form of characers and strings of characters. BASIC
automatically converts numeric information stored in text files into string form.
BASIC also automatically converts a string representing a numeric value to be assigned
10 2 numeric variable when read from a text file into the proper form.

Reading from or writing to a file is referred to as accessing the file. A single access
operation usually affects only a portion of the data or text within the file being
accessed

The type of a file is determined at the time that the file is created, either by assignment
with a2 CREATE statement or by the FILTYP= option given with an OPEN# statement
You can change a file type by using the FILTYP= option of the RENAME command, as
described in Chapter 8.

Opening and closing files

Before you can access a file, you must open it, and you should close it after you are
finished with it BASIC is designed to allow up to 29 open disk files, however
ProDOS 16 version 1.2 aliows you 10 have only up to seven files open at the same time.

OPEN statements

OPEN is used to open files for access, and must precede any file /O statements
accessing 2 given file. The minimum required arguments following OPEN are the file's
pathname, a comma, the reserved word AS, and a file reference number. If you are
opening a new file, you must also specify the file type using the FILTYP= option
(described in this section).

Opening and closing files

The file reference number is used in all subsequent /O statemeants to refer to the file
while it is open. If an OPEN statement contains a file reference number that is already
in use, BASIC automaticaily closes the first file with that number. You can use any file
reference number from 1 through 29, but you are limited to seven of these for disk files
by ProDOS 16 version 1.2.

% Note: A useful convention for using file reference numbers in BASIC programs
might be to assign character (device) files, such as .PRINTER and .MODEM, file
references numbers that are the same as their siot number (1 through 7), and to
assign open disk files file reference numbers from 10 through 29.

Here are some examples of OPEN statements

OPEN Door, AS #22
OPEN "Window”, AS#10
OPEN .PRINTER, AS #1
OPEN .MODEM, AS #2

As a convenience in immediate execution, you can enter the pathname directly in
OPEN suatements, rather than as a string variable or a literal enclosed by quotation
marks. For example, in immediate execution, the statements

) OPEN/Fpp/Fighter, FILTYP=&DF
and
) OPEN"/Foo/Fighter®, FILTYP=BDF

are equivalent. In deferred mode, the quotation marks are required. If you do not use
them, you will see the message

?TYPE MISMATCH ERROR

The FOR options

If the comma after the pathname is followed by the reserved words FOR INPUT, the file
is opened as a read-only file, which cannot be written to. For exampie:

)OPEN DBMS.INDEX, FOR INPOUT AS #12

If the comma after the pathname is followed by the reserved words FOR OUTPUT, the
file is opened as 2 write-only file, which cannot be read from. For example:

JOPEN SESSION, FOR OUTPUT AS #10

The FOR APPEND option is a variant of FOR OUTPUT, and it is used in sequential
access (explained later) to allow PRINT# or WRITE# statements to append new
information to the end of an existing file without disturbing any of its data. For
example:

)2500 OPEN LADDERS, FOR APPEND AS #1.

112 Chapter S: Flle Honcling

If you do not specify a2 FOR option, the file is opened with the default option of FOR
UPDATE. A file open for update can be both read from and written to if the file type
(disk or character) supports such access. For example, you cannot read from a printer
device, so BASIC automatically opens a write-only file for it

The FILTYPEs= option

The OPEN statement also has a2 FILTYP= option that allows you to specify the type of
file.

The reserved word FILTYP= follows the comma after the OPEN pathname and
precedes the FOR option (if there is one). The file type descriptors that can follow
FILTYP= are TXT or TEXT, SRC, BDF or DATA, and DIR or CAT.

ProDOS 16 suppons more than 60 file types, even though only a few type descriptors
are explicitly supported by the FILTYP= option. You can seleat any of the remaining
file types by using a numeric expression after the reserved word FILTYP=. The value of
the expression must be in the range of 0 through 255; otherwise, the message

2ILLEGAL QUANIITY ERROR

will appear.

important:

When you are opening a new flle, you must include the FILTYPs option to tell
BASIC what flie type to use when [t performs the implied CREATE operation. If you
attempt to open o nonexistent flie without using the FILTYP= option. you will see
the messcge

2FILZ NOT FOUND ERROR

Also, If you use the FILTYP= option when opening an existing flle, and that file has

c flle type different from the one you specified. the message
2FILE TYPE ERROR
will be dispiayed.

< Note: Programmers familiar with Business BASIC on the Apple /// should note that
TIGS BASIC does not support typeless open and first operation of disk files. You
must decide what type a file will be when it is opened, and you are restricted to using
the proper /O statement for that type (either TEXT or DATA).

This programming convention would be particularily useful if it were followed by all
authors of public domain software, since it would make IIGS BASIC programs easier
for others to understand. .

Appie TIGS BASIC also provides two additional forms of OPEN that support advanced
programming techniques. One of these is described in Chapter 8 under “OPEN,” and
the other is discussed in Chapter 7, in the section “Opening 2 Window File.”

Opening and ciosing files

113

CLOSE statements

Before the end of your programs, you should use 2 CLOSE statement to close all open
files. Also, any files closed during program execution must be reopened before you
can access them again. Each time a file is opened, even if it was used earlier in the
same program, BASIC treats it as 2 new file.

The CLOSE verb is used in two ways. The first option is CLOSE, followed by 2 # and the
file reference qumber. This closes the file with the given file reference number. The

file number argument can be a constant an expression with 2 value in the range of 0
through 30; any other values will generate the message

2ILLZGAL QUANTITY ERROR

warning:

Closing flle #0, the .CONSOLE flle. from immecicte mode will disconnect BASIC
from the console, and you will have to reboot your system.

CLOSE, without the file number option closes all files (1 through 29) that are open
when the statement is executed. (The LOAD, CLEAR, NEW, and RUN statements also
close all open files; the CHAIN statement does not close any fies.)

The CLOSE statement closes an open window file by issuing the Window Manager's
CloseWindow function call.

Accessing text and character files

You can access both text files and character (device) files by using the same set of
BASIC /O statements: INPUT#, PRINT#, and PRINT# USING. You must use a different
set of /O suatements (o access BASIC daa files FILTYP=BDF), as described later in
this chapter.

The INPUT# statement

INPUT# reads a line of text from a specified file into the input buffer and processes the
input text using its list of variabiles. [n this context, @ line is any sequence of ASCI
characters, up to 255 characters long, terminated by a reumn character. If INPUT#
does not find a recurn character after reading 255 characters, it appends one to the
buifer and processes the input as a line.

114 Chapter S: Flle Handling

The reserved word INPUT# is followed by the file reference number of the file to be
read from, a semicolon, and a variable list, with commas separating the variables.
Optonally, you can specify a record number to be read into the input buffer by
following the file reference number with 2 comma and the record number (as an
arithmetic expression).

Here are some examples of INPUT# statements: -

) INPUT¢ 2; Payments, Grease$
) INPUTS¢ 8, 34; DG(0), DG(2), DG(4)

INPUT# automatically performs any necessary string to numeric type conversions
(similar to the VAL function described in Chapter 2) to store newly read information
into the numeric variables in the variable list If therde are not enough data in the
buffer to satisfy the entire variable list, the file will be read again as necessary to
compiete the list

If INPUT# is reading t0 2 numeric variable from 2 random-access (file described later
in this chapter) and the record being read from is either empty or contains only non-
numeric information, 3

?TYPE MISMATCE ERROR

message is displayed

BASIC allows an INPUT#* staatement with no variables in the variable list, but such a
statement does nothing.

You can use the OPEN statement 10 access a directory or subdirectory, just as you
would 10 access a text file. Thus, you could use INPUT# statermnents 1O access a directory
and obtain, one line at a time, the same information displayed by the CATALOG
statement BASIC converts the next directory entry into an 80-character text line each
time input is requested from a directory file.

If an INPUT# suatement calls for 2 numeric variable, but the input buffer does not
contain numeric data, BASIC will display a

?TYPE MISMRTCE ERROR

message. If the input buffer contains numeric characters followed by nonnumeric
characters in that line, the numbers are accepted, the other characters are discarded,
and BASIC displays a

2EXTRA IGNORED

Wwarming message.

Accessing text and character files

118

The QUTPUT# siatement .

Normally, BASIC sends all its output, such as error messages and prompts, (o the
video screen. If you want to redirect output o another file, perhaps to get a record of
a program’s output, you can use an OUTPUT# statement.

OUTPUT# redirects screen output to a spedified file. BASIC will send all PRINT, LIST,
TRACE (but not TRACE TO #), and CATALOG sutement output to the specified file,

but error messages and keyboard input are still echoed to the screen. You specify the
file used for output by its file reference number (set by an OPEN statement) following

the reserved word OUTPUT#. For example:

) COTPUT #5
will send output to file #5

If there is no file open with the given file reference number, BASIC displays the
message

?FILE NCT -OPEN ERRCR

If the file specified is not a file that can accept characters, BASIC displays the message
?TYPE MISMATCHE ERROR

To resume normal screen output, type

) OUTPUT# 0

and BASIC will again display characters on the screen

The TRACE saatement should not be used with the OUTPUT# statement Use the
TRACE TO # option, discussed in Chapter 1 in the section “Debugging Programs,” 0
direct trace output to a character or disk file.

% Note: INPUT prompt strings will be sent to the file specified in the OUTPUT#
siaement, not o the screen.

The PRINT# statement

PRINT# writes text characters to files in the same way that PRINT writes information to
the screen. PRINT# is followed by the file reference number, 2 semicolon, and a list of
expressions separated by commas. Optionally, you can spedfy a record number by
following the file reference number with a comma and the record number. In this
case, BASIC will start writing information o the file at the beginning of the specified
record.

Here are some examples of PRINT# statements

116 Chapter S: File Handling

YPRINTY 1; WS$(0,0,0), LEFIS(WS$(0,0,1))
JPRINT# 10, 4755; A&+24, T&/43, RS

PRINT# automatically performs any necessary numeric-{o-string type conversions
and transfers the text characters to the file. Numbers are formaued in either fixed-
point or floating-point notation, according to the same rules used by the PRINT
statement (that is, SHOWDIGITS controls the format of numbers generated by
PRINT#).

You can use the SPC specification with PRINT# statements in the same way that you use
them with PRINT statements. (See the “TAB and SPC Specifications” section of
Chapter 3 for details.)

Warming:

Although PRINT# aliows commes In piace of semicoions (as PRINT does), they
may couse unexpected breaks to appedr in the output because flles have no
tab positions. You can oiso use the TAB specification, but It 100 may couse
strange resuits. Another aliowabie, but not recommended. practice is to run
some expressions together without commas or semicoions.

The PRINT# USING statement, which controls the format of text characters sent to 2
file, is described in detail in Chapter 3, in the “Formatiing Information® section.

Accessing data files

READ# and WRITE# statements are used for accessing BASIC data (BDF or DATA)
files. Data file access is much faster than text file access because no text-to-binary
conversion is required The advantage of a text file is that it allows you to use PRINT#
and INPUT# sutements, which are usually the most convenient way 1o handle text

input and output

The READ# siatement

READ# gets information from a dau file, specified by its file reference number.
Optionally you can include 2 record number to specify 2 particular record for BASIC
to start with in 2 random-access file. A variable list following the file reference number
(and optional record number, if included) defines where to put the information being
read. For exampie:

YREAD$ 7; Pipl, Pip2

YREAD# 8, S54; Twelves, Strongé (2)

If you specify a record number, the first field in the specified record in the file is
assigned 1o the first variable in the READ# statement

Accessing datc flles

BASIC stores the information in 2 BDF file one variable at 2 time, in binary for
numeric variabies and as a string for string variables. Each variable begins with a tag
byte that defines both the type and size of the binary or string information that follows.
Each variable (also called 2 fleld) must fit entirely within a record; a field may not
span a record boundary within the file.

When BASIC opens a BDF file, it allocates a record buffer, where all file input or
output is actually done first, then it transfers the entire record to or from the disk file
media. BASIC only does the actual reading or writing of records when necessary, not
for every READ# statement.

READ# automatically performs any type conversions needed for numeric data.
However, it does not automatically perform type conversions between numeric data
and string variables (and vice versa), and an atempt 10 read a string with 2 numeric
varnable (or vice versa) results in a

2TYPE MISMATCS ERROR
message.
The following table defines the conversion limits of the READ# statement.

Variable to data fleid type Result
Real to:
Real OK :
Double real OK, with possibie loss of accuracy
Integer OK
Double integer OK, with possible loss of accuracy
Long integer OK, with possible loss of accuracy
String TYPE MISMATCH ERROR
Double real to:
Real : OK
Doubie real OK
Integer OK
Double integer OK,;
Long integer . OK, with possible loss of accuracy
String . TYPE MISMATCH ERROR
Integer to:
Real CK in the range of £32X, eise OVERFLOW
Double real OK in the range of 32K, else OVERFLOW
Integer OK
Double integer CK in the range of 32K, else OVERFLOW
Long integer OK in the range of 32X, eise OVERFLOW
String TYPE MISMATCH ERROR

118 Chapter S: File Handling

Double integer to:

Real OK in the range of £2E+9, else OVERFLOW
Double real OK in the range of £2E+9, else OVERFLOW
Integer OK :
Double integer OK
Long integer OK in the range of £2E+9, else OVERFLOW
String TYPE MISMATCH ERROR
Long integer to: ‘ .
Real OVERFLOW ERROR if more than +9E+18
Double real OVERFLOW ERROR if more than +9E+18
Integer OK
Double integer OK
Long integer . OK
String TYPE MISMATCH ERROR
String to:
Real TYPE MISMATCH ERROR
Double real TYPE MISMATCH ERROR
Integer TYPE MISMATCH ERROR
Doubie integer TYPE MISMATCH ERROR
Long integer TYPE MISMATCH ERROR
String OK

The message
?FILE TYPE ERROR

is displayed if vou anempt to use the READ# statement with 2 file that is not 2 BDF (or
DATA) file. (The file type descriptors BDF and DATA are synonyms for the same
ProDOS f{ile type auribute.)

The WRITE# statement

WRITE# sequentially writes the binary value of each variable or constant in its
expression list to 2 field in a spedified dau file. Follow the word WRITE# with the file
reference number, 2 semicoion, and a list of expressions separated by commas,
Optionally, you can specify a record number for BASIC to begin with by following the
file number with 2 comma and the record number. If you specify a record number, the
value of the first expression in the expression list is written to the first field in the
specified record. Otherwise, records are written sequentially.

Here are some examples of WRITE# statements:

YWRITE# 3; Majors, Minors, Xlow
YJWRITE$ 4, 11; Map(i,3,5,7,9)

WRITE#

116

Each field in a dara fle consists of a tag byte that defines the type and size of the
information in that field, followed by the value information. Each field is just large
enough to contain the tag byte and the binary or string data, and so the fields are of
variable length. Any specific type of numeric field always has a fixed length, and 2
string feld has a variable length.

WRITE# does not perform numeric-{o-string conversions while transferring
information from the expressions to the file, it just writes 2 binary image of numeric
data to the file.

If a file record lacks encugh room for all the fields being written to it, the extra fields

will be written to the next record Note that writing any new data to a record will cause
the old dau in that record to be lost.

If you try to write 2 data fieid to a file that is longer than the file’s record length, BASIC
displays the message

200T OF DATA ERROR

Important:

Note that the usucl rules for determining the type of an expressicn result are In
etffect. An expression May have an integer. @ double-integer. a long-integer, or
on extended-precision recl result. Whatever type an expression retums, that
tvype will be written to the flle. except an extendec-precision result will be
converted to @ double-precision reci. and then written,

If you want to ensure that a given fleid in g record is a specific type., you must
us® Q varicbie Instecd of cn expression, or force the expression result to the
required type with one of ‘he CONV functions. For example:

YWRITE 41;N&-+1
writes an integer.
)WRITE #1;N%+1.23

writes g double-precision reci.

Sequential and random access

There are two ways to access text and dam files on a disk: sequential access and
random access. Sequential access is like reading a book; accesses begin at the front
of the file and continue on toward the end. Random access requires that the file be
made of equal-sized records, and it means that you cn access any record in any
order. Character devices may not be accessed randomly, but biock type devices, such
as disks, allow e‘her form of access.

120 Chapter S: File Handling

Sequential access
Here is an example of 2 sequential access program:

10 REM Program PrintSecuential

20 FILES = "SequentialText™

30 OPEN FILES, FILTYP= TXT FOR OUTPUT AS #10

40 FOR X=1 TO 10

SO0 PRINT #10; *This i3 line ";X

60 NEXT X

70 CLOSE #10

80 END

This PrintSequential program writes both string and numeric values into a sequential
ext file,

Line 20 assigns the string SequentialText to the string variable FILES. Line 30 opens
(and creates, if necessary) the file and assigns the number 10 to it as 2 file reference
number. As long as the file is open, it is referred 10 as #10. Lines 40 and 60 define a
loop that will execute 10 times. Each time through the loop, X has a different value:
first 1, then 2, and so on up o 10.

Line SO writes two values into file #10 each time it executes. The first value is the string
“This is line”, and the second is the character string representation of the numeric
value of X These two strings are joined together (because of the semicolon berween
them) 10 occupy one line of text in the file.

Line 70 closes the file. In 2 larger program, other routines might need to access files,
and uniess closely controlled, problems arise with antempts 10 operate with more than
six or seven files open at one time or by accessing the wrong file.

After the program runs, the contents of the file are:

This is Zine 2
This is line 2
This is line 23

This is line 10

To see the contents of this file on the screen, you need another program:

Sequential anc rangdom access

121

10 REM Program InputSequential
20 FILES = "SequentialText”
30 OPEN FILES, As #11

40 ON EOF #11 GOTO 80

SO INPUT #11; ACCEPTS

60 PRINT ACCEPTS

70 GOTO SO
80 CLOSE #11
90 END

The InputSequential program opens the file © read its contents. Each time the loop in
lines 40 through 70 executes, line 50 reads the next line of text from file #1, and stores
it in the string variable ACCEPTS. ‘I'hen.lineéod.isplzys the string on the screen.

The SequentialText file in the previous example was a text file because of the way it was
opened. You can use 2 BASIC daa file to achieve the same resuit The following
program creates a dat file and writes some dan into it:

10 REM ?Program WriteSequential
20 FILES = “"SequentialData”

30 CREATE FILES, FILTYP=DATA

40 OPEIN FILES, FTOR OOUTPUT As #12
SO FOR X=1 TO 10

60 WRITE #12; "This is line *,X
70 NEXT X

80 CLOSE #12

90 END

The WriteSequential program is like the PrintSequential program, but it uses WRITE#
instead of PRINT#. WRITE# does not allow the use of semicolons to separate values
that are written to a file. Each WRITE# sends a field to the file for each variable in its
expression list WRITE# also does not convert numbers to strings, but places them in a
file using the same format (binary) as numeric variables that are stored in the
computer's memory.

In the SequentiaiDarta file, every other field contains the string *This is Line”, and the
fields in berween contain binary coded numeric values from 1 to 10.

The program below reads information from the SequentialData file back into memory
and displays it on the screen:

10 REM Program ReadSequential
20 FILES = ="SequentialData”

30 OPEN FILES, FOR INPUT AS #13
40 FOR X=1 TO 10

SO0 READ #13; ACCEIPTS, INNUM

60 PRINT ACCEPTS; INNOM

70 NEXT X

30 CLOSE #13

90 END

122 Chapter S: File Handling

Where the InputSequential program used INPUT#, the ReadSequential program uses
READ#. The READ# statement reads the vaiues of two fields from the file: the first (2
string value) is stored in ACCEPTS, the second (numeric) value is stored in INNUM. In
line 60, PRINT displays the two values as one line because of the semicolon.

ReadSequential displays the following on the screen:

This is line 1
This is line 2

-
-

This is line 10

Sequential access considerations

Notice that the programs above with PRINT#, INPUT#, WRITE#, and READ#
statements all use sequential access; we never had to specify where 10 begin in the file.
PRINT# or WRITE# statements cause one access for each expression in their
expression list, and INPUT# or READ# sutements cause one access for each variable
in their variabie list BASIC automatically advances by one data or text item each time
an expression is written or a variable is read, so that the next access 1o the file will be
positioned correctly.

When you open 2 file, the first access begins at the beginning of the file. Each
subsequent access begins where the last one left off.

This means that each time that you open an existing file and write to it, at least some of
its original contents will be written over. If all of the original file is not wrien over,
where is the end of the file? Ar the end of its original contents, or at the end of its new
contents? The answer is that you can'’t be sure. If the old contents have been fully
overwritien, they are lost. If not, a2 portion of the old contents will remain after the end
of the new contents. BASIC will not tell you either way.

To avoid problems with the old contents of files, don't open an existing file using a
FOR OUTPUT statement for sequential access. Instead, delete the old file, then open a
new file using the same file reference number with the FOR OUTPUT statement
(Before you delete the old file, be sure that you read any information you need from
it.)

If you just want to append information to the end of a file, open it using the FOR
APPEND statement, When an existing file has been opened with FOR APPEND, the

first access begins at the end of the file. Each subsequent access begins where the last
one left off. This allows you to retain information previously saved in the file.

[
w

Sequential anc rangom occess 1

Random access

Random-access files are structured as a seciuence of equal-sized records. In random-
access operation, you specify exaaly where each file access should begin by specifying
a record number in the PRINT#, INPUT#, WRITE#», ;nd READ# sutements.

The CREATE and OPEN statements allow you to spedify the record size of 2 new file. If
you don't specify it, the record size defaults to 512 bytes. You cannot change the
record size of an existing file.

Note that in sequential access, the record size is irrelevant; you do not need to think
about it. A record in 2 sequential file cannot be accessed randomly.

Inadataﬁle,dxecon:enmofarecordixeorgmiz:dimoﬁdds.ﬁachﬁeldcoamins
either 2 numeric or string value. Any given field is always conuined wholly within one
record, the records do not overiap.

Inztax:ﬁle,uchrecordisasexi&sofbytes;wirhachbyteconnininga;hanaer.

To use random access, you must have a clear idea of how information will be
organized in your file In a daa file, you should usually plan to have each record
contain the same kind of fields. For example, each data record might contain two real
values, an integer, and a string, in that order. The record size must be large enough to
contain all the fields you will write in each record.

Each dan type uses a certain amount of bytes in its field, as follows

Dama type Bytes used
Real pJ

Double real 9

Integer 3

Doubie integer 5

Long integer 9

String string length + 2

If you want 10 randomily access text in a text file, remember that the INPUT# statement
reads lines of text ended with 2 return character. Therefore, you should usuaily plan to
have each record connain one line. This means that the record size should be at least
big enough 0 connin the longest line your program will ever write into it A line
requires 1 byte for each character in the line, plus 1 byte for the return character at the
end of the line.

We can modify the sequential access examples so that they use random access ©
display only the even-numbered lines of the file on the screen.

To change the PrintSequential program to the PrintRandom program, we must specify
a record size in the CREATE statement and a record number in the PRINT# statement.

124 Chapter S: File Handling

10 REM Program PrintRandom

20 CREATE *“"RandomText™, FILTYP=TXT, 1€
3C OPEN "RandomText™, FOR OUTPUT AS +#10
4C FOR X=1 TC 10

50 PRINT #10,X; *"This is line " ;X

60 NEXT X

70 CLOSE #10

80 END

Although we could have specified a larger record size, 16 bytes is enough to conmain
the longest string we will be writing— 7This s #ne 10 is 15 characters plus 1 for the rerum
character at the end

In line S0, X is the record number. Each time through the loop, the PRINT# statement
writes to a different record; first it writes to record 1, then record 2, and so on, up to
record 10.

We can change the InputSequential program to the InputRandom program, without
specifying the record size, because BASIC stored that information when the file was
created When you open the file BASIC retrieves the record size.

However, we do need 10 make two changes: one in the FOR statement and another in
the record number in the INPUT# statement

1C REM Program InputRandom

20 OPEN *RandomText™, FOR INPUT AS #11
30 FTOR X%=2 TC 10 STEP 2

40 INPUT #1.1,X%; ACCEPTS

S0 PRINT ACCEPTS

60 NEXT

7C CLCTSE #.2

B0 ENI

The FOR statement now starts with X%=2 and has STEP 2, causing X% to take on the
values 2, 4, 6, 8, 10 as the loop repeats five times. In the INPUT# statement, we specify
X% as the record number; so the first time through the loop we access record 2, the
second time record 4, and so on, up to record 10.

When you run InputRandom, it displays the following on the screen: -

This is line
This is line
This is line
This is line B8
Trhis 4is line 10

o s N

In the same fashion, program WriteSequential can be changed to 2 program to
randomly access data files. Try it!

Sequential and random occess

125

Random access considerctions

Here are the essential rules for using random-access files:

T When a record number is spedified in a file /O statement, the access begins at the
beginning field of that record.

o thnyouoverwﬁ:emypanofmexisdngmcordﬁsingaWRITE#(noth#
satemen, all the previous content of that record is lost However, an existing
record that is not overwritten remains unchanged.

When accessing dara files, if a READ# statement contains more than one variable
or 2 WRITE# statement contains more than one expression, the current record
position will move from one field to the next

O When accessing text files, if 2 PRINT# statement writes more than one line, each is
placed in the file in the order written, regardless of record boundaries. If an
INPUT# statement reads more than one line, it assumes that each one begins where
the last one left off, regardless of record boundaries.

If a field in 2 dara file won't fit in the space remaining in the record, BASIC goes to
the beginning of the next record If a field is too big to fit in any record, BASIC
displays the message

8]

0

200T OF DATA ERROR

File statements and functions

BASIC connains statements that allow you to control program execution according 0
information contained in files that your program accesses.

The ON EOF# statement

You can use ON EOF# to force BASIC to allow your program to control what happens if
BASIC reads past the end of a flle (EOF stands for end-of-file). When ON EOF# is not
in effect, and BASIC reads past the end of a file, it displays the message

?00T OF DATA ERROR

and halts execution. ON EOF# is very similar to the ON ERR statement, except that ON)
EOF# recognizes only the end-of-file event

Follow the reserved word EOF# with a statement or statement list, and execution will
branch to that statement list whenever BASIC reads past the end of the file instead of
displaving an error message or halting execution For exampile:

) 100 ON EOF #10 PRINT ®“tad of flille”
) 1000 ON EOF #12 GOTO 2000

126 Chapter S: File Handling

The statement list is executed as though 2 GOTO statement had caused execution to
jump there. Unlike with ON ERR statements, RESUME does not function in
conjunction with ON EOF# statements.

The OFF EOF# statement

OFF EOF# cancels an ON EOF# statement After an OFF EOF# statement has been
executed, BASIC resumes displaying error messages and halting execution when it
reaches the end of a file, just as it did before the ON EOF# statement was executed. You
must follow the reserved word EOF# with a file reference number to specify which file's
ON EOF# suatement should be canceled

The reserved variable EOF

When BASIC encounters the end of a file, it assigns the file reference number of the file
causing the error to the reserved variable EOF. You can then check the reserved
variabie EOF to determine which file ran out of data.

When you use the reserved variable EOF in an ON ... GOTO or ON ... GOSUB
satement you must encdose EOF in parentheses. For example:

)ON (EOF) GOTC 10C,20C,300

The EOFMARK function

EOFMARK returns the current value of the end-of-file mark for the file specified by the
value of it argument, which can be any arithmetic expression in the range of 1 through
29. This function is only valid for open biock device (disk) files. If you reference a file
that is not currently open, BASIC displays the message

?TILE NCT OPEN ERROR
If you use the EOFMARK function with 2 character device file, you will see the message

?NCT A BLOCK DEVICE

The FILE function

FILE tests the existence of a disk filename given by its first parameter, a string
expression. It returns the value 1 if the file with the given pathname exists, or the value
0 if the file does not exist The FILE function also allows an optional second parameter,
separated from the string expression by 2 comma.

Flle statements and functions

—

The second parameter is the reserved word FILTYP= followed by a file type descriptor
or 2 numeric expression whese value is in the range 0 through 255. The valid file type
descriptors are TXT or TEXT, SRC, BDF or DATA, and DIR or CAT.

If any error other than
?FILE NOT FOUND ERROR

is encountered, that error will be displayed. If you do not specify a file type, BASIC
requns a true (the value 1) for a file of any type. If you specify a type different from the
one the file aiready has, BASIC will display

2?FILE TYPE ZRROR

The reserved variable AUXID@ will contain the subtype from the directory entry of the
file.

The FILTYP function

FILTYP reumns the file type of an open file from the BASIC FCB. Its argument is the
reference number of the file. FILTYP(O) is a special case that returns the file type of the
last FILE function call

FILTYP has the same error conditions as the EOFMARK and TYP functions (described
below).

The TYP function

You can use TYP to determine what type of data will be read from a particular file on
the next access o that file. TYP only works for BASIC data files (FILTYP=BDF). If the
file is not a BASIC data file, BASIC displays the message

The argument to the function can be any arithmetic expression, but its value must
specify a particular file reference number from 1 through 29. If you use a larger or
smaller argument, BASIC displays the message

2ILLEGAL QUANTITY ERRCR

The number remumned by the TYP function denotes what type of data will next be read
from the specified file. TYP actually returns the value of the tag byte of the next field in
the file. For example:

) 2000 ON TYP(3) GOSUB 2010,2100,2200,2300,2400,2500,2600
means that the next item is 2 double integer.
For a2 BASIC data file, TYP retumns the foillowing values:

128 Chapter 5: Flle Hanaling

End of file

Not used

Integer

Double integer

Long integer

Singie real

Double real

String

If there are no more dat items in the fle, TYP retums the value 0.

If you specify the reference number of a file that is not open, BASIC displays the
message

NV LA WM - O

2FILE NOT OPEN ERROR

The REC function

REC returns the current record number of the file specified by the value of it argument,
which can be any arithmetic expression whose value is in the range of 1 through 29.
REC returns 2 number in the range of 0 through 8,338,607.

If vou use the INPUT# or READ# statements to access a window file, REC returns the
Window Manager window-record pointer. If you use the INPUT# statement to acoess a
directory file, REC MOD 65536 gives the line number in the last catalog line
generated.

REC has the same error conditions as the TYP function, described above.

Exampie of file /O

Here is an exampie of file use. Assume that you have inserted a2 BASIC diskene named
APPLE] in disk drive 1 and umed on the power. Assume that there is no initialization
file (GSB.HELLO program), SO noO program is run automatically; you just see the
prompt characler. Now you type

RUN DEMC

1o load and run the DEMO program, show below. This program mu..:s copies of
existing files.

Exampie of file 1/O e

.10 PRINT "Text file copy utillicty”

20 INPUT "ESater input file pathname: ";AS
30 OPEN AS, FILTYP=TXT FOR INPUT AS #10
40 INPUT "Enter output file pathname: ";AS
SO REM COpen new output flle

60 OPEN AS, FILTYP=TXT FOR OUTPUT AS #11
70 ON ECF #10 PRINT "Done” : CLOSE : END
80 INPUT #10: AS : PRINT #11:; ASs : GOTO 80

Line 10 displays a message on the screen. Line 20 displays a prompt and then waits for
you (o enter 2 pathname. You must enter 2 legal pathname, or you will see 2 message,
and the program will halt Line 30 opens the named file, referenced hereafter as #1.
Line 40 asks for another pathname; and line 60 opens the file for output, assigning to it
the file reference #2. Line 80 performs the actual copying. Line 70 will be executed
only when the end of the input file has been reached to end the program Until line 70
is executed, line 80 reads in lines from the input file, and writes them to the output file.

Recall that when you boot your computer, the volume name of the diskette in the built-
in disk drive is stored in prefix 0. This means that a valid pathname can be as little as
the name of the file (assuming that there are no subdirectories on the diskexe). So,
responding simply AFILE and BFILE to the program prompts would cause
/APPLE1/AFILE to be duplicated to a new file named /APPLE1/BFILE. Remember that
not using a slash before 2 pathname causes the contents of prefix 0 to be added to the
beginning of the pathname. ‘

This program can be used to print a flle by responding AFILE and .PRINTER,
assuming that a printer is properly connected. Responding .CONSOLE and
/APPLE1/TEXT will take input directly from the computer's keyboard and write it to
the new file /APPLEY/TEXT created by the program.

Note that in the last ase, where input is taken from the keyboard, the program will not
terminate normally because block devices (CONSOLE and .PRINTER) have no end of
file. (In the next-to-last case, .PRINTER was used for output, not as an input file.) You
can use Control-C to end the program.

130 Chopter S: File Handling

Chapter 6

External Routines

The toolbox Iinterfoce xx

Toolbox definition files xx
The LIBRARY statement xx
The CALL statement xx
The EXFN_ statement xx

The Invokable module interface xx

The INVOKE statement xx
The PERFORM sutement xx
The EXFN statement xx

131

Apple 1IGS BASIC provides two complete interfaces to external subroutines (assembly-
language procedures or funcions that are not part of IGS BASIC). Each interface
allows you to load and execute external subroutines from BASIC programs. You can
use both external subroutines that you write and those induded with your Apple IGS.

For example, there is a tool set of subroutines for displaying graphics, supplied in the
Apple [IGS read-only menory (ROM). This tool set, called QuickDraw II, can display
graphics objects of many types in the Super Hi-Res video display mode.

If you catalog your IIGS BASIC master diskete, you will see some files with the
extension .INV. These are one type of external routines. There are two other groups of
related files that you should be aware of, both having the same name as the external
routine files. One type has the extension .DOC (for documentation). The other type
of files, which have no extension, are BASIC demonstration programs. If you run a file
with 2 .DOC or no extension, it will describe the use of its associated external routines.

A subroutine is a separate part of 2 program called by one or (usually) several other
parts of the program to perform 2 spedalized or frequently repeated task. A subroutine
may have a list of arguments enclosed in parentheses following its name, either
variables, pointers, or expressions. There are two types of external subroutines:
procedures and functions. A function retumns a value, 2 procedure does not

An external subroutine uses its parameter list to tell the calling program what
information is available for its use, what is to be operated on, or where it should leave
the results of its operation for the use of the calling program.

The Toolbox interface

BASIC supports an interface to the Apple IIGS Toolbox tool sets, some of which are
provided on the System disk. You can access these tool sets by using the BASIC
statements LIBRARY, CALL, and EXFN_.

Tool sets are of two types: read-only memory (ROM) and random access memory
(RAM). ROM tool sets are built into the Apple IGS computer, and RAM tool sets are
loaded from the System disk. RAM tool sets are always kept in 2 spedial sub-
subdirectory on the boot or System disk. You can view these files by typing

CAT <*/SYSTEM/TOOLS

The files in this directory ail have names that follow the pazemn TOOL999, where the
999 is the tool set number from 001 to 255.

% Note: You can write your own tool set See the Apple OGS Toolbox Reference
manual for details.

132 Chapter 4: Extemal Routines

Toolbox definition files

The LIBRARY sutement loads a special file, called 2 TDF or toolbox definition file,
that contains a2 dictionary of interface definitions for all the functions and procedures
in a tool set Each interface definition contains the function or ligrary name name,
tool number, function number, parameter count, and parameter type for each
procedure or function in the tool set.

A compiete set of TDF files is supplied with BASIC for all the standard Apple IIGS
Toolbox ROM and RAM tool sets. The individual procedures and functions for all the
tool sets are documented in the Apple Toolbax Reference manual Appendix H
provides more information about TDF file format

As far possibie, the names of the procedures and functions in the TDF dictionaries are
the ones used in the Toolbax Reference manual; cerrin tool sets have duplicate
names, so some function names in the TDF will not match those in the Toolbax
Reference manual.

The LIBRARY statement

The LIBRARY statement loads one or more TDF files into the BASIC library dictionary
(a separate memory segment allocated for interface definitions). The reserved word
LIBRARY is followed by one or more string expressions separated by commas. Each
string expression must be the pathname of 2 TDF file on 2 currently mounted disk
volume.

If BASIC does not have enough free memory for all the dictionary data, it displays the
message

OUT OF MEMORY ERROR

If no filenames are present, the library dictionary is deleted, except for entries
inserted by the INVOKE statement

When you use the LIBRARY statement with just 2 pathname parameter, BASIC discards
all prior library definitions before loading the new ones. If you want to add a2 TDF file
to the existing library dictionary without deleting the currenty loaded entries, use the
APPEND option. For exampie:

) ZIBRARY APPEND “TDF.QUICKDRAW"

will append the dictionary for the QuickDraw II tool set to the library segment

The Toolbox interface

The header record inside the TDF file may request that the tool set be loaded from
disk. In this case, use the Tool Locator LOAD1TOOQL call to load the tool set from the
TOOLS sub-subdirectory of the System disk. IGS BASIC first checks to verify that the
same TDF file definitions have not already been loaded into the library dictionary; if
the TDF file was loaded previously BASIC skips that file and processes the next TDF
flename Gf any).

Thus, you can safely reexecute 2 LIBRARY statement any number of times while testing
a program from immediate mode, and only load the TDF definitions once. Note,
however, that the TDF file must continue to be accessible since BASIC will open the file
and read the header record read before making the duplicate load check.

The CALL statement

CALL executes a2 named procedure in an Apple IGS tool set. Before you can use CALL
for normal functions, most tool sets must be properiy initialized. All tool sets have a
startup function that must be called before using any other functions.

‘ Calling a procedure is done like this:
1100 CALL CLEARSCREEN(-1)

or

1200 _ClearsScreen (BKY)

The second example shows the use of the shorthand CALL verb, the underscore
characer (. The CALL and _ statements in both examples call the ClearScreen
funcrion in the QuickDraw I tool set, which clears the entire Super-Hi-Res screen,
using the value of the parameter to set 2 word, or 2 bytes, of pixels.

Each procedure or function in a tool set has a function number and a tool number,
along with its parameter requirements. All three of these items (and others) are
extracted from the interface definition entry in the library dictionary. The dictionary
entry is found by searching for the libname, in this case, CLEARSCREEN.

The TDF file for the tool set must have been loaded into the library dictionary with the
LIBRARY statement prior o executng a2 CALL libname; otherwise, BASIC will display
the message

UNDEF'D PROC/FUNCTION ERROR

The dictionary enuy indicates the parameters required by the tool set function (and
their order and types). The parameter list in the CALL statement must contain the
proper number, order, and types of arguments within parentheses following the
libname. The parameters are pushed on the CPU stack in order from left to right, and
the proper tool set function is called

134 Chaopter 4: External Routines -

BASIC removes any returned results from the CPU stack and stores the first 16 words
(32 bvies) in the renurn stack buffer. The contents of the retumn stack buffer may be
accessed through the R.STACK functions.

warning:

Don’t attempt to use CALL without complete knowiege of g tool set. (The
standard tool sets are documented in the Apple lics Toolbox Reference menual.)

1IGS BASIC correctly initiates QuickDraw II when the GRAF INIT command is executed,
and it also starts up the Sound Manager (but not the NOTESYN or NOTESEQ tool sets).
You may obtain the addresses of some preallocated memory resources that are useful
for initializing certain tool sets with the BASIC® function.

To pass real or integer numbers or the values of variables, just include them in the
argument list as an expression (for an explanation of expressions see the sections titled
Expressions and Statements in Chapter 2). If the type of the numeric argument or
expression you use does not match the type of the parameter required by the tool set
function, CALL anempts to convert the result to the proper type, just as if you had used
the proper CONV() function for the type of the argument

Warning:

BASIC will not perform string-to-numeric or numeric-to-string conversions: in these
coses, an Argument Type Mismatch Error will oceur.

You must also use the correct number of arguments when calling 2 tool set function;

otherwise, you will see the message

?ARGUMENT COUNT ERROR

< Note: The binary format of real numbers are those defined by the SANE tool set If
an expression is used for a parameter, the expression evaluation may create an
extended-precision real result, which will be converted to the type required by the
tool set function. This conversion may cause an Overflow Error if the result of the
expression is 2 number too large for the type of parameter required by the function.

To pass the address of a2 numeric variable, use the VARPTR function. There is no
means of passing the address of an expression.

The Toolbox intertace 1

(&)
(¢,

If the tool set interface definition entry obained from the library indicates that the
argument for a tool set function should be 2 counted string (often referred w0 as a
Pascal string or P-string), the CALL statement will convert a2 BASIC string, or string
expression result, into a counted string. A counted string is 2 count byte followed by
the characters. CALL automatically passes the address of the count byte to the function
instead of the address of the BASIC string. You do not need to use the VARPTR
function for P-string parameters in the tool sets defined by the standard TDF, since all
of these definitions were set up in advance to use the counted string convession
function described above.

wWaming:

The counted siring conversion will orly pass strings up to 254 characters long.
Attempting fo pass a string with 255 choracters (the limit case) will cause a
sting Too Long Efror.

To pass the address of the string's first character (without 2 count byte) use the
VARPTRS function. See Chapter 8, “BASIC Reference,” for more details.

The EXFN_ statement

EXFN_ executes tool set functions that return a numeric value. The library dictionary,
loaded by the LIBRARY statement, contains the libnames that EXFN_ can call

The name of the external function must follow the reserved word EXFN_. EXFN can be
used anywhere in 2 BASIC statement that a variable can be used. For exampie:

10000 PRINT ZXFN_StringWidth(®THIS IS A SAMPLZ™)

You can use one of the following type characters to document the type of the function
result, even though the function result type is actually conrrolled by the interface
definition entry information in the library dictionary:

* 3.5 @

The type character immediately follows EXFN_. For example, the statement

10000 PRINT EXFN%_StringWidth ("TEIS IS A SAMPLE™)

indicates that the result of the external function is a regular integer.

If BASIC does not find the libname in the library dictionary, it displays the message
?UNDEF'D PROC/FUNCTION ERRCR

If you want to pass an integer argument, just include an integer variable in the
parameter list, but as a variable, not as an expression

136 Chapter 4: External Routines

To pass the address of numeric variables, use the VARPTR function. String variables
are converted 10 counted strings and the address is passed for the argument EXFN_
processes arguments in the same manner as the CALL statement

Additional technical dewils about EXFN_ an be found in Chapter 8, *BASIC
Reference.®

The invokable module interface

The BASIC statements, INVOKE, PERFORM, and EXFN provide the interface to user-
writen external subroutines, called invokable modules. These statements are used 1o
load a file conuining external subroutines into memory from disk files and execute
them at the BASIC program'’s demand.

Invokable modules are similar to tool sets, but are user-writen and are spedifically
dependent on the internal operation of the IIGS BASIC interpreter. (A tool set, even a
user-writlen one, is normally coded to be independent of the calling environment)
How to write an invokable module is described in Appendix L

The INVOKE statement loads external subroutines and their dictionaries with the
System Loader tool set and, depending on the subroutine’s type, either the PERFORM
or EXFN suatement executes it

The INVOKE statement

INVOKE loads into memory the files whose names are given by the string parameters
following the reserved word INVOKE. For example, to load an invokable file named
FastPrini, enter

) INVOKE FastPrint

You may load 2s many files at once as you like by separating the pathnames by
commas. The following is an example of INVOKE used in immediate mode:

)INVOKE FPl, FP2, /Vol2/Subr/FP3

Using INVOKE in deferred mode is somewhat different; the filenames must be string
constants or string variables, like this:

110 FILNAM3S="/VOL2/SUBR/FP23"
120 INVOKE "FP1", "FP2",FILNAM3S

Executing INVOKE with just a list of filenames discards from memory any subroutine
modules previously loaded by other INVOKE statements and returns the freed
memory space to the Memory Manager. You can add to the existing set of invoked
modules by using the APPEND option with INVOKE. For example:

The invokable module interface

137

200 INVOKE APPEND “"Banner.2zinter”

will add the subroutines in the named file to those already loaded. INVOKE APPEND
does not discard the previously invoked modules (if there are any) before loading the
new module. . ‘

Invokable modules are written in assembly language using the Apple OGS
Programmer's Workshop (APW) Assembler, following the guidelines found in
Appendix L An invokable module must be 2 locad file in object module format The file
must have 2 data segment with the segment name DICTIONAKRY and a code segment
conzining the external subroutines.

The dictionary segment of an invokable module contains an interface definition for
each procedure and function subroutine used in the code segment A single code
segment may have from 1 through 255 entry points defined within its dictionary.
BASIC loads the dictionary through first, and adds the entries to the invoke table
within the library dictionary. The code segment is lcaded with the System Loader.

% Note: If you don’t need your invoked subroutines any longer and want to free the
memory, execute an INVOKE statement with no pathnames following it. All the
invoked subroutines are removed from memory, variables defined in BASIC are
not touched, nor is the BASIC program altered The freed memory is returned to
the Memory Manager and will not be available for BASIC variables or arrays unless
the dara segment size is expanded with the CLEAR statement

If there is not enough memory to load an invoked file, BASIC will display the message

200T OF MEMORY ERROR

If the file loaded is not a load file with file type 516 ($B3), BASIC will display the
message

?FILE TYPE ERROR
If the file is not found on the named disk, you will see the message

?2FILE NOT FCUND ERRCOR

The PERFORM statement

PERFORM executes 2 named external procedure previously loaded by an INVOKE
satement If an argument list is present (enclosed in parentheses after the procedure
name), each argument is evaluated and passed to the procedure before execution.
Numeric arguments are converted to the type specified by the interface definition
entry in the INVOKE dictionary.

138 Chapter 4: Extemal Routines

The library dictionary contains the names of the procedures that may be performed.
The dictionary entry also contains a description of the number, order, and type of
arguments required by the procedure. The INVOKE statement reads the library
dictionary entry from the dictionary segment of the invokable load file when the
assembly-language module is loaded.

To pass real or integer constants or the values of single variables, just include them in
the argument list. A string or string expression may not be used for a2 numeric
argument or vice versa; altempting to do so will display the message

2ARGUMENT TYPE MISMATCE ERROR

If the proper number of arguments is not supplied, you will see the message
?ARGUMENT COUNT ERROR)

To pass addresses of variables, use the VARPTR function. For example:

) PERFORM Errproc (R, 13-6, VARPTR (D))

passes the value of variable R, the value 7, and the address of the variable D to the
procedure named Errproc

If you want your subroutine 10 operate on a BASIC string in memory, simply using 2
string variable will pass an address pointing to the string's descriptor in memory. The
subroutine should be designed to act on the string using the address of the descriptor.
Alternately, you may pass the address of the string data by using the VARPTRS
function.

A third choice is also available if you define the argument a5 2 counted string argument
in the interface definition When a counted string argurest. is required by the
procedure, IIGS BASIC creates a2 counted string from 2 BASIC string and passes the
address of the count bvie as the argument.

Values passed 1o an external subroutine are pushed on the system stack in memory.
When the routine is executed, it must read the vaiues from the stack.

Addresses of variables to be passed 10 an external subroutine are pushed on the system
stack by BASIC only if the VARPTR function is used It is the respomsibility of the
subroutine to distinguish between variable values and addresses. Only single variables
can be used a the argument of the VARPTR funciion; using am expression is not legal.

Let's sav we have rwo subroutines that each take one argusnent The first one, MyProc,
takes the value of 2 real expression. The other one, MyOtherProc, takes the address of
a real variable. The following are examples of various legal and illegal combinations
of arguments 1o these subroutines:

) PERFORM MyProc(4.5) : REM legal: A simple expression

)PERFORM MyProc (NUMS) : REM Value of NUMS .s passed

) PERFORM MyProc (NUMS+4.5) : REM NUMS+4.5 is legal a expression.
) PERFORM MyOtherProc (VARPTR(NUMS)) : REM passes address of NUMS
)PERFORM MyDtherProc{VARPTR(4.35)) : REM lllegal use wf VARPTR

The invokable module intertace

139

The EXFN statement

EXFN executes an external assembly-language function that returns a value and has
been loaded by an INVOKE statement. (EXFN_, with an underscore, is used to call
tool set functions.)

As with EXFN_, you can use one of the following type characters to document the type
of the function result, even though the actual type of the result is controlled by the
interface definition entry information in the invoke dictionary.

vy 265 @

For example, suppose that you have a function named CalcX that performs some

operation on 2 supplied argument and returns 2 double-precision result of the
operation. You could execute CalcX in immediate mode with the following statement:

) PRINT EXFN#CalcX(2)*32/256

The value returned by CalcX is multiplied by the expression 32/256. Remember that
the argument passed to CalcX is contained within the parentheses following the
function’s name.

The rules for passing arguments to external procedures also apply to external
functions. See the previous sections on the EXFN_ and PERFORM statements for
details.

If the function named is not part of a2 currently invoked file, you will see the message
?UNDEF'D PRCC/FUNCTICN ERROR

140 Chapter 6: Extemnal Routines

Chapter 7

Advanced Topics

Procedures xx

Using procedures xx
Defining procedures xx
Argument passing xx

Local and global variables xx

Functions xx

Using functions xx
Defining functions xx
Memory mancgement xx
Memory segments xx
The user data segment xx
The program segment xx
The library segment xx
Record buffer segments xx
Invoke segments xx
Tool set segments xx
Using the CLEAR statement xx
Using the NEW sutement xx
Using the FREEMEM function xx
Memory management errors XX

The INPUT USING statement xx

IMAGE statement parameters Xxx
The maxien parameter xx

The cursorx and cursory parameter xx

The scrmwidth parameter xx

141

The fillchar parameter xx
The cursor-mode parameter xx
The long and short parameter xx
The modmask parameter xx
The control parameter xx
The immediate parameter xx
The beep parameter xx
The bord-char parameter xx
The spare parameter xx
The n-chars parameter xx
The tchar parameter xx
_The tmodfr parameter xx
The tmode parameter xx

The UIR function xx -

Using task master xx

Prerequisites xx

Setting up the enviorment xx

Using the EVEDEF statement xx
Event and menu handling routines xx

Opening a window flle xx
Using ON EXCEPTION siatements xx

142 Chapter 7: Advanced Topics

Apple IIGS BASIC supports several advanced programming capabilities that require
deuiled explanation. In addition, some statements require information only
documented in other Apple IIGS Technical Library publications.
The following topics are discussed in this chapter:

procedures

multiline functions

o
C
D memory management

T the INPUT USING statement

T the Task Master call and Window and Menu Managers
= window files

= ON EXCEPTION event-trapping

The beginning programmer need not master any of these features, but reading the
sections on procedures and functions can be helpful after learning the fundamentals.

Procedures

Procedures are groups of BASIC statements similar to subroutines, with the added
advantages of speed of execution and modularity.

This can have multiple formal arguments and local variables that are isolated from the
rest of the program. This separation allows a subprogram to define its own local
variabies with the same names as variables in the main program and retain separate
values. Procedures can also be used to create side-effect multiline string functions by
returning a giobal string variable as a result

The use of local variables allows modular program design. You can use procedures in
multiple programs without considering variable duplication. Generic procedures can
make up a library of tools that can be integrated into new programs.

BASIC scans 2 program once, during the RUN and CHAIN commands, for all the
procedure definitions and inserts the names into the variable table. When 2 procedure
is executed, BASIC searches the variable table instead of the entire program for its
definition; thus, 2 procedure will usually start execution faster than a subroutine
invoked with 2 GOSUB sutement

Using procedures

You use the PROC statement 1o reference procedures, which can have an argument list
with one or more arguments.

- Procedures

143

Arguments or real parameters are the values of the variables used in the PROC
satement that are passed (0 a procedure during execution. For example:

PROC DrawlIsoTriangle(XLEFT, YLEFT,XRIGHT, YRIGAT, 66)

uses the arguments XLEFT, YLEFT, XRIGHT, YRIGHT and the constant 66. The values
of the arguments are passed o the procedure, and their values are assigned (o the
parallel formal parameters in the procedure.

The term formal parameter refers to the parameter(s) that are defined in the
DEF PROC statement. For example, the DEF PROC statement for this procedure
- might look like this:

DEF PROC OrawlsoTriangle(Xl,Y¥1l,X2,¥Y2,HEIGHT)

The formal parameters are the local variables X1, Y1, X2, Y2, and HEIGHT. They
become local variables within the procedure, and the values of the arguments become
the initial values of the local variables. The formal arguments do not return their
values 10 the arguments; the passing is one way into the procedure. This parameter-
transfer approach is called pass by value. This means that 2 procedure cannot change
the vaiue of the argument by changing the value of the formal parameter.

In [IGS BASIC, a procedure can reference both its local variables and all the global
variables of the main program, as long as there is not a local variable with the same
name as the giobal variable. Local arrays are not supported, and all array references
are global.

Defining procedures

You begin 2 procedure definition with 2 DEF PROC statement and complete it with an
END PROC statement The DEF PROC statement must be the first statement on a
program line. A procedure retumns control to the next satement after the calling
PROC statement when an END PROC statement is executed. A procedure may have
more than one END PROC statement, but there must be at least one END PROC
statement at the beginning of a line following the DEF PROC statement.

The general syntax for defining 2 procadure is a follows:

1000 DEF PROC procedure-name [(formal-parameter-list))
1010 1OCAL variable lisc

1090 END PROC (procsdure-name]

The procedure-name must follow the syntax of a variable name, and it can be up 0 29
characters long This name cannot be duplicated in any other DEF statement as the
name of a procedure or function, and it cannot have a type character on the end.

144 Chepter 7: Advanced Topics

The formal-parameter-iist is optional, and it can only contain simple variables.
Parameters are separated by commas, and they can be any type of simple variable.
The number of parameters is limited by the length of a program line (239 characters),
but a large number of parameters will execute slowly, since they are created each time
a procedure is executed

Parameters do not retain their values between invocations of a procedure. If your
procedure needs variables that retain their values, you must use global variables or
arrays.

Each formal parameter in the list becomes a local variable when 2 procedure is
invoked and has the value of the matching argument stored in it as its initial value. You
can define additional local variables with the LOCAL statement These will have initial
values of zero or null)

The statements between the DEF PROC and END PROC statements are called the
body of the procedure.

You cannot use 2 user-defined function definition (DEF FN ... END FN) or another
procedure definition in the body of a procedure.

Even though procedure and function definitions cannot be nested, a procedure can
reference another procedure or function within its body. When a procedure calls
another procedure, the inner procedure cannot reference the local variables of its
calier, uniess they were passed as arguments, and it cannot change the local variables
of its caller.

Argument passing

Arguments used in PROC statements can be any type of simple variable, array
element, or constant A string variable or expression must be passed for a string
formal parameter, and a numeric variable or expression must be passed for a numeric
formal parameter. If you atempt to pass a string argument to a numeric formal
parameter or vice versa, BASIC will display the message

?TYPE MISMATCE ERRCOR

BASIC will conven the type of 2 numeric argument to the type of the numeric formal
parameter if they do not match. This conversion may cause an overflow error if the
value of the argument is out of range for the type of the numeric formal parameter.

Procedures

Local and giobal variables

When you assign a definition to 2 variable within 2 procedure without using a LOCAL
statement in the procedure definition BASIC will create a global variable, just as it
does when you make an assignment in the main program. You can avoid this by using
the FN variable = assignment statement for variables within a procedure or function.
This FN LET statement will only assign definitions definitions to local variables, and
will display a

INCT LOCAL ERROR

if you unintentionally use a global variable name.

A procedure can share a variable with the main program by simply not declaring it in 2
LOCAL statement. Arrays are always shared and global to all procedures, funcuons,
and the main program.

Functions

You can define two types of user functions in IGS BASIC: single-expression (or
simple) functions and muitiline functions. Both can have multiple formal arguments,
and multiline functions can have additional local variables, which are isolated from
the rest of the program.

BASIC scans a program once, during the RUN and CHAIN commands, for all the
functon definitions and inserts the function names into the variable table. (It does not
scan for the definition when you use 2 GOTO statement to execute a2 program.) When a
function is referenced, BASIC searches the variable mbie for the function entry and
executes the function through the resulting program location pointer.

Using functions

You reference single-expression, or simple, functions in the same manner that you
reference variables. You can use a simple function anywhere within your program that
a simple variable can be used. Functions must have an argument list with one or more
argumesnts. See the “Using Procedures” section earlier in this chapter for definitions of
the terms formal parameters and formal argumentss.

Multiline functions are referenced like variables, but only in the expression of a LET or
FN = assignment statement.

Both muiltiline and simple functions are referenced by preceding the function name
with the reserved word FN. For example,

20 A = FN RECIP(X)

146 Chopter 7: Advanced Topics

could be a reference to a2 simple or multiline function, but the statement
30 PRINT FN RECIP (xyz)
could only be a reference 10 2 simple function.

Defining functions

An introductory explanation of simple functions is given in Chapter 2, *Tools of Your
Trade." Simple functions are defined with 2 single program statement, which must be
the first statement on 2 program line. Functions may not be defined in immediate
mode, but you can refer to a function before defining it within your program. Single-
expression functions can be of any type numeric type. As thh variable types, function
types are selected by including a type character.

You can also define single-expression string functions (but not multiline string
functions) using the following syntax:

2C DEF FN name [%¥°€°&°$#) (var{,var}) = arithmetic expressicn
30 DEF FN name S (var{,var}) = string expression

You must include 2 parameter list enclosed in parentheses, with at least one
parameter. Numeric and string functions can have either numeric or string parameters
of the same or different type as the function result However, 2 numeric function
definition must be have 2 numeric expression, and a string function definition must
have a2 string expression

A function can have as many parameters as will fit in one program line, but the more
parameters a function has, the siower it will execute.

A multline function definition is begun with a DEF FN statement and finished with an
END FN suatement The DEF FN statement must be the first statement on 2 program
line. A multiline function returns a2 numeric result to the referencing LET expression
when the END FN statement is executed Multiline string functions are not allowed

A mubiline function can have more than one END FN statement, but you must include
at least one END FN statement as the first statement on a line following the DEF FN
line.

The general syntax for defining 2 multiline function is as follows:

DEF TN function-name [%°@° & #4) (formal-parameter list)
[LOCAL variable-list]

FN function-name = expression

END FN function-name

Functions

147

The function-name must follow the syntax of a variabie name, and it can be up to 29
characters long. This name cannot be duplicated in any other DEF statement as the
name of a procedure or function.

The formal-parameter-list is required, and it an only contin simple variables.
Parameters are separated by commas, and they can be any type of simple variable.
The number of parameters is limited by the length of 2 program line (239 characters),
but a large number of parameters will execute slowly, since they are created each time
a function is executed.

Parameters do not retain their values between invocations of a function. If your
function needs variables that rerin their values, you must use global variables or
arrays.

Each formal in the parameter list becomes a local variable when a function is invoked
and has the value of the matching argument stored in it as its initial value. You can
define additional local variables with the LOCAL statement These will have initial
values of zero or nuil.

The statements between the DEF FN and END FN statement are called the body of the
function. You cannot use a user defined procedure definiton (DEF PROC ... END
PROC) or ancther function definition (definition nesting is prohibited) in the body of
a function. Furthermore, certain statements, such as a DIM statement, may not work
more than once if they occur within the body of a function (the second reference to the
function may cause a duplicate definition error). However 2 DIM statement could be
executed conditionaly in a2 function. For example, you could dimension an array
within an [F statement as follows:

IF MYTABLEN(O)=0 THEN DIM MYTABLE®(SS) : MYTABLEN(0)=1

This technique works because a reference o an undefined array does not cause
augomatic dimensioning of the array (only a2 LET assignment to an undefined array
element causes automatic dimensioning). Any reference to an undefined array
element remumns a zero (or 2 null string for string arrays).

Warming:

This technique will probably not work with @ compiler If a lies BASIC compiler
becomes availcbie In the future.

Even though procedure and function definitions may not be nested, a2 multiline
function may reference another procedure or function within its body. When a
function calls another procedure or function, the inner function cannot reference the
local vaniables of its caller, unless they were passed as arguments, and it cannot
change the local variables of its caller.

The discussions of argument passing and local and global variables in the
“Procedures” section of this chapter also apply to simple and multili..e functions.

148 Chapter 7: Advanced Topics

Memory management

With Apple TIGS BASIC, you can easily create large programs for the Apple IIGS and
dynamically control the allocation of the user data segment and the program segment
during program execution. IIGS BASIC uses the Memory Manager tool set to allocate
memory segments, as described in this section.

Memory segments

The Memory Manager allocates three main memory segments. The CLEAR and NEW
statements provide memory management control for the user data segment and the
program segment, respectively. It allocates a third segment for the library dictionary
segment, which can be deallocated by the CLEAR INVOKE and CLEAR LIBRARY
options of the CLEAR statement

TGS BASIC does not automatically try to allocate all available memory when you start
up the interpreter. Generally, the interpreter code data segment requires all of one
64K bank of memory, and allocates 2 small initial userdata segment of 32K before
auempting to run the GSB.HELLO program. All the BASIC interpreter is loaded into
memory as a single code data segment upon initial startup.

The three main memory segments are all allocated in multiples of 256 bytes so
changing the size of one of these segments may not produce the exact results you
requested. File buffers are always allocated in word (2-bvte) multiples, and thus will
contain 1 extra byte for odd record lengths.

< Technical note: The intepreter keeps all its Memory Manager segments locked, and
has numerous dereferenced pointers to the partitions within them, until one of the
three main segments must be resized. Then three main segments (and sometimes
all the file buffer segments) are unlocked and one of the main segments is resized.
The Memory Manager may then move one or more of the unlocked segments-
during memory compaction. Following resizing, all the pointers are re-
dereferenced after locking all the segments. Only the record buffer handles are
dereferenced on-the-fly during BASIC programs.

Memory management

e

149

he user dota segment

The user data segment can be as large as necessary, but it has a functional limit derived
from the sum of the size of all arrays, simple variables, and 64K for string data pius the
free memory required for the transient local variable tabies for functions and
procedures. Generally, the maximum user data segment size would be the sum of
memory for arrays plus simple variables plus 128K

The user data segment contains speed partitions. In order of the lowest to highest
address, these are

= the array partition

C the simple-variable partition

C the local-variable-stack partition
C free memory

C the string-data pool

G the invoke-control partition

The free-memory partition provides the only gap between the user data segment
partitions. The string-data pool and invoke-control tables grow downward into the
g2p, and the lower partitions grow upward into the gap. The FRE reserved variabie
requrns the size of the gap (the free memory partition within the user data segment.)

Even if the FRE variable returns a smail number, there may be large amounts of
unallocated memory available ocutside the interpreter memory segments. To use this
memory in 3 BASIC program, you must first expand the user data segment with the
CLEAR sttement (see the discussion of the CLEAR statement in Chapter 8).

Dimensicning or erasing an array with 2 DIM or ERASE sutement moves the variable
and local partitions; erasing a variable and reference or assignment to a new simpie
variable moves the local-variable partition. Executing the INVOKE statement will
move the string pool downward.

In addition to the above actions, opening a file an shrink and/or move the user data
segment when 2 file record buffer must be allocated or when ProDOS requires more
unallocated memory to open a file. Also, many functions within the Apple OGS
Toolbox require that unailocated memory be available for their operation

If you are planning to write 2 BASIC program with large memory requirements,
remember that you probably cannot expand the user data segment to consume all the
memory in the Appie IGS. If you are going to be writing a program using the Window,
Menu, Control, and/or Dialog managers, they will require 128K to 192K, plus work
space, depending on how many managers you use and what you do with them.

.In addition to the three main segments, 2 separale Memory Manager segment is
allocated for the record buffer of each open file (see further under “Record Buifer
Segments” later in this section). Also, the System Loader allocates each invoked
module as 2 separate memory segment

150 Chapter 7: Acdvanced Topics

Wwaming:

The fact that the memory segments Mgy move durng program execution
presents o problem for programmers familiar with Appiesoft and other BASICs, In
which the oddresses of the user data elements remain constant during progrem
execution. Even though the VARPTR function is provided In lies BASIC, the
oddresses retumed by It are not fixed and can become stale If they are not
Immediately used aond then discarded.

Using the VARPTR function on a local variable is very likely to become stale because
allocating a2 global simple variable will move all the stacked local variables.

IGSs BASIC will shrink the user data segment when it needs to expand the program or
library segments, allocate a new record buffer, free space for ProDOS to allocate an
/O buffer, or add interface definitions to the library segment for an invokable module
during an INVOKE statement Thus, it is safe to over-allocate the size= of the user data
segment within the limits discussed earlier in this section

The program segment

The program segment contains the program header partition, the program-text
partition, and 2 free-memory partition (for adding new program lines).

When you load or run a2 program, BASIC expands the program segment, using
unallocated memory first, o accommodate the program. When you load a program
in immediate mode, BASIC expands the program segment to 112.5 percent of the size
of the program's EOFMARK (shown in the CATALOG display as the ENDFILE field).
The extra 12.5 percent of space is provided for editing the program.

The addition of lines beyond this initial 12.5 percent margin causes the program
segment to be expanded as required, in portions of at least 256 bytes at a time.
Loading or expanding a program may cause the user data segment to move and/or
shrink if enough unallocated memory is not available from the Memory Manager.

BASIC will not reduce the program segment size when it needs memory for other
purposes or if a smaller program is loaded, run, or chained Once the program
segment expands to a2 given size, it will remain that size unless you use the NEW
statement with the size option Using a size of 512 bytes with the NEW statement will
shrink the program segment to a size just larger than the program.

1GS BASIC will not shrink the program segment when it needs to expand the library
segment, allocate a new record buffer, free space for ProDOS to allocate an I/O
buffer, or add interface definitions to the library segment for an invokable module
during an INVOKE suatement Thus, it is not safe to over-allocate the size of the
program segment

Memory manogement

The library segment

The Memory Manager allocates 512 bytes to the library segment during interpreter
starup, and it remains this size if the LIBRARY and INVOKE statements are never
used. When you load a TDF file with the LIBRARY statement or invoke a module with
the INVOKE statement, BASIC expands the library segment as required.

The library segment contains three partitions: the TDF partition, the invoke partition,
and a free partition. The TDF partition, which is used by the LIBRARY statement,
contains a linked list of TDF ubles, one per LIBRARY file. The invoke partition
contains a single interface definition wble (IDT) with the same format as a2 TDF uable.
The IDT is expanded dynamicaily by the dictionary segment of each invoked module
loaded by the INVOKE statement

IIGS BASIC will not shrink the library segment when it needs o expand the program
segment, allocate 2 new record buffer, or free space for ProDOS to allocate an /O
buffer. The size of the library segment cannot be explicitly allocated from BASIC, but
it expands as needed during INVOKE and LIBRARY statements. You can reduce the
library segment by using the CLEAR INVOKE or the CLEAR LIBRARY (see Chapter 8
for details).

Record butfer segments

Each open file, except for file types TXT and SRC, has a record buffer allocated as a
separate Memory Manager memory segment The handle for the memory segmeant is
stored in the IGS BASIC file control block (FCB). Whenever the record buffer is
referenced (read or written), the handle is dereferenced into a work pointer and the
data transferred between the buffer and the variabie tabies.

If you do not specify a record size in the OPEN statement, BASIC assigns a size of 512
bytes and allocates the buffer accordingly. For other record sizes, an even number of
bytes is always allocated, even if the record size is odd. Thus, the memory segment
may be 1 byte longer than the record’s size. This is done to minimize the time required
to fill the buffer with zeros during buffer allocaton.

invoke segments

Each tume a2 module is invoked, BASIC uses the System Loader o load the code
segment into memory, thus creating 2 memory segmeant. The System Loader
information about each of these segments is retained in the invoke-control partition at
the top of the user data segment For each segment loaded by an INVOKE statemeant, 2
10-byte record is created and stored in the tabie so the segment can be referenced and
deallocated as required.

You can deallocate invoke segments by using the INVOKE or CLEAR INVOKE
statements. BASIC automatically deallocates all invoke ' segments when a QUIT
statement is executed.

182 Chopter 7: Advanced Topics

Tool set segments

You cn use the LIBRARY statement to load a RAM tool set, but BASIC does not
deallocate the segments that are allocated by the LOADITOOL call or when 2 QUIT
siatement is executed. You must deallocate memory segments and shut down any tool
sets that you load during 2 BASIC program if the memory they use is 10 be returned to
the Memory Manager. Refer to the Apple Toolbax Reference manual for further details
about using tool sets in your programs.

Using the CLEAR statement

You can use the CLEAR statement to expand and shrink the size of the user data

segment during the execution of 2 program. If you combine the use of ERASE and
CLEAR statements, your program can dynamically add and then remove arrays or
change the user data segment size in overlays invoked through a CHAIN statement.

The CLEAR statement is discussed in detail in Chapter 8. The syntax of the CLEAR
satement is

CLIAR user-data-size

BASIC treats the user-data-size argument as a2 request to expand or shrink the user dau
segment 10 the number of bytes given During interpreter startup, this size defaults to
approximately 32K. You can create a GSB.HELLO program that allocates more or less
if you wanit 1o select another size for normal use.

Unless you use the CLEAR statement, the user data segment will not expand or
contract, even when vou dear or expand the data within the segment For example,
auempting to dimension a large array without first expanding the user data segment
can result in an out of memory error.

The user-data-size argument cannot be less than 8192 or larger than the amount of
memory currently available through the Memory Manager. Because the user data
segment is 2 contiguous memorv block, memory fragmentation may make it
impossibie for the Memory Manager 10 allocate all available memory into the user
data segment A deuiled discussion of memory fragmentation can be found in the
Apple Toolbax Reference manual, chapter on the Memory Manager.

Your programs can adjust memory usage for many purposes, using differing amounts
at various times, with the CLEAR statement Note that the CLEAR statement with the
size option does not delete or change the arrays or variables that are allocated, but will
cause the string-pool partition to be compacted. The ERASE statement, described in
Chapter 8, removes an array or variable from the appropriate partition within the user
data segment and enlarges the free-memory partition, but does not shrink the user
data segment.

Memory management

182

You can use the FREMEM function, (discussed later in this chapter) to find out how
much memory is allocated or free for various partitions within the memory segments,
as well as how much remains unallocated and availabie to the Memory Manager.

Using the NEW statement

You can use the NEW statement to expand and shrink the size of the program segment
during the execution of a program. If you combine the the use of CHAIN and NEW
statements, the program segment can dynamically grow and shrink with overlays
invoked through the CHAIN statement.

The NEW statement is discussed in detail in Chapter 8. The relevant syntax of the NEW
statement for memory management purposes is:

NEW program-size

BASIC treats the program-size argument as 2 request (o expand or shrink the program
segment o the number of bytes given. During interpreter startup, this size defaults to
512 bytes.

If the program-size argument is smaller than the current program, BASIC will use the
smallest size that will conaain the program instead of the size requested. Using the NEW
statement is the only way 0 shrink the program segment once it has grown due to
loading or chaining to a large program.

NEW first atempts to expand the program segment without stealing space from the
user data segment If unallocated space is available from the Memory Manager, the
user data segment remains unchanged. If space is not available, IGS BASIC will
anempt to shrink the user data segment to deallocate enough memory 10 expand the
program segment to the requested size. If it cannot use space from the user data
segment, NEW will display the message

200T OF MEMCRY ERROR

and leave the program segment as it was (although it may have moved).

Using the FREMEM function

The FREMEM function provides useful information about the partitions of the user
dara segment and the program segment, as well as the other memory segments
allocated by the Memory Manager. The syntax of the FREMEM function is:

FREMEM(n)
The FREMEM(n) syntax provides 10 different function results, as follows:

FREMEM (0) Rewurns the free mes.ory in the user data segment, without first
performing the compaction to recover unused string space

184 Chapter 7: Advanced Topics

FREMEM (1) Retumns the size of the user data segment after performing compaction
1o recover unused string space. The number will usually be 256 larger
than the reserved variable FRE when all arrays and variables are clear

FREMEM (2) Returns the amount of memory currently allocated for arrays within
the user data segment

FREMEM (3) Renurns the amount of memory currently allocated for simple
variables (not including local variables) within the user data segment

FREMEM (4) Returns the size the current program will have when it is saved on disk,
including the size of the program header

FREMEM (5) Returns the size of the program segment
FREMEM (6) Returns the size of the library segment

FREMEM (’i)- Returns the Memory Manager's unaliocated memory total (and does a
CompactMem without unlocking any BASIC memory segments)

FREMEM (8) Retumns the size of the Memory Manager's largest free contiguous
block.

FREMEM (9) Returns the total memory installed in the system, excluding the 64K
Digital Osdllator Chip (DOC) RAM dedicated 1o the sound generator

By subtracting the FREMEM(0) result from the FREMEM(1) result, you can monitor the
“high water® mark of memory usage during program execution At frequently used
places within your program, you could capture the FREMEM(0) value into a variable
whenever it is smaller than the prior value of that variable, thus recording the smallest
free memory available in your program. This will let you know whether you have over-
allocated the user data segment size and should reduce it to free memory for other
purposes. Generally, you should set the user dat segment size from 10 to 20 percent
above the high-water mark determined using this method.

< Note: Remember that the string-pool partition will never grow to more than 64K in
size, even if FREMEM(1) indicates more space is available.

By summing the results of FREMEM(2) and FREMEM(3), you can determine the static
variable memory requirement for 2 program, after all variable and arrays have been
allocated and dimensioned This sum, plus space for transient local variables and 64K
for the string-pool partition, is the maximum useful user data segment size for a given
program. This total will only be 2 constant if you are not using the ERASE statement.

There are three 64K banks (192K) in the Apple IIGS that are essentially reserved for use
and control by the ProDOS operating system, the System Loader, the Memory
Manager, and the video display buffers.

Memory management

The IIGS BASIC interpreter requires most of another 64K bank, thus consuming 256K
of the minimum 384K required to run IIGS BASIC. This leaves about 128K for
programs, data, record buffers, and so forth in 2 minimum Appie OGS system. Add to
this the 128K to 192K required if all the RAM-based Graphics, Window, and Desktop
tool sets (with their data) are used, and you will need 2 minimum of 512K

A large BASIC application program using the full toolbox could easily use 2 768K
system. Add to this a future Finder with multiple resident copies of IIGS BASIC, and
you will be geting out of memory errors in 2 1 megabyte system.

Memory-management errors

Here are some of the most common causes of out-of-memory errors

T dimensioning a large numeric array without first expanding the user data segment
with the CLEAR statement

= loading and atempting to use all the toolbox tool sets in 2 512K system with a large
program

= allocating a very large (more than 64K) program segment with 2 NEW program-size

statement (it is not necessary to preallocate the program segment since it will

automatically expand in smalil increments as needed)

azempting to run OGS BASIC under a Switcher after loading numerous other large

applications (UGS BASIC requires at least 160K of free memory with a contiguous

64K segment for the interpreter and a 32X segment for the user dara segment)

OGS BASIC may also display the message

2?TOCLSET ERROR =$02xx

4]

when an unexpected Memory Manager error occurs or a toolbox function is unable to
allocate needed memory. These errors are defined in the Apple IGS Toolbox
Reference manual chapter about the tool set you called, and in Chapter X, *“Memory
Manager.”

The INPUT USING statement

INPUT USING executes 2 user input routine (UIR) using the parameters in an IMAGE
statement. The UIR is the same routine used by the EDIT command and for entering
command lines in OGS BASIC. You can customize the behavior of the input routine for
your programs with the IMAGE statement parameters. The parameter /innuml or
labell points to the IMAGE statement

156 Chopter 7: Advanced Topics

The IMAGE statement for INPUT USING is similar to the one used for PRINT USING,
but instead of specs for each varnable, it contains a fixed format sequence of initial
parameters. The string variable, suar, is both input to and output from the INPUT
USING statement The value of the string is the default value of the line to be edited by
the user; it may be a null string if new data are being entered. The edited characters of
the line (if any) are retumned in place of the default value.

The UIR function provides the status information from the UIR after the INPUT USING
statement completes. The UIR function is described later in this chapter.

IMAGE scanning parameters.

The parameters in the IMAGE statement are separated by commas, and all the
parameters up through fmodel are required. The parameter n-chars is 2 count from 1
to 10 that indicates how many sets of termination character definitions follow.

The order and names of the IMAGE statement parameters for INPUT USING are as
follows:

IMAGE maxlen, cursorx, cursory, scrnwidth, filichar, cursor mode, short, long,
modmask, control, immediate, beep, bora-char, spare ,n-chars,ichar;, tmodfr,,

tmode,l... ,tcharg tmodfrg tmodeg... tcharyptmodfryp tmode;p |

The moxien parameter

The maxlen parameter indicates the maximum length of the result string. Enter a
number from 1 through 255. If the maximum size of the input string is larger than
sermwidth, the width of the field on the screen, the UIR uses the invisible pant of the
input string to save characters that were pushed out of the field by insertions. Thus,
maxien may be greater than scrmwiagth. However, in this case, the length o the result
string actually remurned by INPUT USING statement is limited to scraowidth
characters.

The cursorx, and cursory

The cursorx and cursory parameters conuin the relative coordinates of the start of
the field within the current textport. When the UIR is entered initially (not reentered
after an interrupt termination), cursorx and cursory are used to position the cursor at
the beginning of the input field on the screen display. Select values for x from 1
through 80, select values for y from 1 through 24.

The INPUT USING statement

157

The scrnwidth parameter

The scrmwidth parameter tells the UIR how wide 10 make the field on the screen. When
the UIR is aalled, it displays the input string's default value at the cursor position
defined by cursorx and cursory. If there is any room left in the field, fill characters are
displayed (the number of fill characters equals the scrmwidth minus the length of the
input string). You can set scrnwidth from 1 through 254.

If the value of scrmwidth is greater than the number of character positions from the
start of the field (as defined by cursorx and cursory) o the end of the textport minus
two, the UIR reduces scmwigth 10 the maximum available less two.

The fliicher parameter

The Allchar parameter determines the character that is used to fill the unused portion
of the fieild. Normally, fillchar is set to space, enter 32, or " *. If fillchar is any value
less than 32, the MouseText underline (MouseText [) character is used as the fill
character.

The cursor-mode parameter

The cursor-mode parameter indicates which cursor mode is being used. Set it at O for
the insert cursor, and at 1 for the replace cursor. Control-E toggles berween the two
cursor types. The initial value is normally O (insert mode), but your application
program can force the UIR to start with the replace cursor by setting this parameter
ol

The /ong and short parometers

The long and short parameters are the countdown values used to create the correct
blinking frequency for the cursor. The nominal values for long are in the range of 200
through 800 and about half these qumber for short.

An important part of the Human [rterface Guidelines is that the cursor blinks 80 times
1 minute, with one phase taking twice as long as the other. That is, if the insert cursor is
acuve and under a character in the input field, the character should be visible twice as
long as the underline. If the replace cursor is active, the inverse character should be
visible twice as long as the normal character.

The vaiues that you select for long and short control the cursor blink rate. However, if
you activate immediate mode, the cursor will no longer blink at the correx rate
because your invokable assembier program will get control in the middle of the blink
loop. In this case, your IMAGE parameterss for long and short must be adjusted so that
the cursor will again blink at the desired rate.

188 Chapter 7: Advanced Topics

The modmask

The modmask (for modifier mask) parameter is used 1o cause the UIR to ignore
meaningless or unwanted bits in the keypress modifier byte derived from the modifier
word returned by the Event Manager. The UIR uses 8 bits extracted from the Event
Manager modifier word as the UIR modifier. The modmask parameter is ANDed with
the UIR modifier byte before comparing it with the termination character modifier list
(Tmoam.

The bits of the UIR modifier byte and modmask are defined as follows:

Tabie 7-1

VIR ©n odd BIt : Event Manager
bit vaive description modifier word
7 128 KeyPad bit Bir 13

6 64 Control key Bit12

5 32 Option key (closed Apple) Bit 11

4 16 Caps Lock key Bit 10

3 8 Shift key Bit 9

2 4 Apple key (open Apple) Bit 8

1 2 BinQState NOT Bit 7

0 1 BuniState NOT Bit 6

< Note The Btn0/1 state bits are inverted from their state in the Event Manager
modifier word.

For general use, the following bits should be 0, or off: Btn0State, Btn1State, Shift key,
Caps Lock key, and Control key. The KeyPad bit should also normally be 0 unless you
are using the keypad keys as termination characters (as functior: kevs of some type).
Most termination characters are usually produced by Apple key or Apple and Option
key combinations.

Various conflicts arise if you do not mask out a given bit For example, the Control key
bit is not set when the Return key is pressed, but it is set if the user types Control-M.
Either method will return the ASCII character code 13, but with different modifiers.

Unless you want Control-M 1o be treated differently than the Return key, the Control
key bit in modmask must be 0. In the same manner, the Enter key on the keypad
returns the same ASCH code as the Return key, and if you want Enter to function like
Remurn, the KevPad bit must be 0. When the KeyPad bit is enabled, you may need to
define separate termination character entries for the Return and Enter keys.

The normal value to use for modmask is 36 (32+4). When using KeyPad termination
characters, a value of 164 (128+32+4) should be used

-

Memory Management

56

The control parameter

If the control parameter is initially set at 0, control characters (ASCII values less than
32) are not allowed as input (typing a control character causes 2 beep).

If you set this parameter (o 1, control characters are allowed as input from the
keyboard. To insert a control character, the user must press the Option key, the
Convrol key, and one other key. This lets the user type, for example, Option-Control-
X as an input chararcter and still use Control-X as an editing command.

The actual value inserted in the string, during editing, is the ASCI value of the letter
key plus 128, which appears on the screen as the inverse of the corresponding
character. For example, to insert the carriage return character (ASCI 13), the user
presses Opton-Control-M. The screen shows an inverse M, and the result string will
contain the real value of Controi-M,13.

The result string is scanned for characters greater than 128, and BASIC converts them
into the proper control codes before returning the string to your program.

Note that editing and termination characters are not affected by the sezing of control.

The immedicte parameter

The immediate parameter will normally be 0. Selecting immediate mode by setting
this parameter 10 1 enables the external vectoring through the INPUT USING statement
immediate mode vector. The address of this vector is obuined through the BASIC2
function. When immediate mode is enabled, the UIR routine calls an external
assembler routine after every keypress.

To use immediate mode, you must write an invokable module yourself and link the
invokabie module to the UIR by storing the address of your invokable module entry
point into the vector. Refer to Appendix I for more information about how to write
invokable modules.

If you accidendy enable INPUT USING immediate mode without setting up the vector
first, the UIR will ac as if you have not enabled immediate mode because the default
address in the vector reumns directly to the UIR routine.

Specialized filtering and sequence checking can be implemented using immediate
mode, for example, date entry that checks the date against the month and leap day
against the year. The external routine is cailed with 2 JSL instruction and must return
through an RTL instruction.

The beep parameter

Set the beep parameter to 0, and any illegal keypresses will cause the UIR to beep. If it is
set 10 1, there is no beep.

160 Chapter 7: Advanced Topics

The borg-char parameter

Normally, the cursor blinks by alternating between the cursor character and the space
character or a data character in the field. When the field is filled and the cursor resides
one character beyond it, bord-char (border character) is used instead of space. To
use a blank space as the border character, enter 32 or " .

The spare parameter
The spare parameter is not in use at this time. You must enter 0.

The n-chars parameter

The n-chars parameter specifies the number of termination characters you want to
define. When anv character is typed during INPUT USING data entry, the character is
checked against the list of termination characters you supply with this parameter and
the ones that follow. Typing 2 termination character will signal compietion or
temporary interruption of data entry and return control from the UIR to your BASIC
program For example, you would set it at 2 if the only termination characers you want
to use are Return and Escape. If you are using other termination characters, you must
set n-chars accordingly.

The n-chars parameter must be 2 number from 1 through 10, and it must be followed
by exactly that number of groups of three parameters each. The three parameters in
each group define exactly what keypress is the termination keypress or keypress
combination The first element of each three parameter group is the ASCI code of the
termination character, described as tchar below. The second parameter is a bit mask
that defines which of eight possible modifier bits must occur with the ASCH code, as
described under tmodfr below, and the third parameter is the exit mode, either
terminate or interrupt, for that termination character definition.

The fchor parameter

Termination characters are the ASCII codes that terminate input and .cause the UIR to
return with the resulting string of characters typed by the user. Exampies of
termination characters include the Remurn key, the Esc key, and Apple key-? (for help).
The tchar parameter can be entered as 2 number from 1 through 127, as any single
character (other than a digit), or as a character in quotation marks. For example, M,
77, and “M" are all valid and equivalent tchar parameters.

The tmodfr parameters

Each tmodfr, (for termination modifier) parameter is paired with the corresponding
tchar ASCII code to define exactly which keypress or keypress combination is a
termination character that will terminate UIR input and return control to vour BASIC

program.

Memory Management

161

The values to use for #modfr are defined in the table shown below. When a given
tmodfr bit is enabled, that bit must be on in the UIR modifier, after ANDing with the
modmask parameter, for the current keypress to match and thus terminate input. If
you want muitiple bits, sum the enable values in the table for the appropriate bits, and
enter the toul as the tmodfr.

Table 7-2

tmodatr Encbile Bit Required

bit vaiue description state

7 128 KeyPad bit Keypad keypress

6 64 Conuol key ~ The Control key must be pressed
5 32 Opticn key The Option key must be pressed
4 16 Caps Lock key The Caps Lock key must be down
3 8 Shift key The Shift key must be pressed

2 4 Apple key The Apple key must be pressed
1 2 BwOState NOT Paddle button 0 must be pressed
0 1 BwniState NOT Paddle buton 1 must be pressed

< Note the Bwn0/1 state bits are inverted from their state in the Event Manager
modifier word.

The tmode parameter

The tmode parameter is normally 0 and thus defines the termination character as a
terminate character. When tmode is set to 1, the termination character is treated as an
interrupt character that will temporarily suspend editing of the input field and return
control to your program. Interrupt mode is designed to allow you to implement
external editing feanires in your program.

For example, you could define Apple key-? as an interrupt character and display<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>