10173 S.W. Burbur alvd.

. - Sulte 2028 -
Portiand, OR ovm
(503) 244-4181

Bnal. oL LT\ ate ae, L.:Ar ul’uu"&u"d‘.hlll)..tl"u

emmm M

Grakhlcs Language Reference Manual

v Ty .
..le»h"h..-c.-uh LTI SR WA

R N (
=i 1l

el
-t

GraFOIRTT

by Paul|Lutus

- .
REERE SIS S . -
B S

.
¢
{ N
, “;
(]
h
]
1
B
e, A
i’ [
I
1]

.:n"‘ B
A
g
4k
BT !
TR
ity
.;" s !
' i
SENEY
,:'9”
i_,, "o
v
4,0
. i
N
o
.‘».‘

-
P S

recl s

A
A

ememS SlLlT e

g GraFORTH TABLE OF CONTENTS Poge
i —
1 . — Disclaimer and Warranty
| ‘ LANGUAGE MANUAL b Tabte of Contents
oy ‘ b .
ot PART I: Setting the CONTEXT for GraFORTH. . .
: i
o Notice v o CHAPTER ONE: PREVIEW
L Insoft and Psul Lutus reserve the right to make Improvements In the - :a
o .} product described in this manusl! sl any 1ime and without notice. | - - |ﬂl'oducgon to GraFORTH 1.2
15 . Manual Overview 1.4
Disclaimer of all Warranties And Liabilities = How 10 Use This Manual 1.6
l o N o Start-up Proceduros 1.8
s Insott Company and Pag! Lulus make no wnrun."o:‘.' olther o::plr:ssod'?'r) ~ A PLAY{ul Preview 1.9
Implied, with respect 10 the sofiware described In this manusl, Its quality,
, p"e‘rlormn:co, merchantability or fitness for any particular purpose, This = CHAPTER TWQO: BACKGROUND
. software Is licensed “as is”. The entire risk a3 (o the quality and performance of _:‘_ﬂ .
it the soliware Is with the buyer. Should the software prove deleclive lollowing What You'll Need to Have 2-2
oy s purchase, the buyer (and not INSOFT Company, or Paul Lulus, their retellers What You'll Need to Know 2.3
3 H‘ or distributors) assumes the enlire cost of .'l' r::cesnry IQ‘N“:'HO. r:pail.r' or —t What You'll Need to Do 2.8
T rrection and any Incidental or consequential damages. in no event w - s
INSOFT Company, o Paul Lutus be liable for direct, Indirect, Incidentsl or ol What You'll Need to Be . 2.9
consequential damages resulting from any defect in the soltware even If they .
have been advised ol the possibility of such dnmao:is. bs';:':v'!o l’lM?s l:g no'l :llow —
the exclusion or limitation of implied warrantios or lla o9 lor Incldental or -y
& co::;qu‘;nH:I c;amaoes. so the apbovo limitation or exclusion may not apply "':ﬂ PART II: The CONTENT of GraFORTH., . .
P 10 you.
LS — CHAPTER THREE: STARTING GraFORTH
N The word Apple and the Apple logo are registered trademarks of . ,_a
e Apple Computer, . ‘ Ll 'F,.U'pose and OV"V‘GW 3.2
: Apple C ter, Inc. makes no warranties, elther expressed or implied, irst Things First 3.2
. ﬂ r.%‘:fm:m: ::vc!on:odmcor:pum software package, I1s merchantabliity or its = Mor_e.Words 3.7
] fitness for any particular purpose. ...:.a ?:‘:vpr:v'r‘\gg?a tV\!m:);ds g : g
o DOS 3.3 Copyright 1979-1981 Apple Computer, Inc. _ (T:he Return smc:m g g ;
. omparing Numbers .
—_ Decision and Branching Structures 3-25
-, Program Structure and Other Misceflany 3-25
M , : ' — Conclusion 3-40
el - CHAPTER FOUR: TEXT MAGIC
- - gurpose and Overview) 4.2
D » - trange snd Wonderful Choracters 4.2
> - © 1982 INSOFT ™ - The Text Editor 4.4
-© 1981 P. Lutus - Program Compilation a.13
! o Comments 4.14
- Using the Editor with GraFORTH 4.14
4] —
o=

) - = ~

[e

!
3

!
l

K

7!
]

L)

!

]l

1

1=t

-
|
i

"i

1!

of|

% I~
o f e
i

!:"-w

]

’7
& _

I
=

.
1

L

CHAPTER ONE: PREVIEW

CHAPTER TABLE OF CONTENTS:

Introduction to GraFORTH

A Family of Languages

Featutes

Comparison with Stendard FORTH
Comparison with TransFORTH
Program Editing and Storage

Manual Overview

Structure
Review of Content

/How to Use This Manual

Difierences of Style

Tutorial Learning

Relcrence Aids
Multiple Tables of Contents
The Word Library Definitions
Index '

Conventions Used

Request for Feedback

Start-up Procedures

Product information Card and Replacement Policy
Making and Using Backup Copies

A PLAYful Preview

An Introductory Tutorial
Running the PLAY Program

PREVIEW

Page

-—h il cah emd e
AbLNON N

-t
" e
"nH

-t

— ik D o S o -
s ¢+ e 1 s s T
MNSNNNNOOOD é

&

TIRTNT WD S e o S« Al O s e gy

[y

- —ee -~

[“od..to., 0 araFur 4

The Apple computer has some potentis))y powerful qraphfcs
capahiifties, he most imressive of these s the

(While there has been
® large number of proarams written which use this capshility,
Sometimes in o most dramatic %Ay, and there have been severa) .
outstanding qraphics utilities written to esse the task of adding
Aople Graphics to programs, until now, no computer languages have
been specifically Created for the mrpose of fully explofting

GraFORTH {4 Just such o languaqe,

A Family of Languages

GrafORTH 15 the Tatest member of 4 powerful new *femf1y of
lanquages®” developed for Insoft by Pay) Lutus. The first of
these related lanquages to be released was TransFORTH, While
TransFORTH and GraFORTIl are related, each of these lanquages has
different functions and capabilities, angd 1s desianed to meet
different needs, Y re related 1n the ways members of ,
Family are related - they have the Sime parentage, that of the
FORTH Vanquaqe. In o moment, we'll take 4 look at that heritage,
ond discuss the differences between GraFORTH and other FORTH
innlementotinns. » let's look ot the capabilftfes of
GraFORTH you ') very soon be learning|

Features

firaFORTH provides many features not seen before on smal)
computers, The sSystem can draw thrte-dimensional tmages, {n
color, at rates that make animating possihle, A sophisticated
mysic Synthesizor, o part of the lanquage, Allows the addition of
msic as wel) 33 sound to GraFORTH broarams, Text display may he
in any size, color, or typeface, angd mixed with qraphics images
on any part of the screen, Personal{zed character fonts may be
created, ang fonts full or different two-d!mensional images may
be hiock printed to any screen locatfon under fyiy Program

1s o programming lanquage desianed for
anolications where fast, sophisticated araphics capabi ity {s

tmoortant, such &s the develooment of games and entertainment
software,

PREVIEW 1.-2

g e

Comparison with Standard FORTH

embodied in a very fast, fully compiied

mes::,."':,',f('vgvrf' l.q;:rly all other Apple lanmiages ;mn’::wu.
65;0 Apple Pascal, Apple FORTRAN, and mast O‘h::O:n:on: S
fnterpreted while they are runnina. Thig {s ofte T to
rovid hat 1s ‘called ‘code transnortability', the o ’h
AN from or;e computer and run them on another wit "
cith nroqra:srow ﬁodlrlcat!cns. Unfortunately, this dra:;&g;’ \4
::53::sn:h: snéed of your nronro:s. 2r.:3:'"t£:";p;;:"s ol

. & sfaned for the computer v ' . »
:::: t':::: Q;ecirlcally written to meke nguh;m u:r 2:&:::t -
feat ré§ bﬁilt into your machine, and therefore ?1 AN
b:;numade to create transportable Cod:i ?ﬁc::::ld ;cer néar!i

; rea .

e "”c:'"evlzgggzzel :D:;:t":;P"Smootz. fast, animati:n nual;t:
everzfoi er'vnnlthouqh GraFORTH s fully compiled for : e nu::Ps
n;a?n :e;se& §nred. commands may still he typed :'r7Ctlvm::ted

: ho:rd rather Tike an interpreted lanauane. is s:us ot tﬁo
e ST B ¢ S e

n b . . .

1mm$210te‘:::7?:ckﬁg:ragtn' unlike standard 1mnlementa:1::: n:o
:ggtus.uses stan&ard Apnle DOS commands and file ;trx;a: w!;h
r-talé compatidbility with the work you have nl:e: ’to "nr".
yéur computer, and to reduce the time 1t will take

GrafORTH,

ith another version of FORTH, you
" me!l‘;em:r‘\re:‘l(:ﬂ ‘f::::::; :mtf many differences b!lwennlﬁra;n:;M
. hnr FOR¥H versions, as GrafORTH is only loosnly'rp ato” yo
::dﬁ:to:hﬂr lanquinns. The neneral structure o: thet :?:xa:i
begﬁ'retafned (at Yeast outwardly), but the ;m: ::':a:o o O ote
that structure is vastly different, These cha : s usa&- 6'
for very specific reasons. In short, the ;?tﬁnrgnru M
GrafFORTH 1S very different from that for whic AT
' fnall desihnﬁd. GraFORTH {3 a computer qraphics fnatae
or;g :: ¥n and oi ftself brought ahout many channqes. :d o '
:: w:s ;nr intentfon to make GrafNRTH as easy ::';glr?h:re'nrq.
imilar tn existing Apple environments as poss '; AN
H Iready know FORTH, we hope you will hear e e
" ¥ Tanmane has heon desiqned for those who Ao mt 3 are your
:Msleznr of FORTH-1{ke rnvironments and who want a 'a:";".rh""'
'now riphics lanmiaqn, For those of vou whn d? no.l e
7arn'2, You will find GraFORTH to he a powerful, Ved" N
:a;:uanp. Very sonn you will he ns!nn'ynur Apple to
you never thoubht were possihle hefore!

PREVIEW

- T T i o g
e I R

Qomparison with TransFORTH

By way of contrast, while GraFORTH {s a powerful graphics
proaramming lanquaqe, restricted to whole number (inteqer)
calculations for the purpose of qraphics speed, TransFORTH {s @
scientific and husiness orfented lanquaqe with floating-point
arithmetic and & much more extensive operating system.
TransFORTH also has two-dimensiona! line-drawing and
TURTLEGRAPHICS capabilities, but no three-dimensional graphics,
and character qraphics are limited to selection of pre-defined
character sets. Thus, TransFORTH has mich more calculating
ahitity, but less graphics, while just the opposite is trve of

GraFORTH,

Program Editing and Storage

Proqrams, subroutines, or 'words', as they are known in FORTH,
can he written in the language editor and stored iIn text files
for ltater modification or use, Because these files are standard
DOS text files, any editor of the user's choosing which creates
such files may be used. Because program seqgments may he saved in
this way, the accumulation of proven program modules {is
encouraged, which in turn encourages the practice ¢f good
programming techniques.

Manual Overview

Structure

The text portion of this manual s divided into three parts - an
introductory or context-setting section (Chapters 1 and 2), @
tutorial-based content section of seven chapters to help you
understand and put to use the GraFORTH lanquage system (3 through
9), and a section of sppended reference material, including the
GraFORTH Word Library Listings, Technica) Nata, and Index.
Throughout these chapters, diagrams are used to support the text.
These 1)lustrations and the abundant use of headings should make
it possible for you to skim the text, qet a sense of the subject
matter, find general topic areas in the body of text, and never
lase your sense of where you are. The Index should help you find

specific toofcs quickly.

PREVIEM 1 -4

Ll
Ll

—d 3

|

|

T
dr

e,

Review of Content

Part 11, the content of the manual (that is, that material which
is ahout the Tanauage itself) is presented in seven major chapter
divisions. Chapter 3 is primarily an introduction to the FTORTH
Janguage aspects of GralfORTH, includina an explanation of the
definition of words, stack opcration, and control structures,

(In addition to being a gnod introduction to GraFORTH, rmuch of
the material covered in this chapter pertains to other FORTHS as
well, making 1t an excellent FORTH overview.) Chapter 4 covers
text entry, special characters, and the supplied text editor, |t
shows how to write and modify GrafFORTH pragrams or “words” and
how to compile them into memory from the editor huffer or from
disk. Chapter 5 prasents extended GrafORTH capabilities anid
descrihes how 1t operates, how it relates to and uses the NOS 3.2
disk operating system, and how 1ts data structures - variahles
and strinqs - are created and vsed., Chapter 6 introduces
GraFORTH's two-dimensional arephics capabilities tincluding
plotting and line drawing, color selection/filling, and the
TURTLEGRAPHICS commands. Chapter 7 describes character araphics,
particularly s proqram called CHAREDITOR, which allows the design
of new character fonts and images that can be block printed to
the screen. Chapter B reveals the GraFORTH 3-D graphics system,
fncluding moving and manipulating odjects in 3-D space. The
program {MAGEDITOR, which allows the creation and modification of
3.D objects, and another, called PROFILE, which speeds up the
process for the particular class of objects which rotate or
revolve around a central axis, are introduced. Another proqram,
named PLAY, winds up the discussion of 3-N araphics by allowing
you to "play” with an object in space, as you will discover in a
short exercise at the end of this chapter, Chapter 9 descrihes
how to add music (as oppnsed to sounds) to your pronrams, and
Chapter 10 concludes Part 1l with & discussion of marketing
softwere developed usinq GraFORTH., That's ¢ lot of content,
which you surely must he eaqer to ast to, hut first perhaps we
should talk about the manual for 8 hit.

PREVIEW

P i MmWa s T &

e @ - — - T e
- - —— P -

- —— o — o -~~~

'l

B, S

D e -

How to Use This Manual

\

Differences of Style

It is important to realize that everyone uses manuals according
to his or her own individval learning styles and skill levels,
There are those of us who start from the beqinning and carefully
read every word, and there are others who bound ahead looking for
Just enough information to “qet on with it", Still others like
to live on the edge, hoot the disk first, and only use the manua!
{1 they have to look something up later. Furthermore, even the
same reader will have differing moods and levels of interest, and
will use a technical manual in different ways at different times
according to his or her current understanding of the product,

Tutorial Learning

This manual is set up to be, first of all, a tutorial to guide
you qradually through the steps you neerd to take to learn the
GraFORTI lanquaqe and beqfn to put ft to use. ‘'Tutorial
learninn' has hecome the primary method of microcomputer
instruction, Actually, it's a bit of a misnomer. There {s
really no tutor, unless a technical manval cap be considered
such, For the most part, ft will be just you and the manval and
whatever other resources you can pull together, Be advised,
however, that there are many differences between GraFORTH and
other FORTH implementations. RBecause of these differences (we -
think of them as improvements), we advise you, even {f you know
FORTH already, to read the manual carefully at the bheginning,

Later, of course, you will be using the manual more as o
reference quide than as & tutorial, and will need to be able to
find specific ftems of information quickly, There is nothing
more frustrating than knowing that you saw something someplace,
but can't quite remember where., We'll help vou find it, after
311, vou may be Viving with this menusl for & few weeks, In
either case, tutorial or reference, we have tried to accommodate

atl styles of learning.

PREVIEW 1

Reference Aids:

Multiple Tables of Contents

As mentioned ahove, there are various reference aids which should
allow you to find what you want quickly when using the manual as
8 reference quide. At the beqinning of the manual, there §s o
comprehensive table of contents which presents the M jor topics
of the manual, with page numbers, fn the order in which they
appear, Each chapter has a similar, hut more complete tahle of
contents for that chapter,

The Word Library Definitions List

Appéndix A, 1in the back of the manual, contains an
8lphahetically arranged 1ist of annotated definitions of all the
GraFORTH words which come with the system, Recause this s an
important source of information about the lanquage to which you
will be referring frequently, we placed it first, and have also
fncluded an additional cross 1sting of the words by subifect
groupings., ' .

Indéx

In Appendix E, at the end of the minual, there fs » comprehensive
index which 1ists the major topics and terms of the manua! once
ag9ain, but this time alphabetically,

Conventions Used

Sevaral standard conventions sre used to simplify the
descriptions. A1l commands which you are to type in are printed
in uoper-case type. All 'system' responses are shown as they
appear on the screen, ‘'Control character' entries are denoted hy
ConTRoL-X, where X would be replaced with the actual character
entered, Control character entries are made by holding down the
ConTRoL key while depressing the indica*ed key, .

PREVIEW 1 -7

- —— .

S .

S e e e
..

PPN

el
g
-,

TP T N v .
- -~ N
'&A‘_‘ CY

4

el
e 4t

. -t

Request for Feedback

Let us know what you Viked and didn't like about this manual. Ne
have tried to make it as complete and friendly as possible, but
we know that something, somewhere may be confusing. Let us know
{f We omitted a useful tip, or explained something poorly. Also,
let us know what worked for you so we can continue to produce
high quality manvals for future products.

Start-up Procedures

Product Information Card and Replacement Policy

The warranty of this diskette is covered 1n qeneral hy the
statement at the hottom of the warranty and disclaimer page in
the front of the manusi. Since 1ts message 1s hidden in
leqalese, let's just say that roughly what 1s meant s that we
did our hest to ship the diskette in perfect condition, hut we
have no control over what happens to it enroute to your disk -
drive. If, for some reason, it will not ‘boot’ (come up on the
screen when the machine is turned on), then you should take or
send 1t hack to the place where you purchased it. If they cannot
qet it to boot, then we will replace 1t at no additional cost to
you, for a period of 30 days after you purchased it.

(Thereafter, a nominal replacement fee may be charged.) Once you
have a disk that boots and runs, then {t is your responsibility
to protect it by using it only for the purpose of making
duplicate work disks and hackups (see next section).

In the meantime, we would appreciate it {f you would fi11 out the
Product Information Card, This card aives us valuable
information about our customers and helps us desian our products
and product line to better serve you. If everyone who buys
GraFORTH turns out to be retired and 1iving in Florida, then this
manual will have to he rewritten with a ditferent set of jokes.
The card also allows us to keep you up to date. If we decide to
send out an updated GraFORTH diskette, then you would probably
want to know about that.

-

PREVIEM

e

e cnm—

Making and Using Backup Copies

If you have not yet made a backup copy of the GraFPRTII tiskettn
then now is a nood time tn do so. Never use the nriqinal as ab.
work disk, not even for a few minutes. Particularly, nevnr use
an orfainal disk to try to solve a problem which blew EF'Jﬁur
work disk. Make a new hackup §f you can, and use that to
experiment. Recause GrafORTH ts compatible with DNS 3.3, any
copy nroqram you normally use to cnpy your lh-sector Appio nos
disks will work to copy this diskette. The COPYA program which
came with your NS 3.3 System Master diskette is a particularly
relfable one, and we recommend using it. In fact, it is |
recommended that you have two backup copies so that if one noes
::7ni y?u won't have to open your lead-lined vault to aqet at the
qinal.

A PLAYful Review

‘An Introductory Tutorial

We suqqest that you study the Tahle of Contents and the Manual
Diaqram for a few minutes to qet an fdea of where we are and
whare we have to 0o, and then, hecause we know you are itching to
qet your hands hack onto that machine and create a few ‘
three-dimensiona! forms to rotate in free-floating and
free-wheeling space, we'll give you & preview of what's to come
in future chapters...

1f you catalog your disk, you'll find the text file PLAY on it,
PLAY is a set of routines (or “words"), which when compiled and
run, allows you to pull up a three-dimensional form of f the disk
(several are provided), and play with it in 3-D snace. Later on,
we'll tell you how to use PLAY to understand better the 3-0
images you are creatina. But for now, we are just going to have
some fun using PLAY. If you have not yet made a backup copy of
your disk, we'll just have to insist that you do so now. From
now on, when we speak of your GraFORTH diskette, we will actuslly
he referring to the copy you use as a work diskette.

PREVIEW

——— BB S B VMSSae © AN . LS &L 2y

s e th W pems B o= — =

L3 S

e e WS~ an TR N

-~ —— 8 Sy P g

L e etem e

Running the PLAY Program

To run PLAY, hoot your disk and respond with an 'N' ‘N’
r
:hQQQQMonstratlnn aquestion, When the "Ready” oromnt"conrg o:?
o ')

READ * PLAY " (return)

fle sure tn type it exactly as yon see it, includin

hetween PLAY and the auotation marks, t;e worddntxnt?: :p:;;;and
that tells the GraFORTH systom to read a file on the disk and
compile it into the word Vibrery, that s, turn it into machine
lanuane for the machine to use. When the "Ready” promot
reappears, type ‘RUN' and 4 set of Instructfons will be displayed
on the screen, as flluystrated in disqram helow:

LAY - A 3-0 tmoge Menipuloter \

T TR TR T

BP0 vor t1n metion

teo treoee
19 revet Owu :

or gé:;’ e ;nn sn’rronun

:'s :EE:’”" :‘nu'lﬂo

Iwage in CMIemary or on COJMIN?)

_ Y,

The words, ROT, SCALE, TRANS, and PG)S ref
er to the four

parameters you may use to manipulate the image in space., ROT
stands for the ability to rotate the object around any of three
o;es. SCALE stands for the ability to change the scale or size of
:m:g:b{:c:{stecsf stands'ror.the ability to translate or move the

ce envelope', and POS stands f
move the position of the hug; on the scre::. or the ability to

PREVIEW 1-10

i

" The characters, 123 456 789 :-, are pressed to activate any of

the shove parameters alonq any of the axes, X, Y, and 7,
indicated helow them, The commands in the middle of the screen
start and stop the selected action, or reset the parameters to
their starting positions (called 'defaulits’'). You are to press
fust those keys which are high-1lght.d fn inverse. If the sctinn
ever gets too fast for you or you see something you'd Vike te
study, pressing ConTR0L-$ wil) stop the action until you press
another key. Similarly, 'N' will reset the currently active
parameter to its default position, <ESC> witl put you hack st the
beqinning, and 'Q' will put you out in the cold at the "Ready”

promot,

At the bottom of the screen, you are heinq asked to answer @
question as to where the imane is which you would 1ike
manipulated. The quickest way to understand the proaram {s to
dive 1n and try it, pressing the varfous keys alonq the way to
see thelr effects. Rut first, we need an imaqe to play with,

shead of us, you do not have a 3.0 imrge in
memory yet, so select 'D' to answer the nuestion at the hottom of
the screen and to beain the imaqe loadina process. Next, hit
Creturn) to default the address to 2116 (more on that later), and
enter 'XYZ' as the imaqe filename. Anqain, hit (return), Tour
screen should now show a picture of a vertical 1ine crossed by &
horfzontal arrow. 1n a moment you'll see that these are really
three intersecting arrows. 0On the right side of the screen are
The movement commands, ROT, SCALE, TRANS, and P0S. Ignore the
latter two for the purposes of this short tris! run, Now the fun
beqins. Press '2', and then the right arrow key, Mext press
'1', then the right arrow key, Observe the numhers chanaing over
on the right, See if you can fiqure out what they do as you
select keys to press from the previous diaqram, Try the left
arrow keys, and watch the action and the numbers change. You may
freeze the selection last changed with 'F', and also by vsing the
arrow keys to get the parameters hack to zero.

Unless you're way

At this point, you should have a screen which lnoks something

_1ike the one on the next pane.

PREVIEN 1-1

ooy
e . B— — - o———

3
-
-

- 1)
-] -) .
Z O®mar Oac=/

-y
2R ooo

4
\C1J xmOT velwe:r 18 1Iner 1)

" v

Now press ‘D' to reset your current parameter to its default; get
the {dea? The more you press the arrow keys, the faster the
image will turn. If you are working on a color screen, you will
see that each axis is a different color, which may help to keep
them straight. Remember, pressing cesc> will set all parameters
to their starting (default) positions, which may be needed 1f
they start getting out of hand. In particular, 1f SCALE, TRANS,
and POS get beyond & certain size, they will no longer fit on the
screen, and they will beain to “wrap sround”, appearing quite
unexpectedly on the opposite side of the screen. It will look

as {f you have lines bouncing off the walls, but 1t s really

only wraparound. If you like that effect, then fine; but f not, .

Just keep the numbers smaller,

That's enough fun. We have to get back to work and learn the
rest of what GraFORTH has to offer. We'll come back to PLAY in
Chapter B, and learn what TRANS and POS actually do. BRut {f you
Just can't quite quit yet, we'l]l mention (while the boss s out
of the room) that the way to bring up another 3-D image to PLAY
with is to type 'Q' and then RUN again, repeating all steps
except the one where you enter the filename (try HOUSE).,

PREVIEN 1-12

CHAPTER TWO: BACKGROUND

CHAPTER TABLE OF CONTENTS:

‘What You'll Need to Have

Hardware Requirements
Recommended Peripherasl Options
Soltware Requirements

What You'll Negd to Know

About Your Machine
About The DOS
Minor Modifications in DOS 3.3

Making Space on the Disk
Deleting Files
Entering Other DOS Commands
Qisk Care

About Programming

About Graphics

About Music

What You'll Need to Do

Get an Overview
Run the Demos
Plunge In

What You'll Need to Be

BACKGROUND

DN

WRRNNNNNNN N
NN LIMLWLWW

RN
oo@® &

»
©

2-1

P e e W . & ——— e :

&m‘*' ——_——-9.," pre—.

What You'll Need to Have

Hardware Requirements

GraFORTH requires that you have th
oo e y e following minimum hardware

An Apple or Apple + computer with ank mAM

One 00S 3.3 Apple disk drive with controller

A black and white (or green) video monitor, and/or
A color monitor or color TV with an RF moduletor

Recommended Peripheral Options

In addition to the ahove {includin

9 the color displa 1
h!qh:y recommended that you have & 16K RAM or'lan:uazz'coﬁd'sto
provide more availsble memory, and & second disk drive. '

Software Requirements

GiraFORTH §s written in 6502 machine lanquage using the ALD SYSTEM

sembler which was written by Paul Lutus a
rrom‘lnsoft. A1l graphics are internal and"gr:st::::r;::',.b'e
:g:{tgég;y {ndependent of efther Rople DASIC (INTERER or
e). GraFORTH hoots from the ‘monitor', without a BASIC
program, as you will notice by the presence of the
;;:erls: prompt (rather than the NAS|C prompt), during hootup,
m :O:a es :he boot program independent of any resident lanquage
In Row, av: ding the differences hetween Apple 11 and Apple Ii+
mac ne: which are sometimes troublesome to software. It also
NEL'L'B' owever, that it {s not possible to add your own specfal
beLLO program to'the disk to have it do your favorite tricks on
crarogiu ut don't despair; we will show you later how to have
Srard sutomatically run any program you wish on hootup.
urther, that proaram can be written directly in GraFORTH,

B4CRGROUND ' 2.2

Bt

b -—
—

What You'll Need to Know

What You'll Need to Know about Your Machine

While 1t s intended that this manual serve as a tutorial in the
use of the -GraFORTH lanqguage, it is not iIntended to cover
materfal already covered quite thoroughly and thouaqhtfully in the
set of manuals distributed by the Apple Comouter Company, If you
are & new user, unfamiliar with how to use your Apple computer,
we suqaest that you take the time to no throuvgh the Apple
Reference Manual, which came with your machine, You will not
need to know cverything in 1t to use your Apple successfully, but
the more you know, the easfer it will be to understand operations
which minht otherwise seem puzzlinag.

What You 'I/ Need to Know ayout the DOS

With the exception of certain small chanqges (sce below), GraFMTH
uses the standard Apple Disk Operating System, Version 1.3, known
affectionately as NOS 3.3, If you are at all unfamiliar with how
to use your disk operating system, we sunqest you take the time
now to study the NNS Manual which ceme with your disk drive(s).

It will be time well spent.

Minor Modifications In DOS 3.3

Minor modifications have heen made in the disk operatinn system
to make it run smoothly with GraFORTH, Most of these channes
will he ‘user-transparent’', or not noticeahle, and ysing NUS from
firaFORTH 13 the same as using ONS from either of Apple's BASICs,
floth create TEXT tyne data files, and GraFORTH even uses TEXT
files for savina program 'source code', The NOS on the supplied
diskette has heen modifled, however, to take advantane of an
existing languaae card or RAM card. If you have such 2 card, NOS
will be loaded avutomatically into the lanquage card, leaving mich
more room (almost 10K) in main memory for proardm development,

To take advantage of this additional memory, two editors have
heen provided on the disk; ONJ.ENITORL for systems without
lanauage cards and OBJ.ENITOR2 for systems with lannuaae cards.
Note that GraFORTH requires the NNS 1t is supplied with, You can -
not transfer GrafFORTH to a disk with a different NNS!

BACKGROUND 2-3

I S
-""'4}'_-"’.-“-'

2 .

< TFD T
o

ks

- i T
e

D T
&‘:‘_ I

-
T

e e

- oAl
N

‘,,
- .-
=

Making Space on the Disk

The GraFORTH diskette, as delivered, is nearly full. Not only
does the disk contain all the system files needed to use
GrafFORTH, 1t also contains many demonstration files as well ag
some specfalty files. After you have copied the diskette ond
exhausted your interest in the demos, you may want to trim your
work disk down & hit to make room for your own files. The
demonstration programs will probably be the first to qo.
Appendix C 1ists the files on the disk, indicating those which
may be deleted without danger to the GraFORTH system by a ">".
See the sections which follow for help on how to delete files

from your work disk,

Alternatively, you might want to leave your work disk intact and
set up another disk for program development. The GrafFORTH system
would not need to he on such a disk; you could use, instead, a
standard D0S diskette, If so, you will need to copy the edltor
file or files onto that disk L the GraFORTH word, EDIT, looks
for the editor program on the ‘current drive'. lf you are using

& lanquage cprd, copy 08J.ENITOR2 onto your program dovclopucnt
disk otherwise copy 08J.EDITOR] onto that disk.

Deleting Files i

There are three simple ways to delete-files from the disk. One
way is to hoot an Applesoft disk, then catalog the GraFORTH
diskette and delete the files you want to remove as you would on
& standard DOS disk, Alternatively, you could use your favorite
file utility, such as FID on your DOS 3.3 System Master Disk, or
else boot GraFORTH and enter your DOS commands from the program
ftself. 1f you are already fn GraFORTH, the latter method is the
method of choice. To delete files diroctly from the program, you
will need to take the following steps:

BACKGROUND ’ : 2-4

1. Root GraFORTH and you will see the prompt

* Nemonstration (Y/N)?
2. Answer 'N' and the “Ready" prompt will sppear.
3. Respond with:

€OIT <return)
The drive will whirl a bit, loading the editor, and then the

editing title will appesar along with 8 flashing cursor.

4. To enter a NOS cowmand, type:
ConTRolL-D <return)

and the following prompt will appear:
Enter DOS Command :

5. Respond with:

CATALOG <return)
(or CATALOG,D1 <Creturn) for two drive systems)

and the catalog will he listed.
6. Select the files to be deleted and type:
DELETE f{lename <return)

The drive will run briefly, make its usual scratching sounds and
the file's name will bhe deleted from the disk directory. You may
confirm that fact with another CATALOG command. Then repeat the
procedure to delete the other files you wish to remove from the
disk. To return to the editor, press the (returnd key twice
without entering any DOS commands, and you will see the blinking
cursor of the editor once again., To return back to GraFORTH,
type °‘BYE', then press <(returnd., The GrafFORTH header and the

“Ready” prompt should reappear.

BACKGROUND

Rl o4 JUCS Wl S

-

- -—

Entering Other DOS Commands

The above steps represent the procedure to be followed to enter
any standerd NOS 3.) command from GraFORTH ftself, Later on,
we'll describe another method which enables you to use 00S
co?nands from the "Ready” prompt directly without entering the
editor,

What You'll Need to.Know about Disk Care

We assume that by now you have made & copy of the original
diskette, have stored it in some safe place, have had some fun
with PLAY and are snxlous to get down to “"work". Bear with ys
for one more cavtionary remark {admittedly unnecessary for almost
all of you), In case you are not familfar with the care and
feeding of floopy diskettes, what we mran by "safe place” Is that
the disk {s stored vertically, 1s not hent or folded or exposed
to magnetic flelds or to temperatures outside of the range 50 to
125 dearees F,, and that the "naked” portion of the dfsk (as seen
through the small ovas) opening in the plastic covering) {s not
exposed to dust, fingerprints, or clgarette ashes. We recommend
that you always keep your disk in 1ts protective sleeve and box
whenever 1t 1s not actually in a disk drive, Never attempt to
write on it with a pencil or ballepofnt pen, [If treated in this
way, your diskettes should qive yOu years of devoted service, and
perhaps even become collector's ftems of considerable value to
your grandchildren (well, at least curiosities),

What You'll Need to Know about Programming

It ts not necessary to know how td program to learn proqgramming
In GraFORTH. It {s our position that both TransFORTH and
GraFORTH sre simple enough to learn that novices can take them on
as beginning languaes, We also believe that they are so
powerfyl that advanced proqrammers can use them in a full range
of commercial applications, While it (s not necessary to learn
programming prior to starting in on GraFORTH, 1f you are already
familiar with BASIC or another high-leve) langquane, you will, of
course, learn GraFORTH mych faster, In particular, a familigrity
with Applesoft and/or Apple Pascal wil) speed the learning of the
control structures, data structures, end the filp hand!ing
portions of the lannuaqe. Famil{arity with FORTH will qive you »
head start on the operation of the stacks, postfix notation, and
the word brory,

BACKGROUND . 2.6

=23
i
|
Spve)
3

Eox
Er—3
g

&3:3

What You'll Need to Know about Graphics

Here again, prior experfence in araphics proaremming 1s helpfyl
to lesrn programming in GraFORTH, but it 1s not required.
Graphics is the heart of GraFORTH - all kinds of araphics -
standard two-dimensional qraphics, TURTLEGRAPHICS, color
araphics, hlock printing of image fonts, three-dimensional
draphics. all at speeds which will support animation, and set to
music 1f you like. [f you do not fntend to do o lot of aranhics
programming with GraFORTH, then you may have the wrong lanquane,
(Perhaps you really need TransFORTH,,.)

With GraFORTH, powerful graphics editors stlow your imanas to he
created with considerable ease. A powerful command set allows
them to be put fn motion. Routines can be set up as Independent
words, then tested out end stored, to be used aqain and aain,
lut you do not need to know it all before you start, We'll take

you through it a step st a time,

lowever, if you are a beginner st graphics, you will learn faster
{7 you draw upon several sources at once and approach the subject
from a1l sides, The Applesoft Tutorfal has a qood introduction to
Rople qraphics, as does the Apple User's Guide hv Lon Poole, et
al, The Apple Pascal Lanquage Reference Manual has o nood
chapter on TURTLEGRAPNICS, and {f you really want to aet into the
whole suhject, try Graphic Software for Microcomputers by 8. J.
Korites (Kern Publications, 1981).

What You'll Need to Know about Music

As mentioned ahove, one of the features of rafNRTH {s o mysic
synthesizer which enahles you to add mysic to the proqrams ym
write in the lanquaae, Operation is straightforwvard, and a note
table s provided to make use of the mysic synthesizer as simple
8s possible. We think you will be amazed at the added dimensinn

it will glve to your programs.

BACKGROUND 2 -7

- —
-

v e we emees-

What You'll Need to Do

Get ah Overview

One of the most time-saving things you con do right now i3 to aet
an overview of the manual and the structure of GraFORTH. Time
spent on the demos, and studyln? the table of contents and
diagrams will qive you 3 genera framework which then just needs

to be filled in with detail. .

In hetween this chapter and Chapter 9 are the chapters which
explain in detail how to use GraFORTH, Chapter 3 gives an
iptroduction to the use of GraFORTH, It {s something of 2
mini-manual in itself, and even those of you who know FORTH may
find 1t 8 useful review of how GraFORTH differs from other FORTH
languages. The next six chapters build somewhat on one another
and should be taken in order, with the possible exception of
Chapter 9 on susic, which could be read and used anytime after

Chapter 5.

Run the Demos

The set of demo programs on the diskette will give you a good
sense of what GraFORTH can do. To run 2 demg, just answer 'Y' to
the demo question which appears after bootup, and then simply
select from the menus which follow. Later we shall tell you how
to remove the demo question, :

Plunge in

At this point, there is very 1ittle left to do but to load your
work copy of GraFORTH in the drive, boot it up, and plunge in.
Start at & place in the manval appropriate for your ‘skills and
knowledqe, read that section, turn to the program, work the
examples, and then see if you can Jmaze yourself with a few
examples of your own, That's all there is to it. Remember, the
chapters, like the language, tend to build sequentially, so it
may not be wise to skip around too much,

BACKGROUND 2-8

| o i
s
| Sqfonte

What You'll Need to Be

Confident, fearless, and fun-loving. Willing to take risks, make
migtakes, and Jearn from those mistakes. Willing to ask stupid
questions and make & fool of yourself to find out what you need
to know. Willing to let yourself enjoy 1ife and turn work into
play. 1n short, Just your average, run-of-the-miil, Apple wner.

BACKGROUND 2-9

EX Bt i

ot
N -
., -

el -

-
PR

o e - p o - v ————
—— e —

Foe- 9 \
Swea .o
CHAPTER THREE: STARTING GraFORTH
) t . 7:3 Chepter Table of Contents: Poge
') - Purpose and Overview 32
{ ’ &--1 First Things First 3.2
o The System 33
E 9 ‘3 Words 33
vopee The Data Stack 3.4
b uumbeg £ 3-4
g ands-On Experience 3.4
By —
1 : E£--3 More Words 2.7
A 1. Stack Words 3.7
O t--. g Arithmetic Words 3.9
. O L3 Using Wortds 3
"1\.‘-4 ' ' Printing Text 313
g q, ' ' p—-3 Defining New Words 3.17
' ' . Forgetting Words . 317
. --R Looping Structures 3.19
The Return Stack 321
| . E -~ Comparing Numbers 3.23
j " Decision and Branching Words 3.25
| - IF.THEN 3.25
a - IF.-THEN-ELSE 3.27
| BEGIN-UNTIL 3.29
i BEGIN-WHILE-REPEAT 3.31
: E...,.-a CASE:-THEN 3-32
I Program Structure and Other Miscellany 3.35
E -.,.3 Word References g 3-3%
o g Speed and Flexibility vs. Error Checking 3-36
Words Which Look Forward 3-37
) Text vs. Graphics 3-38
E-:.:-_a Memory Considerstions 3.38
3 STARTING GraFORTH 3.1
g |
'_/ _

Purpose and Overview

As you'll soon see, GraFORTH is a complete, structured language,
with all of the interesting nusnces of such a language. In this
chapter, we'll introduce GraFORTH as a lanquage. We'll discuss
the GraFORTH system, the word 1ibrary (sometimes called the
dictionary), and the concept of 'words'., We'll show you how to
vse the stack to do arithmetic using Reverse Polish Notation, and
then define your own words in terms of existing ones. We'll
discuss the looping and control features of GraFORTH, then tie up
the chapter with some rules of thumb for writing programs in
GraFORTH. o ' .

This chapter (as well as the others) contains numerous examples
to help you understand the GraFORTH system. We strongly
encourage you to try these examples on your computer. And as you
gain experience with the concepts, we encourage you to experiment
further, so that you become truly comfortable working with
GraFORTH, _—

First Things First

Ingert your GraFORTH disk in the drive and boot it., After a few
seconds you'll see:

GraFORTH J{ (C) P. Lutus 1981

Demonstration (Y/N) ?

‘If you haven't yet seen the GraFORTH system demonstration, you
might want to do that now. The demonstration includes
explanations of what GraFORTH {s and what it does. As we go on,
however, we'll tgnore this question, assuming that you've either
already seen the demo or are no longer interested. Later, we'll

show you how to remove the demo questfon entirely... Now let's
qet into the lanquage. Type an "N' to the demonstration prompt,

and you will see:
GraFORTH J[(C) P. Lutus 198}

Ready

STARTING GraFORTH

The word "Ready” appesrs whenever the system s rerady for your
fnput, (Makes sense...) If at any time you do not see the word
“Ready® when you think you're supposed to, then it may be time to
start wondering... With the word “Ready" beckoning you on, let's
back up for s few moments to discuss GraFORTH,

‘The System

The lanquage can be divided into two main parts. The first part
contains the compiler and low-level system routines. For most
spplications, the internal workings of these routines can be
fgnored. They usually do the things which need (o be done
without a lqt of fanfare. The second part of the system is the
‘word 1ibrary’. The word library 1s the ®visihle” part of the
GraPORTIl system, and i3 the basis for writing proqrams,

Words

The word Vibrary s made up of & larqge number of firaFNRTH

‘words'. You can ske this 1ist of words at any time by typinn
the word "LIST®, LIST is o GraFORTH word that lists a1} of the
GraFORTH words. (LIST will display 20 words at a2 time. To see
the entire 1ist, press <return) at each psuse. Press ConlR0olL-C

if you want to stop the listing.)

Each GraFORTI word accomplishes a particular task. For example,
the word "RELL" beeps the Apple speaker, the word "+" adds two
numhers toqether, and the word “DRAW" draws a three-dimensional
image on tha screen. Nearly everything in GraFORTH {s either a
word or a number. Words can he proqrams, sudroutines, variables,
or strings. Proqrams are written, not by entering "proaram
1ines”, but by strinqing words together.

The name of a word can he any strinq of ASCII characters that
does not include & space or carriage return. The space acts as @
divider between words, ond a carriage return tells the system to
compile the entered line into machine languane and, in most
cases, execute it. Since GraFORTH uses spaces to determine when
one word ends and another benins, outting spaces between GraFORTH

words i3 very {important.

STARTING GraFORTH 3-1

— e . e - ————— e .

e
- R X VR

- o

e o= -
o —

B Y]

fea

—
LTV et 6 e o e o -

Tl —
B P
ws Lol
A

Cwa-

.
‘e

5 e
[P I Y

CEe e ST

LI P A

e’ e

—

-

" we'l) ysually Just call the 'stack’,

- them, and places the sum back on the stack,

The Data Stack

- Words sre executed in the order they are entered. When the word

"4+ {s executed, 1t wants to sdd two numbers tonether, right then
and there. This means that both of the numbers to be added must
already be available for "4+" when it {s exccuted, Where do the
numbers wait before they are added? They are on the ‘data
stack’, placed there by you before entering "4,

A1l numbers in GraFORTH are routed through the deta stack, which
The stack is simply a stack
of numbers, one on top of another, much like a deck of cards, or
s stack of dinner plates. When you enter a number, it {s put on
the top of the stack, above any numbers which might already be
there. Some words place'numbers on the stack., Some words remove
numbers from the stack, Some words do both. The word "+" is an
exarple of this: it removes two numbers from the stack, adds

If the stack {s
empty, and a word tries to remove a number from the stack, &
phenomenon called 'stack underflow’ occurs, Stack underflow will
he discussed in greater detail at the end of this chapter.

Numbers

GraFORTH s on 1nteaer Tenquage. 1t uses mumbers in the range
-J276R to #32767, You can enter numbers outside of this range,
but they will be "folded” back into the ranne (e.q. the number
32789 will be stored as -32767). Certain operations, such as
division, will truncate decimal numbers back into integers. For
example, 7/322,333333, but GraFORTH will evalvate 7/3 as 2.

Hands-On Experience
Nearly every entry in RraFORTH {s ended by pressing the <return)
key. For the ‘examples below, and throughout the rest of the

manual, press the Creturnd key after every entry unless we tell
you otherwise, :

STARTING GraFORTH

‘...,...3
? oo

bﬁb! -

AS you step througn these exsrples, you may misiype someching,
and find yourself in o situation you don't quite yet know how to
get out of. If you can't recover things proverly, don't worry:
The power switeh was: put on the Aople for ¢ qood reason! Just
turn the power off and reboot aaain, then try to figure out

what went wrong. We'll help you alonn the way,

Type:

Eoough theory. Let's try some examples.

Ready J 4 §

The numbers 3, 4, and 5 have been put onto the stack.
have any doubts, just type the word STACK,

Ready STACK

H]
5]
Ready

Typing STACK turns on the stack display, so you can see what
numbers are on the stack. The stack display stays on until you
type STACK aqain, This display is tonqled on or off whenever you
type STACK. You may want to try this a hit, but as we qo on,

have the stack display on, Now type:

It yu

.

Ready 6 7

The numbers 6 and 7 have been added to the top of the stack,
Notice that the stack display fs "upside-down™: What we've heen
calling 'top of stack' s shown as beina helow the other mmbers,
Here's why: stacks and 'top of stack' are hoth standard
computerese conventions, and we didn't want to hresk tradition by
calling 1t the "hottom of stack”, Aut the GraFORTH stack can
hold up .to 17R numhers while the Apple screen can only disnlay 24
lines. With the stack display turned upside-down, then the 'top
of stack' (the most accessihle numher) will always be the number
closest to the "Ready” prompt, instead of being scrolled off the
screen,

STARTING GraFORTH

- D — —

O

e

ce e

- oy -

ey ——— g A

. -

[P e S

—mmms e s . —

= o

WMHIGL LA WE WV v e
T~ ard * * ‘perird)
iype « puriod.

Now that we have SOome numbers on the stecs,
t On¢ ng w ydo ~ rint 7T
removes & number from the stack and prints ft.

Ready .

The 7 was removed from the stack and printed. Now type "+":

Ready ¢+

(3]
(4]
(1)
Ready

The numbers 5 and 6 were removed from the stack by the word ",
added together, and the sum placed back on the stack. Now type

three periods, separated by spaces:

Ready « « «
1143

Ready

The 11, 4, and 3 were all printed, without any spaces between
them. We'll show you how to position the printing of both

numbers and text in a bit,

You now know how to put numbers on the stack, add them together,
and remove them by printing them, Since most words in GraFORTH
use the stack, it's important to know exactly what's happening on
the stack when a word is executed. Let's {ntroduce a notation
for the effect of a word on the stack. We'll 1ist the word,
followed by a "before and after® representation of the stack,
then a brief description of what the word does. The stack
numbers are shown as letters, with a dash to the right indicating
top of stack. Rememher, the top of stack {s the dash on the
right. An empty stack is fndicated hy three dashes. Using this
notation, here are the four GraFORTH words we've shown so far:

STARTING GraFORTH 3-6

x r
T
W W W

A

b
L

e

£
L4

m I
14—
W W

‘tprd Bef A D ptic
Lists the words in the GraFORTH

Llst - & = * & o
. word library,

STACK .o .o Toagles the stack display on and

off,
. N e e o Prints n,
+ mnn - P - Takes m and n of(the stack, adds

them and places their sum, p, hack
on the stack (p=msn),

Note that there may he other numbers on the stack below those
shown in the before and after diagrams, hut these are not
affected hy the word. .

More Words

Stack Words

Here are some GraFORTH words which manipulate the numbers on the
stack:

DUP duplicates (makes a copy of) the top number on the stack.
SWAP swaps the position of the top t#o stack entries.
DROP removes the top number from the stack. The number is lost.

OVER makes a copy of the numher {mmediately beneath top of
stack, placing the copy on the top of the stack. -

PICK uses the top number on the stack to select a numher from
within the stack, then the numbher is copied to top of stack,
For example, | PICK {s equivalent to DUP, and 2 PILK i3
equivalent to OVER,

STARTING GraFORTH : . -7

a— ~ ———

——— . ——— -

—a .
P

Py

KA

T TP

XA

ot Y,

Pl

>N

bd

Were are the same words defined using the stack diagram:

Description

Word Belore
ove ne
SWAP mn e
OROP ne
OVER mn -

PICK et o .M Q

Keeping an eye on thése definitions

helpful here:

Dupticates n,

Swaps m and n,

Drops (forgets) n.

Copfes m to top of stack,

Coples nth ftem to top of stack.

(Exchange positions of the 2 and 3.)

(Make a copy of the 2.)

(Remove the copy just made.)

Ready OVER (Copy the second from top of stack.)

STARTING GraFORTH

» SOome more examples may be

Ready & PICK (Copy the fourth position down stect.)
(1]
k|
2
k]
1
Ready NROP DROP , (Remove 3 and 1, then print the 2.)
2
0 -
Ready ODROP DROP (Remove the remaining 3 and 1.)
Ready (The stack s now empty.)
You nifl probably want to experiment further with each of these
words with the stack disolay on. While their functions may nnt

be terribly exciting, vou'll find they will be very useful later
on for placing numbers where they need to be at the right time,

Arithmetic Words

You've seen how "+" works; on the next page fs a Visting of the
GraFORTH arithmetic words.

STARTING GraFORTH

Word Belfore After Description
'S an- P - pemen {addition)
- mn- p - paa-n (subtraction)
* an- p - pam*n (-ultlpllcatlon)
/ an- P - pem/n (division)
N00 nhn- re- remainder (modulo)
CHS n- "- M=-n (change sign)
ABS n- »- meABS(n) (absolute value)
SGN n- [m=l if MO, (sign)
0 1f n=0,
-1 1f n<O
SIN n- " - -128¢m<127 (sine)
MIN an- P - pem {f m¢n, (minimum)
n if ncm
MAX na - p - p-: :'f :)):. (maximum)
RND .- n- -327684n¢32767 (fundon number)
RNDB .. n- 0<n¢255 (random bytc)

STARYVING GraFORTH

l-10

|
G-

Mere are some examples of the GrafORTH arithmetic words in
action:

Ready 23 5/ .
4

Ready 23 5 MOO .
k|

(23 divided by 5 leaves 4, and & remainder of 3.)

Ready 6 CHS
(-6)
:eady ABS .

Ready 1R 19 MIN

(18]
:eody SGN .

Re.d’ "’ SG“ L]
-1

Reidy RND .
22317 .

AND leaves a random numher on the stack. (Of course, the numher
dlsplaged will most likely be different from the one shown
shave.

Using Words

Now that we've introduced a whole slurry of words, let's put them
to use. o

For these examples, we'll assume the stack Is emoty before
heginning, There are a few ways to emptly the stack. With the
L)

stack display on, you can type either PROP or °. repegtedly
until the stack display shows the stack is empty.

Another way to clear everything is to type the word ABORT, ARORT

restarts GraFORTH, resetting thinas back to their initial
conditions. ABORT can be handy when used from the keyboard, but
§f executed from a running program, it stops the proaram
immediately, (There is an exception to this which will be
discussed in Chapter 5.)

STARTING GraFORTH 3-1

AN ——— -,

————— -
-
I e

DN r ee s w—-—p

——

As yo_ .. alr_.., seen, .2 way vv 8dd «wv wumbers 13 tO encer
the numbers first, then type "s",

Ready) 4 4+,
7

Ready

This notation, where the numbers precede the operator, s called
Postfix, or Reverse Polish Notation, and fs used in all versions
of Forth, as well as in most NHewlett-Packard calculators., Its
main advantage over "standard” notatfon is that complicated
expressions can be evaluated without having to use parentheses.
For example, {f you wanted to add) and 8 together, odd 7 and 9
together, then multiply thelr sums in a lanquage 1ike Basic, you
would type:

X=(345)*(7+9)

L] * .
Note that since Basic always msltiplfes before adding,
parentheses were needed to group the sums together. In GraFORTH,
you can solve the problem this way: :

Ready 3 §

(3]
(5]
Ready +

(8]
Ready 7 9

This example was “unfolded” so you can see exactly what {s
happening on the stack. Usually, the entire expression s
entered on one line:

STARTING GraFORTH 312

I
Li

Ready 3§47 94 ¢,
128
Ready

To find the cube of a number, you can type the number three times
and mltiply:

Ready 33 3% o,

3

:nothor way {s to type the number once and use DUP to duplicete
¢t:

Ready 3 DUP P » &

27

OUP allows you to use any nuwher without having to enter ft
repeatedly. This will be very useful for general purpose
operations inside programs,

Printing Text

Printing text In GraFORTN {s stralghtforward: type the word
PRINT, the word " (quote), the text to be printed, then another
quote: .

Ready PRINT " SUPER ZAPPD SPACE GAME *
SUPER ZAPPO SPACE GAME
Ready

Since the quote is & GraFORTH word, the spaces between the quotes
and the tex% are required. Note that YOU can use quotes within
the quoted text, as long as 1t is not separated on both sides
with spaces:

Ready PRINT * THIS IS THE "BEST® GAME EVER! *
THIS IS THE "BEST" GAME EVER|
Readdy

Since PRINT does not automatically print o space or a carrfage
return at the end of the text, two other handy words to know are
SPCE and CR, SPCE prints a space, and CR {ssues a carriaqe
return, Notice the difference In the following three examples:

STARTING GraFORTH 3.1

- i . -

WOy | — a——— o -

R Y et S

F———

R l——

e e I

L~ w

F o

-y

Ready PRINT ® FIRE ® PRINT " ONE *°
F IREONE

Ready PRINT ® FIRE * SPCE PRINT ° Tw0 *

FIRE TwO ' .

Ready PRINT ® FIRE ® CR PRIMT " THREE *
FIRE
THREE

Printing text is not very useful if the system only prints the
text immediately then forgets it. Fortunately, GraFORTH can do

much more than that.

Defining New Words

The power of GraFORTH as a lanquage lies in the ahility to define
new words In terms of old ones. In fact, writing “programs” in
GraFORTH s done by simply defining & series of new words which
accomplish the desired task. These new words are added to the
word library and can he seen by typing the word LIST. In this
way, the GrafORTH lanquage ftself (of which the word library is &
gart) “expands” to become your programi|

New words are created with ‘colon definitions' (so nawed hecause
they beqin «ith a colon). The forw for a colon definition {is:

(word name) <string of defining words)

The colon tells the system to begin & new word. definition. The
name That immediately follows the colon will he the name of the
now word. The words that follow the name make up the
*definition” of the word:; they are the words to be executed
whenever the defined word is typed. These words behave just as
if they had been typed in directly at the keyboard. The
semicolon marks the end of the colon definition, and causes the

word Lo he compiled into machine lanquane and added to the word
1ibrary.

As an example, let's define a word that adds two numbers then
prints their sum slong with & short messaga:

Ready : SUM PRINT ® THE SUM IS ° ¢+ . }

STARTING GraFORTH 3-14

11

Ii

Following the Torm for coion cerinitions, UM {2 une nans o the
new word, and

PRINT * THE SUM IS * ¢ .

{s executed whenever the word SUM i3 entered. The word PRINT

causes the phrase “THE SUM [S" to be printed, the + adds the top
two numbers on the stack, and the period prints the sum. (Note
that there are two spaces hetween the word 1S and che quote, so
that & space wiTl appesr between the text and the number.) HNow

let’s try our new word:

Ready 25 31 SUM
THE SUM 1S 56

Ready
LIST the word Vibrary, aﬁd you'll see that the word SUM has heen
added:

Ready LIST

SUM
CHS
SN
CALL

A nice addition to this word would be to reprint the numhers
being added, fut before we commit ourselves to a colon
definition, let's try it “1ive®, where we can watch things one

step at a time:
Ready STACK
Ready 25 31

[25]
(31]

We need to make copies of the two numhers: one set will he
reprinted on the screen, and other set will be added together,
{Remember that many GraFORTH words consume nunhsrs from the
stack, sn we need to have the numbers ready to “feed” them!) The
quickest way to copy 2 patr of numbers s by using OVER OVER:

STARTING GraFORTH 315

— - a—

Ready OVER .

(25)
(31)
[2s)
Ready OVER

[2s
(31
(25
(31

Now let's reprint the first set of numbers clon, with some
fnformative text:

Ready PRINT * THE StM or ‘.
THE SUM OF 31

Ready PRINT * AND * , PRINT * S *

AND 25 (S
[25}
{3
Now let's add the numbers...

Ready +
(56]

+eo8nd print the sum: * ¢

Ready .

56

Now let's put it Into & colon definition, with a different name.

??:e’that you can enter the definition over severs! lines (if you
e).

Ready : SUM]

Ready OYER OVER PRINT ™ THE SUM OF “ ,

Ready PRINT * AND ",

Ready PRINT " IS " & ,

STARTING GraFORTH $-16

T
|

-l

3"’11,:

1
il

ryi
7
L

L

!;3”' 1;:{!
IR

After entering the definition, the word SUM] is also on the word
Vibrary:

Ready LIST

SUM1
SumM
cus
ABS

Ready 25 31 SUM)
THE SUM OF 31 AND 25 IS 56

SUM1 can now he called at any time, from either the keyboard or
another word definition, as easily as any of the original
GraFORTH words {in the word 1{brary,

Note: As you write and enter colon definitions, be sure to enter
a semicolon to finish the definition! If you don't, GraFORTH
will assyme that everything you type is part of a word to be
executed at a later time, If GraFORTH ever responds to words
T{ke LIST with only a "Ready” prompt, you've probably left a
semicolon out of colon definition.

Forgetting Word's

You can see that if we keep on defining new words, the word
1ibrary will continue to grow until we use up 21! of the memory
available. Sometimes words are nn lonaer needed, or a word might
contain a mistake (77?). In either case, to delete one or more
words, the word FORGET {s used. It takes the form:

Ready FORGET <wordname)

FORGET cannot selectively remove words from the middle of the
word Vibrary, It only truncates off the top, deleting the
specified word and every word ahove ft. In our examplée, to
delete both SUM and SUMI, type:

Ready FORGET SUM

STARTING GraFORTH j.Nn

neady Liys

CHS
ARS
SGN

.
\

Notice that both SUM and SUM] were removed from the word Hbrary,
r::oth;re been more words above them, they would also have been
ved.

Note: You will not get on error message if you try to FORGET

]
word thas is not™Tn the word 1brary, This makes {nolenentlng
progrem ‘overlays' easfer, (Overlays will be discussed in
Chapter 5.) However, {f you misspell the word you want to
;:;get;tf:c: noo:o{:s v:ll be f:leted from the word 1brary,

, 90 €3 to use LIST to verify th

Or words have been deleted, orify that the rloht word

STARTING GraFoRTH : J-18

Laoping Structures

The GraFORTH PO - LOOP construct 1s availahle for repetitive
tasks where the number of repetitions is known ahead of tima,
The form for a DO - LOOP fs:

Cending value> <inftial value> D0 <words to be repeatedd LOOP

The word DO removes two values from the stack. The top number is
used as an ‘initia) value' and the next number {s used as an
‘ending value'. The words between D0 and LOOP are executed, then
the {nitia) value s Incremented by one. “If this incremented
value (which we'll call the 'loop value') 1s st1ll less than the
ending value, the proqgram laoops back to execute the words hetween
D0 and LOOP aqain. This cycle {s repeated ss lonqg as the lnop
value is less than the ending value.

If you are familiar with Applesoft Rasic, you will notice that yo
= LOOP Is similiar to Applesoft’s "FOR . NEXT® tooping

structura,

It 13 often handy to retrieve the current loop valve. Inside the
DO - LOOP, the word "1" retrieves the loop value and places it on
the stack. Here is an example:

Ready 5 0 NO PRINT * HERE IS NUMBER " | . CR Loop
HERE IS NUMRER 0
HERE IS NUMBER |
HERE 1S NUMBER 2
HERE [S NUMRER 3
HERE 1S NUMDER 4

"5 0 PD* sets up the looping structure for S loops, Inside the
loop, the phrase "HERE IS NUMRER® is printed, then the loop value
Is retrieved by 1, then printed with ".". CR causes the carriane
return to put each numher on fts own line, and LOOP marks the end
of the loop, causina the loop value to be {ncremented and
compared with the ending value. Note that the loop continues
only as long as the loop valde is less than the ending value.
That's why the loop stops at 4, not 5 as in Applesoft,

STARTING GraFORTH _) J- 1

p—

The words N0O and LOOP work as & patr and must always he matched
up, either on the ssme line together or entered in a colon
definition, Typing DO or LOOP alone can have nasty and
unpredictahle resnits,

To make 2 loop with an increment other than 1, use +L00P instead
of LOOP, 4LOOP removes s number from §he stack to use as the
increment. This numher can be either positive or negative (for
loops that count hackwards). Here Is an example:

Ready 10 0 D0 1 . CR 2 +LONP

SBITaND

.

The 2 was vsed by +L0NP as the increment,

Ready 150 200 DO 1 , CR -10 +LOOP
20
190
180
170
160

Loops can he nested inside one another. The loop value for the
current fnnermost loop 1s always accessed by "I", and the loop
value for the next outer level i3 accessed with the word "J", as
in this colon definition:

Ready : DOUBLELOOP .
Ready 4 0 00

Ready PRINT " QUTER LOOP: " | , CR

Ready Jobo

Ready J.SPCEL, CR

Ready LoopP

Ready LOOP ;

STARTING GraFORTH J-20

Ready NOUBLELOOP
OUTER LOOP: O
00 :

01

ne
QITER LOOP: 1
1o

ER LOOP: 2

D =) -

ER LNOP: 3

b td NNN -

The inner loop s cycled three times for each cycle of the outer
loop. Note that the outer loop value is referenced in the outer
loop with "1", hut is referenced from the inner loop with "J°.
Just remember that "1" always references the loop value for the

current innermost loop.

17 more than two nested loops are befng used, the looo value of
the third Yaop out can be accessed from inside the {nnermost loop

with the word "K",

The Return Stack

N0 - LDOPs make use of annther stack in the GraFORTH system,
similar to the date stack, known as the ‘return stack’'. Tha
return stack can also hold 120 numhers, thouah for most proarams
it rarely contatns more than a few. (Most versions of Forth,
hecause they sre interpreted, use the return stack for o varioty
of purpnses, Recause GraFNRTI is complled directly into machine
lanquane, the Apple's processor itself takes care of these

things,)

When the word NN 1s encountered, the top two values on the date
stack are moved nver tn the return stack, with the toon value on
top and the endinn value underneath, The word LONP incremats
the loop value on the return stack., The word “1" places a copy

. of the top return stack value and places it on the data stack.

When the loop is finally exited, the two return stack values are
removed.

STARTING GraFORTHN j- 2

There are a few words in GrafORTH that enable you to use the
return stack directly. The return stack cen be & handy place to
put numbers for a moment while playing qames with other numbers
on the data stack. (In Chapter 5 we'll show you how to declare
varishles for more permanent storsqe.) Care should be taken to
avoid disturbing the value and placement of existing return stack
entries when using DO - LOOPs. (In other words, 1f you're not
sure, don'tl) lere are the words that directly control the
return stock:

PUSH moves the top data stack entry to the return stack.
PULL moves the top return stack entry back to the dats stack.
POP removes the top return stack entry. The number is lost.

Suppos‘ there are three numbers on the stack and you want to
reverse the order of the bottom two., Here 13 one way to do it:

STARTING GraFORTH 3. 22

:—-—'--
b oo -

o

F-
-—

Comparing Numbers

A number of GraFORTH words are devoted to comparing numhers,
These words are:

<> (not equal to)

- equal to)

> qreater than)

< less than)

de areater than or equal to)
(e fess than or equal to)

Each of these words removes two numbers from the stack, comparing
the second stack numher down with th. top steck number, and
returns on the stack either o 1 1f the comparison is true, or 0
if the comparison is false. lere are a few exarples:

Ready 5 5 = .
1

Ready 5 7 = .
0

Ready -32 -6 ¢ .
1

Ready 45 46 >= ,
0

A couple of other words related to the comparison words are AND
and OR, These words remove twn numbers from the stack and
perform 8 logica) operation hetween each of the 16 bits of the
numhers, returning another number to the stack,

AND performs a hitwise “ANN" between the two stack values; MR
performs a hitwise “OR®. DNon't worry if vou're unfamiliar with
the relationships hetween numbers and their bits. lisually the
fmportance of AND and OR is hetween two zero or nonzero numbers:

1€ bath the top stack value and the second stack value are
nonzero (representing "true”), then the ANN of the two nunbers
will also be nonzero. If elther or Yoth numbers are tero, then
the AND will also he zero.

STARTING GraFORTH 3-2

- e
——— = -

— - -~

e A

v

P R

L o -
B e 2 T d

bl

. o

T e - — e o cewm— - - -

T et

It either the top stack value or the second stack value are
nonzero, then the OR of the two numbers will be also nontero,
Only when both numhers are zero will the OR operation be zero.

AND and OR are useful for combining the resuits of two or more
tests. The following example tests whether or not a given number
ts qreater than % and less than 10, We'l) test with two numbers,

1 and 3

Ready 7

(7]

Ready DUP §)
(7]

(1)
Ready SWAP

7 is qreater than 5 and less than 10,

Ready 1]

(1]

Ready DUP 5 >
(13)

(1]
(13]
Ready 10 ¢

13 s not greater than 5 and less than 10,

STARTING GraFORTH .

E' 3
3
=

L
ey

Decision and Branching Word's

An assential part of a computer language 1s the ability to test o
condition, then make a decisfon on the basts of the test.
GraFORTH has five different constructs that accomp!ish this.

Each of the constructs contains a word which removes a number
from the stack., In most cases, the “"decisfion® is made on the
basis of whether the number s zero or nonzero. Any nonzsro
numher represents a condition being true, and a 2ero represents
false. (Note that the above compariSon words place a4 one on the
stack ;r the comparison s true, and zero if the comparison is
false.

A simple flowchart s included with each of the following
constructs, showing the "flow" of the proarsm. The arrows
indicate what is executed in what order. The boxes represent
qroup of words to he executed. The dismonds represent a test,
usually for a zero or nonzero number.

~ Mote: - Each of these constructs 1s made up of twe or more words.

Like NO - LOOP, these decisfon words work together, snd cannot he
entered alone. They must be entered either on one line or from
within a colon definition,

IF- THEN

The s:unlest decisfon construct s IF - THEN. The form for IF -
THEN {s:

(stack test value) IF
- <words to be executed)

THEN

The word IF removes a number from the stack. |f the numher {3
not zero, then the words between IF and THEN are executed, If
the number {s zero, then the words between IF and THEN are
skipped over. In either case, the program continues on after the
word THEN. The flowchart for IF - THEN follows on the next pane:

STARTING GraFORTH ' 3 -2

<0

THEN

Let's use IF and THEN 1n a couple of colon definitions:
Ready : TEST]

Ready PRINT " THE NUMBER IS °

Ready IF PRINT * NOT * THEN

Ready PRINT " ZERO, * ;

The first and third PRINT words are executed every time., The
word IF removes a number from the stack (which we'll supply
before we execute TEST1). If the number 13 nonzero, then
PRINT ® NOT *, which i3 sondwiched between the IF and THEN, {s
executed. If the number 1s zero, then 1t is not executed,

Ready 5 TESI)
THE NUMBER S NOT 2€RO

Ready 0 TEST)
THE NUMBER [S 2ERO

IF - THEN constructs can be used with nusher comparison words.
Rememher that these words return either one or zero, depending on
the success or fatlure of the comparison. Suppose that for some
soplication, you want to set a limit on the size of numhers. The
:ollowlnq word will let any number less than 25 pass through
Unharmed®, but any number over 25 will he replaced with a 25:

STARTING GraFORTH 3-2.

L}

Ready 1 UPPERLINIT
Ready DUP

Ready 25 > IF
Ready DROP 25

Ready THEN ;

The word 0IP makes a copy of the top stack value. The word *>*
compares the copy with the number 25, leaving a one on the stack
(f the number Ts qreater than 25, or s zero if It fs not. The
word IF rawmoves the one or zero from the stack to decide whether
or not to execute the follpwing words, Rememdér that the
ariqinal number s stil] on the stack. If the comparison fs
false, then the words hetween IF and THEN are not executed, and
the number s left intact. If the comparison {s true, then NROP
25 1s executed, which removes the orfginal numbher from the stack
aAnd replaces it with 25,

Ready 16 UPPERLIMIT .
If
Ready 37 UPPERLIMIT .,
25

Ready

IF- ELSE - THEN

Another version of the IF - THEN construct is IF - ELSE - THEN.
The form {s:

<:cst stack value)
|

<{words executed {f nonzero)
ELSE

<words executed if zero)
THEN

As hefore, the word If removes a nunher frow the stack. MHowever,
if the number is nonzero, then the words between IF and ELST are
axecuted. If the numher Is zero, then the words botween FLSE and
THEN are executed, The proqram then continues after the word
THEN, The flowchart for IF - ELSE - THEN follows on the next

page.

STARTING GraFORTH

T ST

R~

Tecm.. .
Towst e w

TR ———
Do LS S
- @ e v e
P

=3
RORTE S

e BRI A

-
.-
e 8

-t
. Ba.rweme. g ¢

LA
Ty

—
e Y

L andd I N
D ot .

—— s & e

Do i
- -

S=s. oo

™ —— -
-

test)20 IF
(31
words
ELSE
words
' THEN

Ready : TEST2
Ready hUP 100 > IF
Ready . PRINT * 1S GREATER THAN 100 ®

Ready ELSE
Ready . PRINT ® [S LESS THAN OR EQUAL TO 100 "

Ready THEN ;

Again, we've dunlicated the number before comparing so that we
could print It later, using one of the two Periods inside the IF
- ELSE - THEN. Also note that the controlled words are indented.
This s certainly not a requirement, but it greatly improves the
readahility of the word definftion. (In the next chapter, we'll
show you how to use the text editor to save the text of the word
definttions.)

Ready 106 TEST2
106 1S GREATER THAN 100

Ready 54 TEST?
54 1S LESS THAN OR EMUAL TO 100

Ready

As with loops, IF - TNEN constructs can be nested. This example
puts checks for hoth upper and lower 1imits on a numher:

STARTING GraFORTH j. 2

Ready @ TWOLIMITS

Ready DUP 25 > IF

Ready PRINT " GREATER THAN 28 *
Ready DROP

Ready ELSE

Ready 10 ¢ IF

Ready PRINT " LESS THAN 10 *
Ready FLSE

Ready PRINT ® BETWEEN 10 AND 25 *
Ready THEN

Ready THEN ;

One IF - ELSE - THEN 1s placed between the ELSE and THEN of
another one. Note that hefore the first comparison, we MIPlicat
the mumber because we don't know yet whether or not ft will be
needed for the second comparison, I[f the number {s qrester than
25, then it is not needed again, and {s NROPped.

Ready -62 TWOLIMITS
LESS THAN 10

Ready 19 TWOLIMITS
BETWEEN 10 AND 25

Ready 684 TWOLIMITS
GREATER THAN 25

BEGIN - UNTIL .

Another construct that allows repeated execution is BEGIN -
UNTIL. The form f{s: '

BEGIN
C(words to he repeatedd
Ctest stack value)
UNTIL

STARTING GraFORTH 3.z?

c— -

The word NEGIN marks the heqinning of the construct. The words
hetween BEGIN and UNTIL are executed, thien the word UNTIL removes
4 numher from the stack. (f the numher is zero, then the program
branches back end the words hetween REGIH and UNTIL are executed
egain. This loop 1s repested unti) the stack value is nonzern,
then the proaram continues past the UNTIL., Thig {s the flowchart

for BEGIN - UNTIL:

UNTL

The following example starts with a zero on the stack, then
Drln:s ;he nusher, adds 1 to it, then loops back until the number
equals A:

Ready 0 BEGIN DUP , CR] + DUP B = UNTIL

N BEWN - D

7
(8]
Ready

"The words "DUP . CR* print the numsber without losing it and

Issue a carriage return; °1 +° increments the number; and

OUP B «" determines {f the numher equals A. Notice that this
loop leaves a copy of the nusber on the stack when it finishes.
Adding DROP to the end of the line tekes care of this,

STARTING GraFORTH -3

-

BEGIN - wHile - REFEAT

ihe DFOIN - WILE - REPEAT construct 1s similar to BEGIN « UNTIL,
The form {s:

BEGIN
Cwords to be repeated)
Ctest stack valued
WHILE
<controlled words>

REPEAT

The word REGIN again marks the heqinning of .the construct, The
words hetween REGIN and WHILE are exe.uted, then WHILE removes @
aumher from the stack. [If this number is nonzero, then the
control led words bhetween WHILE and REPEAT are executed, then
execution fjumps back again to the words after the BEGIN. If the
number {s zern, then the program jumps directly past the word
REPEAT and continues on. The key to remembering this is that the
controlled words are REPEATed WHILE the stack value remains

This Is the flowchart for BEGIN - WHILE - REPEAT, Note

nonzero.
that the test is at the beginaing of the controlled part:
) BEGIN
words
00 wHiLE
*0
words

"’"""'i________g REPEAT

The following example is similar to the previous example for
BEGIN - UNTIL. The number Is tested first this time. While it
is not mqual to R, it 1s printed and incremented, and the cvcie

is repoated:

STARTING GraFORTH 3 -3

T i A

Ready 0 BEGIN DUP A <> WHILE DUP , CR | & REPEAT
o
1
2
J
4
5
6

7
(8]
Ready

CASE: - THEN

Sometimes 2 choice needs to he made from a range of possible -
numbeds. The CASE: construct allows you to do this. The form

(stack valyed

CASE:

<word 0>
<word 1)
(word 2>

<word nd>

THEN '

The word CASE: removes & number from the stack and uses this
number to selnct and execute o single word from-a 1ist of words.
A zero selects word 0, a one selects word 1, etc. The word THEN
marks the end of the CASE: construct, and is required. The
flowchart for CASE: follows on the next page:

1

STARTING GraFORTH 3. 32

=3
L TP

.-
® oy o

'Q-" -

CASE:
v
=L word n |
THEN
The following example shows how CASE: works:
Ready : X PRINT * THE NUMBER IS ZERO " ;
Ready : Y PRINT " THE MUMBER IS ONE "
Ready : Z PRINT " THE NUMRER 1S TwO * .
Ready : CASE.TEST
Ready CASE: '
Ready ' X
fieady Y
-ReMy t S
Readv RELL

Ready THCN

X, Y, and Z are words we have defined and are callied by the word
CASELTEST. The CASE: Vist in CASE.TEST containg four words, so
the construct uses the numhers 0 throuqh 3. Zero selects X,
selects ¥, 2 selects 7, and 3 selects RELL:

STARTING GraFORTH J- 2

IS e S

Oy o

Ready 0 CASE,TEST
THE NUMBER IS ZERO

Ready 1 CASE.TES!
THE NUMOER 1S ONE

Ready 2 CASE.TEST
THE NUMBER IS TWO

Ready 3 CASE.TEST
(The Apple speaker beeps.)

Warning: 1f the number which CASE: removes from the stack {s too
targe or is less than zero, something strange and probably
not-so-wonderful will happen. For example, the system may hang
up. (In the above example, the only acceptshle numbers for
CASE.TEST are 0, 1, 2, and 3.) The key to avoiding trouble is to
simply not let numbers out of the CASE: range 9o into the word
CASE:. There are a number of ways to do this, Here is one for

the above exasple:

Ready : SAFE.CASE

Ready DUP DUP 3 <= SWAP 0 D= AND
Ready IF
Ready

Ready ELSE
PRINT * THE MIMBER (S NOT .BETWEEN 0 AND 4 *©

CASE, TEST

Ready
Ready DROP

Ready TIHEN ;

SAFE.CASE first checks the number to ser that it is between 0 and
4 dbefore passing it on to CASE.TEST, If 4t {s out of ranqge, 2
message s printed. (You may want to try the words WP DUP 3 (=
SWAP 0 >= AND® directly from the keyboard to see how they work

together).

Ready 2 SAFE,CASE
THE MIMBER IS TWO

Ready 7 SAFE,CASE
THE NUMRER IS NOT BETWEEN 0 AND 4

STARTING GraFORTH I- N

" are built up.

Ready -6 SAFE.CASK
THE NUMDER 1S NOT BETWEEN O AND 4

Program Structure and

Other Miscellaneous Thoughts

.Notlce that in the last example for CASE: ahove, we beqan by

defining threc short words: X, ¥, and . Then we defined the
word CASE.TEST, which calls one of thosc three words. Finally we
defined SAFE.CASE, which calls CASE,TEST. :

This "chain® of definttions fs the way long prograss in GraFORTH
The ‘low-level® words, which usually do rather
menfal tasks, are defined first. Then the next level of words,
which call the first set of words, are defined. This orocess
builds layer by layer until one Jast word 1s added to the top of
the word)ibrary, which "coordinates the show", The entire
program can be run hy simply typing the name of this top word.

The beauty of this scheme {s that each level of words can be
thoroughly tested and debuqqed before moving on to the next
higher level, This helps to prevent the all-too-familiar scene
of the programmer helplessly wadinng through miles and mi’es of
computer print-out trying to find the elusive “buqg” in a program,

Another advantaqe is that with separate word definitions, you can
have more than onn “program” in mewory 3t 2 time. Words can be
defined comletely independently of each other, and used s
individual proarams or routines.

vesslhich brings us hack to some specific points on GraFORTH,

Word References

Words in GraFORTH can only be defined in terms of already

existing words, which reside in the GraFORTH word 1ibrary st the
time. In fact, any reference to a word that {g not currently in
the word Vibrary will produce an error messaqe, and the unknown

word will be ignored:.
Ready 5 0 N0 | . CR STRANGE LOOP

STARTING GraFORTH 3-3

TN

s r— —— e ——— —

T —"t | g

L ——— e —

T g oy g

o;‘g

B m

=
i

TRAN _)t Fe..._ [Pre_. ... turn,

-HN—Q

Ready

Another source of trouble is defining a word with the same name
as on already existing word. If this happens, the new word {s
added to‘}he word library, but a warning messaqe is printed:

Ready : OVER PRINT * OVER THE RIVER AND THRU THE WOO0DS " ;
OVER Not tinique (Return)

With two words with the same name in the word library, how does
the system choose between them? For our example, any words thet
referenced OVER before the new definftion was added will still
reference the eariier word, Any new references to OVER will
reference the new definition. That means that the original
definition is no longer accessible from the keyboard! In
qeneral, defining wards with existing word names fs not a good
fdes and should be avoided.

Proqrammers who 1ike to dahble with recursfon will be happy to
hear that GrafNRTH words can call themselves. Word definitions
can also he nested one definition fnside another, allowing the
inside and outside words to call each other, These capahilities
are very useful in certain recursive anplications, but should be
:;?;:5?)" not needed. (Your programs can qet hard for people to

Speed and Flexibility vs. Error Checking

GraFNRTH 1s » very fast language. It has to he to menipulate 3.0
lnanes.ct the speeds It does. GreFORTI s also very flexihle,

As you'll see fn Chapter 6, fraFORTH Qives you direct contro! of
your Apple.

You rmay be asking, "What's the catch?® The “catch” {s that
GraFORTH has Tittle huilt-in error checking, In terms of speed,
IT your proqgram works correctly, then repetitive error checking
schemes can only slow your program down. '

STARTING GraFORTHN 3.3

atn sube

F-w'—j

[A Tl

In terms of flexihility, If you're allowed to do nesrly snything,
then there is nothing “"to protect you from®, GraFORTH follows
the Forth convention that If you want error checking, you'll
write 1t into your proqrams. If you don't meed error checking,
you don’'t have to include it. .

One example 1s 'stack underflow and overflow', Stack underfiow
is where 8 word tries to remove 8 numher from the stack and the
stack {s empty. If this happens, GraFORTH will merely return the
number that was last on the stack. Stack overflow s ceused by
trying to place more than 128 numbers on the stack. [f this
happens, the extra numbers are fgnored. If & stack underflow
occurs when the stack display s on, a long.stream of stack
numhers may be displayed. If this happens, just type ABORT to
clear the stack, (The key to avoiding steck problems 1s to be
aware of what {s happening on the stack at all times, Sometimes
"sinqle-stepping” through a 1ist of words with the stack display

on can help.)

Another examnle of error checking fs with words that "expect® g
number in a given ranqe. We've seen this already with the word
CASE:. Many words in GraFORTH use numbers in a specified range.
Some words don't mind the excess: they "fold” the number hack
into an eppropriate ranqe and iqnore the difference. Other words
(tike CASE:) do not fold hack, and must be given 3 valid numher.
As we introduce words, we'll {include any vaiid ranges.

Words Which Look Forward

Most words in GraFORTH look to the stack for any data or
information they miqht need. Some words, 1ike PRINT or FORGET,
look forward down the input line for further data. You might be
tempted €o huild a colon definition 11ke the following:

Ready : TESTWORD CR CR PRINT ;

Reqdy TESTWORD * HI THERE "

Oon’t try 1t! The word PRINT Yooks for the text tn he printed as
1t is. compiled, not when it is executed. The ahove exarwle wiiT
not. work, and it may cause the system tn qo off the deep end...
The nther words (introduced in later chapters) which look to the
input 1ine for dats work the same way, and should he used as
descr'bedc

STARTING GraFORTH -9

. e Batted
’ Tea: vis. braphlcs l '-] For people who “think" (n hexadecimal, the word SLIST can slso be
, very useful. SLIST fs fdentical to LIST, except that it also
Stnce the Apple graphics screen fs used for the normsl GraFORTH : displays the hexadecimal addresses of each word in the word
: display, mixed text and graphics, chanqeable character sets, and E."""‘ j library. By comparing adjacent numbers, you can determine how
4 lower case displays can al) be used in GraFORTH, However, text much memory each word takes, llere is a sample of » $LIST:
o scrolling 1s not as fast as 1t would be on a standard text
‘- display. GraFORTH includes two words, GR and TEXT, which enable Ready $LIST
1, you'to switch between the graphics display and a text-only E-. j
' display. The only sdvantage to using the text display Is for l $8254 CNS
N fester scrolling, which can occasfonally come in handy when | $R246 ABS
. editing flles from the editor, E._'. $0224 SGN
| ' cpe ;BIH CALL
\ . . RIE9 PREG
. Memory Considerations $81DE YREG
,l Because of the large number of features implemented in GraFORTH, E . . .
: and the'uct that b::h ?rapM:s'screenshar'?e::qdusog‘ free . o
: ' memory for program development fs somew ' mited. e presence i
p B f a language card or RN card erases this limitation - St SLIST displays the addr at which each word beql
q 0 uag - nce splays the ess 4Ch word beqins, the
o : considerably, The memory map fn Appendix B shows the available & "j first address shown is the heginning of the top word, not the top
. :;eetn:orz‘:uh’md ulthout”: language“c'ardhand :'I.:h or'wlt::ut of the word library at the end of the word. To determine the
e ' e text editor 1n memory, mory considerations n using the address of the top of the word 1ibrary in hexadecimal, you can
- ’ text editor will be discussed in the next chapter, E—v" define & “dummy® word and then use SLIST. The top .aariss will
. _ 1T be the top of the word 1ibrary after the dummy word {s deleted:
o The way to keep memory free s to always FORGET words that asre no
™) longer needed. Loading one larqe program onto the word lbrary . - Ready : IT ; ("IT" does not execute anything,)
above another {s a sure way to run out of memory. Be aware of .‘"“_‘;ﬂ
what is on the word 11brary, and how much memory is being used. Ready SLIST
A . .
| | There are two words to help you: A26E 1T
{1 d E‘I‘.Zj :szs'c cis
| The word PRGTOP places the dddress of the top of the word 1ibrary $A246 ABS
1 on the stack. This can let you know how large things are . .
» getting. This example was done with no additional words on the E____ . .
& ll word library, (The addresses printed here are for example - .d
,; ‘l purposes oo)\ly. The address numhers displayed may he slightly Ready FORGET IT
N . different. :
Y I - ‘ oy - = $826E Is the hex address of the top of the word librar
- Y
1 ' Ready PrGTOP . St | !
N -32256])
o It - !
) -
t .
Al .
. ooy —
a
:, — '
2 m oy |
7. START ING GrafORTH 3.
3 i STARTING GraFORTN J- 3
B vy -
233
.p o ’ ~7

i

e T AP —

B R T

L Desse T

- o~

- -t
-

.
L e o oty

Cu/1CruoliOl

Let's take a break here, and digest some of this inf ' |
ormation,

This might he a good time to greh a plzza, take 2 nap or come owt

of hiding and visit someone who hasn't seen you in a few days!

Anyway, when you come back we'll move Into the text aspects of

t(:;:l:?l'ﬂr'md ’l'ntroduce you todthe supplied GraFNRTH text editor.

. S0 show you some wonderful specis! ch
your Apple a 1ittle more fr'endly...)" characters to make

STARTING GraFORTH 3.4

CHAPTER FOUR: TEXT MAGIC
Chapter Table of Contents:
Purpose and Overview

Strange and Wonderful Characters

Unbor ond Lower Case

Hiddon Characters
Cursor Movement
Line Insertions ,

The Text Editor

*Line Entries

List

-Autonum

Delete

Ernse

Automatic insertions
Insert

Save

Get

DOS Commands
Printing Files

Memory Considerations
Leaving the Text Editor

Program Compilation
Comments

Using the Editor with GraFORTH

TEXT MAGIC

sana
BWWN

. . . . “
“-—aL.L.loDDDuUund A

papaansapsana
WRN = e

4-1

AP P gl TP

Purpose ana Uverview

In Chapter 3, we learned (among other things) how to define new
words in terms of existing ones. The words were added to the
dictionary and could he called at any time. However, there was
no way to save the text of the definition; to go back to the
string of words which defined it.

Enter the GraFORTH text editor, a straightforward general purpose
line-oriented editor. Text can be crested here, modified, saved

to disk, read back in, and more,

GraFORTH includes words to compile text into the system from the
editor or directly from the disk, If any deffned words need to
be modified, they do- not have to be completely re-entered. They
can be changed from the editor, then recompiled by the system,

In this chapter, we'l) discuss how to use the text editor and how
to compile GraFORTH proarams from the cditor or from disk, We'l)
a1so give you some pointers to keep both system and editor memory
haopy. But first, we should discuss some of the special
characters used in GraFORTH, both in and out of the editor, and
how they can help hoth your programming and your programs.

Strange and Wonderful Characters

Upper and Lower Case

If you've looked at the GraFORTH demonstration, vou've seen all
these lower case characters on your Apple screen, but until now,
we haven't told you how to enter lower case characters yourself,
There's really no magic, as we'll soon seel

TERT MAGIC _ 4-2

i}

-
R
. h
[T4 -
o ..
)
g
e
!
i

LA

Upner and lower case cen be set in a number of ways, and each i
¢ two-key process.

While entering a line, type ConTRolL-0, then

"E": Subsequent entries will be in lower case unless ESC s
pressed in advance. If ESC {s pressed first, the
following character will be Tn upper case.

"S": Entries will be shifted to upper case if your Apple][
has the one wire shift key modification. (A wire
running from the shift key to the game paddie ANJ input).

"U": Al entries will be in upper case.

“L*: AN entrlgs will be in lover case.

““Hidden Characters”’

Although the Apple][keyhoard won't accept all the ASCIl
characters, GraFORTH will, Hlere are the keys to press to get the
“hidden characters”:

' ConTRoL-Shift-N qives a left bracket

ConTRoL-Shift-M qives an underline
ConTRoL-Shift-P qives a reverse slash
Shift-M qives a right hracket unless one of the lower
case shift options has heen set.

- Cursor Movement

As you may have discovered hy now, the Aople arrow keys work as
they do in most Apple applications: the left arrow is a
“backspace” key that enahles you ta back up on the Iine to
correct mistakes. The right arrow is a “"retype” key. If you use
the right arrow key to move the cursor over text on the screen,
the text will he treated by GraFORTH as 1f it were being typed
aqain directly from the keyboard.

TEXT.MAGIC 4 -1

B i U

R S .

~m—

- o

emm——y >
. ey

-

P
.r.
L emea

o APl P o Toad N A
T ;
“aa
Rt

ot

4
i
TS

VTSR
TS e
.-.~,."_‘-"

v

POy
by

o - e oy
To, o~

LB
B

- s

-3
e

—-—
S 3

=Ey

e

- — s —— s S = + > S——— .

The Apple ESCape codes for moving the cursor aiso work from
GraFORTH, These can be handy for making fast corrections from
the GrafORTH text editor. If you're unfamiliar with the Apple
ESCape codes, we suqgest you consult one of the Apple menuals,
Most of the manuals discuss these codes.

Note: If any of the lower case shift modes have been set, then
the ESCape key cannot be used to move the cursor. To move the
cursor using ESCape, first set upper case only (ConTRolL-0, U)
shift mode.

Line Insertions

Insertions can be made Into the middlie nf & Vine using ConTRolL-I,
Pressing ConTRolL-1 pushes sny characters to the right of the
cursor one more space to the right,

To make an insertion using ConTRol-1, first use the Apple ESCape
codes to move the cursor to the beginning of the line tn be
thanned. lise the retype key to move the cursor to the point of
insertion, then press ConTRol-l enough times to open up a space
in the 1ine for fnsertion, Now enter the additional text, then
use the retype key to move the cursor to the end of the line, and
press Creturn),

Note: The ConTRol-! feature works for editing only one
40-character 1ine st a time. Pressing ConTRolL-1 too many times
can push text off the right end of the screen and into
Never-Never Land....

The Text Editor

There are actually two text editors on the GraFORTH system disk,
named ON.).ENITNRL and 0B, ENITOR2, The first is used on systems
that do not have a lanquaae card or RAM card and can edit about
2000 characters without chanqing the default settings, The
second s used with systems that have lanquaqe cards and can edit
::out'llison characters, Otherwise, the two editors sre

entical,

TEXT MAGIC 4 -0

yi
::L_

7
1
PR

-
E —]
.

i
it

s
el

,';‘
i

i
4
Li

m
1
il

Note: GraFORTH and the GrafORTH editor both use standerd DOS
text files for proqram storsae., I you have 8 text editor thst
you are accustomed to that 8130 vses D0S text files, you may use
it fnstead of the GraFORTH editor. Larqge programs will be more
manageahle in a text editor such as Apple Nriter 2,0, Comniling

_proarams into the GraFORTH systew from disk {s the same

reqardiess of what editor is used to create the file.

For the editor examnles fn this chapter, we will yse English
sentences for text instead of GraFORTH proqrams. The editor
doasn't know the difference, and it makes things easier to read.
The editor 1s of course usually used for writing GraFORTH
proarams, The GraFORTH word MEMRD, discussed in the next
section, allows text to be read and compiled directly from the
editor,

To enter the editor from GraFORTH, type ENIT. The sppropriate
editor will gutomatically be loaded. In & few seconds vou showld
see the GraFORTH editor header:

GraFORTH J(Editor (C) 1981 P, Lutus

The first cormand to know in the editor fs "7°, the question
mark, Entering a question mark qives you the Editor Command
Index, a 1ist of all the other editor commands:

?

Save

Get

Insert

Delete

Proqaram

Memory . !
List

Nrite

Erase

Autonum

fye .
ConTRol.-N+DNS

We'll discuss each of these commands in turn, hut first let's
find out how to enter text into the text editor.

TERT MAGIC : 4.5

. —— ——— . — .
- - - .

Line Entries

Entries to the text editor are preceded hy line numbers. These
11ne numhers have no meaning to GraFORTH, and are not retained in
the program file when it fs saved to disk. They simply serve as
an Index to the file while 1t {s in memory. The editor line
numbers are in steps of 10, and whenever insertions or deletions
are made, the file s renumbered automatically, in steps of 10

again,

To enter 2 line, simply type & line number followed by the line,
Here are some example lines to enter:

10 Ny very first editor 1ine!
20 Entering lines in pthe editor is
30 similar to entering lines in Basic.

LIST

To see that these text lines have heen stored, they can be listed
by typing "LIST" or simply the letter "L, (A1l of the editor
conn;;ds are single letters, and should be entered in upper

case,

L

10 My very first editor line!

20 Entering lines in the editor is

30 similar to entering lines in Rasic.

Done

(The "None® messane is printed whenever an editor command {3
successfully accomiished, We're not going to show it in all of
our examples, though.)

Inserting lines in the text editor 1s much the same as in Basic,
Simply enter a 1ine number between the)ine numbers you want the
text inserted into., Remenber that after the insertion is made,
however, the lines will he renumhered {n steps of 10, Let's
insert a line hetween line 10 and line 20 by giving it a line
number of 15:

15 With some important exceptions,

TEXT MAGIC 4 -6

e
E?‘f.‘;“,,

-

E

B
-

Now let's list the f1le again to see that the line was inserted
and the following lines were renumbered:

L

10 My very first editor linel

20 With some {mportant exceptions,

3N Entering Yines in the editor s

34 similar to entering Vines in Basic.

If the file beinq edited oets rather lona, you don't have to 1ist
the entire file every time. The listing automatically stops
every 16 1ines. If you press ConTRol-C during the pause, the
1isting will stop. If you press any other key, the listing will

continue.

You can also use "List® to list a single Vine or a range of

Jines, Assuming o file contains at least 15 lines (numbered 10
to 150):

Lo lists line RO only.

L 80,150 1ists lines 80 through 150,
L 80, lists from Yine 80 to the end of the file.
g R0 1ists from the beginning of the file to line 81,

AUTONUM

The editor also provides automatic line numbering. Going back to
our original example, 1ist the file, then press "A" for
*Autonum®. The next line number, line 50, will appear for you.

‘Enter & couple aof lines with Autonum on:

A

50 This 1s mich nicer than having
60 to enter the line numbers myself.
mn .

To stop the Autonum feature, just press <(return) at the beainning
of the line after the line number.

TEXT MAGIC

. T - e 4o WD~ D P . o —— .

‘e — s m—
[Jab .

-
- .

c——T e
c e, L . e

To change 2 line already in the editor file, simply retype the
line number followed by the corrected line, The ESCape codes and
the right-arrow key can be vused to retype a line that {s on the
screen, and ConTRol-1 can be used to make iInsertions within the
Tine,

Simply entering & Vine number followed by Creturn) won't delete »
1ine, as is trye for Basic. Instead this will create a blank
1ine, very useful in its own right for separsting program
segments and word definitions, To make a blank line while the
Autonum feature 1s in use, enter 8 space, then press (return),

DELETE

The "N* ("Delete”) command is used for deleting a line or range
of lines, 1[ts format'is fdentical to "List” (though its effects

are very differenti): .

D A0 deletes only 1ine RO,)

D 80,150 deletes lines BO through 150,

0 A0, deletes from line AN to the end of the file,

n ,R0 deletes from the beqinning of the file to 1ine RO,
ERASE

To erase the file in memory, press "E" for “"Erase®. A prompt
will appear:
Erase (Y/N)

This prompt prevents inadvertent file erasure. Enter "Y" and
press Return to erase the file,

Automatic Insertions

In a previovs example, we used Autonum to add to the end of the
file. When used in the middle of a file, Autonum also
sutomatically inserts the text, mgking room for the text and
renumhering later 1ines. For these examples, let's start with a
vtn file, Erase the file in memory, then enter a couple of

nes:

10 The first 1ine 1in the flle,..
2N The last line,

TEXT MAGIC 4 -8

We can start an insertion by entering the first 1ine nuwber of
the insertion ourselves:

15 must surely be followed by others,

Now, nressing "A" will couse automstic line numbering that starts
following the last entered line, line 15, and insert this text
into the file. Since line 15 is renumbered to become line 20,
the next 1ine pumber, printed with the Autonum feature, is line

30:

A
30 Autonum does more than nenerate

- 40 T{ne nymbers. It also inserts

50 into the middle of a file.
60

Agafn, Autonum is turned off by pressing <return) with no text,
Let's 1ist the file now:

L

10 The first 1ine in the file...

20 mist surely be followed by others,
30 Autonum dors more than qenerate
40 1ine numhers. [t also inserts

50 into the middie of a file.

60 The last line,

INSERT

The "I ("INSERT") cormand can also be used to initiaste
insertions into a ffle, Instead of tyoing the first inserted
1ine before using Autonum, INSERT is used to specify the starting
Tine mumber. Let's delete the lines we fust entered, and
re-enter them, this time using INSERT,

n 20,50 .
Done
L

10 The first Yine in the file...
21 The last line.

TERT MAGIC 4.9

——
- e T AR . - -

[—
—— —

- ——

‘-

We want to insert hetween lines 10 and 20, so enter:

s

Autonum'will use this Vine number as the point of insertion,
instead of the last sccessed line.

A
20 must surely be followed by others.

30 Autonum does more than generate
40)ine numbers. 1t also inserts
50 into the middie of 2 file.

60

List the file again, and you will see that these lines have been
re-inserted into the file.

SAVE

To save a file to disk, press wg*, A prompt will appear:

S
(Filename) :

Enter the file name you want the file to be saved under. If
desired, you can also specify a disk siot and drive number here,
separated by comms using the standard p0S format. Here are 2

couple of examples:
TESTFILE)

Filename)
TESTFILE,S6,01

Filename)

If you want to save only & portion of the file to disk, enter &
slash after the filename, followed by the ranne of line numbers

to be saved:

ifllenluei . TESTFILE/B0,150 (Saves lines 80 to 150)

Saves beginning to line an)

Filename TESTFILE/,B0
saves line AN to end of the file)

Filename TESTFILE/RD,

TEXT MAGIC 4 -10

b—r-

gkt |

- "_

lad

| o

. -
.*‘oﬂo
o

GET

To qet 8 file from disk and load it into the editor memory, press
sg*. A prompt will appear:

G
(Filename) @

Enter the name of the file to he loaded and, 1f desired, the disk
slot and dr]vo at which it 1is located, using the same format 2s

SAVE,

To qet a file and insert it at a particular location in the
existing file, enter 2 slash after the filename, followed by the
destination line number fn the current flle, This example will
fnsert the file TESTFILE into the current editor file between

lines 110 and 120:

(Filename) ¢ TESTFILE/1LS

Note: "GET™ always fnserts the file into the present memory
contents. The file contents are not erased by "GET". To erase
the present file and get a new one, “FRASE® the present file and
then "GET" a new one. Seems simple enough,

Note: Since "GET" and “SAVE" use slashes to specify certain
lines in a file, filenames that contain slashes cannot be used

with the text editor.

DOS Commands

To enter a DOS command directly from the editor, press ConTRolL-D
snd ¢returnd, A prompt will appear:

Enter DOS Command @

From this prompt, you can eater any DOS command, to qet 2
catalon, delete files, lock files, etc. The promot repeats after
each D0S cowmand so that you can execute several cosmands without
havingq to press ConTRoL-D every time. To return to the editor
prompt {(a flashing cursor with no promot line), simply press

Creturn) twice.

TEXT MAGIC 4-11

-—

A e
A ils e - -a

B — T e m—

i 1

e Y -

cem e B e e m e - s ———
— ——— ———
——— g e~

Printing Files
tditor files can be printed directly from the editor. Type

" ConTRol+D and (return)> to get the NOS promnt, then type "PRI1".

(17 your printer fs In snother slot, substitute that number.)
The printer will be activated, then press (Rnturm twice to remove

the DOS prompt.

With the printer enabled, yov can type "L" to ist the file

to the printer, pressing Creturn) when the 1isting stops every 16
fines. A better way is to type "M* for "Write”., This option
writes the editor file out without any pasuses.

Since "PRID® does not reconnect GraFORTH's special arephic
output, press Reset to turn the printer off and return to
normal display. The next chapter fncludes 8 discussion on how to
access peripherals and return to GraFORTH in 8 normal menner.

Memory Considerations

As the GrafORTN word Vibrary arows, ft can begin to use the same
memory that {s used from the editor, If the word Vibrary is
large enounh, adding words can erase 8 part of the editor file,
or even the editor program ftself. Conversely, using the editor
can destroy the top of the word 1ibrary, requiring the system to

be rehooted.

In addition, the smount of usable editor file memory s
determined by the presence or ahsence of a langdaqe card. Ve
suggest you study the memory map in Appendix D and become
generally famillar with areas of memory used by the GrafORTH
language, the editor program and the editor file in your system,

To find the amount of free memory left in the editor file area,
press "M" for "Memory®. You will see:

Free Memory
followed by the mumber of bytes (or characters) of memory Teft.

You may want to adjust the amount of memory used by the text
editor, to svoid conflict with GraFORTH, To sccomplish this, you
may position the file either up or down in memory. To do this,

press "P". A display will appear:

TEXT MAGIC 4 .12

Program Length
Pnsition

Free Memory

Change Position (Y/N) @

The lenath, position (starting address of the editor file area),
and momory lahels will be followed by their present numeric
values, Tn change the editor file position, enter "V" to this
option, You will be prompted:

Enter Mew Position ¢

On 8 lsnguane card system, the file position can he moved
gsomowhat higher to make more room for che GraFORTH word 1lbrary,
in a non-lanauage card system, ft's often best to use the editor
without regard to keeping the word 11brary intact, save the
edited file to disk, and reboot GroFORTH from scratch, This
method will be outlined in the next section,

Leaving the Text Editor

To leave the text editor and return to.GrcFORfu. simply type "8°
for "Bye".

Program Compilation

GraFORTH normally accepts its fnput from the keyboard. Each line
{s compiled immediately and acted upon {f necessary.

GraFORTH can also read lines from the editor file or from » disk
file, treating the lines as if they were typed from the keyboard.
GraFORTH proqrams can be written in the editor and saved to disk,
then read and compiled into the system,

The word to read end compile text from the editor huffer s
MEMRD. MEMRD removes a number from the stack, interprets this
number as an address, and heqing reading text from memo.'y
starting at this address. It reads and compiles until ft efther
reads & zero hyte (marking end-of -file) or encounters an error,
Contro! §s then returned back to the keyboard.

The address of the editor file huffer §s 34817, unless channed
with the Program Position option in the editor. To read the text

from the editor, type:

TEXT MAGIC : «-13

——— —

Reagy 34817 HEMRD

To read and compile directly from @ text file, the word READ s
vsed. The form for READ {s:

READ " <filename> "
READ reads to the end of a flla, or until an error is

. encountered.

MEMRD and READ are usually used to compile word definitions into
the word library, but {smediate-execution)ines can also be

included.

Comments

Usually, the GreFORTH Editor s used for writing and editing
GraFORTH programs instesd of the text used earlier in this
chapter. Comments in the source file of a GraFORTH proqrem can
often he very helpful for understanding and keeping track of long

programs.,

The GraFORTH word “(® 1s available for inserting comments into
program files. In compiling the program, when GraFORTH sees a
“(" set off with a space on efther side, it iqnores the rest of
the text on the line until it sees a ")*. Comments can be
Inserted freely in the source file. Here 1s an example of such a

comment line:
10 (PARENTHESES AROUND A COMMENT) .

Using the Editor with GraFORTH

When smaller progrems are being developed, the editor and the
GraFORTH system can he used closely together, Load the editor
and enter the program, then return to GraFORTH and compile the
program with MEMRD. If the program has buas or needs further
changes, simply return to the editor and make those changes.

When returning to GraFORTH, FORGET the original word definitions
before compiling the new nnes, to prevent "Not Unique® errors
from occurring. (Unless you're testing a very short program, you
should also save the program to disk after each edit.)

TEXT MAGIC 4-14

E..‘:f.‘.

E:j:.i
B

:1':3
'.'";:‘3

E=3

F—

When larqer proqrams are being developed and GraFORTH/editor
memory conflicts are likely, it's hest to scparate editing and
compliing. lUse the editor to write the proaram, then save the
program to disk. Then return to GrafORTH and compile the proaram
with READ or MEMRD. If the program needs to be changed, FORGET
the words before returning to the editor, so that editor usage
won't erase the ton of the word library. From the editor, reload
the progrem from disk and continue editing.

Uinderstanding and following the ahove guidelines will protect you

~ from memory conflicts, and will make proaramming in GraFORTH much

casier.

As you hecome more comfortahle with programming in GraFORTH, you
will probably want to use the editor to 1ist some of the program
files on the system diskette., We encoureqe you to do this. The
system files provide excellent programming exemples in GraFORTH.

TEXT MAGIC 4-1%

i . —— s - > ————

Sl & S e

CHAPTER FIVE: DELVING DEEPER. . .

Chapter Table of Contents:
Purpose and Qverview
Text Formatting

Data Storage and Retrieval

GroFORTH Memory Addresses
Storage and Retrievel Words
Varisbles

Strings

Defining Strings

Using Strings

String Conversion

PAD: The System String

Accessing Individunl Cheracters in Strings
String Words on Disk

Words Manipulating Individual Characters
Using Numbers in Other Bases
Using DOS From GraFORTH
Program Control Words
Saving the GraFORTH System
Overlays

Moving Memory and
Retrieving Word Addresses

Calling Machine Language Roctines
Compiling Number Tables

Leaving GraFORTH (gently)
Conclusion

DELVING DEEPER

§

a o o
hoN N

@ ~onh

Gaeaga & gao
.‘-‘d-“; . Y H
NN D=

el
N
N

5-23
5.26
5.27
5.29

5-30
531
5.32
5.32
532

5-1

Purpose and Overview

Chapter 4 introduced GraFORTH as a lanquagr. In this chapter,

_we'll round out the langquage and give you some of the backqround

you need before moving on to the graphics features ("What? You
mean this language has graphics too?!”) in the next three

chapters.

We'll start off hy introducing the GraFORTH standard text
manipulation words (not to be confused with the fancy ones we'll
show you in Chapter 7). Then we'll discuss storing dats in
memory, and the various words used to accomplish this. Ne'll
talk about the two other kinds of words in GraFORTH (variables,
and strings), and how they can be used to set aside memory for
data storage in very convenient ways. Following this will be @
discussion of the string operators built into the system and on 3

disk file.

Next, we'l) talk about using NOS from GraFORTH, and introduce
SAVEPRG, the word that makes your work permanent, We'll tie up
the loose ends with a numher of words which are extremely useful,
but evade strict categorization.

Text Formatting Words

These are the words which are used to position text and
characters on the screen, and clear the screen,*or portions of
1t. Each of these words is straightforward,

Review

You have seen how to use PRINT, SPCE, and CR already in Chapter
3. For a quick review...

PRINT prints following quoted text starting at the current
cursor position,

CR fssues a carriage return, moving the cursor to the
beginning of the next line.

SPCE prints a space.

*n
]
~N

DELVING DEEPER -

E?I.:'j

|
-

E:;'.:E

oo

~d
1=

-3

R |

New Text Positioning Words:

HTAB removes a numher from the stack, interprets 1t as &
hortzontal cursor position, and tabs to that cursor
position. The cursor remains in the same vertical

position,

VIAB removes 8 number from the stack, interprets {t as a
vertical cursor position, and tabs to that cursor oJsitioa.
The cursor remains in the same horizontal position.

The valid ranges for HTAB and VTAB depend on the current
character size (CHRSIZE), which will he discussed in Chapter 7.
For the norma) character size we are using now, the renge for
NTAB s 0 to 39, and the range for VIAB {s 0 to 23.

WINDOW removes four numbers from the stack to establish a text
window, The text windov is a rectangular area on the
screen desiqned to protect other parts of the screen (rom
being overwritten. Al text scrolling wil) occur inside
the window, leaving the rest of the screen unaffected.
The form for WINDOM 1s:

i

left) <widthd <(top> <bottomd> WINDOW

Left, top and bottom are actual marqins for the window., Width
spccirles the riqht marqin as the numher of characters from the
left margin. The hottom margin number should reference the ling

immediately below the window. For example, a window 10
characters wide hy 5 lincs high in the lower right corner of the

screen would be set hy:

Ready 30 10 19 24 WINDOW

(The left marqin s at position 30, the window width is 10
characters, the top margin is at line 19, and the hottom furqln

is ahove line 24.)

DELVING DEEPER

et e v g

Lo apiieandi I

G 3 VR

-
-

T v e ——

PIE T
-

-

. e ..
- T

Sl e "

HC™" wras e sc ins he t nde... \:t".—'l Positive GraFORTH
: 1 imal Addresses
CLEOP (CLear to'En'd Of Page) erases the screen from the current , Rectna) Addresses Dee
cursor position to the end of the text window,
=3 g ¢
CLEOL (CLear to tnd OF Line) erases from the current cursor 2 2
position to the end of the 1{ne. ' .
. &--—j * o
ERASE erases the entire screen, reqardliess of the setting of the """f" 32;55 32766
text window, ERASE s usually faster than NOME, 327167 32767
EI 32760 -32768
1 o 32769 -32767
Data Storage and Retrieval 32770 “32766
GraFORTH has the capability of examining and changing the value E_T'_':j 65533, -3
stored in any location in memory. If desired, the actval decimal ! £5534 .2
memory address can be entered from the keyboard for storage or ‘ 65535 -1
retrieval, We'll show you data access in this way first, and oy e
then discuss an essier technique using named varfables, . q— Notice that both address ranqes continually fncrease, except that
! the GraFORTI addresses have a transitfon in th: n;ddled:ro;
osftive to neaative nmbers. The momory map In Appendix
GraFORTH Memory Addresses : E-—!- ?nchnles GraFORTH decimal addresses and hexadecims! addresses.
-"- .
The Aonle][contains 65536 addressable "locations®, These .
locations are usually numbored from 0 to 5515, Most of them are . .
used for RAM memory, which can be efther read from or written to, E—v-— ' Storage and Retrieval Words
Each mmory location can store one A-hit 'hyte', representing a R T
numbher from 0 to 255. Two locations, or two bytes, can store a ! To store a number directly into a desired memory location, simply
number from 0 to £5535. Since two bytes can only reference o place the number you want to store and the address where you want ¢
positive numbers in the ranqe 0 to 65535 and people somet imes E-w-j stored on the stack. Then type "POKEN". The word "POKEW"

e to use nnoative numbers, one 'hit' of the aumber {s ysed to 'T - stands for "poke-word” and removes two numbers from the stack, .
tell ys the numbers stan, oositive or nenative. Therefore, interpreting them as value and address, and stores the data valne
GrafFORTI yses a number range of -32768 to 32767, Since it {s | . at the given location. Since hiraFORTH numbers occupy two hytes
desirable that zero in both systems be zero, a "wrap-around” E"‘:j (commonly called a 'word', not to be confused with GrafRTH
scheme (s used: Addresses shove 32167 are trested as neqative ' words), it actually uses the given location and the one
numbhers, and continue to Increase until they 8gain reach gero. ' immediately after it.

(This is fdentical to the system used by Anple’s Inteqer Basic, -) -
where a call tn enter the system monitor mist he done with » E:_ This examnle stores the number 12345 at location 281K (which
neqative number: CALL =151.) A diaaram will best explain this: h happens to he the heginning of a large free ares of memory in
GraFORTH):
. . e K Ready 1245 2016
| [12245)
&-_' [72816)
il i Ready POKEW
. Ready
T
NELYING OEEPER 5 -4 5.5

DELVING DEEPER

N

rr
14
ii‘

(
[
!

{
it

e i L2

- .

s @ g e K.

-

To recall & numher from memory and place 1t on the stack, nlace
he a $ of des __ memo., ._cati_.. _1 the ...ck a.. .,pe
"PEEKW", The word "PEEKN" stands for “peek-word® and removes @
number from the steck, interprets it as an address, retrieves o
number from that address, and places the retrieved numher on the
stack. The following example recells the number we just stored

in memory:
Ready 2816

(2814)
Ready PEEKW

{12345)
Ready

To store a single-bytp value to one memory location, the word
"POKE" s used instead of "POKEN®. The form 1s the same. This
example stores the number 255 to location -2872):

Ready 255 -2872) POKE

The word “PEEX" s used to retrieve single hytes from memory,
The form for “PEEK" is the same as for “PEEKN". This exsmple
reads a special Apple location that contains the current
horfzontal cursor position:

-

Ready PRINT * Demonstrating PEEX * 36 PLEK
Demonstrating PEEK

(18)
Ready .

Pflntlnq the phrese "Demonstrating PEEK® moved the cursor out to
position 18, Reading location 36 retrieved this position as a

number,

OELVING DEEPER §-6

r Y-
<ot |
in:. .f..:i

g

m
i1

10 summarize, here is a table of the four storage and retrieval
words: '

Word Defore After Nescription

POKEW mnn - - e Puts two byte m into location n

PEEKN n - .- - Reads two byte m from location n

POKE an- - e Puts one byte m into location n

PEEK n - mne. - Recds one byte m from location n

Variables

GraFORTIH allows you to set aside space for number storane through
the word "VARIABLE", VARIADLE creates & new word and places it
on the GraFORTH word library. VARIABLE has two forms; the first

one f{s:

VARIABLE <variable name)

The vartahle name is the name of the word created and placed on
the word Vihbrary. For example:

Ready LIST

CHS
ABS
SGN

Ready VARIABLE TEMP
Ready LIST

TEMP
cus
ARS
SGN

DELVING DEEPER

[Pt

The new O TEFT asis two sr . _.byte ...ce s..
sside for storing @ number, and & call to an internal GrafoRTH
routine that efther places the value of the varfable on the stack
or stores the stack value into the variahle,

To store the numher 12348 (p TEMP, type:

Ready 12348
[12345)

Ready -> TEMP
Ready

The GraFORTI word *.>" {5 , special word that says “store into”,
It Is created by typing a minus sign '=' fol]owed by a right
arrow '>', This word sets an Internal flag used by variables to
determine 1f a “store” or a “recall” operation is to take place.
When the “.>" word is executed it sets thig flag so the next

referenced variahle will do a store, rather than a recalT. Note
that the variabTe wiTl clear this 1'19 S0 no Special operator {s
needed when doing a recall, .

Therefore, to recall the value just stored in the varfahle fENP.
Just type fts name:

Ready TEMP
[12345)

Whenever you need to recall the value of o variable, simply type
its name, To store o value into o variable, always type the
GraFORTH word ™->™ before tyoing the vartable name,

Unless otherwise specified, when a varfable s first created and
comiled using the word VARTABLE, the initfal value of the
variahle Is zern, To qive a variable a different tnitia) value,
the other form of VARIABLE s used, where the 1n tial value {s
entered on the 1ine with the declaration:

Cinftial valued VARIABLE <varfshle name)

DELYING OEEPER $-8

Ready 35 VARIANLE COUNT

Cnunt'wfll contain the valve 35 unti] another value 1 stored
over 1{t:

Ready CountT ,
k1]

Ready 87 .> COUNT
Ready COUNT ,
87

We should bring up something fmortant here, The word YARIABLE
(2s well a5 STRING, which we'l] discuss shortly) 1s , compiling
word, {n that it produces new words ftself, It {s 4130 a word
that looks forward down the fnput 1ine for the wvord name, |t

therefore must he used with more care than most GraFORTH words,

To be snecific, a VARIADLE declarstion cannot dppear inside of o
colon definition, must be alone on Tts own TTne, not mixed
with other GraFORTH words. Any initial value provided when the
variable s declared is takeon 5lrectly Trom the Tnput Tine not
Trom the stack. Since the TnitTal value s not From the siacf.
t can't be a computed number, For example, the following 1ine

wlll_v_l_o_t_work:

Ready 25 7 * vapiABLE THING

Strings

Strinns tn GraFmaTh are words with space sat agide for storing
ctharacters or text, rather than numhers, Strinas are used
whenever input fs requested from the keyboard, or text has to he
manipulated in &ny wady., String words are created with the wore
STRING, and & number of words devoted to manipulating strings and
character data are included in GraFoRTH, Additional words, for
more complex string tasks, can be found on a dfsk file called
'?TRING WORDS™, and can be compiled into the word Hbrary at any
time,

DELVING DEEPER 5.9

. DTl o
.

— e

-
———
- e -—
B m -

-

c - T

-

P, ® . any’ Venmn M il . =
- - -

'\.&‘-f—s.

g
T

. e e

-
-
3 -

- T
——

-
a 3
-

e e e
-

e i
.-

o —— k)
-y -

Defining Strings

library that are used for string storage.
STRING is;

! (string sized STRING (string name)

The form for the word

The string name is the name of the word to he added to the word

library,
bytes, or characters, the string will hold,

4
}: The word "STRING* Is used to create words in the GraFORTH word

The string size is a number specifying the number of

Remembering how

enough to hold whatever string data is expected to qo into the

string. On the other hand, sufficient room

store too much text into a string, you will
GrafORTH word tibrary. This will force you
System from scratch! To increase speed,

| Therefore it g up to you to
A l . you will need.
i

The following example creates a new word ca
: can store a4 string up to 4% characters long

Ready 45 SIRING TESTSTRING

' ! \ Ready LIST
! TESTSTRING
cis

' AnS a
Py SGN

' DELVING DEEPER

fust he allotted in

»! . precious computer memory {s, the string size should be fust larqge

|
] the string for any value ever stored into It."TIf you attempt to

actually damaqge_the
to rehoot the entire

FORTH implementations

!

|

! {GraFORTH included) typically do very little error checking,
deterning beforehand The s (ze string

Simtlar to variables, string declarations draw hoth their string
name and string size from the fnput line, and have the same
restrictions for use as varishle declarations,

Iled TESTSTRING which

GraFORTH strings are indexed from 0 to the strinqg size-].
string word ts executed, the word removes a number from the
stack, adds this number to the address of the beginning of the
string, then places this address on the stack, Note that strings
differ from varfables in that a varfable actually places its
value on the stack, while a string places the address of the
beginning of the string plus the specified index on the stack.
Getting the address 1nstead of the value of the string may not
seem)ike much fun, but in a moment we'll show you some powerfy)
words to move string information around|

In the following example, entering *0 TESTSTRING® wi)) placd, the
address of the beginning of the string on the stack. Enterihg *5
TESTSTRING® will place the address of Character numher § 1
TESTSTRING on the stack. The last character position of
TESTSTRING {s accessed with “44 TESTSTRING*, Any portion of the
string can be accessed quickly 1n this way.

Ready 0 TESTSTRING |,
-32241
Ready 5 TESTSTRING .,
-32236
Ready 44 TESTSTRING .
-32197

Notice the addresses returned are neqative. |f you don‘t
understand why, be sure to turn hack a few pages to the
discussion of GraFORTH memory addresses!

Note: The addresses we show are for examole purposes. The
actual values may be slightly different.

Using Strings

In this section, we'll show you how to use those memory addresses
that strings leave on the stack. We'll ASSIGN text to 4 string,
and WRITE and READ lines of text to and from the Apple's screen

and keyboard.

DELVING DEEPER S - 1!

v

. —

-

T N gy -
_—a e
e sl

DI R e ¥ i, >

To store text directly fnto a string (or anywhere in memory), the
word "ASSIGN® s used, with the form:

¢string address> ASSIGN * Cquoted text> *

ASSIGN removes a number from the stack, interprets it as a memory
address, then stores the text hetween the quotes into memory
starting at that address. Usually the address {s supplied by
entering the name of a string before typing ASSIGN, Here is an

example:

Ready N TESTSTRING
(-32201)

Ready ASSIGN ® SHE SELLS SEASMELLS "

Ready

The phrase "SHE SELLS SEASNELLS" has been stored into the string
TESTSTRING.

To write the contents of a string to the screen, the word
“WRITELN" is used, WRITELN removes a number from the stack,
{nterprets it as & memory address, then writes the text starting
at that address to the screen, The form of WRITELN is:

¢string address) WRITELN

The following example writes the contents of the string
TESTSIRING to the Apple screen:

Ready 0 TESTSTRING WRITELN
SHE SELLS SEASMELLS

Text can be read {n from the keyboard and stored in a string (or
anywhere in memory) using the word "READLN". READLN removes a
numher from the stack, interprets it as a memory address, then
reads a line of text from the keyhoard and stores the text in
memory starting at that address. Like WRITELN, the form of

READLN is:
¢string addressd> READLN

DELVING OEEPER $ - 12

Pl

Eog

E_::‘.“.’:;

Here is an example:

Ready 0 TESTSTRING READLN
SEASHELLS
Ready

(You type this 1line)

The phrase "SEASHELLS® has been read into the string TESTSTRING,

Ready O TESTSTRING WRITFLN
SEASHELLS

Of course, assigning, reading and writing don't have to start at
the beginning of a string. Strings can he modified by reading
into the string, but starting in the middle of the string:

Ready 3 TESTSTRING READLN
SHORE

Ready N TESTSTRING WRITELN
SEASHORE

The word “SHORE® was read into TESTSTRING, starting at character
number 3, over the top of "SHFLLS".

Ready 2 TESTSTRING WRITELN
ASHORE

The string was printed starting with character number 2, ledving
only the_"A" in "SEA",

Whan a string is stored in memory using ASSIGN or READLN, »
carrisge return is placed after the last character, marking the
end of the string. When WRITELN writes a string from memory, it
starts at the specified address and continues until it find¢
either a carriage return or 3 byte containing a zero, Either of
these mark the end of a string for WRITELN,

DELVING DEEPER s -1

— -

-

R

—- me o cowmm o

P Y S

String Conversion

- e

e

P —
.

Somet imes & string will contain a number stored as text, The el . ;
GraFORTH word "GETNUM" {s used to read the number from the text, b"'.[.""v‘ PAD The SyStem St”ng
placing the value on the stack. GETNUM removes a number from the 3! AraFORTH includes a predeclared temporary string space of 124
stack, again "‘“"9"“;"3 ‘ctld“ 4 “r'{ address, ”"d""" ."::d’ o characters called PAD, PAN {s convenient for reading keyhoard
which it places on the stack. I
' Actually, PAD {s two things: a 124-byte free area of memory used
In the following example, the number 321 s first read into s . for storing string data, and a word in the GraFORTH word library
string a5 Lext, then converted to & stack value with GETMUM: X ||--j named PAD which places the address of this free area of memory on
Ready 0 TESTSTRING READLN ’I ;%.stack. Note that the usual string indexing 1s not used with
321 'E-) P
‘=
Ready 0 TESTSTRING GETNUN - taey ™
(321) :) !
When using GETNUM, nonnumeric characters may follow the numher ,E.“"'_'_j (RIZ 15 the address of the PAD string buffer.)
without interfering with the conversion, but the number must | (812)
begin as the first character of the string. , Ready READLN
' TR~ ' back ad.
11 GETNUM cannot find a number at the given string address, it :7;'-. Goin® back to wy ‘:
places a zero on the stack. To determine for certdin whether or Ready PAD WRITELN
not the string-to-number conversfion was successful, the word Goin' back to my pad.
“VALID® is used. VALID leaves a number on the stack. If the Ry =
Tast GETNUM was successful, the number will be nonzero; if the oy :d To access the middie of the PAD buffer, simply add an offset to
conversion falled, VALID will return zero: ' the address:
Ready 0 TESTSTRING READLN Wy -
555 Lt R HES
R;;dy 0 TESTSTRING GETNUM , : Ready 6 + -
5 (RIR)
Ready VALID . Ready WRITELN
253 back to my pad.
(VALID {5 nonzero since GETNUM wah able to convert the numher.) Note: PAD is considered a temporary strinq space because the
same space i3 used by the GraFURTI system when compiling words
Ready O TESTSTRING READLN onto the word library, overwriting the previous contents of PAD,
YOU CALL THIS A NUMBER?? Predeclared strings should be used for more permanent string
Ready O TESTSTRING GETNUM . - storaqe.
o . { ulby. |
Ready VALIO , 1
]
(VALIO 15 zero since GETNUM fatled to find & number.) . 3":;:'.’.3
12" - M
e |
DELVING DEEPER s- M i
Ba- = DELVING DEEPER . 5- 18
T eyg .

Accessing Individual Characters in Strings

Since each character in a string occuples one memory lncation,
Andividual characters in strinns can be accessed using PEEX and
POKE. In this examole, 2 line of text 1s placed in TESTSTRING,
!:enkthe ASCII value of the first character is read onto the
stack:

Ready 0 TESTSTRING ASSIGN * String plckings *

Ready 0 TESTSTRING PEEX
(211]

211 fs the ASCII value for the letter "S", "0 TESTSTRING" placed
the address of the first character of the string on the stack

then PEEK read the value from this address. (n the next examélo.
the "1" in "string” s overwritten with the letter "8" by storing
fts ASCIT valye: '

Ready 239 3 TESTSTRING POKE

Ready 0 TESTSTRING WRITELN
Stronq pickings

DELVING DEEPER 5 - 16

String Words on Disk

There 1s a file on the GraFORTH system diskette called "STRING
WORDS", This file contains additional words for manipulating
strings in more complicated ways. To make the string we~ds
active, simply compile the file into memory by typing:

Ready READ * STRING WORDS *
llere are the words in the file "STRIN® WORDS":

END? fs called by a few of the other words to determine if the
end of a string has been reached. It removes an address from the
stack, reads the value from that address, and returns a 1 il the
value 1s N or 141 (the ASCII value for a carriasge return), or

returns 0 otherwise.

LENGTH removes a string address from the stack end returns the
Tenqth (number of characters) of that string:

Ready PAD ASSIGN " How long am 17 *

Ready PAD LENGTH -

(14]

Rememher that string indexing starts at 0 and ends at the string
length-1, so the last character of the ahove strina is character

number 13,

LEFTS 1s similar to the Applesoft “LEFTS" function. The form
Tor LEFTS §s:

<snurced (destinationd <7 of charactersd LEFTS

LEFTS copies the given number of characters from the source
string to the destination strina, In the following example, the
string TESTSTRING is read, then the first 5 characters of

TESTSTRING are assigned to PAD: , .

Ready N TESTSTRIMG READLN
ELIZARETH

Ready N TESTSTRING PAD S LEFTS

Ready PAD WRITELN
ELIZA :

DELVING DEEPER S -1

o e r———
-e——— .

Tt e

Tea o=

-t
T oW S m————

E S IRl L R

- -
-

>

r— ol
-——— e
Py

52 294

S e 4 e

g
= e et
T, W L n oy
=

i
RIGHTS s similar to Applesoft's “RIGHTS", The form is the same ;—..3 Ready PAD READNLN l* !
as Tor LEFTS, however the given number of characters are copled -y GraFORTH: . ' .
from the right end of the string. Continuing from the previous I '
example, 4 characters from the right end of TESTSIRING are now " Ready 0 TESTSTRING READLN l‘
assigned to PAD, overwriting its previous contents: h-"- The Apple Graphics Language :
ae.ady 0 TESTSTRING PAD 4 RIGHTS 1 Ready PAD 0 TESTSTRING CONCAT } ’
Ready PAD MRITELN T Ready PAD WRITELN : -
BETH ' ‘ GraFORTH: The Apple Graphics Lanquaqe } ’
Notice that with GraFORTH's string indexing, the Applesoft ﬁ"":— COMPARE makes an alphahetical comparison between two strings, : N
function "MIDS® can be duplicated with LEFTS. ~This example reads ' [returning & value on the stack. The form for COMPARE 13- ‘ i,
3 characters from TESTSTRING starting with the character number | | A
(not 0): <strinal> (string2> COMPARE ' #;
Ready | TESTSTRING PAD 3 LEFTS et It stringl is qreater than string? (in alphabetical order, NE
stringl comes after string2), COMPARE returns 2 1. If strinal is X
Ready PAD WRITELN less than string?, COMPARE returns a -1, [If the two strings are
L :—1- 3 equal, COMPARE returns A N, Here is an example:
MOVELN simply copies a string from one location to another, The Ready PAD ASSIGN “ LIST ®
Torm is: .
'F-'-.-—:j Ready 0 TESTSTRING ASSIGN * LOST * A
<sourced <destination) MOVELN . by Ready PAD 0 TESTSTRING COMPARE ¢
eady A . :
The following example copies the contents of TESTSTRING to PAD: - - -1 | ¢
Ready 0 TESTSTRING PAD MOVELN ' "I"""' The word COMPARE returned a -1 on the stack because the contents .
' of PAD is “less than" the contents of TESTSTRING,
Ready PAD WRITELN) ;_! R NP o
ELIZABETH . e B T
‘ I Manipulating Individual
CONCAT concatenates two strings toqether. The form for CONCAT ' Words anip u g ‘.l 5
T Eo—v Characters Loy
(stringld Cstrina2> CONCAT ™ o
GraFORTH also contalns words that print individual characters to i "‘
CONCAT copies the contents of string2 to the end of stringl. The 'E:.,-..-a the screen, and qet individual characters from the keyhoard. WRSLR
contents of strinqg? are unchangad. In this exsmple, strings are +— Thesc words interpret numhers as the ASCII values for characters. R
:;:d‘::::’:o:h ::8 and TESTSTRING, then CONCAT is used to comhine (A tahle of ASCI| characters can be found in Abpendix 0.) : l‘i"‘
- - The GrafORTH word “PUTC® (PIT Character) prints a sinqle i!f:i' '
t— character to the screen, PITC removes @ nunher from the stack, (13l '
{aterprets it as the ASCII number for a character, and prints the R
character at tha curreat cursor position: T
-.‘-'3 : "‘ .
- [‘ '
R
.)-".I'.'.I
E..,.-.a . p 4
DELVING DEEPER . ',fv‘-'.;r
5-18 DCLVING DEEPER - $ - 19 .p'.,}'i:'
K
s W
E:W‘,.-i B i‘{.'& t
| Q !
- ,I'Z'.

. e e - m——— . - - -

Ready 193 (193 is the ASCI! value for the letter "A",)
(193]

Ready PUTC

A

PUTC removed the 19) from the stack and printed the character
DA.‘
The GraFORTH word GETC (GET Character) places a flashing cursor

on the screen, waits for a character from the keyhoard to bhe
entered, then places its ASCII value on the stack:

Ready GETC

(Type the character “8°.)

(194)

(GETC returns 194, the ASCII value for the character *8*.)

To print a character read in with GETC, simply DUP1icate the
value read, and write 1t to the screen with PUTC:

Ready GETC mP PUTC

(Type the character "Y".)

Y
(217]
(217 s the ASCII value for the character °Y".)

To check {f a key has been pressed without stopping to wait, .
"GETKEY" and "CLRXEY" are used, GETKEY and CLRKEY directly wse
the Apple's soecial keyhoard memory location,

When a key Is pressed, its Apple ASCII value is stored in the
Apple keyhoard Incation. [f a key has been pressed, the number
fn this location is always 128 or greater. GETKEY reads this
location and places fts value on the stack. Executing CLRKEY

forces the value in the keyhoard location to less than 128, the
next keypress after CLRKEY s sxacuted will sqain brinn the value

to 12R or armater,

DELVING DEEPER 5 - 20

1]
ii i

T
-
’tﬂ

,.
)
5y
]
4

.
]

m- I
i
i W i i

o
. &

i

Thus, to read the keyhoard using GETKEY and CLRKEY, First erecute
CLRXEY to make the keyhoard location less then 128, then use
GETKEY unt!] the returned value is 120 or greater. This numher
will he the ASCI! value for the key that {s pressed. GETKEY can
he interspersed with nther tasks so that other thinas can occur
while simultancously reading the keyhoard. Here is a simnle
example that uses GETKEY and CLRKEY to “qrah a character”:

¢ GRAR,CHAR
CLRKEY
REGIN
GETKEY DUP
1728 ¢
WHILE
orop
REPEAT
CLRKEY ;

DELVING DEEPER 5 - 21

- - ——

— —— e o = oo

Using Numbers in Other Bases

*

GraFORTH can accept and display number in hases other than base
ten, Four words (HEX, BINARY, DECIMAL,and BASE) allow you to
select what base GreFORTH uses.

The word “HEX® causes GraFORTH to read and print numbers fn
hexadecimal, base 16. In this example, a number is placed on the
stack, then base 16 is selected using HEX.

Ready 45
(e5)

Ready HEX
(20)

Simflarly, the word “BINARY" selects base two:

Ready BINARY
[101101)

The GraFORTH word DECIMAL gets us back to familiar territory:
Ready DECIMAL .,
45

The word "BASE"™ can be used to select any base. BASE acts as a
variable: the word "->" is used to assﬁi*the hase. The
following selects base 8 (octal):

Ready 8 -) BASE

Note that since BASE is a variable, its current value can he read
and displayed. llowever, any base value displayed in its own base
is “10%, For example, & 2 tn base 2 1s 10, and & 16 in
hexadecima) is also 10. Thus, to print the base, you must place
its value on the stack, change BASE to some other base, then
print the stack value. In this short example, the base selected
above is displayed before and after changing back to decimal:

Ready BASE
(10)

DELYING DEEPER : 5.2

'-.1, -3
" |

Ready NECIMAL
(8]

Because hexadecimal and some other base numbers use letters of
the alphabet as dinits, possible conflicts between numbers and
word names may occur. For example, in hexadecimal, is “ACE" a
GrafNRTH word name or a number? To help prevent this, GrafORTH
allows dollar signs ("$") to precede numbers:

Ready HEX

Ready $ACE
[ACE]

Note: A1l of the examples in this manual have assumed that base
ten is selected. In addition, some of the proqrams on the
GrafFORTH system disk have number formatting that requires base
ten. You are free to use other hases, hut the resuits may be

quite unpradictablel

Usihg DOS From GraFORTH

DOS Command's

Using the Apple Disk Operating System from GraFORTH is much the
same as from Basic., NOS commands can be called direc{ly from
GraFORTH, either from the keyboard or in 8 word definition. 00S
responds to & command that has been preceded by a carriage return
and a ConTRol-D (ASCII1 number 132). (See the Apple N0S manual
for more information on disk access in qgeneral.) The form for @

DOS command from GraFORTH is:
CR 132 PUTC PRINT * <DOS command> “ CR

CR prints a carriaqe return and "132 PUTC® brints a ConTRol N,

The DNS command is printed next, and the line is ended with
another tarriage return. liere is an example that prints &

cotalog:
Ready CR 132 PUTC PRINT * CATALDG * CR

DELVING DEEPER 5-2)

—
——
 —— et a—— . o ..

v ——

-
2

e

. -

T sy g

2 —— -

P -
- [

s e 31— SR,
e 4 -

..1
2

nep

Using Data Files

Text file access is also similar to Basic. The file is opened
ustng standard NOS commands, and data can be read from or written
to the file using READLN or WRITELN. File access can be
simplified by defining file words ahead of time, For example, to
heqin readina fron taxt file, you can use 2 word like
OPEN.READ, (The filename has been stored in PAD,):

: OPEN,READ
CR 137 PUTC PRINT ™ DPEN * PAD WRITELN TR

CR 137 PYTC PRINT * READ * PAD WRITELN CR

After executing this word, the ftie will be opened for reading,
and data can be read in using REANLN. At the end of the text,
the file can be closed by simoly using the GraFORTH word “CLOSE".
CLOSE closes any open file,

Since GraFORTH does not have @ function similar to Applesoft's
*ON ERROR GOT0", NNS errors, including End Of Data, will produce
an error messaqe and stop the program. This means that efther
the lennth of the file must be known shead of time, or there must
he & special marker at the end of the file so that no more data
will be read by the program. The last character in the file must

also he a carriage return.

Here 1s a ssmple File that makes use of a special End of File
marker. The marker used here {s an asterfsk on the last Vine:

This s my test file.
Each of these Vines will be printed

by the proqaram helow,

The last)ine mist he 8 special marker
to end the file. MNere it is:

L]

Let us say that we have saved this file with the name *TEST".
Nere 1s & program that will read and print esch line in the file,
and will stop when it encounters the end marker "*":

NELVING DEEPER

: READER
PAD ASSIGN * TEST * (Place f1lename in PAD and call)
OPEN.READ (OPEN.READ from ahove to open file.)
BEGIN
PAD READLN (Read a 1ine from file.)
:?n PEEK (Get first character from line.)
n <

WHILE C(WHILE this character s not "¢":)

PAD WRITELN (Write the line to the screen, and)
REPEAT (REPEAT back for the next line,)
CLOSE (Close the file.)

As the special GraFORTH 10S allots only one file buffer, only one
file can he open at a time, The NOS commands “PRAn" and “INfn"
(where n is a number from 1 to 7) can be used from GraFORTH to
route data to and from peripheral cards fn the hack of the Apple,
In this way, program text or data can be sent to a printer or
other peripheral. After using "PRIN" or "INIn™, elither the
GraFORTH word GR or TEXT can be typed to re-establish the
standard GraFORTH 1/0. Do not attempt to use "PRAN™ as it will
not leave GrafFORTH intact.

The following word will print the text in the editor dbuffer to o
printer in siot 1. ° It reads the' characters one at a time and
prints them out until it finds a zero byte, marking the end of
the editor file.

: PRINT.BUFFER '
CR 132 PUTC PRINT * PRJ1 " CR
an?

REGIN
NUP PEEXK DUP \
no ' ‘
WIILE
PUTC
L+
REPEAT
GR ;

DELVING DEEPER s .18

Program Control Words

RUN

The GrafORTH word RUN sutomatically executes the top word on the
dictionary, This can he a great coavenience when loading and
funnina proqrams from disk, By using RUN, vou don't have to
check what the top word on the dictionary is after compiling a
file in order to ruan it. [n addition, {f the top word has & name

something like:
Suvtl.ZAPPO.(lECTnO.BLASTERS.APPLE.VIDEO.GANE.

using RUN can save & bit of typing, t00....

AUTORUN

The word AUTORUN goes a step beyond this. AUTORUN removes &
numher from the stack. If this number {is nonzero, then GrafORTH
will automatically execute the top word on the dictionary every
time program control is returned to the GraFORTH system level
(1.e. whenever you expect to see a *Ready” prompt). DOS errors,
GrafORTI or machine lannuage errors, executing the word ABORT, or
pressing the Reset key with the AUTORUN option on will all cause
the top dictionary word to be executed. Mere is an example to
qive you a feel for the way AMITORUN uorlfs:

Ready : TEST PRINT * AUTORUN 1S ONIII ‘3

We've added this word to the top of the dictionary so that
AUTORUM will have a very visible effect.

Ready 1 AUTORUN
AUTORUN IS ONLIL

Ready 3 §
AUTORUN IS ONIiI
3
5
Ready SWAP
AJTORUN 1S DML

i)

DELVING DEEPER

Ready ABORT
(The scraen clears.)

GraFORTH J[(C) 19R1 P. Lutus
NITORUN 1S ON!ILI
Ready

Fortunately, the AUTORUN option can hé turned off by typing:
Ready 9 AUTORUN

Ready

If the top dictionary word runs a “closed® program which never
exits to the system level, the AUTORUN option effectively makes
the GraFORTH lanquage itself inaccessible. Any errors or ABORTS

simply restart the program.
Saving the GraFORTH System

The GraFORTH lanquage is stored on the system disk as an
executable binary file with the name “08J.FORTH", As mentioned
in Chapter 3, when the disk is booted, this file is automatically

loaded and run,

The GraFORTH word SAVEPRG is used to create GraFORTH binary files
similar to 0BJ.FORTH, SAVEPRG saves the current GraFORTH system,
including any new words added to the dictionary, as a binary

file. Once created, this file can be BRUN at any time, brinqing

the modified GraFORTH system back into memory.

SAVEPRG 1s a powerful tool. You can save “customized” systems,

with your favorite special-purpose words already in the
dictionary when the system is booted. You can also save finished
applications programs, in such a way that the proqrem
sutomatically starts up when booted. This 1s ideal for-games
applications, where the cbvious presence of a “lanquage” is
neither needed nor desirable.

To use SAVEPRG, first compile the words to produce the “finished®
system you want to save, then type SAVEPRG:

DELVING DEEPER s -0

"o

-

-

o m—— N -
AT M am

-

oD S T

~aC

-

.S .

-

TN e ——— ..

Rea'dy SAVEPRG
SAVE FILE NAME :

this prompt asks for the filename you want the new system

saved as. The firaFORTH systen disk automatically DBRUMNs the file
"NRJ.FORTH", so {f you want this new system to hoot
automatically, you should name your file “OBJ.FORTH" too. Your
file will then overwrite the suppTTed GraFORTH system. (Make
sure you're using a copy of the disk and not the originall) You

are then prompted:
MITORUN (Y/N) :

This prorpt asks whether or not you want the saved system to hoot
up with the AUTORUN option on. If you answer Yes to this
question, then the new system will automatically run the top word
on the dictionary, starting a progrem in motion. If desired,
your proaram can later turn the AUTORUN option back off,
returning access of the GraFORTH lanquage to the user. If you
answer the AUTORNN question with Mo, the new system will display
the "Ready” prompt on boot-up, with immediate access to the

tanguaqe.

After answering this question, this disk whirs for & hit, saving
the new system to disk,

Note: As discussed in Chapter 2, a slightly modified version of
NNS is used with GraF0RTH, Any system saved with SAVEPRG
requires this version of D0OS to be in mermory, New systems should
he saved to a copy of the GraFORTH disk, so that the specfal NNS
will be present.

The GraFORTH system as supplied includes an additiona) word on
the top of the dictionary which asks the demonstration prompt on
boot-up. This word can be found in the disk file “QUERY", The
system was saved with the AUTORUN option on, so that the demo
prompt would come up automatically. When you answer No to the
demo question, the word turns AUTORUN off (freeing the system),
then FORGETs ftselfl This leaves the system in its “usual”
state,

The GraFORTI system can he saved to disk without the demo prompt
simply by using SAVEPRG with no sdditionsl words on the word
11brary. (This should only be done to a copy of your disk, fin
case 1ightning decides to strike while the system is being
v;ltten to disk.) Boot the disk, answer No to the demo question,
then type:

DELVING DEEPER 5.-208

|

mn

T

I
¥

i1

v

Ir

L

Iy P |

& o

IT
4
Pt

i

Ready SAVEPRG
SAVE FILE NAME :08J,.FORTH
AUTORUN (Y/N) :N

After the disk stops whirring, turn your Apple off, thea on
aqain. When the system hoots, the demo prompt will be fone,

You can also put the demo prompt back finto the system. Type:

Ready READ * QUERY "

This adds the word that asks the demo question to the top of the
dictionary. Now type:

Ready SAVEPRG

SAVE FILE NAME :00J.FORTH

AUTORUN (Y/N) :Y

The system wil) he.saved with the demo prompt back fin,

Overlays

rm

GraFORTH programs can automatically load and run other GraFORTH
programs, and even delete themselves to free up memory., Proaram
seqments that overwrite cach other in this way are often called
*overlays”. The GraFORTI demonstration programs use overlays
extensively,

To execute an overlay, include a word in the first file that
reads the overlay, Make the first line in the overlay FORGET the

words already in memory, and the last line in the overlay file

the word RUN, To be more specific: .

Nhen you need an overlay, execute & READ <f{lename>, where
Cfilenamed s the name of the overlay. This file will now he
read into memory, hut since the first 1ine of the overlay
contains & FORGET <wordnamed, where wordname is the name of the
GraFORTH word you wish to forget back to (inclusive), the
original file (or portion thereof) will be removed. As redding
of the overlay continues, it will now fill memory previously

occupied by the orfginal file,

N

DELVING DEEPER 8.2

e LT

-t s
S e e i K) - e——

3

PSRNy P

-

e s = -

— . GEE—— - T v ® - a— v .

_file does not cause an error if

examine the demonstration file listings as an

Since the FNRGET at the beginning of each
the word being forjotten does not
)} can also he directly loaded

We urge you to
example of overlays.

exist, the demo files {or any overlay
and run.

Moving Memory

ck of memory from one location to
The form

MOVHEM simply moves @ hlo
another. VMEM removes three nunbers from the stack.

for MOVMEM {s:

ced (destination> </ of bytes) MOVMEM

The (source)> nusher {s the starting address of the data to be
dress of whera the block is to

moved. The (destinationd> is the ad
be moved to. <f of bytes) specifies how many bytes are to he

moved. For example, to move 266 bytes from address 2048 to
address 2R16, enter:

Ready 2048 2816 256 MOVHEN

sonr

ting character sets and 3-D images

MOVMEM can be handy for reloca
d in Chapters 7 and A.

in mewory, as will be discusse

Retrieving Word Addresses

The word * (an apostrophe, also called a "tic") places on the
stack the address of the word that follows it, and prevents that

word from being executed. Mere is an example:

Ready * ERASE
[30749]

The tic placed the
pravented ERASE from heing executed.
that looks forward dosn the input 11
when it s compiled, not every time

address of the word ERASE on the stack, and
Hote that the tic 15 3 word
ne, and retrieves the address

it s executed.

The address returned by "tic® is always greater than the
because the $LIST

nexadecimal address shown with $LIST. This is

address indicates the beginning of the word definition, and “tic"
returns tha address of the executing portion of the word. See
Appendix B for more {nformation on the word 1ibrary structure.

DELVING DEEPER 5%

ol

L
&‘m - -‘

Calling Machine Language Routines

memory can be called directly from
:raFORTH with the word CALL. CALL removes a nunber from the
stack, interprets it as a memory address, then calls the machine
lanquaqe routine at that address. (The routine should end with
an RYS (ReTurn from Subroutine) instruction to return to GraFORTH
properly.) Machine lanquane proqrams can be loaded from disk
using the.DOS command “BLOAD® into any free aread of memory, thea

CALLed from GraFORTH.

Machine lanquage proqrams in

Refore a machine lanquage CALL 1s made, values can he placed in
the Apple processor's A, X, Y and P reaisters using the GraFNRTH
variahles AREG, XREG, YREG and PREG. Before making the machine
Janquage CALL, simply place the desired values into AREG, XREG,
YREG and PREG as you would any other variable. When CALL is
executed, it loads the processor reqisters with the values from
these variahles hefore doing the call, (Note the importance of
loading a proper value into PREG, If improper processor bits are
set, GraFORTH will not operatel) After the routine has executed,
the values of the registers are loaded back into the variahles
and can he read from GraFORTH, again, just as any other variable.

which uses CALL to read the game paddles.
r contains a routine at location -1250 for

reading the gqame paddles, It expects to see the number of the
game paddle (0 to 3) in the processor's X register, It returns a
aumber from 0 to 255 (based on the position of the paddle) in the
Y register, The following word reads the value of a name paddle
by placing the top stack value in XREG, calling the paddle
routine, then placing the value of YREG on the stack:

: READ,PADDLE
-» XREG
-1250 CALL
YREG ;
L] .

Mere is a nice example,
The Apple System monito

cutive readinqs of a aame

(The Apple manvals warn that two conse
and suggest a short wait

paddle can produce incorrect results,
loop between readings.)

NELVING DEEPER 5 -3

e
-

T e T ey

STl . e - ue

ST P I oy

ream--

o o winy =
T2l .

AT
LT e e
- —— .

- -
Lt oSN

-

Compiling Number Tables _ \

The word "," (comma) causes a nuwher to be complled as a byte
directly into firaFORTH, Small assembly lanquane routines can bhe
cormiled using commas, or numher tables can he qenerated, Here
is an example of a word that contains a number tahle of the
visihle hiqh resolution colors. The numhers are stored as
fndividual bytes following the word name in memory:

: COLOR,TARLE 1 , 2 , 3,5 ,6,

These numbers correspond to the colors green, violet, white,
orange, and blue, (Colors in GrafFORTH will bhe discussed in
detail in the next chapter.) Each number can be accessed by
using the tic to retrieve the address of COLOR,TABLE, then adding
an offset (0 to 4) to pick out the appropriate numher with PEEK,
Note that COLOR.TABLE is not an executahle word!

The comma {s the only GrafORTH word that assemhles directly at
the hyte level, and some precautions are required to use it
effectively, The comma should only be used within word
definitions, Also, for internal reasons, the first hyte of an
assembly of code or data may not he greater than 127 (hexadecimal
$JF), nor can it be equal to 10 ($A). MHere are the reasons: 10
is a special reserved compiler flag, and a numher less than 128
must follow each GraFORTH word name to mark its end, (For more
information, see Anpendix B for technical information on
GraFORTH's dictionary link structure.)

Leaving GraFORTH (gently)

The GraFORTH word “BYE" can be used to enter the Apple][system
monitor, The GraFORTH language begins at hex location 36000 To
restart GraFORTH from the monitor, type “600NG*.

Conclusion

That shout wraps up the lanquage features of GraFORTH. From here.

on out we'll he talking about the many types of qraphics
avatlable with GraFORTH, (That is what you hought it for, {sn't
1t?) The next chapter will cover hasic point and line drawing in
GraFORTH, as well as @ discussion of the supplied TURTLEARAPHICS,
We'll get into the various modes, color selections and,..

Hell, that's the topic of chapter 6)

DELVING DEEPER 5§ .32

=

CHAPTER SIX: TWO-DIMENSIONAL GRAPHICS

Chapter Table of Contents:

Purpose and Overview
Apple Graphics
GraFORTH Graphics

Two-Dimensional Graphics Word's

PLOT, LINE and FILL

COLOR

UNPLOT, UNLINE and EMPTY
INVERSE and NORMAL
ORMODE and EXMODE
GPEEK

Turtlegraphics

MOVE .
TURNTO
TURN
MOVETQ .
Examples

TWO-DIMENSIONAL GRAPHICS

Page

6.2

63

64

QIR
—-—_OTD D
NO

»
-8
dadwW N

PO
-l ol wld b

6-1

e ——

Purpose and Overview

The gqraphics capabilities of firaFORTH can he divided into three
main qroups:

Iwo-Dimensional Graphics (or “fraphics of the First Kind")
omaands that plot points, draw lines, and fill

includes ¢

rectanqular areas on the screen, using & variety of colors and

options.

Character Graphics (or “Graphics of the Second Kind*) ‘ziludcs
]

using and creating new character sets, displaying text
different sizes and colors, and defining completely new shapes
and pictures in terms of character setls and displaying these
shapes using a special block printing function.

raphics of the Third Kind")

Three-Dimensional Graphics (or “G
-dimensional color images

includes creating and displaying three
at high speed for animated effects.

This chapter will discuss two-dimensional graphics.
by talking about what. the Apple itself is capahle of, and how
GrafORTI uses these capabilities. We'll show you how to plot
points and draw lines, and then undraw them aqain, effectively
removing them from the screen, We'll discuss color and the
drawing modes (DRMODE and EXMODE) and how they affect the
drawing process. We'll also talk ahout using Turtlegraphics,
which is especially useful for creating certain kinds of

graphics displays.

TWO DIMENSIONAL GIAP”ICS

We'll start

0

A

1
i

y

Iy
:4

rr
14
i W w

m
i
|

]
> |
.
.

rr
i1

m
T
W W w

rr
..'J

rn
1
L]

1
I
—l
)

m
]
]

m
i
Lil

£
Lil

7

m
i
V|

,,,1____‘

Apple Graphics :

The Apple screen display, whether it be text or graphics, is
made out of the same units, called pixels. A pixel (abbreviated
form of ‘picture cell') is the smallest unit, ar dot, which mey
be turned on or off of the surface or the screen, There are
53,780 of these smallest units which make up the entire screen,
arranged in a matrix 280 dots wide and 192 dots high,

The standard Apple text display divides the screen into 24
horizonta) lines, each B dots high, Seven of these R vertical
dots are used to form the characters, while the eighth is used
to separate the lines from one another. llorizontally, the
screen is divided into 40 columns, each 7 dots wide. Five of
these 7 horizontal dots are used to form the character, while
one on each side of the character is used for spacing hetween
the characters. The ASCII values for the characters on “he text
screen are stored in a 1024 byte memory area. The hardware
inside the Apple continuously reads the values from this area
and places the appropriate characters on the screen.

The Apple qraphics di'splay allows you to turn on or off all
53,760 dots on the screen individually. There are two 'graphics
pages' in memory reserved for this function, but bhecause of the
higher resolution, each requires R192 hytes to he set aside. It
is possible to alternate hetween the paqes very rapidly for
animation effocts (GraFORTH does. this automatically for 3-D
displays), hut the Apple display hardware cannot merge or hlend
the information on the two pages. These two hiah resolutfon
pages are often called ‘picture buffers', Each dot on the
screen represents one bit from the picture buffer. Seven of the
8 bits in each byte are displayed on the screen, with the last
bit used in determining the colors of the other dots in that

byte.

TNO DIMENSIONAL GRAPHICS

—‘-.-_-__....' .

o —— - se.

LIFTRL Pl e

- -

C m—— .

2

+ TR YT e

-
—
e = WP W e b e =

X e e
PRIy i
es R

.. >
- wmloe -

e e

- a— e

P
- -
PR

— e
T

oY
e e a—

s e o, ooty T -
IV SRR -

Y

~—y -

m ————————————— — . - ———

. = o= v T———— e -

GraFORTH Graphics

While 1t is nossible to use the Apple text display from GraFORTH
(with the word TEXT), the usval display s the araphics display.
To specify points on the araphics screen, firaFORTH usas
'Cartesian cnordinates’, This is » straiqhtforward way to
select a point by naming the column and the row the point 1s in.
The horizontal position is the X coordinate and the vertical

position is the Y coordinate,

The ranqe of screen coordinates for GrafNRTH graphics {s:
X from 0 (screen left) to 255 (screen right)

Y from 0 (screen top) to 191 (screen bottom)

Thus, the upper-left corner of the screen can bhe represented
with Xe0 and Y«0, or simply the X-Y pair (0,0),

Mote: The GrafORTH qraphics screen is 9 percent narrower than
the maximim possible (256 points wide rather than 280) for the
sake of operating speed. This is one factor that contributes to
GrafFORTH's fast 1ine drawing, :

The standard Apple text display still uses all 280 dots across
the screen for 40 characters per line, The characters
themselves, instead of beinn placed on a text screen by the
Apple hardware, are "drawn” from the text page onto the araphics
picture buffer. The full character space, 7 dots hy 8 dots, can
be used, ond is used for lower casm characters and special
character styles,

Two-Dimensional Graphics Words

PLOT, LINE and FILL .

For these examples, we don't want text scrolling all over our
beauti1ful qraphics, so let's establish a text window in the
hottom part of the screen, These examples will keep the
qraphics above the text window and away from harm, To establish
the window, type:

Ready 0 40 18 24 WINDOW

THO OIMENSIONAL GRAPHICS 6 -4

This sets & 4n-column wide window from 1ine 18 to the bottom of
the screen, Now type:

Ready ERASE

This clears the text that was still above the text window,

Let's hegin at the beginning, with plotting points, The
GrafORTH word PLOT removes two numhers f-om the stack,
intarprets them as X and Y coordinates, and plots a point at
those coordinates on the screen. The form for PLOT is:

¢X-coordinated (Y-coordinated PLOT

This examol} will plot a point in the upper left corner of the
screen: .

Ready 0 0 PLOT

Here is another point, fn the upper right portion of the screen:

Ready 200 25 PLOT

The word LINE, like PLOT, removes two numbers from the stack and
interprets them as X and Y coordinates, LINE then draws a
straight 1ine from the last plotted point to the aiven
coordinates. To draw a line, we use the last point we plotted
as one of the endpoints. We simply give LINE the coordinates of

the other endpoint:

Ready S0 100 LINE

This draws a diagonal line from the point (200,25) to (50,100).
We can draw another 1ine, by using PLOT and LINE together acain:

Ready 100 10 PLOT 100 140 LINE

This draws & vertical line through the other 1ine and almost
into our text window, . .

Rectanquliar areas can he filled in quickly with the word FILL.
FILL also removes X and Y coordinates from the stack. It trests
the last plotted point as onc corner of the area, and the aiven
coordinates as the opposite corner, This exarmle fills in o
rectanqular area on the right side of the screen:

TWO DIMENSTONAL GRAPHICS

L-—
e

LLE 4

-
R P

PR Y]

.~ ay— S o —

Ready 120 125 PLOT
Ready 200 75 FILL

For both LINE and FILL, the "last plotted point” is always the
point last uscd by a plotting word, whether It was PLOT, LINE,
or FILL. Another word, POSN, removes X and Y coordinates from
the stack to act 4s ¢ "last plotted point* without doing any
plottina. POSN can he used to determine the first endpoint of a
1ine or one corner of an ares, This example uses POSN to set the

first endpoint of a line:
Ready 225 50 POSN
Ready 250 125 LINE

COLOR

Of course, GrafFORTH can draw in colors, too! The color is set
with the word COLOR, COLOR removes a number from the stack and
uses it to select a color. The eight color numbers (0 through
7) are the same as those used by Applesoft Basic. Here is a
listing of the graphics colors:

Color Number Color

not used

Green (1)

Violet (1)

White (1)

not used

Orange (2; idepends on monitor)
Blue (2) (depends on monitor)
White (2)

SNOANMIDLWN-—D

The orange and blue colors may appear different shades on
different color monitors. The colors can be divided into two
qroups. The numhers in parentheses represent the “qroup number"
(etther 1 or 2). Because of some Apple)[hardware constraints,
it may be desirable to use colors from the same qroup when
drawing Vines or areas close together. We'll show you an
example of this in a bit. (The Apple][Reference Manual
cantains more informetion on the interna) details of these
constraints.)

If you don't mind a bit of typing, this example will display 6
diagoaal lines in each nf the visible colors:

TWO DIMENSIONAL GRAPHICS 6-6

[1Y 1.....*
L RE EEL)

oy oemd

Tor—n
-"""“

T
i-\‘-.'-j

|

.41

o=

*--‘Ei
~-

il
.UJ

Ready ERASE

Ready 1 COLOR 0 0 PLOT 100 100 LINE

Ready 2 COLOR 20 0 PLOT 120 100 LINE

Ready J COLOR 40 O PLOT 140 100 LINE

Ready 5 COLOR 60 0 PLOT 160 100 LINE

Ready 7 COLOR 100 0 PLOT 200 100 LINE

With your color monitor properly adjusted, the colors of these

lines (from left to right) should be grean, violet, white,
oranqge, plue. and another brand of white. Note that the colored

1ines are not broken st all, as they are with some graphics
displays (1ike Applesoft). GraFORTIl draws all colored lines

without breaks.

Lines and points can he drawn over FlLLed areas, but the colors
will be affected:

Ready ERASE

Ready 5 COLOR
Ready 0 0 PLOT 100 100 FILL

This draws an orange rectanale in the upper left portion of the
screen. Now let's draw a line of a different color through ft:

Ready 6 COLOR
Ready 0 0 PLOT 100 100 LINE
Note that 6 COLOR specifies blue, but because of the oranpe

backqround, the 1ine appears white. Now let's try the same
example again, this time using colors from different color

froups.; ’ ’
Ready ERASE. § COLOR

Ready 0 0 PLOT 100 100 FILL

Ready 1 ODLOR

Ready 0 0 PLOT 100 100 LINE

TWO DIMENSIONAL GRAPHICS 6 -1

ST e E o - o e

Rt

e .

Whoops! You should sce a serfes of small green rectangles slong
the diagonal. This {s the result of the Apple][hardware
timitations, The solution tn avolding this trouble Is to slnply
use colors of the same uroup when lines or araes are
superimposed or placed close toaether,

UNPLOT, UNLINE, and EMPTY

So far we've been using the word ERASE to clear the qraphics
from the screen, In GralORTH, poiots, lines, and areas tan be
selectltely erased, Let's ERASE the entire screen now and set
the color back to white, then plot a few points:

Ready ETASE 3 coLOR

Ready 50 25 PLOT

Ready 100 25 PLOT

Ready 150 25 PLOT

Points can be Individually removed with the word UNPLOT, UNPLOT
has the same form as PLOT, however {t erases the point at the
qiven coordinates, (If there is no poln ere to heqin with,
nothing happens.) Let's use UNPLOT to erase two of the points
we have on the Screen:

Ready 50 25 UNPLOT

Ready 100 25 UNPLOT

Similarly, Vines can be erased with the word UNLINE. This
example draws two lines, then erases one of them:

Ready 0 N PLOT 100 1N0 LINE
Ready 50 O PLOT)50 100 LINE
Ready 0 0 UNPLOT 100 100 UNLINE

Rectangular arcas created with FILL can be erased with the word
EMPTY, Here we'll FILL two areas, and erase one:

THO DIMENSIONAL GRAPHICS 6 -8

Fece sy

e

-l e
et

==
—
-

ik §

Ready 25 75 PLOT 100 125 FILL
Ready 175 25 PLAT 225 100 FILL

" Ready 25 75 UNPLOT 100 125 EMPTY : .

Points, lines, and areas must be UNdrawn using the same color

they were drawn in. For example, all of the above ohjacts were

drawn with 3 COLOR set. The same color was stil! in effect when
some of the objects were erased. Let's change the coldr and try
erasing the remaining 1ine and ares:

Ready 1 COLOR
Ready 50 0 UNPLOT 150 100 UNLINE

Since 1 COLOR {s set, the GraFORTH system assumes a green line
1s to be erased, and leaves a string of violet dots behind,

Ready 2 COLOR
Ready 175 25 UNPLOT <225 100 EMPTY

With 2 COLOR set, GraFORTH tries to erase a violet colored eres,
changing the white to qreen. .

INVERSE and NORMAL

1¢ you prefer to do qraphics on a white background, you can do
this with the word INVERSE, [INVERSE simply draws the
‘complements’ of the selected color: white hecomes hlack, black
becomes white, green becomes violet, blue becomes oranuge, etc.
To show the effects of INVERSE, let's first erase the screen,

then enter INVERSE:

Ready ERASE .

Ready INVERSE '

Notice that the "Ready” on the last line 1s now displayed in
“fnverse”: black characters on a white background. Since only

the word “Ready” was printed after executing INVERSE, it is the
only thing displayed in inverse, MNow type:

THO DIMENSIONAL GRAPHICS

L maa s

—E

-

L oo oo

SRS S >y

DRty e

P R

-— -

l“:'

Ready HOME

Since HOME clears the text window, now everything {nside the
text window 1s in inverse, Now type:

Ready ERASE

ERASE has "erased® the entire screen
six colored lines again:

Ready 1 COLOR 0 0 PLOT 100 100 LINE

Ready 2 COLOR 20 0 PLOT 120 100 LINE
Ready 3 COLOR 40 0 PLOT 140 j00 LINE
Ready 5 COLOR 60 0 PLOT 160 J0n LINE
Ready 6 COLOR 80 0 PLOT 1M 109 LINE
Ready 7 COLOR 100 0 PLOT 200)00 LINE

to white. Let's draw the

Note that the colors of the Hnes have al} chanqed. From left

to right, the colors are now violet,
and another black.,

We'll eventually want to return to a
display. The word NORMAL causes Graf
colors again, including good ol* blac
Ready NORMAL

Ready ERASE

ORMODE and EXMODE

qreen, black, hlue, orange,
normal black-background

ORTH to use the normal
[§)

GraFORTH has two different “drawing modes®, called “ORMODE" and
"EXMODE®, Amazinqly enough, these modes are set with the
GraFORTH words ORMODE and EXMODE, The ‘default’ mode (the mode

GraFORTH uses when a mode 18 not spec
philosophy biehind NRMOIE is that the

ified) Is ORMODE. The
plotting words put dots of

the specified color on the screen reqardless of what s already

on the screen. With EXHODE however,
points on tha screen only where point
If some points to he plotted are alre
will {nstesd be turned off.

TNO DIMENSIONAL GRAPHICS

4 drawing command will put
$ are not already plotted,
ady plotted, those points

6§-10

B i

e ™

A couple of examples will he helpful here. Let's first FILL an
area, then draw an overlapping line 19 ORMODE 3

Ready 100 50 POSN 150 100 FiLL
Ready 50 50 POSN 200 100 LINE

The line qoes straight through thc'ulddle of the rectangle,
Watch what happens when we try to erase the line:

Ready 50 50 POSN 200 100 UNL]NE

» The Vine was erased, but it neatly chopped the rectangle in

half, too. Using EXMODE, anything that can be done can aiso he
undone., Let's do the same example again, this time in EXMONE ;

Ready ERASE EXMODE

Ready 100 50 POSN 150 100 FiLL

Ready 50 50 POSN 200 100 LINE

The line is whitey except where ft passes.over the white
hackqround of the rectanqle. Here ft s changed to black, Now

to erase the line, we want to make the white sectjons black, and
the black trace through the rectangle white, And this s

.exactly what happens with requiar plotting in EXMODE. We can

erase the line by telling GraFORTH to draw 1t again:

Ready 50 50 POSN 200 100 LINE

The line is erased, and the rectangle is a9ain intact, The key
to understanding EXMODE 1s that if something is drawn once, it
appears on the screen. If it is drawn again, it disappears,
leaving the screen as if the object had never been drawn,
EXMODE works equally well with colors. |n this example, a areen
line 1s drawn through the rectangle, the white rectangle is
erased, then the line 1s erased:

Ready 1 COLOR 50 50 POSH 200 100 LINE

Notice that the 1ine is violet inside the rectangle,

Ready 3 COLOR 100 50 POSN 150 100 FiLL

TWO DIMENSIONAL GRAPIICS 6-11

X]

- D — Y — e, -,

R e o, e
. -

e L

ST, T

-

. — e

= gl
s VNV ROl XN

C tem

- b Sl

-— e
-

-
-l s

—ve s we® o

T T —
. = N By P
— T . as
S tmt o e .
PR

e

—

o it £ D B e =

The line is now completely green, 83 it the rectangle never
existed.

Ready 1 COLOR 50 50 POSN 200 100 LINE

EXMONE and ORMONE can be comhined with INVERSE and NORMAL along
with the six colors to produce a wide variety of cnlor and ’
pattern combinations, more than we could hope to fully exn)ore
here. Me sugqest that you experiment further with these various
combinations, to see how they can work best for your

applications.

GPEEK

Your proqrams can determine whether or not 2 qfven point on the
screen has heen plotted with the word GPEEK. GPEEK removes X
and ¥ coordinates from the stack, looks to those coordinates on
the screen, and places a non zero number stack {f the point
there is "on" (not black) or a zero if the point {s "off"
(black). The following example draws 3 1ine, then checks twd
points, one on the line and one off:

Ready 3 COLOR 0 O PLOT 1IN0 100 LINE
Ready 50 50 GPEEXK .
?

Ready 200 10 GPEEK.
0

Turtlegraphics

Turtiegraphics: is also available from GraFORTH, Turtlegraphics
1s a somewhat different way of specifying how to draw lines in
GrafORTH., Imagine a tiny turtle sitting on the middle of the
screen with ink on his tail, Wherever he moves he draws a Vine
hehind him. We can tell him to turn to the left or the right,
and we can tell him to walk forward a given distance leaving &
straight tine hehind him, (For the mathematicians amonq us,
this way of drawinq lines could be considered as using “relative
polar coordinates”.)

The Turtlearaphics words in GraFORTH are found on the system
disk in a text file called “TURTLE®". We can compile these words
into the dictionary by typing:

TWO DIMENSTONAL GRAPHICS 6 - 12

Ready READ ® TURTLE "

We can see the words addrd to the dictionary by typing LIST, A
few of the words are used by the other words: TURTLE.X,
TURTLE,Y, and TURTLE.ANG are variables, and TURTLE.WALK s
called by both MIVE and MOVETO,

tet's "inftialize” Turtlegraphics by typinq:

Ready TURTLE
TURTLE resets araphics mnde, erases the screen and sets a text

window along the bottom four lines, then sets 3 COLOR (white)
and positions the turtle in the center of the screen, facing

toward the top.

MOVE

The word MOVE moves the turtle in the direction it is pointina,
drawing a line. The form {s:

<distance> MOVE

The distance s measured in pixels, or dots. To move the tﬁrtle
50 pixels, type:

Ready 50 MOVE

TURNTO

The turtle can be turned to n’cortain anqle with TURNTO, TURNTD
has the form:

<angle)” TURNTO

The angle given {s in degrees, and increasing anqles are in 2
clockwise direction. Zero is straight vp, .90 is to the-right,
180 is facing down, and 270 is to the left. Let's move the

turtle fn our example to face to the right (to 90 dearees), then
move 1t 75 pixels:

Ready 90 TURNTO
Ready 75 MOVE

THO DIMENSIONAL GRAPHICS 6 - 13

v

Oty) M -
S S e e e pa T g e e -
- e e S o

1 ——

e —— - e

TURN

The word TuRN turns the turtie clockwise from {tg current
direction a given angle. The form {g the same as for TURNTO,
but TURN s , relative turn from the turtle's current direction,
The following example now turns the turtle 45 more deqrees
clockwise, then Roves the turtle Sn Pixels:

Ready 45 Tymy

Ready 50 move

MOVETO

Lastly, MOVETO moves the turtle directly to o specified X,y
Position on the $creen without drawing any line. The form for
MOVEID {5

<X coordinate) <Y coordinate) MOVETO

point on the scree » Dut MOVETO 4159 updates the turtle's
position for further TurtleqrapMcs commands, Ne can move the
turtle to the upper-left corner of the Screen, turn it to face
to the Imr-rlqht. then move it back to the center, drawing a
line, with the following commands ;

Ready 0 o MOVETO

Reagy 127 TURNTO

Ready 160 MOVE

Examples

The 4dvantage of Turtlegruhlcs is that shapes can be drawn {in
different g{zes and facing different directions with litt)e
work., For Cxample, to draw a $quare, you can type the

Q:)

]

Ready TURTLE
Ready 50 MOVE 90 TURN 50 MOVE 90 TurN
Ready 50 mMOve 90 TURN SO MOVE

TWO DIMENS 1ONAL GRAPHICS ' 6 - 14

B

A faster way i3 to repeat the words in 4 loop:

Ready TURTLE
Ready 4 0 D0 50 MOVE 90 TURN LoOP

This 1ine can be put into a word definition and used at any
time:

! SOUARE

4 000

50 MOVE
90 TURN

‘ the square can be drawn starting at any point on the screen
turned any direction:

Aeady TURTLg

Ready 0 100 MOVETQ SQUARE

Ready 55 100 MOVETO'30 TurNTO SQUARE

Ready 120 100 MOVETO 60 TURNTO SQUARE

Ready 190 100 MOVETO 90 TuRNTO SQUARE

(Note: The GraFoRTH word SIN {s used to compute sines of angles

used {p Turtleqraphics, |t You have an plications proqram that

Uses angles, the word SIN can be very helpful, SIN removes

l\imbor from the stack and uses 1t to select and return o scoled
n

® value. The table repeats for every 128 humbers, and
turned values renge from -128 tg 122,)

Y40 DIMENSIONAL GRAPHICS 6-15

ERETE N

e e e e s,

A o

P I

CHAPTER SEVEN: CHARACTER GRAPHICS

Chapter Table of Contents:
Purpose and Overview

Special Outpht Characters

Changing Character Size and Color

Font Selection

The CHAREDITOR

Selecting and Displaying the Character Set
Displaying a Block of Characters

Defining Your Own Shapus

Saving a Character Set

Block Printing from GraFORTH
Setting the Block Size (BLKSIZE)
Orawing the Block (PUTBLK)

Exclusive Or Mode (EXMODE)

Summary

Conclusion

CHARACTER GRAPHICS

Page
2.2

7-2

A

<

—— T YT

P

1 !
. { GrafFORTH capn do weird ang wonderfy) thinas wigp the characters

Pumpose and Overview

reverse Scrolled, down th

larger, and displayedfn
Different Character styles, or ‘fontsg* CAn he Selected
and evepn Created ip GrafFORTH, Entire images cap be defined
within , Character font ang rapidly Printed a5 , block of
'characurs" for snimated displays,

displayed on the SCreen, Text can

In thig chapter we'll show You how tg make yse of €aCh of these
features and give you some Suqqgest iong for lncoraoratlnq thea
into your own Programs,

| Special Output Characters

ConTRoL - {Aople ASCII numher 140) erases the screen inside the
text window, Printing o ConTRol.| 1s ®quivalent ¢o executing the
word HOME,

ConTRol .x (Apple ASCI1 Aumber 139) Cduses 4 reverse line feed, 5o
that Subsequent Printing wi)) be one line higher, ¢ briating {g
dlready on the top 1{ne of the text window (the vertica) tap
®quals the top window margin), then the display wi)) scroll ipn
Feverse, Roving text down the SCreen,

CHARACTER GRAPHICS

k-‘..’-.
o,

e,

’-"'l

e, |

ey

C/)anglhg Character Size ang CJ/or
graFORTM has the unique ability ¢o print Characteps in g

Nferent Sizes using the word CMRSIIE. CHRS 1 2¢ removes 3 o
from the stack ¢o Select the character size, vma":?m:he:s ::"
from 0 to 8. 0 Specifies the usua) GraForTH
character display," s | through g Cause the
characters to be "drawn* onto the SCreen using GraFORm‘s color
Qraphics Capadilitqeg, sa
charactepr size 0, and the Others are 2 through 8 time
Let's lntroduco some of these features throuqgn exampleg, Flrst,
we'l) ot everything back ¢o norma) py typing:

Ready ABORT

Now let's erase the normal sjzeq characters from the Scréen anq
select , larger character size;

Ready nome 2 CURS12¢

{Euslng the screen with HOME 4 4 normal pye M0t requireq step '
';l chcnglng character size. |f HOME ¢ not yseq before chanqlnq :
s s !

be Printed,)

The large Characters €an also he displayed {n tolor|
Ready nomE 1 coLon '

This win) clear the Screen, thep Rake the texe qreen, e ‘lur“
the SCreen agaip because conbinlng two colors of text on ¢ e

SCreen can have Some unusya) effects of 1ts own, To see these

CHARACTER GRAPHICS

e W N T .

© e e g e -

————

"

Ready 2 COLNR

Now hit the ¢returnd key 2 few times to cause the text to scroll,
The "Ready” prompt that was areen qets overwritten with the .
violet, hut does not scroll, Only text of the current color and
of the current size will behave as expected with text commands.

Obviously, when the characters are larger, fewer characters can
he displayed on the screen, When you select ¢ new character size
with CHRSIZE, GraFORTH sutomitically sets the text window size to
the correct 1imits, to keep the text on the screen,
table relating character sizes to the number of characters that
can he displayed, and indicating whether or not colored text fs
possible for that character sfze:

Stze Columns Rows Color?

n 40 N Mo

| 2 24 Yes (with funny effects)
2 16 12 Yes fwlth better effects)
3 1n L Yes

4 8 6 Yes

5 6 4 Yes

6 5 4 Yes

7 q 3 Yes

8 q) Yes

the following to see GraFORTH's larqest
First type ABORT to qet yourself back
then type:

You might want to try
character sfze In color,
to a predictable place,

Ready HOME 8 CIRSIZE S COLOR

A mammoth oranage “Reddy” prompt will
1ines, with a huge lumbering cursor|
to scroll, now enter:

Ready INVERSE ,

After another scroll, the display changes to inverse. Obviousty,
you wouldn't want to enter a long program this wayl Large _
character sizes work very well for proqram nr qame displays, hut
weren't really intended to be used for {nput., The fastest way
out of our current situation (hestdes hitting Creset)) 1s to

type:

sppear, split across two
Allowing time for the text

CHARACTER GRAPHICS

‘-

~

L

.
-’

Ready ANORT

After the text
things are back

Font Selection

scrolls once Wmore, the ABORT (¢ executed, and
to normal,

(the actual set or
called & charscter ‘font*,
The Apple J[containg an uppercase-only
character set stored in {ts hardware, GraFORTH ygeg this whep
TEXT mode {s selected. However, GraFORTH's ysya) araphics
display instead uses a2 character set from memory. This character
set 1s stored in a binary file on the GrafORTH system diskette,
and Is read into memory when GreFORTH fg first booted,

The character "style” used in a text display
shapes of the characters displayed) s
or character set.

The disk actually contains several character sets, and any of
;?er can be used for text display. The character set files on
sk are:

CHR, SYS
CHR,STOP
CHR,SLANT
CHR.GOTHIC
CHR,BYTE
CHR, STUFF
CIHR. MAXWELL

(The last two are special character sets used for 'character

araphics’, and do not work well for 5 text display. We'll show
you how to work with these in a bit,,,)
In memory, character set occupies 768 bytes, There are 96

printable characters, and each character yses 8 bytes in the
character set, These -byte blocks are actually graphics :
*pictures” of each character, When GraFORTH 1 hooted, 1t 1osds
CIR,SYS {nto memory starting at location 2048, Whenever {t
displays a character, it looks up the "picture™ of that :horac‘er
from this area of memory, and places 1t on the screen. ‘

Character sets elsevhere in memory can also be used for the .
screen display, Let's load another character set from disk {n§o
4 free area of memory. The location 2816 s the beainning of
large free area of memory. We'l) use a standard 00S call to | ‘
the file in:

S~ G o s, o,

CHARACTER GRAPHICS 7 -8

. ——

-

- e o

S e e e ———

Ready CR 132 pyrc PRINT * pLOAD CHR.BYTE,A2R16 “ cR

The disk whirs 4 bit, and the character set {s loaded. To yse
this character set for the display, the word CHRADR g used,
CHRADR stands for CHARacter ADdRess, and it is used to select the
memory location of the current character set, The form {5

Caddress of character set) CURADR

We loaded the Character sat into mewory starting at location
2816, so this fs the dddress we qive to CHRADR:

Ready 2816 CHRADR

ANl printing wil) Now use the new Character set, The characters
that were dlready on the Screen in the o)d character set,
however, are unchanged, Characters from different character sets
can be displayed on the screen at the same time, llowever, if the
screen {s scrolled, thesq characters wi)) be reprinted 8 line
higher, using the newest character set,

The ASCI| numbers for the printing characters ranqe from 160 to
?255. To display al} of the printing characters {n the set at
once using PUTC, type:

Ready 256 160 po | PUTC LOOP

You may want to load the other character sets into mewory to sec
what they look like. Yoy can load them into the same area of
Memory and overwrite CHR.BYTE, or YOu can use another free area
of memory and select it with CHRADR. The Msory mep 1n Appendix
8 shows the free areas of memory, Therefore, it 15 possible (and
edsy!) to have several character sels in memory at once, quickly
changing from one to another, Care should be taken, however, to
avoid overwriting a portion of the GraFORTH system, Remember
that each Character set occupies 768 bytes of memory,

Usually, you will want to return to the system (CMR.SYS)
character set, The GrafORTH word CHRSET returns the address of
this character set, 2048, hus, to switch back to this display,
YOu can type:

Ready CHRSET Ciigapg °

(0f course if You want to, you can overwrite this area of memory
with another Character set, too.

CHARACTER GRAPIICS

The CHAREDITOR

On the GraFORTH System diskette f4 A file called CHARENITOR,

hs program enables you to read in character Sels, examine ang
wodify character Shapes, create large block irages that are
stored as a series of characters, and Save the new character segs
to disk again.

CHAREDITOR 15 one of the laryer programs, 5o f¢ would Pe 3 goog
fdea to LIST the dictionary and FORGET any words yoy Pdy have
added before loading in CHAREDITUR, 1o load the program in,

type:
Ready ReAD " CHAREDITOR *
To run CHAREDITOR, type:
R;Mdy HOME RUN

Notice that we cleared the screen hefore running the program,
CHAREDITOR does not dutomatically clear the screen,
that any graphics images on the screen can be retained and used

within the CHAREDIIOR, allowing you to “pull® images ang shepes
from other programs into your GraFORTH Character sets,

You will seq a 11st of commands to the right, the prompt

Enter command: Near the bottom of the SCreen, and , flashing
dot in the upper-left corner, This flashing dot s the “drawing
cursor® and will be used for creating your own Character shapes,

Selecting and Displa ying the Character Set

The character editor works with one character set a9 time, To

qet an understanding of things, Jet's start by looking ot the
The editor

uses single-letter commands., To specify the address of the

desired character set, press “A* fqop Addr.se. Yoy will then see
the prompt:

CHARACTER GRAPHICS 1.1

L= X W %

—r

Enter Charset
Work Areca Address : 2816

The input cursor s flashing ovar the "2R15", This {s the
default address, the address used If you do not specify one., You
can keep this address simply by pressing <returnd. However, we
want to enter the address of GrafORTH's standard character set,
Type "204R" over the top of the "2816" and press <return), Now
22:: Is the address of the character set used hy the character
editor,

Type "D" for "Nisplay characters®, You'll see 2 display across
the bottom of the screen of all the characters in the character
set, in inverse, To the left are the numbers 0, 3?2, and R4,
These are index numbers. When manipulating character shapes fin
iraFORTH, character numbers in the ranqe of 0 to 95 are used
instead of the ASCII values (which range from 150 to 255 for
printing characters). The Ffirst row of characters are numbered 0
through 11, the second row 12 through 63, and the third row 64
throunh 95,

Displaying a Block of Characters

If we want, we con take a sequential string of characters and
display them in a rectanqular block on the screen. Let's display
the & characters "n" through "s” in a Slock that is 3 characters
wide by 2 characters tall, To select a block of this size, press
"8" for "Blocksize®. You will be prompted:

Enter Block Horizontal Size :

Enter a 3 and press Creturnd, You will see:

Enter Dlock Yertical Size :

Enter a 2, press <returnd, and you will qet the reqular

"Enter command:” prompt back. Also notice that 4 more dots have

;?pe:red at the top of the screen, outlining our 3 by 2 character
ock,

Press "N" to hring the character set display back. Counting

dcross the hottom row from the Index number 64, you will find

that the character "n" is character numher 78. To display the
block of 6 characters starting with *n", type "R" for "Read",

CHARACTER GRAPHICS 7.0

-

E--S

F—3

You will see:

Enter character number
to be read :

We want character number 78, s¢ type "7R", The 6 characters will
appear in the block surrounded by the 4 dots,

You can also display blocks starting on other characters, nr wuse
a different blocksize. When changing hlocksize, you may want to
erase the block from the screen. To do this, simply type "E" for
“Erase”, then answer "Erase (Y/N) :" with a "Yv",

We've been looking at a hlock of standard charscters, to show you
how block printing 1s done. Now let's see some actual character
graphics, To protect our precious system character set, press
"A" and select an address of 2816 again, hack into open memory.
Type "G" for "Get". This option allows you to load a character
set fn from disk, You will see:

Enter Load File Name :

Type "CHR.STUFF"." This charbcter set will load into memory
starting at the location 2816. Type "D" to display this
character set. Except for a few punctuation symhols, these don't
look much like characters! You can see pieces of the Insoft
loan, parts of faces, and an assortment of lines which are
actually pteces of a helicopter used in the GraFORTH

demonstration proqram,

If you've changed the Hlocksize, set it back to 3 characters
horizontally by 2 characters vertically, Now type "R" and read
character number 78. A smiling face will appear in the upper
left. _By pressing “D" aqain, you can see that this face occupfes
the same six characters that the characters “n® through “s*
occupied in the system character set. The other three faces
begin at character numbers B4 and 90. Just press “R" and enter
the character number to see them, ')

The Insoft logo uses 8 blocksize of A by 2 characters, and hegins
at character number 16. The three helicopters use a blocksize of
5 hy 3 characters and baqin at character numbers 33, 4R, and 63.
You will probably want to erase the block (with “E") before
changing the blocksize, so that part of the previous image won't
remain on the screen beside the new hlock.

CHARACTER GRAPHICS

LI

Y

- or——n £ —
- W T,

p—
e

it =y s 0 e

—— srcmat—,
L e e e Ve pe
e s W 4 -

T Iel - e e e
papn gy

B e =

Defining. Your Own Shapes

To create your own shapes with the character editor, first select
4 blocksize for the imane you want to draw. Erase the block if-
necessary. Here's where the drawing cursor comes in. Ry
pressinqg the |, J, K, and M keys, you can wmove this cursor one
pixel up, left, right, or down within the block. If you want to
plot a point at the position of the cursor, press “P" for “Plot”,
To draw a line fron the last plotted point to the cursor, press
“L". Notice that "P" and "L" are actually PLOT and LINE
comands, with the coordinates specified by the cursor. The
character image s created by moving the cursor and drawing the
noints and lines that make up the image.

In addition, you can create character images in color. Press ‘C"

(or "Color® and enter the number of the color you want to work
fa, (When colored character images are displayed in GraFORTH,
the cnlors mav be different, depending on whether the image is
drawn heginning on an odd-numbered column or an even-numhered
colum. This comes ahout as a result of the way the Apple i[4
aenerates high-resolution color.)

1
IT you plot & point that you didn't want, you tan erase it by
pressing "U" ,which UNPLOTs the point, Similarly, you can erase
lines hy pressing “I*, [f the drawing cursor moves too slowly,
you can incresse fts step size by pressing “X", then entering the
number of pixels you want the cursor to wove whenever you press a
cursor-moving key (1, J, X, M), If your image isn't coming out
the way you'd like....well, press "E" to erase it and try againi

Experiment with these keys to qet a feel for creating images.

A1l of the imaqes in CHR.STUFF were created with the character
editor. If you like, you can read an existing image from the

character set and use the drawing keys to modify it,

When you've created an tmaqe that you wint to save, first
multiply the block vertical size hy the horizontal size, to
determine how many characters your image will occupy. Then press
*0" to see the current character set, and choose a range of
Characters in the character set to write your {mage to. Press
“N® for "Write", You will be prompted:

Enter character nusber
to be written :

CMARACTER GRAPHICS ' 7-10

e,

Type the character number of the first character in the desired
range. Your image will be written into the character set
starting at that character., Press "p* 202in and vou wil) see
your image neatly dissected and placed in the charactet set.

Images from one character set can be copied to another using the
CHAREDITOR “T* (“Transfer*) option. You will be prompted for a
“From" address, a “To" address, and a length. To Copy an entire
character set from one address to another, simply enter the
address of the character set to he transferred, the address of
where 1t {s to go, and enter 768 for the length, Remember that
character sets are 768 bytes long.

Transferring only part of a character set is a little trickier,
Rememher that each ctharacter occupies B bytes. Compute the
“From" and “To" addresses based on the character number and the
addresses of the character sets. The length is the number of
characters times 8,

Saving a Character Set

After a new charactef set has been created, You can save it to
disk to be used agaih later. To save a character set, press *S*
for “Save". You will see:

Enter Save File Name :

Type the filename you've selected for the character set, Be sure
that there are no files with that name on disk, unless you want
to overwrite that file. Note that all of the character sets on
the GraFORTH system disk begin with the prefix “"CHR.*. This is
not & requirement; the prefix simply acts as & reminder that the
file contains a character set.

When you want to leave the character editor, type “Q" for “Quit",
If you want to begin work with another program, it would prohably
be best to FORGET the character editor first, since it takes up a
lot of room in the word library. The word 'i' fs the first word
in the character editor, so to delete the editor, type:

Ready FORGET 1

CHARACTER GRAPMICS 7 -1

e

—,

L]

T e ———

e P Py

— s =

Block Printing from GraFORfH

Printing blacks of characters s done directly from GraFORTH much
the same way as in the character editor, character set s
loaded into memory, an anpropriate blocksize ‘is selected, and a
sequential ranne of characters is nrinted in the block at the
current horizontal and vertical nositfon,

Let's display some of the same images we saw earlier in the
character editor, First, load "CHR,STUFF" back 1into memory

Ready CR 132 PUTC PRINT * BLOAD CHR,STUFF ,A2816 " CR

You could now type 2816 CHRANR® to select the character set, but
remember that this charscter set foesn't have mich fn the way of
recognizable characters| It contains helicopter parts and other
things. GrafFORTH can recognize the characters fine, hut the
screen display s unusahle, Hhen we display a character imaqe,
we'll jump into the character set, display the fmage, then jump
back out,

BLKSIZE

The hlock size in GraFORTH 13 set with the word BLKSIZE. The
form for ALKSIZF {s:

Chorizontal size> <vertical sfze) BLKSIZE

As in the character editor, the horizontal and vertical size are
measured in characters. NULKSIZE remyins set until changed, The
word ADORT does not reset ALKSIZE,

To prepare to see the smi1ing faces, set & blocksize of 3
characters wide by 2 characters tall:

Ready 3 2 BLKSIZE

CHARACTER GRAPNHICS 7 - 12

~

»~-.]-.-4

Fix-

PUTBLK

The word that actually puts the Mock of characters on the screen
s PUINLK, - PITRLK removes a number from the s.ack and uses it as
the starting character nimher for the hlock to he displayed,
Character numhers ranqe from N to 95, as in the editor, The
numher of characters to he printed is determined hy pLKkS{2f, The
position of the block on the screen s set the same way text s
positioned, with NTAR and VTAR, or the other text positioning
comnands, .

Let's block-print one of the faces In CHR.STUFF, For this
example, type this entire line at once:
Ready OME 2R1A CHRADR 78 PITILK CHRSET CHRANR |2 yTAp

"NOME" clears the screen and positions printing to the unper-lert
corner, "2816 CHRANDR" sets the character set dddress for
CIR,STUFF, 78 PUTDLK" actually prints the imane, "CHMRSET CHRAPR®
resets the system character set, and "1?2 VTAD" aets the following
"Ready” prompt down out of the way, so that it won't overwrite

the block just printed, '

A smiling face should have appeared in the upper-left corner of
the screen,

To save on typing a hit, lat's define a couple of new words to
help us in and out of the special character set, We'll calt
these words "IN® and "QUT":

Ready : IN 2R16 CHRADR HOME H
Ready : OUT CHRSET CHRANR 12 VTAR ;
To display another face, wo can simply type:
Ready IN B4 PUTOLK OUT .

. ’
Unlike text printing, PUTBLK does not update the horfzontal
cursor position, Therefore, once o printing position has heen
established, sevaral images can be drawn sequentially in the same
space. The following example prints the three heliconter imanes
in the same space 100 times. Keep your eyes open; it's fast:

Ready 5 3 ALKSIZ2E
Ready IN 100 0 00 33 puTBLK 48 PUTBLK 63 PUTBLK LNOP OUT

CHARACTER GRAPHICS 7-13

0t

S - -

I A T
AT Y -

S e L — e

T O T T
g - Y s ——- gy .S -
it et T
S Nt

-

~t

Do

After chanqing Lhe Slocksize, the [nsoft 1090 (which starts at
Character number 16) can b displayed centered on the screen:

Ready R 2 BLKSIE
Ready IN 5 VIAR 16 HTAB 16 PUTALK OuT

We're beinqg cautious ahout the display here hecause we're mixing
the printing of block images using one character. set with reading
keyboard input using another, Most finished programs will have
the changes planned out, so that the most effective ‘mixing of
character images and text display can occur,

To erase & character image, the word UNRLK s used. UNBLK simply
erases a block in the current blocksize at the current printing
position. The following exampln erases the Insoft 1oqgo we placed
on the screen:

Ready S VIAB 16 HTAD UNRLK

The VIAD and NTAB determine the position of the block to he
erased. Since UNBLK doasn't print any characters, we don't need
to specify a character set,

Of course, character images can also be made larqer by using
fMRSIIE. This example displays the Insoft logo four times as
arge:

Ready IN 3 CHRSIZE | COLOR 16 PUTBLK 0 CHRSIZE OuT

EXMODE Character Graphics

Character sizes 1 throuqh 8 will be drawn fn “EXMODE™ {if EXMODE
is set. This allows you to draw characters or character images
over other graphics, then erase them, leaving the oriqinal
qraphics intect. However, EXMODE character graphics requires a
few special considerations, .

As GraFORTH displays characters on the graphics screen, it stores
the ASCII values for those characters in the text scraen ares.
10 - character about to he printed 15 slready in place on the
screen, nn high-resolution printing {s done, since the character
is a:;:aqy present, This saves much time in printing and
scrolling,

CHARACTER GRAPHICS ' 71-14

E—

However, when using EXMODE, you usually want .o reprint the same
characters in the same location to cause them to disappear aqain,

"Therefore, to unprint a line using EXMONE, you must first erase

the text screen (this s the actua) Apple][text screen, not the
high resolution screen used by GraFORTH) to force a reprinting,
To do this, you use the Apple J{ monitor's screen erase routine
(“-936 CALL"), then print the same line in the same position,

The following word definition {s an example of using EXMOOE
character graphics. It draws a diagonal line, writes text over
the line, then er.ses the text, leaving the line tntact. It
repeats this 4 times:

: EXMODE..DEMO
ERASE
1 CHRSIZE
EXMOLE
0 0 PLOT 100 100 LINE ’Dran the line to be written over)
4 000 Loop 4 times)

(Set up EXMODE character graphics)

3con 0 00 LOOP (Delay loop, to slow it down)
S VIan
5000 ' (Print the line 5 times)
PRINT * This 1line can be erased * (R
Logp
-936 CALL (Erase the text screen)
Loop

0 CNRSIZE ;

Summary

Output Characters

GraFORTH uses two special output characters: ConTRoL-lL erases
the screen inside the text window, and ConTRoL-K causes a reverse
line feed, making the screen reverse scroll f the cursor s at
the top of the text window, . .

Character Sizes

The GrafORTH word CHRSIZE uses a numher from the stack to select
a character size. Valid numbers are 0 through 8. Sizes |
through # can be drawn in color using the word COLOR. Character
stze 0 is the normal text display.

CHARACTER GRAPNICS 7 - 158

Font Selection
Various character fonts can be used hy ALOADIng them into free

memory and selecting that memory with CHRANR, GraFORTH's system
character set beqgins at location 2948, The word CHRSET returns

this address.

CHAREDITOR

The proqram CHAREDITOR {s used to modify and save character
shapes and imanes, lere Is the normal sequence of events in the
use of CHAREDITOR, with example entries:

1. Load and run the CHAREDITOR program:
Ready READ " CHARENITOR *

Ready HOME RUN

2. Select a character set work address:

Enter Charset
Work Area Address : 2816

3. (optional) Load & character set:
Enter Load File Hame : CHR,STUFF

4. Select & block size (single characters are always 1 by 1;
imanes may he larger):

Enter Block Morizontal Size : 3
Enter Block Vertical Stze : 2

:. Draw the imane or character using the described sketching
eys.

6. Vrite your imaqe or character into the character set:
Enter Character Humher to ba Written : 90
1. Save the modified chgracter set to disk:

Enter Save File Name : CHR,TEST

CHARACTER GRAPHICS . 7 - 16

Block Printing from GraFORTH .

Displaying character qraphics from GraFORTH usually fnvolves the
following steps: , :

1. Load a character set iqto memory :

Ready CR 132 PUTC PRINT " BLOAD CHR.STUFF,A2R16 * CR
2, Select the character set:

Ready 2816 CIRADR

3. Choose an appropriate blocksize:

Ready 3 2 BLKSI2E

4, (optional) Select a character size and color:
Ready 2 CHRSIZE 1 COLOR

5. Position the cursor and draw the block:

Ready 5 VTAB 2 HTAB 90 PUTRLK

Since PUTBLK does not advance the cursor, several blocks may be

drawn on top of one another without having to reposition the
cursor. The word UNBLK erases a block at the current position of

the given blocksize,

EXMODE Character Graphics

Character sizes 1 through 8 may be drawn using EXMODE, This way,
characters can be displayed over other graphics without erasing
them, However, to erase a line printed in EXMOOE, the text
screen must first be erased with "-936 CALL" before the line {s

reprinted,

CHARACTER GRAPHICS 7-17

e W W e

P st e

I |
b=
Conclusion
o |
This chapter introduced GraFORTH's character araphics CHAPTER EIGHT‘. 3 [GRAPHICS
cdpabilities. So far we have covered the lanquage features of)
GraFORTH, {ts point and line aranhics, and now the set of b‘:"'l“" Chapler.Tlable of Contents:
graphics that manipulate characters and block images., Néxt B .
Chapter, we'll introduce the most amazing aspect of GraFORTH, its Purpose and Overview
three dimensional calor araphics capability, So hold on to your .
kevboard, here we qol F—i- 3-D Graphics at a Glance

3-D Image Format
E-=32 Image Parameters
Rotation

e m Scaling
E.) 3 Tiwee-Dimensional Perspective
Position

Translation
| 2 - Object Color
[3 g

The Image Editor

t 'a Address and Image Selection
Getting a Good View

lmage File Entries

Fren. Creating New Images

— e 3 Saving the Image File

Three-Dimensional Display Methods

L REIRR] Rodrawing Without Change
Erasing Individual Objects
. , Overlapping Objects and UNDRAW
' ﬁ“ - 3 Other Effects .

Profile
.]
E .'::_'.'3 Setting Parameters
Entering DATA from Keyboard

Entering DATA from Disk
ﬁ.' - Memory Considerations

Playing Around
- Conclusion

3-D GRAPHICS
CHARACTER GRAPHICS ‘ 7-18

-
hCh

T i3

Iy S - co— pp ~
.= P A

=

ey -

m—

Purpose and Overview

Perhaps the most sxciting aspect of GraFORTH fs it high-speed
3-N qraphics capahilities, GraFORTH can manipulate up to 6
threc-dimenstonal shapes similtaneously, In this chapter we'll
dliscuss how to use these features.

We'll heqin with an overview of how J-dimensiona) shapes are
accessed and manipulated, and qive you some introductory
examples. We'll then explain the varions 3-0 parameters and
discuss the image "format™ in detail, We'll show you how to use
the IMAGEDITOR to create your own 3.n fmaqes, then discuss 3-0
display methnds. Lastly, we'll discuss two very useful programs
for developing and manipulating your 3-D image ffles. '

3-D Graphics at a Glance

To display a 3.0 object In GraFORTH, the *image” information

describing the shape of the ohject fs f{rst loaded into a free

area of memory, then commands are entered which tell the frafORTH

;{st;m w:ere the image fs in memory, and how the imane fs to be
snlayed.

GraFORTH uses an internal array to store the current information -

ahout a1l of the 3-D objects being displayed, The array stores
the locations in memory of the actual imanes and the display
parameters (position, rotation, sire, etc.). A number (from N to
15) is used to refer to each ohject, and to select which object
is currently being manipulated.

To view a 3-0 fmane, let's first make sure things are back tn
normal: !

Ready ABORT

:nd set a text window so that text doesn't scroll over our 3-0
manes:

Ready 0 40 20 24 WINDOW ERASE

3-0 GRAPIICS

7
3

| .
he <.

ESL.’_,

Now let's load an Imaqe from disk into & free area of memorv,
The binary file "XYZ" on the GirsFORTH disk contains an imane of
three arrows, each.a different color, and each pointing a
different direction, This {s the same ohject that was used in

the PLAY demonstration in Chapter 1,
Ready CR 132 PUTC PRINT " BLDAD XYZ,A2815 " CR

Refore we can view "XYI", we have to initialize the Internal 3.0
qraphics array., Since we're starting from scratch, enter the
word OBJERASE, OBJERASE clears the array, and should he used
when beqginning all 3-D programs,

Ready ORJERASE

Now we want to assign a number to the object we're about to view,
Rememher that GraFORTH can handle up to 16 objects at a time.

The word OBJECT is used to specify which object to manipulate.
ODJECT removes a numher from the stack, and uses this number to
select the current ohject. Let's give the fmage "XYZ" the number

0 in the array:

Ready 0 ONJECT .

For our example, we will want the shape to he drawn automatically
after each entered command. To do this, the word AUTONRAW §s
used, AUTONRAN removes a number from the stack., [If this number
fs 1, then the currently srlected object will automatically he
drawn after each graphic command. 1f the numher is N, then
automatic drawing will not occur, (Entaring the word DRAW will
draw the ohjects when AUTODRAW {3 not in effect.) det's turn on
automatic drawing with AUTONRAW:

Ready 1 AUTODRAW

We've inftialfzed the array, set object number 0, and turned on
sutomatic drawing, hut we haven't specified where the current
obfect is in memory. The word O0BJADR i3 used,to specify ¢his
address. We loaded the object into memory starting st 2814, so
this {s the number we qive to 0BJADR:

Ready 2816 ORJADR

At this point (because AUTONDRAN is turned on) the imaqe will
appear on the screen. Right now it looks like a sinqle srrow
with a VTine through it, hut that's only becsuse we're sdeing ft

head-on.

8 --3

3-D GRAPHICS

" T I —ctmsmeannm ot

GrafORTH has 12 separate words for controlling the position,]
siz;. and or:en:atlon of 3-D ohjects, We'll introduce these ¢
words properly in a hit, hut to qive you a taste, let's rotate -
the image 4 little for hetter viewing: ! :."“.'3 ¢6
. -_.4
. Ready 13 YROT l .
.]
Now it' - |
ow it's heqinning to come {nto view, and you can see parts of b v d \
41) three arrows. Let's move it a little wore: - i
Ready 16 XROT _‘I:]
. _
and add a Vittle perspective: :':; '
Ready 5§ SCALZ . Eﬁ"'"':a ! i
—_T \ '
ks A '
3-D Image Format vl
(1Y
' h"w--i -2 :
| SR \

Just as two-dimensional qraphics use Cartesian coordinates
laheled X and Y, three-dimensional qraphics use a Cartesian :23,3?2:5,:.“";3&’:3: :::s:iﬂ::t:o;e::;: :f“::;et:;;e:pace“,

coordinate system with the three directions labeled X ' |
The arrows in "XYZ* represent the three directions, or :"'r::" L s....,._-i 256 units along each side. All 3-D objects reside in this space, ’
‘axes’. X is a point along the horizontal, from left to right. reoaye When more than one ob,!ect is being displayed, each object has its .
Y is a point on the vertical, from top to hottom. Z is a point own 3-D space, though*these spaces may overlap or even coincide h
from rear to forward, pointing at the viewer. & 3 on the screen. i
e v

The points that make up 2 3-D image are expressed as three - i
nmnher:. one :or'ea;h of the X, Y, and 2 coordinates. The valid ' ! Image Pafametefs l?
ranqe for each of these numbers is -128 to +127. f
on an axis, with two coordinates equal toozerl'g. ans‘::e‘:;z 1'3;" E':."_'i . ¢’
each arrow reaching fron -128 to 127. At the center of the cube, b g"“ an imane has been loaded into lnenor_v‘md selected with i,
where all three arrows meet, the three coordinates are all equal X BJECT and OBJADR, {t can be rotsted, positioned, scaled, and A
to zero. o e translated in a number of ways. 4
[afipen !
. . Rotation

,_.'::3 An image can be rotated around any axis, using XROT, YROT, or '

IROT, XROT rotates the image around the X-axis, YROT around the :

Y-axis, and IROT around the Z-axis. Each of these words removes 3

:.,_.'__S A number from the stack and rotates the image to the selected
ORI snqle. Angles are specified in units between 0 to 256 rather
than degrees. An entry of O to YROT (or for that m.tter, XROT or

Le T Breon N e e

T AT e b e S aEd i

IROT) rotates the image around to a normal position facing the
E,.,...S viewer, An entry of 64 rotates to 90 deqrees, 128 rotates to 170
2 dearees, and so forth, until 256, which (like 360 degqrees) is the

| samg as zero: a full revolution,

3-D GRAPHICS 8 -4 . 3-D GRAPNICS

T2 i et e et g %2 W,

AN T e et e et
o o——

P R

e e O

T = —

s

.

P
Lot

——— TS
e, ="

v - e w— .

PR —PPTX N -~

i e e

>

.
-—

Earlier, we used XROT and YROT to tip the imane a Hit so that we
could art A better view, Ve can also use a loop and cause the
fmage to rotate a full clircle, The following word definition
exacutes YROT repeatedly, with an increasing rotatfon value:

1 YSPIN
20 N DO
1 YROT
4§ +L00OP
Ready YSPIM

When YSPIN (s finished, the ohject has a Y rotation of N, To get
it hack to our previous view, we enter the appropriaste value for
YROT anain:

Ready 14 YROT
XROT and ZROT can, of course, he manipulated in {dentical ways.

Scaling

The imaqe can he channed in width or helqght with the words SCALX
and SCALY. Doth of these words remove a number from the stack to
select the given X or Y scale, The valid ranqe is from -31 to
+31. Humhers outside of this ranae will be “folded back" into
the range. When the 3.D object array is iniftialized with
ORJERASE, SCALX and SCALY are set to 16, Try these examples with

"XYe":

Ready 25 SCALX
Ready A SCALY
Ready & SCALX

Setting a scale of zero causes the ohject to have no “thitkness"
at all: :

Ready N SCALX
Nenative scale numbers reverse the imane:

Ready -8B SCALX

3-D RRAPHICS

Mote: This reverse scaling is useful in unexpected wiys, For
example, 1f you are creating the imane of bird, you only need
one wing image. The other wing s simoly the first with one
ncaative scale nurher to reverse the imaqe,

Were's a proqramming example of scaling:
Ready : SOHASH 12 -12 DO | SCALX LONP s
Ready SQUASH

Since for most araphics applications you will want to channe both
the X and Y scale to channe the total size of the ohject, the
GraFORTH word SCALE 1s provided. SCALE has the same form as
SC?LX and SCALY, It simply sets both SCALX and SCALY to the same
value:

Ready 5 SCALE
Ready 12 SCALE

Three-Dimensional Perspeéctive

There s a fourth scaling word in GraFORTH, SCALZ. SCALZ doesn't
change the size of the ohject in the same way that the other
scaling words do; instead it changes the perspective of the
object., Entrins for SCALZ are also in the range -31 to 31. The
default value for SCALZ is zero, which doesn't provide
nerspective views., (The front of a cuhe, for example, will he
the same size as the back.) If you enter a nonzero number for
SCALZ, perspective will be provided. If the entry is positive,
the front of the ohbject will he larger than the hack. [f the
entry is negative, "reverse perspective” occurs, a most unusual
phenomenon! You may wish to trv the following examples:

Ready 20 SCALZ YSPIN
Ready -10 SCALZ YSPIN
Ready N SCALL YSPIN

Note: When SCALZ is nonzero, fmages take ahout 70% longer to
draw in exchange for the perspective features.

3-D GRAPMICS LA

o

——y
——

‘3
|
|
|

T

P.. .'."F!"'k- v——cnr

4

|

:
|

.1
|

Also, SCAL2 uses g fast alqorithm that closely Pproximates trye
However, (r You are dlsplaylng image that has
You are using

berspective,
ends of }ineg meeting at the middle of , line, ang

large amounts of berspective, the image may begin to distort,

this happens,

line itse

Position

break the image yp into a series of shorter 1ines,
S0 that aNn} endpoints meet Other endpoints, rather than meeting a
I, ’

Three-dtncnsional images can also be placed dnywhere on the

Screen with the words XPOS ang YPOS,

XPOS and YPOS remove a

number from the stack ¢o determine the x or ¥V position on the

Screen of the center of the 3.n Cube,

either side for the edges of the 1mages,

To move the image around, Jet's first make 1t a bit

avoid wrap-around, then try a few different position
screen:

Ready 5 scaLg
Ready 50 xpps
Ready 40 YPOS
Ready 200 xpos

Espectally ir t
large, to avold screen wrap-around, mple room st be

The valig en
XPOS are 0 ¢o 255; valid entries to Ypos are 0 to)91,

he scale §g
left on
tries for

smaller, to
$"0n the

We can cause the fesared wrap-around by Placing the object close

to one of the edges:
Ready s VPbS

Ready 96 ypos

3-D GrAPHICS

—_
.“—3
.

K-

e
(SR

W
b-."'

o
F-r-3

~‘~-

FE—3

Translation

urs when the ohject is maved, not on the flat
I;;:;I:::g:n?cgut within its own 3-dimensional space, In
GraFORTH, objects can he translated alonq the X, 0 ar? :xf:
with the words XTRAN, YTRAN, and LTRAN, When usinq.trans ation,
you must keep the image inside the confines o: its “cuhe of
space”. If you do not, then “3.p wrap-around” wi)) occur.he .
because GraFORTH cannot represent points outside of s cuhe o
3-0 space,

f its
irtent imaqge, “Xy2* dlready reaches to the ednes o
ngcf“;neafn th?e; dxes, We can translate it, bhut wréap-around
will occur immediately:

Ready 5 XTRAN

' her 3.0 -
les of translation, let's flrft load anot
f::q:f":n:'::fz doesn’t f{1) fts space. We'l] load and set up
the image “HOUSE™:

Ready ERASE

Ready CR 132 PUTC PRINT * BLOAD HOUSE,A3n0N * CR
Ready 1 0BJECT 3000 ORJADR

The image of a house should appear. Let's 9et a better view:
Ready 20 xROT

Ready 10 YROT

Ready 8 SCALZ

Ready 10 SCALE

hoit a bhit

an be translated. It can be moved 8 t
:::o::’crzr::qcurao-aroand. (In the next section."zggo:;ozei how
to determine the true size of an object from the | .

Ready -50 2TRAN
Ready 50 2TRAN
Ready .25 XTRAN

3-D GRAPHICS

R X

=2 uuaal

TEERTXTTYS g e

-—e
[

[

ORI

XL e xvy
iy
- T, - .
. ———— e

——

Just for fun, try using YSPIN with the house, now that it has
hecn translated away from the center of its space:

Ready YSPIN

Object Color

You noticed that each of the three arrows in "XY2" was 2
different cnlor, Images can he created with or without colors °
specified. 1If no color is specified, then the ohject's color can
he determined when it is drawn later, using OBJCOLOR, OBJCOLOR
removes 3 numher from the stack to select the color of the
current obiect, The uswal GraFORTH color numhers are used.

The house does not have a set color, so we can set its color with
OBJCOLOR:

Ready 1 0DJCOLON
Ready 5 OBJCOLNR

Note that 3.D gqraphics, 1ike two-dimensional and character
graphics, can be done in either INVERSE or NORMAL, and efther
NRMONE or EXMODE, producing a wide variety of araphics effects.
We encourage you to try some 3-D qraphics commands with various
combinations of display modes,

At the end of this chapter is a discussion of the proqram PLAY,
which enables you to set al) of these parameters (except for
OBJCOLOR) into motion. PLAY s very useful in qgetting an
intuitive feel for exactly what each of these parameters does,

The Image Editor

On the GraFORTH system disk fs & file called IMAGEDITOR, which

contains a program enabling you to create your own 3-D {mages.

To use the imace editor, first delete any new words on the word
Hbrary to make room, then type:

Ready ABORT

Ready READ " IMAGEDITOR *

3-D GRAPHICS 8 -10

=3

(MOTE: The imane editor fs a fairly large proorsm. On
non-lanquaqe card systems, loading the image editor will move the
ton of the word library into the same memory used by the text
editor proaram. If the cditor is loaded into mpmory, (¢t will
overwrite the top of the word library, forcing you to reach for
the power switch, as the GraFORTH system will become fnopershle,
After using the {mage editor, rememher to FARGET the proqaram
hefore using the text editor, T

Now run the pragram:
Ready RUN

You will see a 11st of commands to the right and » prompt: "fnter
command:". The imane editor works with one 3-D image at a time,

Address and Image Selection

As in the character editor, you must select & work ares address
(or use the default address). To select an address, press "A*
for “Address”. You will see the prompt:

Enter File Address 2,

followed hy the number "2R16". (You should he getting pretty
famt1iar with that number!) 1If you want to use another area of
memory, enter that address. For this example, just hit C(return$,
and the address 2816 will he selected.

If you are doing these examples sequentially, the imsge "XY2"
will still be in memory at 2816, If you've turned the Apple off
sfnce that time, you will need to load it again. Type "G" for
"Get” and enter the filename "XYI", The file will be loaded into

memory .

| Getting a Good View

If the image was already in memory, 1t won't 'sppear untd you
rotate it or move it on the screen, Images can be rotated,
positioned, and scaled from the imane editor,

To rotate the {mage, type "R", You will see:

Rotate [X (num) to Z (num)] :

3-D GRAPNICS 8 -11

P
- g

are em——

- e e o

&

T T .~

VX emmm e =

—
et~ &

. ——

" e s e e s oSG atag s enmr A

TA TS AR

-l e Y g 2 IO, i RN W
eeadin S

R

Bt et et st a7

e

For this command enter the letter of the axis you want to rotate
éround followed hy the anqle You want to rotate. For this
example, type “Y1A", The Image will rotate around the Y-axis,
Type "R again and enter "X16*, Now you can see the arrows well,

To scale the object, type “$". You will sce the prompt :
Scale [(nua), or x,v,2 (num)] :

To scale X and ¥ Similtaneously, simoly enter a numher, To scale
one of the coordinates, type X, ¥, or 2, and then the scale
number. Since we're keeping the image in the corner of the
screen, 1t's best to keep the scale small, The scale is
inffally set to 8,

To change the position of the ohject, type “P*. VYou will see:
Position [X (num) or Yy {num)] :

Enter an X or a Y followed by the desired screen position, The
image has an inftial screen position of Xs64 and Y48,

You can choose a color for the image, if the color is not already
set 1n the {mage file, Press “C* for "Color” and enter the ’
desired color number. You can also choose hctween EXMODE and
ORMODE views. Press "M* for “Mode", then enter *X" for EXMOOE or
“0" for “ORMODE", .

Image File Entries

Now type “L* for “"List"® to see the numhers that make up the
image. You can press (return) to see all of the entries or press
ConTRoL-C to stop. Remember that, as explained above, GraFORTH
uses Carteslan coordinates, & system of three numbers for each
deflined point,

3-D GRAPNICS . 812

s

" -

Cm e

|

ke §

Each entry in the IMAGLHITOR listing has the following
information:

. 1. Whether the paint is to be (M) moved to withaut drawing, or

(D) drawn to from the arevious)ine ending. (This means that
each image file rust heqin with (M), not (M), since there are
no previous lines at that time.)

2. What color should be used for the line. The color numher {if
present) is directly under the letter *C* in the heading,
{If it is desired to use the word “OBJICOLOR™ to specify
object color, then don't make any color entries within the

lmage file,)

3. The X, Y, and Z coordinates of the point (each conrdinate
les within the range -128 to 127).

4. The address of the entry. Each entry occupies four bytes.

The last six lines of the imaqe file can also be seen by pressing
“E* for “Enter®, We will use the “Enter® command in a morent to
create our own 3-D shape. For now, press <return) to leave the

“Enter* mode.

While using the image editor, you may want more screen space for
text and less for tmaqe drawing, or vice versa. To accomplisgh
this you can use "W* to move the text window up or down, position
the image using “P*, and scale the imdge using “S*, The “List®
and “Enter” commands will use as many lines as the text window

allows,
Sometimes, while adjusting the image position, the image will
“wrap around” on the qraphics screen. If you want to clean up

the screen, type "W" and reenter 14 or some other window top
value. “N* clears the screen when it sets a new window,

Creating New Images

Now we QIII create our (wn image, a cube. ‘First, wa néad to
erase “XVI", Press *"1*, and you will see:

Erase File (Y/N) :

Type a “Y" to erase the file. The image won't disappear right
away. (If the presence of the old image disturbs you, press "W
and enter 14 to cause the "Window" command to erase the screen,)

3-D GRAPHICS 8 -11

e vt oy« -

b = ¥ g

N
- Po— ¢

=
. - e

- Dt T Sy o
- . e

i eAl prm -

Y gy

b, K

So that we will be able to see all sides of our ohject as 1t fx
created, enter 8 2 scale of A for persnective (press “"S", then
"18%). llow press “E" anatn. Notice that no file entries are
listed, since we have erased them.. You will see a prompt:

(M)ove, (D)raw, (-) Delete, (CR) Nuit :

Since the first entry must he a mova, type "M*. You will he
prompted for a color, Let's not use a color, $0 that later we
can select its color with NOJCOLOR. Just press <{return),

You will then be prompted for X, ¥, and 2 values fin turn, We're
n0fna to start with the point at the lower left front corner of
the cube, X at the left is -127, so enter -127 and press
(return), Y st the hottom 1s 127, Enter 127 and press <return),
1 at the front 1s 127, so enter that and press Creturn),

You sti1l won't see anything drawn, because we have only defined
a2 sinqle point, and points aren't plotted in GraFORTH 3-0
qraphics, only 1ines, Now let's draw our first line, Type *D"
this time instead of "M", Now enter an X value of 127 (rememher
the last entry was -127). Ve want the other two values to stay
the same. In this "Enter" mode, to keep & previous valua, just
press (return), The last value will be repested. Press <returnd
for both Y and 2. Now a Vine will appear from left to right
(from X = 2127 to X « 127).

Now repeat the entry procadure, pressing "D" mach time and
ch;nq!nq only one number per entry, pressing creturnd for the
others:

1 to =127
X to =127
and I to 127 sqain,

These entries will draw a square at the bottom of the imane
space, (If the view fsn't very good, press <returnd to leave
"Enter” mode¢, change the rotation or the scaling, then press "E*
to return to "Enter” mode.)

Note: If at any time you make an incorrect entry, Just finish
:?7 entry, then press ".", “." deletes the last entry in the
e, :

Now {f we change ¥ to -127 and repeat the entire procedure, ve
will have most of the cube. ’

J-D GRAPHICS 814

At this point three ednes are sti!) missing. Can you Mlaure out
how to draw the missing edqes?

The solution s to (M)ove to each of the following locations, and
{0)raw a vertical line (using Y) from bottom to top:

1. (M) X =127, Yo 127, 2127
2. (D) X (same), Y = <127, 7 (same)
3. (M) X (same), Y = 127, 2 = -12]
q, }ng X (same), ¥V = 2127, 7 (same)
5. (M) X » -127, Y= 127, 2 ‘sane

Y» 2127, 1 (same

6. (D) X (same),

Saving the Image File

Now we can save our cuhe. Press <(return) with no entry to leave
the "Enter" mode, then press “X* for "Keep“. You will be

prompted:

Enter File Name to Keep :

Enter a file name here. The GraFORTH system diskette already
contains a file named "CIBE™.- (It contains a cube identical to

the one we just made here.) I[f you're using another disk, vou
can use the filename "CURE"™ or another lilename.

Three-Dimensional Display Methods

St

From within a program, the word DRAW {s usuvally used instead of
AUTODRAW to draw 3-N images. This way, several parameters can he
changed at once hefore the next image {s drawn. When AINTODRAW {3
off, executing NRAW causes the imaaes to he drawn.

Aside from the mathemstical methods (described in Appendix n),
GraFORTH has a rather complex display method for 3-0 imanes. In
general, when a DRAW commend {s issued, the following events
occur:

3-D GRAPNHICS 8- 18

—— —— . .

——
T T S aum cap v . o e om—
e v e - e~

A St e A TS TS L L

- -

I, The drawing routines are directed at the araphics screen that
;s not currently being displayed, so that the drawing won't
e seen.)

2. The previous imange on the Invisihble screen is “undrawn®,
using information stored when it was drawn,

3. The new imaqe is drawn,
4. The display is switched to the freshly drawn screen.

This method quarantees high-quality animatfon images, since the
entire process of drawing is concealed from the viewer.

You may wish to note that character graphics, discussed in the
last chapter, also draws to both screens, so that character and
3-D qraphics can be freely {ntermixed,

Redrawing Without Change

For maximum speed, an object is only redrawn hy DRAW {f a new
commind is fssued to it. So in a program with several objects,
only those that have been referenced since the last DRAN will be
redrawn, Example:

0 OBJECT 16 XROY
J ORJECT 24 YROT
DRAW

Only objects O and 3 will be redrawn when DRAN is executed.

If an object has been changed and then drawn, the fmaqes of the
ohject on the two araphics screens will not be the same. If
other objects are then repeatedly changed and drawn, causing
GrafORTH to switch graphics screens, then the two un)ike Images
of the object will be alternated, causing a back-and-forth type
of residual motion. .

Therefore, if saveral objects are beina drawn independently, they
should be referenced (using the word DBJECT), 1f not chanqed, to
cause the Tmage to redrawn, This way, the images on bhoth
graphics screens will always be updated. For example, '

1 OBRJECT

causes a redraw of object | at the next draw command.

3-D GRAPUICS 816

N—--Td

P

Erasing Individual Objects

The GraFORTH word OFF is used to “undraw" an object hut not

redraw it, Most ohjects =tay on the screen afler the last imane
entry to their tahles. OIF selectively erases objects that are
no longer needed. Subsequent commands to ¢n ohject will redraw

it. MHere is an example of UFF:

Ready 3 OBJECT OFF

Overlapping Objects and UNDRAW

In & case where there are several overlapping objects, or objects
are drawn over text, it is best to use "EXMODE", since this
causes drawing and undrawing to occur without destroyinn the
screen's oriqinal contents. Alternatively, if all the objects
are in continuous motion, it may he desirable to use the word

UNDRAW,

UNDRAW simply erases a block of character spaces specified hy
BLKSIZE, just as UNBLK does. However, UNDRAW also causes the
next DRAW command to, not do an automatic Vine "undraw™ before
drawing the next imaqe, This way, you can use UNDRAW to erase
the 3-D tmaqges yourself. Using UNDRAN is frequently faster than
the automatic 1ine undraw that s carried out by DRAW,

For example, Vet us say we have an image in the center of the
screen {at X s 128, ¥ = 96) that extends 20 plotting points n
radius -around this point., Rememher that numbers entered to
BLKSI2E refer to characters, not points, Text characters of size
0 are 7 points wide and 8 paints high. So an entry to BLKSIZE of
6 by 5 will cover an area 42 by 40 points, large enough for our
sample image. Remember that UMDRAW, like UNALK, is controlled by
VTAB and MTAR, Let's set the blocksize, then position and

execute an UNDRAW hefore the next DRANW:

Ready 6 6 BLKSIZE ,

Ready 1A°VTAB 17 HYAB UNDRAW DRAW

3-D GRAPIICS 8 -1

e
“

-

L e S
" - " e caa

——

Rememher also that UNPRAW, Jike PUTALK and UNRLK, doesn't advance
WTAD across the screen as for printing, Once positioned, UINDRAW
can be used reneatedly over the ssme ared, .

Other Effects

If you wish to prevent undrawing of the imanes (for special
effects), simply use UNDRAW, hut place the undraw hlock away from
the imane, For spced, select a hlocksize of | by 1 in this case,

-1t 1s also possihle to prevent screen saquencing altoqether,

using SEQUENCE, so that the procnss of drawing may be ohserved.
SCMIENCE removes a numher from the stack. If this number is a 0,
screen sequencing is turned off. If the number is 1, screen
sequenzing is turned hack on, This example will stop screen

sequencing:
Ready 0 SFQUENCF

Usually used with "0 SEQUENCE®, the word "SCREEN" selects which
graphics screen to display, The screens are numbhered N and 1,
This example displays screen number 1:

Ready 1 SCREEN

PROFILE

There is another program on the GraFORTH system disk used for
creating J-D imaqes, called PROFILE. PROFILE acts as a sort of
graphics “lathe”, creating images that are cylindrical in nature
from a set of points defining the profile of the image. The file
“CHAL" on disk contains the imane of a chalfce, and is an example
of the kinds of images that can be created with PROFILE,

To run Plorllf. first make sure that there is room on the word
1ibrary by FORGETting any extra words, then type:

Ready READ " PROFILE °

Ready RUN .

3-D GRAPHICS 8-18

T
S i
"
i

n
}
i

T
= 4
{4

Yol o gy -
-]

oy
oo g o

.

EEI,_,__
"n'n—

Setting Parameters

You will sem the PROFILE heading and some instructions, Ve're
qoing to use PROFILE in this example to create & simple cone,
The first question asked is:

Enter number of polyqon sides :

This determines how smooth the cones circumference will be, For
2 perfect circle, you wonld ideally want to enter an Infinite
number of sides, linfortunately, your Apple does not contain an
fnfinite amount of memory! For this examplm, enter g 70,

The next promot reads:
Enter Object File Address :

with a qood ol' 2R16 already selected for you. Imaaes created
with PROFILE cen easily use a lot of memory. lisually you will
want to use the area of memory healnning at 2914 or the space
above the word library. (To find this address, print the

value of PRGTOP after loading PROFILE, and add ahout SN or 1NN to
this address for extra space,) For this example, just press
<return) to keep the address 2016,

Entering Data from the Keyboard
Now you will see:
Data from [KJeyboard or [N]isk ?

You can either enter the profile coordinates directly from the
keybnard or use a text file that contains the coordinates, Here
we will enter the coordinates directly, Press "x” for
"Keyboard*, You will see:

Enter X,Y pair (end « "E*) : *

This {s where you actually enter the coordinates. The Vv
coordinate is the vertical position in the profile. The valid
range is -128 to 127, The X coordinate can actually he
considered a radius, since it determines the distance from the
edge to the center of the object. Its valid ranoe is also -12R
to 127, but neqative entries sre fdentical to positive ones, so
only numbers from 0 to 127 need he used.

3-D GRAPHICS 8~ 19

P

.

..
A Yoo S, o 3

S

C -

P ser gy - 4

’ZfLr‘--‘-’v‘.

o=

—

ety T
“Er

OB o s FrEec A Beo SO &(A

—

— e e
2 e e ———

We're aoing to start our cone as a single point, and work down,
The top of the cone s at Y » =120, and the radius (X) s zero.

As we move down wi

increase the radius,

Enter X,Y pair
Enter X,Y pair
Enter X,Y pair
Enter X,Y pair
Enter X,¥ pair
Enter X,Y patr

The last entry

(end =
(end =
{end =
(end o
(end »
{end »

th increasing v values, we'll also steadily

Make the following entries:

“€") : 0,-128
E*) 1 32,-64
) : 64,0
“€*) : 96,64
"E*) : 122,122
-f. : E

must be "E". For a few seconds, the phrase:

Generating image f{le (24 bytes) . . .,

will appear on the screen as PROFILE computes the points that

sake up the cone, then
ce that the cone has 20 vertical lines around

This 15 because we selected 20 polygonal
There are 4 clrcles around the cone and a point at the

will appear.

sides,

Not i
fts circumference,

the screen will be erased and the cone

ton. These are hecause we made 5 profile entries. At the bottom
of the screen will be the message:

Enter object file name :

This s so you can sav
+ enter a filename and press Creturn>, |[f

save the cone to disk

you.don't want to sav

program will end,

e the 3-D object to disk. If you want to

e the image, just press <return) and the

Entering Data from Disk

rlier, PROFILE can 4150 read a list of coordinates
e, The textfile "BIGCHAL* contains a list of

As discussed ea
from a disk £}
coordinates that

describes the profile of a chalice.

You may

wish to see this){st at some point. When PROFILE 15 no longer
in memory, you can enter the text editor, get the file DIGCHAL,

and list {¢.

You wil) see a)ist of numbers similar to the one

we entered to mike the cone, but longer. Note that the last

3-D GRAPHICS

8 - 20

entry in the file is “€", marking the end of the list,

For now though, let's run PROFILE anain, this time using the
textfile BIGCHAL instear of kevhoard entries. Run the pragram,
select 8 polyqon sides, the address 2816, then *0* to read data
from disk. You will then be prompted:

Enter NData File Name :

Enter the name “BIGCHAL®. The disk wil) whir for a bif, then the

messane:
fienerating image file (2724 bytes) ..,

will appear, After a bause. the chalice will) appedr on the
Screen, As hefore, you can either save the 3-0 image to disk, or
press <(return) to exit,

Memory Considerations

Because PROFILE can qenerate very larae imane files rapidly,
imane size checking has heen added to help prevent overwriting

important parts of memory.

sually you will usk one of two areas of memory for the 3. image
file when using PROFILE: either the free space from Incations
2816 ta 5887, or the Space abave the top of the word library. If
You select an address between 2816 and 5R87, PROFILE wi)) prevent
the image from extending beyond location 5887,

If you select an address qreater then 5887, then PROFILE assumes
the imaqge is above the word library. It then checks for the
presence of a lanquage card, |f You dre using a lanquage card,
PROFILE will allow images to extend to location -16385,
immediately below the Apple I 170 area. If you do not have a
lanquage card, PROFILE prevents the image from extending beyond
location -26]]3, immediately below NOS,

If the image ts too large to fit in the provjded Space, the imaqe
will not be created or drawn, and the following message will

appear:

Not snough room here.
(Requires nnnn hytes.)

with nnnn being the actual number of bytes the image requires.

3-D GRAPHICS 8 - 21

e e

e e W

e
———
R T e g o

- e m——— - . .

e
X Y‘?

cwarde L

N

< g oA p L et

o e = e

[P O Y, 2

. 3-0 BRAPHICS

Notice that if the starting sddress yov select 1s in & “safe”
area of mewory, thea PROFILE will preveat the tmaqe from
clobhering important information. However, if you selnct an
address in the middie of samething important, you'll find
yourself having to reboot the system from scratch,...

PLAYing . Around

The proqras PLAY was briefly introduced in Cheoter 1. PLAY was
designed for you to "play” with & 3-D image, manipulating its
rotation, scale, translation, and position parameters. Any or
all of these parameters can he set into motion, afving you 8
rapid intuitive “feel™ for what each of the paraseters does. And

PLAY is a lot of fun!

Note that PLAY, 1ike IMAGENITOR, uses the same wemory as does the
text editor on non-lanquane card systems, Be sure to foreet any
extra words in the word 1ibrary (PLAY is rather s large programl,
then type:

Ready READ ™ PLAY °
Ready RUN

The instructions are fairly self-explanatory. Once the imene is
loaded and you begin “playing®, you can select 2 parameter with
one of the nunher keys. To set the parameter in motion, press
one of the arrow keys, The right arrow incresses the parameter
value; the left arrow decreases it, By pressing several number
keys and arrow keys alternately, you can -set 3 number of
parameters in motion at once. i o

If any one parsmeter gets out of hand, you can press *F" te
*freeze® its motion, leaving it at the curreat value, You Cin
3130 press "D°, to bring it hack to its “Defaelt” value,

If you want to pavse everything, fust press CoaTRol-S. The
display wil) pavse, and a flashing cursor will sppesr in the
vnper-left corner, Just press any key to reswma. i you
want to bring everything to a complete halt, press €SC. Al
motfon will stop snd all perameters will be set beck to thair
default valves. Finally, typing “1° will display the instruction
screen again, and "0" will quit the program. - . S

m m

.
A

|

17}
.f]'____
Ldl

m om ¥ o oor
H—{—4—{—
Wi oWwow L

=1
i

s
11—
Wi i

Let's answer the start-w questions and eet thinas moving:

The first prompt you will see 1s:

image in [Rlewory or on [0)isk?

If you already heve an imice in remory, press *H*, (f you want
to Yoad an imane from disk now, press *0", For this example,
press °D", Mext {s the now-famous addcess question:

Enter hl_gt address @

anain with the number 2816 waiting for you, If you want to use
the address 2816, just press Creturn>; otherwise enter the
address you want, Press (returnd for this example. [f you
selected to 1oad an image from disk a moment ano, you will then

see:
Enter image filename :

Type the name of the file you want to load. Let's load the file
"WOUSE"., Lastly:

Press Return to beain.,.

The screen will be erased and the image will appear. Along the
right side are the values for each of the parameters. When you
press a number key, the selected parameter will also be displayed
on the bottom line with its current value and increment.
Pressing the arrow keys will change the increment and set the

object in motion,

You'll also see & question mark in the lower right corner. Thig
1s just to remind you that the instructions can be displayed at

“any time by typing “1°.

WIth PLAY, it's very easy to get some of the parameters out of
bounds, causing screen of *space” wrap-around, It doesn't hurt

anything, and it can somet imes produce rathes a-wsing effects!

3«0 GRAPHICS

- -'.“‘4' Itasi

" wes

=

P el . ¥ S

e em & -
-
-

.- Rty e B~

-
-

..

e ——

NV S
R

_..' ‘.---.

-
- Tan
[ROpRp

e

R W TN WEY

Conclusion

We've now looked at all three kinds of qraphics: two-dimensional
graphics, character graphics, and three-dimensional qraphics.
With the information presented in these chanters, you can
incorporate a wide variety of animated color graphics effects
Into your own proqrams, then use SAVEPRG to produce @ system that
hoots and runs them automatically!

The next chapter explatns how you can create music and sound
effects with GraFORTI. (Ne'l) also mention another program you
may he interested in...) So without any further delay, on to
chapter 91

3-D GRAPKHICS ' 8 - 24

laad .
.' o ¢
e -y ..

E'T‘*’""

CHAPTER NINE: MUSIC WITH GRAFORTH
Chapter Table of Contents:
Introduction
VOICE
NOTE

Determining Duration and Pitch

Useful Music Words

MUSIC WITH GRAFORTH

Pagé
o2
9-2
83

83

9-4

91

Ry :;g;»_ﬁ

SR T o o

Ry

2.

> -a

i 7 8%

P

"-‘

Introduction

GraFORTH hes o sophisticated mystc ¢ nthesizer the

the Apple X[built-in sneaker, Note: may be'olave; 7:'x:n:"'°"""
distinct voices (not similtaneously), Thege featuras allow you
to incorporate music or snund effects nto your applications or
9ame proqrams,

Jg: two GraFORTH words that control the synthesizer are VOICE and

VOICE

The GraFORTH word VOICE selects one of 9 voices 1h which to pliy

notes. VOICE removes a number from the stack, and uses it to

select a given voice. MHere ére the VOICE numbers and their

meanings:

Number Yoice

-6 to -1 Selects a constant ‘duty cycle' for the note,
producing a note that {5 constant in volume., -1 « Sng
duty cycle, <2 » 25¢ duty cycle, +3 « 12.5%¢ duty
cycle, etc. Smaller duty cycles decrease volume and
Increase the amount of high-frequency enerqy in the
note,

0 Note begins at 50% duty cycle, then decreases to 0%,
The note seers to die away,

1 The note hegins at 0%, Increases to 50%, then
decreases a9ain,

2 The note benins at 0%, then Increases to 501, The

note seems to increase in volume,

MUSIC WITH GRAFORTH 9 .2

NOTE

The GraFORTH word NOTE actually causes a note to he played, WOTE
removes two numbers from the stack to select pitch and duration,

then plays the note. The form for NOTE is: i

pitchd <Cdurationd NOTE

The valid numbers for piteh and duration are in the renge 2 to
255, Laraer numbers for duration produce lo-ger notes. Larqer
numbers for pitch produce lower pitched notes,

Let's play & couple of notes. The voice used If one has not been
selected s voice 0, This example Plays an "A" two octaves belnw
middie A:

Ready 124 255 NOTE

Let's try a different note:

Ready 62 128 NOTE

This olays a note an octave higher for half as Tona. Now let's

change the voice and play the same note:
Ready -1 VNICE
Ready 62 128 NOTE

Notice the change in tone quality, Experiment with the different

voices to hear their differences.

Determining Duration and Pitch

The duration of a note is directly related to the sfze of the
duration number. 255 can be considered a whole note, 128 ¢ haif
note, 64 a quarter note, and so forth, 0Of course, {f you want to
nlay notes at a faster tempo, simply use smaller numbers,

MUSIC WITH GRAFORTH 9.3

llere is & table relating notes to the pitch numbars which produce
them:

Note Octave } Octave 2 Octave J Octave 4

A 248 124 62 k)|
Al 234 1Y 58 29
A 221 ito 55 r)
c 209 1n4 52 26
o] 197 91 49 24
n 186 9] 46 2]
0 175 87 43 2
f 166 Al L} 20
F 156 m 39 19
Fe 147 13 36 18
6 139 69 M n
G 131 65 32 16

Useful Music Words

If you don't want to look up the pitches for each note, you tan
use the following program to generate the table and store it in a
strina array called “PITCH". "Each element of PITCH, instead of
containing a character, contains the pitch value for a note.

50 STRING PITCH
: COMPUTE,NOTES
24A70 ’

48 0 DO
DUP 100 / | PITCH POKE
ouP 18 / .
OUP 1655 / -

LOOP DROP i,

Ready COMPUTE.NOTES

Running COMPUTE.NOTES qenerates the tahle in PITCH, Now the
pitch values for the 4A notes (numbered 0 through 47) can be
found by reading the. value from the proper element of PITCH, For
example, the pitch value for the note 3 in the tahle (a “C* from
the first octave) can be found in position number 3 in PITCH:

MUSIC WITH GRAFORTH ' 9-4

—
B v
e

h"—-—

o -

h“—-—v
[LT

by ~ oo

- -

Py oo

F o copm

[

= -

b @ - ogre

-
e e

L e

—-—
n‘-.-'
'ews o

L.

Ready 3 PITCH PEEK ,
209

To play -this note as a half note, you can enter:
Ready 1 PITCH PEEX 128 NOTE

You can also define a short word that retrieves the pitch value
for you: .

Ready : GETPITCH PITCH PEEK , ;.

Ready 3 GETPITCH
209

This word can be used with NOTE:
Ready 3 GETPITCH 128 NOTE

Since the notes are now numbered from 0 to 47, we can play all of
the notes in the scale by using a loop:

Ready 48 0 DO | GETPITCH 32 NOTE LOOP

With a little patience, we can put togelher a sonql The
following word definition plays the first phrase from the “Haopy

Dirthday” song:

¢ HAPPY.B
12 GETPITCH 50 NNTE
12 GETPITCH S0 NOTE
14 GETPITCH 100 NOTE
12 GETPITCH 100 NOTE
17 GETPITCH 100 NOTE
16 GETPITCH 200 NOTE ;

For longer tunes, repeating the words GETPITCH and NOTE will
waste a lot of space. We wanted to show hare how simply the
tunes con be constructed. A much more effigient method is to
store the numbers in memory or on the stack, and read them and
play the notes from a loop.

MUSIC WITH GRAFORTH 9-5

.- e o e eem
B =

“
- - T

* vamye-.
-~ am -

w-—-a

A.I'\--~':‘“*~
T e p———
[y

—

X oy

ey

—
PR - L

- o ——
Moo o . —

C——can o o -
R e

" -

T e

A A St A2 W Y Y

Postscripts .

Note: The quality of the synthesizer is higher than can be
demonstrated with the Apple][built-In speaker. The use of a
larqe external speaker is recommended for serious musfic work,
See the Apple][Reference Manual or your local dealer fur
connection information,

For two-part music anplications, the Electric Nuet, also written
by Paul Lutus, 1s available from Insoft, The Flectric Nuet plays
2 simultaneous notes through either the Apple speaker or #n
external amiifier, and can be used to play music directly ffom
your GraFORTN programs. [t contains a full feature music editor
with the ability to transpose both note pitch and duration,
Music can be directed to either the internal speaker or the Apple
J{ tape output jack. The suqqested price of the Electric Duet is
only $29.95. For more information, contact Insoft or your local
Apple dealer,

MUSIC WITH GRAFORTH 9.6

| SRR

(SR

-

L

-

Ny = oa g

—
o e
g e gan

—
e =
[—

E-rd
SSopmsia-

CHAPTER TEN: FINAI, WRAP

We've made 1t] You have now been Introduced to the GraFORTH
system, from lanquage features to complex araphics. From hare on
out, you will probably be using this manual mnre a3 a8 reference
miide than as & tutorial; therefore, we suagest you qet
acquainted with the appendices, You will find the Word Library
listings invaluable, and the Index very helpful for finding those
definitions you've forgotten. The technical data section covers
very useful information we suqnest you at least hrowse through,
and the GraFORTH diskette file 1isting and ASC!! code tahles are

excellent references when you need them,

Please note that 1f you are using or intend to use GraFORTH to
develop software for re-sale, we would 1ike to talk with you.
Insoft represents fine software (such as this!) for Apple, 1BM,
Atari, NEC and other popular microcomputers. (Our royalty rates
are amonq the hest in the industry, and our support team {s
second to none., Let us show you why using our team of
professionals makes qood sensel

1f you decide to market software on your own, please call us for

tnformation on a license aqreement to use GraFORTH. There is no

fee for this license, however, we do have a few restrictions on

Fiow it s marketed (We'll show you how to lock GraFORTH so that

only your program can be run.) Either way, please contact:
Michael Brown

Insoft
10175 SW Barbur B8lvd. Suite 2028

Portliand, Oreqon, 97219
(503) 244-4181

You now have & graphics system that is qn1té nearly limited only
by your imaginstion! We hope you enjoy learning and using
GraFORTH as much as we have enjoyed the opportunity to bring it

to youl

FINAL WRAP 10 - 1

B Ry

T AR T R T A -

o

—
— .
PR,

- PR s I
e T e w e a—

. wm—e o

DO

Zoox.

.

L

APPENDIX A:
WORD LIBRARY LISTING

The following is a 1ist of the words in the GraFORTH word
library. The list includes the word name, & "before and after”
stack picture, the page number in tte text where the word is
first introduced, and a brief description of what the word does.

The stack picture shown represents relevant. numhers on the top of
the stack as letters. The top of the stack is to the riaht, as
indicated by a dash. Three dashes represent an empty stack. How
words use the stack can usually be inferred simply from the stack
picture.

The word descriptions here are not meant to he comprehensive.
For more information on each word, we suqaest you refer back to

the text, using the page numbers provided.
GraFORTH WORD LIBRARY LISTING

Word Name Before After Page

” - .- - .- -3

A set of quotes surrounding text causes the text to b. compiled
into the program, Used with PRINT, ASSIGN, and READ.

SLIST - .- -- - 5-30
Lists words {n word library with hexadecimal addresses.
’ - e - s $-30

3 = addrass of the word that follows °, and prevents that word's
execution,

- . r o= 4-14¢
Indicatas the beginning of a program comment, to be passed over
by the GraFNRTH compiler. \

APPENDIX A: WORD LIBRARY LISTING

———— e

L R N S

- vy e

GraFORTH Word Library Listing

Word Name finfore After Page
. mnn . - 3-10
P=m®n (mitiplicatton)

+ mn . P - 3-6

Pemsn (addition)

+L00P n-. .- 3.

Marks the end of 4 loop structure, using n as o loop value
increment,

[> o » * ® e 5.32
Compiles a single byte within word definitions,
- p - J-10

nn .
Pem-n (subtraction)

-) {not spolicahle) 5-8

Causes the next variable reference to store the top stac value
int<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>