; ca65 .feature c_comments .linecont + .feature labels_without_colons .feature leading_dot_in_identifiers .PC02 ; 65C02 /* Version 37 printm - a modular micro printf replacement for 65C02 Michael Pohoreski Copyleft {c} Feb, 2016 Special Thanks: Sheldon for his 65C02 printf() source, qkumba optimizations Problem: Ideally we want to print an 1:1 mapping of input:output text that includes literal and variables. We could do this by using mixed ASCII case: - high bit characters would be output "as is" - ASCII characters would be interpreted as a variable output. __ ___ ____ __ ________ ________ .byte "X=## Y=### $=$$$$:@@ %%%%%%%%~????????" Legend: # Print Dec Num $ Print Hex Num % Print Bin Num ? Print Bin Num but with 1's in inverse @ Print Ptr Val _ Chars with underscore represents ASCII characters While originally this gives us a nice 1:1 mapping for input:output ... ... it has 2 problems: a) it has to be constructed in pieces b) and it is bloated. Can we fix (a) ? Can we use a more compact printf-style format string where we don't waste storing the escape character AND toggle the high bit on characters on/off as needed? Yes, if we use a macro! PRINTM "X=%# Y=%d $=%x:%@ %%~%?" Can we fix (b) ? Yes, by using an unique meta character that has the width associated with it. This is why the cannonical printf() on the 6502 sucks: - is bloated by using a meta-character '%' instead of the high bit - doesn't provide a standard way to print binary *facepalm* - doesn't provide a standard way to print a dereferenced pointer - 2 digit, 3 digit and 5 digit decimals requiring wasting "width" characters e.g. %2d, %3d, %5d When a single character would work instead. - printf() is notorious for being bloated. If you don't use features you can't turn them off to reclaim the memory used by the code (or data) Solution: Here is a *modular* _micro_ replacement: printm() * Literals have the high byte set (APPLE text) * Meta characters have the high bit cleared (ASCII) $ Hex - print 2 Byte x Hex - print 4 Byte @ Ptr - print hex byte at 16-bit pointer & Ptr - print hex word at 16-bit pointer # Dec - Print 1 Byte in decimal (max 2 digits) d Dec - Print 2 Byte in decimal (max 3 digits) u Dec - Print 2 Byte in decimal (max 5 digits) b Dec - Print signed byte in decimal % Bin - Print 8 bits ? Bin - Print 8 bits but 1's in inverse o Oct - Print 1 Byte in octal (max 3 digits) O Oct - Print 2 Byte in octal (max 6 digits) a Str - APPLE text (high bit set), last char is ASCII s Str - C string, zero terminated p Str - Pascal string, first character is string length Each option can individually be enabled / disabled to control the memory footprint since you probably don't need "every" feature. Seriously, when was the last time you _needed_ octal? :-) printm() has manually been optimized for size. In gcc parlance, `-Os`. With everything enabled printm() takes up $1BA = 442 bytes (Plus 2 bytes in zero page.) Whoa! I thought you said this was micro!? Believe me it is. Here are some of the optimization tricks used: 1) Using BIT to skip instructions in common entry point EntryPointA SEC db BIT_ZP ; skip over next instruction EntryPointB CLC ...common set up code... BCC _CodeForA _CodeForB _CodeForA _CodeForAll 2) Self-modifying code for dynamic width EntryPointA LDA n1 db BIT_ABS ; skip next instruction EntryPointB LDA n2 ; intentional fall into common code _SetWidth STA _DynamicWidth+1 LDX #0 ...code... _DynamicWidth CPX #n 3) No CMPs to preserve the Carry flag for common entry points 4) Jump table is 3 bytes/entry, using 65C02: JUMP (FUNCS+1,X) char, word_ptr_to_func 5) A negative buffer offset so that a register will reach zero and we can test for end of processing without using a CMP which would trash the carry: LDY #$FD ; $00-$FD=-3 bcd[0] bcd[1] bcd[2] bcd[3] @DoubleDabble: ; Y=FD Y=FE Y=FF Y=00 LDA _bcd-$FD,Y ADC _bcd-$FD,Y STA _bcd-$FD,Y INY BNE @DoubleDabble ; When Y=0, we'll be at _bcd[3] With all 15 features turned OFF the core routines use $49 = 73 bytes. With the common setting (default) features: BinAsc, Dec2, Dec3, Dec5, Hex2, Hex4, and StrA the size is $11A = 282 bytes To toggle features on / off change USE_* to 0 or 1: */ ; NOTE: The Size *also* includes the core routines ; so the actual implementation size for each feature ; is actually smaller the size leads you to believe. ; Also, "common functionality" is also included in the count.. ; core _PrintDec routine. ; ; Feature Size Bytes Total Notes USE_BIN_ASC = 1 ; $78 120 \. $7E (126 bytes) USE_BIN_INV = 0 ; $78 119 / USE_DEC_2 = 1 ; $C5 197 \ USE_DEC_3 = 1 ; $C5 197 \.$EF (239 bytes) USE_DEC_5 = 1 ; $C5 197 / USE_DEC_BYTE = 0 ; $DE 222 / sets ENABLE_DEC USE_HEX_2 = 1 ; $93 147 \. $98 (152 bytes) USE_HEX_4 = 1 ; $93 147 / USE_OCT_3 = 0 ; $8C 140 \. $92 (146 bytes) USE_OCT_6 = 0 ; $8C 140 / USE_PTR_2 = 0 ; $A2 162 \. $A7 (167 bytes) sets ENABLE_HEX USE_PTR_4 = 0 ; $A2 162 / USE_STR_A = 1 ; $72 114 \ USE_STR_C = 0 ; $72 114 > $9F (159 bytes) USE_STR_PASCAL = 0 ; $74 116 / /* Demo (All features) + Library text dump: 4000:20 58 FC A9 20 85 E6 A9 4008:D5 8D 00 20 A9 AA 8D 01 4010:20 AD D4 41 A2 00 A0 00 4018:20 11 F4 18 A5 26 6D D2 4020:41 85 26 AA A4 27 8E D6 4028:41 8C D7 41 8E D8 41 8C 4030:D9 41 AD 00 20 A0 00 91 4038:26 8D DA 41 9C DB 41 8D 4040:F6 41 8D FA 41 20 9F 41 4048:8D DC 41 9C DD 41 A0 00 4050:20 AF 41 A2 D0 A0 41 20 4058:0E 43 A0 01 20 AF 41 A2 4060:F4 A0 41 20 0E 43 A0 02 4068:20 AF 41 A2 F8 A0 41 20 4070:0E 43 A0 03 20 AF 41 A2 4078:23 A0 42 20 0E 43 A0 04 4080:20 AF 41 A2 27 A0 42 20 4088:0E 43 A0 05 20 AF 41 A2 4090:2B A0 42 20 0E 43 A0 06 4098:20 AF 41 A2 2F A0 42 20 40A0:0E 43 A0 07 20 AF 41 A2 40A8:5F A0 42 20 0E 43 A0 08 40B0:20 AF 41 A2 63 A0 42 20 40B8:0E 43 A0 09 20 AF 41 A2 40C0:67 A0 42 20 0E 43 A0 0A 40C8:20 AF 41 A2 6D A0 42 20 40D0:0E 43 A0 0B 20 AF 41 A2 40D8:83 A0 42 20 0E 43 A0 0C 40E0:20 AF 41 A2 87 A0 42 20 40E8:0E 43 A0 0D 20 AF 41 A2 40F0:D7 A0 42 20 0E 43 A0 0E 40F8:20 AF 41 A2 D1 A0 42 20 4100:0E 43 A0 0F 20 AF 41 A2 4108:DB A0 42 20 0E 43 A9 11 4110:20 5B FB A2 DF A0 42 20 4118:8E 41 AD 0D 43 85 FF 20 4120:DA FD AD 0C 43 85 FE 20 4128:DA FD 20 AA 41 20 4C 41 4130:A2 F1 A0 42 20 8E 41 A2 4138:0F 86 FE 64 FF 8A 20 DA 4140:FD 20 AA 41 20 4C 41 A9 4148:8D 4C ED FD 9C 93 44 9C 4150:94 44 9C 95 44 A2 10 F8 4158:06 FE 26 FF A0 FD B9 96 4160:43 79 96 43 99 96 43 C8 4168:D0 F4 CA D0 EB D8 A2 05 4170:88 B9 96 43 4A 4A 4A 4A 4178:18 69 B0 20 ED FD CA B9 4180:96 43 29 0F 18 69 B0 20 4188:ED FD CA 10 E3 60 86 FC 4190:84 FD A0 00 B1 FC F0 06 4198:20 ED FD C8 D0 F6 60 A2 41A0:08 85 FE 06 FE 6A CA D0 41A8:FA 60 A9 A0 4C ED FD 98 41B0:20 C1 FB A6 28 A4 29 8E 41B8:8D 44 8C 8E 44 60 D8 BD 41C0:23 A0 D9 BD 64 A0 A4 BD 41C8:78 BA 40 A0 25 FE 3F 00 41D0:BE 41 27 00 BF 00 DE C0 41D8:DE C0 1A DA 1A DA C2 E9 41E0:EE A0 C1 D3 C3 BA A0 25 41E8:00 C2 E9 EE A0 C9 CE D6 41F0:BA A0 3F 00 DE 41 1A DA 41F8:E9 41 1A DA C4 E5 E3 B2 4200:BA A0 23 00 C4 E5 E3 B3 4208:BA A0 64 00 C4 E5 E3 B5 4210:BA A0 75 00 C2 F9 F4 E5 4218:BD 62 A0 62 A0 62 A0 62 4220:A0 62 00 FC 41 63 00 04 4228:42 E7 03 0C 42 69 FF 14 4230:42 80 00 FF 00 00 00 01 4238:00 7F 00 C8 E5 F8 B2 BA 4240:A0 24 00 C8 E5 F8 B4 BA 4248:A0 78 00 D0 F4 F2 B2 BA 4250:A0 78 BA 40 00 D0 F4 F2 4258:B4 BA A0 78 BA 26 00 3B 4260:42 34 12 43 42 34 12 4B 4268:42 00 20 00 20 55 42 00 4270:20 00 20 CF E3 F4 B3 BA 4278:A0 6F 00 CF E3 F4 B6 BA 4280:A0 4F 00 73 42 B6 01 7B 4288:42 DF 32 C8 C5 CC CC CF 4290:00 D7 CF D2 CC C4 00 C8 4298:CF CD 45 0D D0 E1 F3 E3 42A0:E1 EC A0 CC E5 EE A0 B1 42A8:B3 C3 A0 A0 A0 A0 A0 BA 42B0:A0 A7 73 A7 AC A7 73 A7 42B8:00 C1 F0 F0 EC E5 A0 BA 42C0:A0 A7 61 A7 00 D0 E1 F3 42C8:E3 E1 EC BA A0 A7 70 A7 42D0:00 A9 42 8B 42 91 42 B9 42D8:42 97 42 C5 42 9B 42 F0 42E0:F2 E9 EE F4 ED A8 A9 AE 42E8:F3 E9 FA E5 A0 BD A0 A4 42F0:00 A0 E2 F9 F4 E5 F3 8D 42F8:A0 A0 A0 A0 AE E6 E5 E1 4300:F4 F5 F2 E5 F3 A0 BD A0 4308:A4 A0 A0 00 BA 01 8E 24 4310:43 8C 25 43 20 1F 43 8E 4318:78 43 8C 79 43 80 58 20 4320:23 43 AA AD DE C0 EE 24 4328:43 D0 03 EE 25 43 A8 86 4330:FE 84 FF 60 38 A9 18 20 4338:1F 43 90 03 20 67 44 8A 4340:20 67 44 80 2A 38 A9 18 4348:20 1F 43 A0 00 B1 FE 90 4350:EF AA C8 B1 FE 80 E5 20 4358:1F 43 A0 00 B1 FE 10 0A 4360:20 8C 44 C8 D0 F6 E6 FF 4368:80 F2 09 80 20 8C 44 EE 4370:78 43 D0 03 EE 79 43 AD 4378:DE C0 F0 B7 30 EE A2 2D 4380:CA CA CA 30 EA DD 9B 44 4388:D0 F6 7C 9C 44 A9 02 2C 4390:A9 01 2C A9 00 8D BE 43 4398:20 1F 43 9C 93 44 9C 94 43A0:44 9C 95 44 A2 10 F8 06 43A8:FE 26 FF A0 FD B9 96 43 43B0:79 96 43 99 96 43 C8 D0 43B8:F4 CA D0 EB D8 A0 03 F0 43C0:0A B9 93 44 20 74 44 20 43C8:8C 44 88 B9 93 44 20 67 43D0:44 88 10 F7 80 99 20 1F 43D8:43 8A 10 0A A9 AD 20 8C 43E0:44 8A 49 FF AA E8 86 FE 43E8:64 FF A9 01 8D BE 43 80 43F0:AA A9 31 2C A9 B1 8D 06 43F8:44 20 1F 43 A0 08 8A 0A 4400:AA A9 B0 90 02 A9 B1 20 4408:8C 44 88 D0 F1 80 C5 A9 4410:06 2C A9 03 8D 31 44 20 4418:1F 43 A2 00 A5 FE 29 07 4420:18 69 B0 9D 93 44 A0 03 4428:46 FF 66 FE 88 D0 F9 E8 4430:E0 06 D0 E8 CA 30 9D BD 4438:93 44 20 8C 44 80 F5 20 4440:1F 43 A0 00 B1 FE F0 8C 4448:20 8C 44 C8 D0 F6 E6 FF 4450:80 F2 20 1F 43 A0 00 B1 4458:FE F0 B2 AA C8 B1 FE 20 4460:8C 44 CA D0 F7 F0 A6 20 4468:74 44 A5 FE 20 8C 44 A5 4470:FF 4C 8C 44 48 4A 4A 4A 4478:4A 20 7F 44 85 FE 68 29 4480:0F C9 0A 90 02 69 06 69 4488:B0 85 FF 60 8D DE C0 EE 4490:8D 44 60 00 00 00 00 00 4498:00 00 00 3F F1 43 25 F4 44A0:43 62 D6 43 75 8D 43 64 44A8:90 43 23 93 43 78 34 43 44B0:24 36 43 26 45 43 40 47 44B8:43 4F 0F 44 6F 12 44 70 44C0:52 44 73 3F 44 61 57 43 */ ; Assemble-time diagnostic information .macro DEBUG text .if 0 .out text .endif .endmacro ; This will take a printf-style string and compact it. The '%' is the escape ; character to output the next byte in ASCII (high bit clear) and print a var. ; Otherwise the remaining chars will default to literals having their high bit ; set. To output a literal '%' you will need to manually add it ; as the %% outputs confusingly enough is a single ASCII '%' which is print binary .macro PRINTM text, endbyte ; text2, text3, text4, text5, text6 .local h h .set $80 .repeat .strlen(text), I .if (.strat(text , I) = '%') ; handle special case of last char was % .if( h = $00 ) .byte .strat(text, I) ; ASCII % = PrintBin h .set $80 .else h .set $00 .endif .else .byte .strat(text, I) | h h .set $80 .endif .endrep .ifnblank endbyte .byte endbyte .endif .endmacro ; Force APPLE 'text' to have high bit on ; Will display as NORMAL characters .macro APPLE text .repeat .strlen(text), I .byte .strat(text, I) | $80 .endrep .endmacro ; Force APPLE 'text' with high bit on but last character has high bit off ; Will display as NORMAL characters (last character will appear FLASHING) ; Merlin: Macro Assembler -- Dextral Character Inverted .macro DCI text .repeat .strlen(text)-1, I .byte .strat(text, I) | $80 .endrep .byte .strat(text, .strlen(text)-1) & $7F .endmacro ; Force ASCII 'text' to be control chars: $00..$1F ; Will display as INVERSE characters .macro CTRL text .repeat .strlen(text), I .byte .strat(text, I) & $1F .endrep .endmacro ; Force ASCII 'text' to be control chars: $00..$3F ; Will display as INVERSE characters .macro INV text .repeat .strlen(text), I .byte .strat(text, I) & $3F .endrep .endmacro .macro PASCAL text .byte .strlen(text) APPLE text .endmacro .macro db val .byte val .endmacro .macro dw val .word val .endmacro .macro ds bytes .res bytes .endmacro ; Include necessary components based on features requested ENABLE_BIN = USE_BIN_ASC || USE_BIN_INV ENABLE_DEC = USE_DEC_2 || USE_DEC_3 || USE_DEC_5 || USE_DEC_BYTE ENABLE_HEX = USE_HEX_2 || USE_HEX_4 || USE_PTR_2 || USE_PTR_4 ENABLE_OCT = USE_OCT_3 || USE_OCT_6 ENABLE_PTR = USE_PTR_2 || USE_PTR_4 ENABLE_STR = USE_STR_A || USE_STR_C || USE_STR_PASCAL NumMeta = 0 + \ USE_BIN_ASC + \ USE_BIN_INV + \ USE_DEC_2 + \ USE_DEC_3 + \ USE_DEC_5 + \ USE_DEC_BYTE + \ USE_HEX_2 + \ USE_HEX_4 + \ USE_OCT_3 + \ USE_OCT_6 + \ USE_PTR_2 + \ USE_PTR_4 + \ USE_STR_A + \ USE_STR_C + \ USE_STR_PASCAL DEBUG .sprintf( "Features enabled: %d", NumMeta ) ; Only used by demo BASL = $28 ; TXT pointer to cursor BASH = $29 GBASL = $26 ; HGR pointer to cursor GBASH = $27 HGRPAGE = $E6 ; used by HPOSN HPOSN = $F411 ; A=row, X=col.lo,Y=col.hi, sets GBASL, GBASH BASCALC = $FBC1 ; A=row, sets BASL, BASH HOME = $FC58 TABV = $FB5B COUT = $FDED PRBYTE = $FDDA ; print A in hex demoptr = $FC demotmp = $FE __MAIN = $4000 ; DOS3.3 meta -- remove these 2 if running under ProDOS .word __MAIN ; 2 byte BLOAD address .word __END - __MAIN ; 2 byte BLOAD size /* Output: X=39 Y=191 $=3FF7:D5 11010101~10101011 Bin ASC: 11010101 Bin INV: 11010101 Dec2: 99 Dec3: 999 Dec5: 65385 Byte=-128 -001 000 001 127 Hex2: 34 Hex4: 1234 Ptr2: 2000:D5 Ptr4: 2000:AAD5 Oct3: 666 Oct6: 031337 Apple : 'HOME' C : 'HELLO','WORLD' Pascal: 'Pascal Len 13' printm().size = $0209 000521 bytes .features = $ 0F 000015 */ .org __MAIN ; .org must come after header else offsets are wrong ; Demo printm JSR HOME LDA #$20 STA HGRPAGE LDA #$D5 STA $2000 LDA #$AA STA $2001 LDA ARGS_DEMO+4 ;HGR Y row LDX #$00 ; HGR x.col_lo = 0 LDY #$00 ; x.col_hi = 0 JSR HPOSN CLC LDA GBASL ADC ARGS_DEMO+2 ; HGR x col STA GBASL TAX LDY GBASH STX ARGS_DEMO+6 ; aArg[3] STY ARGS_DEMO+7 STX ARGS_DEMO+8 ; aArg[4] STY ARGS_DEMO+9 LDA $2000 LDY #0 STA (GBASL),Y STA ARGS_DEMO+10 ; aArg[5] STZ ARGS_DEMO+11 STA ARGS_BIN_ASC+2 STA ARGS_BIN_INV+2 JSR ReverseByte STA ARGS_DEMO+12 ; aArg[6] STZ ARGS_DEMO+13 .if ENABLE_BIN && ENABLE_DEC && ENABLE_HEX LDY #0 JSR VTABY LDX #ARGS_DEMO ; High Byte of Address JSR PrintM .endif .if ENABLE_BIN DEBUG "+BIN" .if USE_BIN_ASC DEBUG "____:ASC" LDY #1 JSR VTABY LDX #ARGS_BIN_ASC JSR PrintM .endif .if USE_BIN_INV DEBUG "____:INV" LDY #2 JSR VTABY LDX #ARGS_BIN_INV JSR PrintM .endif .endif .if ENABLE_DEC DEBUG "+DEC" .if USE_DEC_2 DEBUG "____:Dec2" LDY #3 JSR VTABY LDX #ARGS_DEC_2 JSR PrintM .endif .if USE_DEC_3 DEBUG "____:Dec3" LDY #4 JSR VTABY LDX #ARGS_DEC_3 JSR PrintM .endif .if USE_DEC_5 DEBUG "____:Dec5" LDY #5 JSR VTABY LDX #ARGS_DEC_5 JSR PrintM .endif .if USE_DEC_BYTE DEBUG "____:DecB" LDY #6 JSR VTABY LDX #ARGS_DEC_BYTE JSR PrintM .endif ; USE_DEC_BYTE .endif .if ENABLE_HEX DEBUG "+HEX" .if USE_HEX_2 DEBUG "____:Hex2" LDY #7 JSR VTABY LDX #ARGS_HEX_2 JSR PrintM .endif .if USE_HEX_4 DEBUG "____:Hex4" LDY #8 JSR VTABY LDX #ARGS_HEX_4 JSR PrintM .endif .if USE_PTR_2 DEBUG "____:Ptr2" LDY #9 JSR VTABY LDX #ARGS_PTR_2 JSR PrintM .endif .if USE_PTR_4 DEBUG "____:Ptr4" LDY #10 JSR VTABY LDX #ARGS_PTR_4 JSR PrintM .endif .endif .if ENABLE_OCT DEBUG "+OCT" .if USE_OCT_3 DEBUG "____:Oct3" LDY #11 JSR VTABY LDX #ARGS_OCT_3 JSR PrintM .endif .if USE_OCT_6 DEBUG "____:Oct6" LDY #12 JSR VTABY LDX #ARGS_OCT_6 JSR PrintM .endif .endif .if ENABLE_STR DEBUG "+STR" .if USE_STR_A DEBUG "____:StrA" LDY #13 JSR VTABY LDX #ARGS_STR_A JSR PrintM .endif .if USE_STR_C DEBUG "____:StrC" LDY #14 JSR VTABY LDX #ARGS_STR_C JSR PrintM .endif .if USE_STR_PASCAL DEBUG "____:StrP" LDY #15 JSR VTABY LDX #ARGS_STR_PASCAL JSR PrintM .endif .endif ; ENABLE_STR LDA #17 JSR TABV ; "old-skool" text/hex printing: use ROM funcs LDX #PRINTM_TEXT JSR PrintStringZ LDA PRINTM_SIZE+1 STA demotmp+1 JSR PRBYTE LDA PRINTM_SIZE+0 STA demotmp+0 JSR PRBYTE JSR PrintSpc JSR PrintDec LDX #PRINTM_CMDS JSR PrintStringZ LDX #NumMeta STX demotmp+0 STZ demotmp+1 TXA JSR PRBYTE JSR PrintSpc JSR PrintDec LDA #$8D JMP COUT ; ====================================================================== ; ds 256 - <* ; Print demotmp in Decimal ; NOTE: Can't use printm PrintDec5 as it may not be enabled/available PrintDec STZ _bcd+0 STZ _bcd+1 STZ _bcd+2 LDX #16 ; 16 bits SED ; Double Dabble @Dec2BCD: ASL demotmp+0 ROL demotmp+1 LDY #$FD @DoubleDabble: LDA _bcd-$FD,Y ADC _bcd-$FD,Y STA _bcd-$FD,Y INY BNE @DoubleDabble DEX BNE @Dec2BCD CLD LDX #5 ; was Y @BCD2Char: ; NOTE: Digits are reversed! DEY ; $FF - $FD = 2 LDA _bcd-$FD,Y ; __c??? _b_?XX a_YYXX LSR LSR LSR LSR CLC ADC #'0'+$80 JSR COUT ; __c??X _b_YXX aZYYXX DEX LDA _bcd-$FD,Y ; __c??X _b_YXX aZYYXX AND #$F CLC ADC #'0'+$80 JSR COUT ; __c?XX _bYYXX ZZYYXX DEX BPL @BCD2Char RTS ; NOTE: Can't use printm PrintStr*() as it may not be enabled/available PrintStringZ STX demoptr+0 STY demoptr+1 LDY #0 @_Text LDA (demoptr),Y BEQ @_Done JSR COUT INY BNE @_Text @_Done RTS ReverseByte LDX #8 STA demotmp ; temp working byte ReverseBit ASL demotmp ; temp working byte ROR DEX BNE ReverseBit RTS PrintSpc LDA #' '+$80 JMP COUT VTABY TYA JSR BASCALC LDX BASL LDY BASH STX PutChar+1 STY PutChar+2 RTS ; ______________________________________________________________________ TEXT_DEMO ;byte "X=## Y=ddd $=xxxx:@@ %%%%%%%%~????????" PRINTM "X=%# Y=%d $=%x:%@ %%~%?", 0 ARGS_DEMO dw TEXT_DEMO; aArg[ 0] text dw 39 ; aArg[ 1] x dw 191 ; aArg[ 2] y dw $C0DE ; aArg[ 3] addr ScreenAddr dw $C0DE ; aArg[ 4] byte ScreenAddr pointer dw $DA1A ; aArg[ 5] bits ScreenByte dw $DA1A ; aArg[ 6] bits ScreenByte reversed ; ______________________________________________________________________ TEXT_BIN_ASC PRINTM "Bin ASC: %%", 0 TEXT_BIN_INV PRINTM "Bin INV: %?", 0 ARGS_BIN_ASC dw TEXT_BIN_ASC dw $DA1A ARGS_BIN_INV dw TEXT_BIN_INV dw $DA1A ; ______________________________________________________________________ TEXT_DEC_2 PRINTM "Dec2: %#", 0 TEXT_DEC_3 PRINTM "Dec3: %d", 0 TEXT_DEC_5 PRINTM "Dec5: %u", 0 TEXT_DEC_BYTE PRINTM "Byte=%b %b %b %b %b", 0 ;TEXT_DEC_BYTE PRINTM "%b",0 ARGS_DEC_2 dw TEXT_DEC_2 dw 99 ; ARGS_DEC_3 dw TEXT_DEC_3 dw 999 ; ARGS_DEC_5 dw TEXT_DEC_5 dw $FF69 ; $FF69 = 65385 ARGS_DEC_BYTE dw TEXT_DEC_BYTE dw $80 ; -128 dw $FF ; -001 dw $00 ; 000 dw $01 ; +001 dw $7F ; +127 ; ______________________________________________________________________ TEXT_HEX_2 PRINTM "Hex2: %$", 0 TEXT_HEX_4 PRINTM "Hex4: %x", 0 TEXT_PTR_2 PRINTM "Ptr2: %x:%@", 0 TEXT_PTR_4 PRINTM "Ptr4: %x:%&", 0 ARGS_HEX_2 dw TEXT_HEX_2 dw $1234 ARGS_HEX_4 dw TEXT_HEX_4 dw $1234 ARGS_PTR_2 dw TEXT_PTR_2 dw $2000 dw $2000 ARGS_PTR_4 dw TEXT_PTR_4 dw $2000 dw $2000 ; ______________________________________________________________________ TEXT_OCT_3 PRINTM "Oct3: %o", 0 TEXT_OCT_6 PRINTM "Oct6: %O", 0 ARGS_OCT_3 dw TEXT_OCT_3 dw 438 ARGS_OCT_6 dw TEXT_OCT_6 dw 13023 ; ______________________________________________________________________ TEXT_HELLO APPLE "HELLO" db 0 TEXT_WORLD APPLE "WORLD" db 0 TEXT_DCI DCI "HOME" TEXT_PASCAL PASCAL "Pascal Len 13" TEXT_STR_C PRINTM "C : '%s','%s'", 0 TEXT_STR_A PRINTM "Apple : '%a'", 0 TEXT_STR_PASCAL PRINTM "Pascal: '%p'", 0 ARGS_STR_C dw TEXT_STR_C dw TEXT_HELLO dw TEXT_WORLD ARGS_STR_A dw TEXT_STR_A dw TEXT_DCI ARGS_STR_PASCAL dw TEXT_STR_PASCAL dw TEXT_PASCAL ; ______________________________________________________________________ PRINTM_TEXT APPLE "printm().size = $" db 0 PRINTM_CMDS APPLE " bytes" db $8D APPLE " .features = $ " db 0 __LIB_SIZE = __END - __PRINTM PRINTM_SIZE dw __LIB_SIZE ; Pad until end of page so PrintM starts on new page ; ds (256 - <*) & 7 ; ds (256 - <*) & 15 ; ds (256 - <*) ; ---------------------------------------------------------------------- ; ---------------------------------------------------------------------- ; ; printm() library code starts here ; ; ---------------------------------------------------------------------- ; ---------------------------------------------------------------------- __PRINTM ; pointer for PrintPtr2, PrintPtr4, PrintStrA, PrintStrC, PrintStrP _temp = $FE ; self-modifying variable aliases _pScreen = PutChar +1 _pFormat = GetFormat +1 _pArg = NxtArgByte+1 .if ENABLE_DEC _nDecWidth = DecWidth +1 .endif .if ENABLE_OCT _nOctWidth = OctWidth +1 .endif ; Entry Point ; ====================================================================== ; printm( format, args, ... ) ; ====================================================================== PrintM STX _pArg+0 STY _pArg+1 FirstArg JSR NxtArgYX STX _pFormat+0 ; lo STY _pFormat+1 ; hi BRA GetFormat ; always ; ====================================================================== ; @return next arg as 16-bit arg value in Y,X NxtArgToTemp NxtArgYX JSR NxtArgByte TAX ; @return _Arg[ _Num ] NxtArgByte LDA $C0DE ; _pArg NOTE: self-modifying! INC _pArg+0 ; BNE @_SamePage INC _pArg+1 ; @_SamePage TAY ; Callers of NxtToArgYX don't use _temp _NxtArgToTemp STX _temp+0 ; zero-page for (ZP),Y STY _temp+1 ;XYtoVal ; STX _val+0 ; may be tempting to move this to NxtArgYX ; STY _val+1 ; _Done RTS ; $ Hex 2 Byte ; x Hex 4 Byte ; ====================================================================== .if ENABLE_HEX .if USE_HEX_4 DEBUG .sprintf( "PrintHex4() @ %X", * ) PrintHex4: SEC .if USE_HEX_2 db $A9 ; LDA #imm skip next 1-byte instruction .endif .endif .if USE_HEX_2 DEBUG .sprintf( "PrintHex2() @ %X", * ) PrintHex2: CLC .endif ; Print 16-bit Y,X in hex _PrintHex: JSR NxtArgYX ; A=Y= high byte BCC _PrintHexX PrintHexAX: ;TYA - optimization from NxtArgYX above JSR PrintHexByte _PrintHexX: TXA PrintHexA: JSR PrintHexByte BRA NextFormat ; @ Ptr 2 Byte ; & Ptr 4 Byte ; ====================================================================== .if ENABLE_PTR .if USE_PTR_4 DEBUG .sprintf( "PrintPtr4() @ %X", * ) PrintPtr4: SEC .if USE_PTR_2 db $A9 ; LDA #imm skip next 1-byte instruction .endif .endif .if USE_PTR_2 DEBUG .sprintf( "PrintPtr2() @ %X", * ) PrintPtr2: CLC .endif _PrintPtr: JSR NxtArgToTemp LDY #$0 LDA (_temp),Y BCC PrintHexA TAX INY LDA (_temp),Y BRA PrintHexAX ; needs XYtoVal setup .endif ; ENABLE_PTR .endif ; ENABLE_HEX ; a String (APPLE text, last byte ASCII) ; See: DCI ; ====================================================================== .if ENABLE_STR .if USE_STR_A DEBUG .sprintf( "PrintStrA() @ %X", * ) PrintStrA: JSR NxtArgToTemp LDY #$0 _PrintStrA: LDA (_temp),Y BPL @_LastChar JSR PutChar INY BNE _PrintStrA INC _temp+1 BRA _PrintStrA @_LastChar: ; intentional fall into ForceHighBit Print .endif ; USE_STR_A .endif ; ENABLE_STR ; ====================================================================== ; Main Read/Eval/Print/Loop of printm() ; ====================================================================== ; Note: The dummy address $C0DE is to force the assembler ; to generate a 16-bit address instead of optimizing a ZP operand ForceHighBit ORA #$80 Print ; print literal chars JSR PutChar NextFormat ; Adjust pointer to next char in format INC _pFormat+0 BNE GetFormat INC _pFormat+1 GetFormat LDA $C0DE ; _pFormat NOTE: self-modifying! BEQ _Done ; zero-terminated BMI Print ; neg = literal ; NOTE: If all features are turned off LDX #-1 ca65 throws Range Error ; NumMeta = _MetaCharEnd - MetaChar ; LDX #NumMeta-1 ; pos = meta ; We can't use this equation since it is not const due to the assembler ; not having defined _MetaCharEnd yet ; Instead we count the number of features enabled GetNumFeatures .if (NumMeta > 0) LDX #NumMeta*3 ; pos = meta .else .out "INFO: No meta commands, defaulting to text" BRA ForceHighBit .endif .if NumMeta FindMeta DEX DEX DEX BMI NextFormat CMP MetaTable,X BNE FindMeta CallMeta JMP (MetaTable+1,X) ; ______________________________________________________________________ ; # Dec 1 Byte (max 2 digits) ; d Dec 2 Byte (max 3 digits) ; u Dec 2 Byte (max 5 digits) ; ====================================================================== .if ENABLE_DEC .if USE_DEC_5 DEBUG .sprintf( "PrintDec5() @ %X", * ) PrintDec5: LDA #5/2 ; offset into _bcd buffer .if USE_DEC_2 || USE_DEC_3 db $2C ; BIT $abs skip next instruction .endif .endif .if USE_DEC_3 DEBUG .sprintf( "PrintDec3() @ %X", * ) PrintDec3: LDA #3/2 ; offset into bcd buffer .if USE_DEC_2 db $2C ; BIT $abs skip next instruction .endif .endif .if USE_DEC_2 DEBUG .sprintf( "PrintDec2() @ %X", * ) PrintDec2: LDA #0 ; special: print 2 digits .endif ; no .if USE_DEC_BYTE here because ENABLE_DEC already covers that _PrintDec: STA _nDecWidth JSR NxtArgYX PrintDecYX: STZ _bcd+0 STZ _bcd+1 STZ _bcd+2 Dec2BCD: LDX #16 ; 16 bits SED ; "Double Dabble" @Dec2BCD: ; https://en.wikipedia.org/wiki/Double_dabble ASL _temp+0 ROL _temp+1 LDY #$FD ; $00-$FD=-3 bcd[0] bcd[1] bcd[2] bcd[3] @DoubleDabble: ; Y=FD Y=FE Y=FF Y=00 LDA _bcd-$FD,Y ADC _bcd-$FD,Y STA _bcd-$FD,Y INY BNE @DoubleDabble DEX BNE @Dec2BCD CLD DecWidth: LDY #3 ; default to 6 digits BEQ @EvenBCD ; special case 0 -> only 2 digits ; otherwise have odd digits, ; Print low nibble, skip high nibble @OddBCD: ; Y = num digits/2 to print LDA _bcd,Y ; __c??? _b_?XX a_YYXX JSR HexA JSR PutChar DEY @EvenBCD: LDA _bcd,Y ; __c??? _b_?XX a_YYXX JSR PrintHexByte DEY BPL @EvenBCD .endif _JumpNextFormat1 BRA NextFormat ; always .if ENABLE_DEC ; b Print a signed byte in decimal ; ====================================================================== .if USE_DEC_BYTE DEBUG .sprintf( "PrintDecB() @ %X", * ) PrintByte: JSR NxtArgYX ; X = low byte, Y=A high byte TXA BPL PrintBytePos LDA #'-' + $80 ; X >= $80 --> $80 (-128) .. $FF (-1) JSR PutChar TXA EOR #$FF ; 2's complement TAX INX PrintBytePos: STX _temp+0 ; needs XYtoTemp setup STZ _temp+1 ; 00XX LDA #3/2 ; 3 digits max STA _nDecWidth BRA PrintDecYX .endif ; USE_DEC_BYTE .endif ; ENABLE_DEC ; ______________________________________________________________________ ; % Bin 1 Byte normal ones, normal zeroes ; ? Bin 1 Byte inverse ones, normal zeroes ; ====================================================================== .if ENABLE_BIN .if USE_BIN_INV DEBUG .sprintf( "PrintBinI() @ %X", * ) PrintBinInv: LDA #$31 .if USE_BIN_ASC ;BNE _PrintBin db $2C ; BIT $abs skip next instruction .endif .endif ; USE_BIN_INV .if USE_BIN_ASC DEBUG .sprintf( "PrintBinA() @ %X", * ) PrintBinAsc: LDA #$B1 .endif ; USE_BIN_ASC _PrintBin: STA _PrintBit+1 JSR NxtArgYX ; X = low byte, Y=A = high byte LDY #8 ; print 8 bits _Bit2Asc: TXA ASL ; C= A>=$80 TAX LDA #$B0 BCC _FlipBit _PrintBit: LDA #$B1 ; 1 -> 31 NOTE: self-modifying! _FlipBit: JSR PutChar DEY BNE _Bit2Asc .endif ; ENABLE_BIN ; Left as exercise for the reader to optimize the jump size :-) ; 2 bytes short of BRA NextFormat _JumpNextFormat2 ; BRA NextFormat ; always ; JMP NextFormat ; JMP :-( BRA _JumpNextFormat1 ; ______________________________________________________________________ ; o Print byte in octal (max 3 digits) ; O Print word in octal (max 6 digits) ; ====================================================================== .if ENABLE_OCT .if USE_OCT_6 DEBUG .sprintf( "PrintOct6() @ %X", * ) PrintOct6: LDA #6 .if USE_OCT_3 db $2C ; BIT $abs skip next instruction .endif .endif .if USE_OCT_3 DEBUG .sprintf( "PrintOct3() @ %X", * ) PrintOct3: LDA #3 .endif _PrintOct: STA _nOctWidth JSR NxtArgYX ; X = low byte LDX #0 _Oct2Asc: LDA _temp AND #7 CLC ADC #'0'+$80 STA _bcd,x ; NOTE: Digits are reversed! LDY #3 @OctShr: LSR _temp+1 ROR _temp+0 DEY BNE @OctShr INX OctWidth: CPX #6 ; _nOctDigits NOTE: self-modifying! BNE _Oct2Asc ; Intentional fall into reverse BCD ; On Entry: X number of chars to print in buffer _bcd ; ====================================================================== PrintReverseBCD DEX BMI _JumpNextFormat1 LDA _bcd, X JSR PutChar BRA PrintReverseBCD .endif ; ENABLE_OCT ; ______________________________________________________________________ ; s String (C,ASCIIZ) ; ====================================================================== .if ENABLE_STR .if USE_STR_C DEBUG .sprintf( "PrintStrC() @ %X", * ) PrintStrC: JSR NxtArgToTemp LDY #$0 @_NextByte: LDA (_temp),Y BEQ _JumpNextFormat1 JSR PutChar INY BNE @_NextByte INC _temp+1 ; support strings > 256 chars BRA @_NextByte .endif .endif ; p String (Pascal) ; ====================================================================== .if ENABLE_STR .if USE_STR_PASCAL DEBUG .sprintf( "PrintStrP() @ %X", * ) PrintStrP: JSR NxtArgToTemp LDY #$0 LDA (_temp),Y BEQ _JumpNextFormat2 TAX _PrintStrP: INY LDA (_temp),Y JSR PutChar DEX BNE _PrintStrP BEQ _JumpNextFormat2 ; always .endif .endif ; ENABLE_STR ; ---------------------------------------------------------------------- ; Utility ; ---------------------------------------------------------------------- .if ENABLE_HEX || ENABLE_DEC ; Converts A to Hex digits, prints them PrintHexByte: DEBUG .sprintf( "PrintHexByte @ %X", * ) JSR HexA LDA _temp+0 JSR PutChar PrintHexBotNib: LDA _temp+1 JMP PutChar ; Converts A to Hex digits, stores two chars in _temp+0, _temp+1 ; @return: A will be bottom nibble in ASCII HexA: PHA LSR LSR LSR LSR JSR _HexNib STA _temp+0 PLA _HexNib: AND #$F CMP #$A ; n < 10 ? BCC @Hex2Asc ADC #6 ; n += 6 $A -> +6 + (C=1) = $11 @Hex2Asc: ADC #'0' + $80 ; inverse=remove #$80 STA _temp+1 RTS .endif ; ENABLE_HEX || ENABLE_DEC .endif ; NumMeta ; ====================================================================== ; PutChar .if 1 STA $C0DE ; _pScreen NOTE: self-modifying! INC PutChar+1 ; inc lo RTS .else ; Alternatively use the monitor ROM char output JMP COUT .endif ; ; ====================================================================== _bcd ds 6 ; 6 chars for printing dec .if NumMeta _val dw 0 ; PrintHex2 PrintHex4 temp MetaTable .if ENABLE_BIN .if USE_BIN_INV db '?' ; PrintBinInv NOTE: 1's printed in inverse dw PrintBinInv .endif .if USE_BIN_ASC db '%' ; PrintBinAsc dw PrintBinAsc .endif .endif .if ENABLE_DEC .if USE_DEC_BYTE db 'b' ; PrintByte NOTE: Signed -128 .. +127 dw PrintByte .endif .if USE_DEC_5 db 'u' ; PrintDec5 dw PrintDec5 .endif .if USE_DEC_3 db 'd' ; PrintDec3 dw PrintDec3 .endif .if USE_DEC_2 db '#' ; PrintDec2 dw PrintDec2 .endif .endif .if ENABLE_HEX .if USE_HEX_4 db 'x' ; PrintHex4 dw PrintHex4 .endif .if USE_HEX_2 db '$' ; PrintHex2 dw PrintHex2 .endif .if USE_PTR_4 db '&' ; PrintPtr4 dw PrintPtr4 .endif .if USE_PTR_2 db '@' ; PrintPtr2 dw PrintPtr2 .endif .endif .if ENABLE_OCT .if USE_OCT_6 db 'O' ; PrintOct6 dw PrintOct6 .endif .if USE_OCT_3 db 'o' ; PrintOct3 dw PrintOct3 .endif .endif .if ENABLE_STR .if USE_STR_PASCAL db 'p' ; PrintStrP NOTE: Pascal string; C printf 'p' is pointer! dw PrintStrP .endif .if USE_STR_C db 's' ; PrintStrC NOTE: C string, zero terminated dw PrintStrC .endif .if USE_STR_A db 'a' ; PrintStrA NOTE: Last byte is ASCII dw PrintStrA .endif .endif .endif ; NumMeta __END DEBUG .sprintf( "_bcd @ %X", _bcd ) DEBUG .sprintf( "Demo size: %X (%d bytes)", __PRINTM-__MAIN, __PRINTM-__MAIN) DEBUG .sprintf( "Total size: %X (%d bytes)", __END -__MAIN, __END -__MAIN) .out .sprintf( "printm size: %X (%d bytes)", __LIB_SIZE , __LIB_SIZE )