Russian Peasant Multiplication
Go to file
2020-02-05 08:46:25 -08:00
disk Raw Applesoft BASIC disk files 2016-08-18 18:21:06 -07:00
blank_prontodos.dsk Added bootable blank ProntoDOS .dsk 2016-08-18 17:41:35 -07:00
build.sh Added build script 2016-08-18 17:43:21 -07:00
ca65_fixes.inc Assembly ca65 version 2016-08-18 17:42:31 -07:00
README.MD Clarify multiple bit shifts 2020-02-05 08:46:25 -08:00
rpm_ca65.s Assembly ca65 version 2016-08-18 17:42:31 -07:00
rpm_m32.s Assembly merlin 32 version 2016-08-18 17:42:48 -07:00
rpm_oop.js Object Orientated Programming Javascript 2016-08-17 14:23:09 -07:00
rpm_proc.js Procedural Javascript - optimize Shr1() 2016-08-18 10:03:46 -07:00
rpm.bas Applesoft BASIC normal and debug versions 2016-08-18 18:20:12 -07:00
rpm.debug.bas Applesoft BASIC normal and debug versions 2016-08-18 18:20:12 -07:00
rpm.dsk Raw Applesoft BASIC disk files 2016-08-18 18:21:06 -07:00
tasc_disasm_clean.s Cleanup bad Vim remove trailing whitespace 2016-08-29 20:19:53 -06:00
tasc_disasm_org.s Cleanup bad Vim remove trailing whitespace 2016-08-29 20:19:53 -06:00

Russian Peasant Multiplication

From Assembly to Basic to Javascript!

Here are my implementations of Russian Peasant Multiplication implemented in various languages:

  • 6502 Assembly Language (Both ca65 and merlin32 sources)
  • Applesoft BASIC
  • JavaScript (Procedural version)
  • JavaScript (OOP version)

A .dsk image has been provided as an convenience.

To see how much faster the Assembly version is then the BASIC version:

RUN  RPM.BAS
BRUN RPM.BIN

And enter in 123456789 * 987654321 respectively for A and B ...

Version Time
Applesoft 33 s
Assembly ~1 s

So what the heck is it?

An alternative algorithm to implement multiplication using only:

  • bit-shifts (left and right), and
  • addition.

Example of "traditional" multiplication:

In base 10:

             86
           x 57
           ----
            602
           430
           ====
           4902

In base 2:

        01010110  (86)
        00111001  (57)
        --------
        01010110  (86 * 2^0 =   86)
       00000000   (86 * 2^1 =  172)
      00000000    (86 * 2^2 =  344)
     01010110     (86 * 2^3 =  688)
    01010110      (86 * 2^4 = 1376)
   01010110       (86 * 2^5 = 2752)
  ==============
  01001100100110  (4902 = 86*2^0 + 86*2^3 + 86*2^4 + 86*2^5)

Example of Russian Peasant multiplication:

In Base 10:

               A          B   Sum =    0
              86         57   + A =   86 (b is odd)
      x 2 =  172   / 2 = 28       =   86
      x 2 =  344   / 2 = 14       =   86
      x 2 =  688   / 2 =  7   + A =  774 (b is odd)
      x 2 = 1376   / 2 =  3   + A = 2150 (b is odd)
      x 2 = 2752   / 2 =  1   + A = 4902 (b is odd)

In Base 2:

               A          B   Sum = 0
        01010110   00111001   + A = 00000001010110 (b is odd)
       010101100   00011100       = 00000001010110
      0101011000   00001110       = 00000001010110
     01010110000   00000111   + A = 00001100000110 (b is odd)
    010101100000   00000011   + A = 00100001100110 (b is odd)
   0101011000000   00000001   + A = 01001100100110 (b is odd)