apple2a/runtime.c

516 lines
12 KiB
C

#include <string.h>
#include "runtime.h"
// Max number of nested FOR loops. This value matches AppleSoft BASIC.
#define MAX_FOR 10
// Max words for arrays.
#define MAX_ARRAY_WORDS 2048
#define CURSOR_GLYPH 127
#define SCREEN_HEIGHT 24
#define SCREEN_WIDTH 40
#define SCREEN_STRIDE (3*SCREEN_WIDTH + 8)
#define MIXED_TEXT_HEIGHT 4
#define MIXED_GRAPHICS_HEIGHT (SCREEN_HEIGHT - MIXED_TEXT_HEIGHT)
#define CLEAR_CHAR (' ' | 0x80)
#define TEXT_OFF_SWITCH ((uint8_t *) 49232U)
#define TEXT_ON_SWITCH ((uint8_t *) 49233U)
#define MIXED_OFF_SWITCH ((uint8_t *) 49234U)
#define MIXED_ON_SWITCH ((uint8_t *) 49235U)
#define HIRES_OFF_SWITCH ((uint8_t *) 49238U)
#define HIRES_ON_SWITCH ((uint8_t *) 49239U)
/**
* Run-time stack of FOR loops.
*/
typedef struct {
// Address (in the zero page) of the loop variable.
uint8_t var_address;
// End value.
int16_t end_value;
// Step.
int16_t step;
// Address of the top of the loop to jump back to.
uint16_t loop_top_addr;
} ForInfo;
// Location of cursor in logical screen space.
uint16_t g_cursor_x;
uint16_t g_cursor_y;
// Whether the cursor is being displayed.
uint16_t g_showing_cursor;
// Character at the cursor location.
uint8_t g_cursor_ch;
// Whether in low-res graphics mode.
uint8_t g_gr_mode;
// 4-bit low-res color.
uint8_t g_gr_color_high; // High nybble.
uint8_t g_gr_color_low; // Low nybble.
// List of variable, in the same order they are in the zero page (starting at
// FIRST_VARIABLE).
VarInfo g_variables[MAX_VARIABLES];
// Stack of FOR loops.
ForInfo g_for_info[MAX_FOR];
uint8_t g_for_count;
// Space for arrays.
uint16_t g_arrays[MAX_ARRAY_WORDS];
uint16_t g_arrays_size;
/**
* Clear the FOR stack.
*/
void clear_for_stack(void) {
g_for_count = 0;
}
/**
* Clear out the values of all variables and generally initialize runtime
* state.
*/
void initialize_runtime(void) {
memset((void *) FIRST_VARIABLE, 0, MAX_VARIABLES*2);
clear_for_stack();
g_arrays_size = 0;
}
/**
* Return the memory location of the zero-based (x,y) position on the screen.
*/
static uint8_t *screen_pos(uint16_t x, uint16_t y) {
int16_t block = y >> 3;
int16_t line = y & 0x07;
return TEXT_PAGE1_BASE + line*SCREEN_STRIDE + block*SCREEN_WIDTH + x;
}
/**
* Return the memory location of the cursor.
*/
uint8_t *cursor_pos(void) {
return screen_pos(g_cursor_x, g_cursor_y);
}
/**
* Shows the cursor. Safe to call if it's already showing.
*/
void show_cursor(void) {
if (!g_showing_cursor) {
uint8_t *pos = cursor_pos();
g_cursor_ch = *pos;
*pos = CURSOR_GLYPH | 0x80;
g_showing_cursor = 1;
}
}
/**
* Hides the cursor. Safe to call if it's not already shown.
*/
void hide_cursor(void) {
if (g_showing_cursor) {
uint8_t *pos = cursor_pos();
*pos = g_cursor_ch;
g_showing_cursor = 0;
}
}
/**
* Moves the cursor to the specified location, where X
* is 0 to 39 inclusive, Y is 0 to 23 inclusive.
*/
void move_cursor(int16_t x, int16_t y) {
hide_cursor();
g_cursor_x = x;
g_cursor_y = y;
}
/**
* Blanks out the rest of the line, from the cursor (inclusive) on.
* Does not move the cursor.
*/
void clear_to_eol(void) {
uint8_t *pos = cursor_pos();
hide_cursor();
memset(pos, CLEAR_CHAR, SCREEN_WIDTH - g_cursor_x);
}
/**
* Clear the screen with non-reversed spaces.
*/
void home(void) {
if (g_gr_mode) {
int i;
for (i = MIXED_GRAPHICS_HEIGHT; i < SCREEN_HEIGHT; i++) {
memset(screen_pos(0, i), CLEAR_CHAR, SCREEN_WIDTH);
}
move_cursor(0, MIXED_GRAPHICS_HEIGHT);
} else {
memset(TEXT_PAGE1_BASE, CLEAR_CHAR, SCREEN_STRIDE*8);
move_cursor(0, 0);
}
}
/**
* Screen the screen up one line, blanking out the bottom
* row. Does not affect the cursor.
*/
static void scroll_up(void) {
int i;
int first_line = g_gr_mode ? MIXED_GRAPHICS_HEIGHT : 0;
uint8_t *previous_line = 0;
for (i = first_line; i < SCREEN_HEIGHT; i++) {
uint8_t *this_line = screen_pos(0, i);
if (i > first_line) {
memmove(previous_line, this_line, SCREEN_WIDTH);
}
previous_line = this_line;
}
memset(previous_line, CLEAR_CHAR, SCREEN_WIDTH);
}
/**
* Print a single newline.
*/
void print_newline(void) {
if (g_cursor_y == SCREEN_HEIGHT - 1) {
// Scroll.
hide_cursor();
scroll_up();
move_cursor(0, g_cursor_y);
} else {
move_cursor(0, g_cursor_y + 1);
}
}
/**
* Prints the character and advances the cursor. Handles newlines.
*/
void print_char(uint8_t c) {
uint8_t *loc = cursor_pos();
if (c == '\n') {
print_newline();
} else {
// Print character.
*loc = c | 0x80;
// Advance cursor or wrap.
if (g_cursor_x == SCREEN_WIDTH - 1) {
print_newline();
} else {
move_cursor(g_cursor_x + 1, g_cursor_y);
}
}
}
/**
* Print a string at the cursor.
*/
void print(uint8_t *s) {
while (*s != '\0') {
print_char(*s++);
}
}
/**
* Print an unsigned integer.
*/
void print_uint(uint16_t i) {
// Is this the best way to do this? I've seen it done backwards, where
// digits are added to a buffer least significant digit first, then reversed,
// but this seems faster.
char printed = 0;
if (i >= 10000) {
int16_t r = i / 10000;
print_char('0' + r);
i -= r*10000;
printed = 1;
}
if (i >= 1000 || printed) {
int16_t r = i / 1000;
print_char('0' + r);
i -= r*1000;
printed = 1;
}
if (i >= 100 || printed) {
int16_t r = i / 100;
print_char('0' + r);
i -= r*100;
printed = 1;
}
if (i >= 10 || printed) {
int16_t r = i / 10;
print_char('0' + r);
i -= r*10;
}
print_char('0' + i);
}
/**
* Print a signed integer.
*/
void print_int(int16_t i) {
if ((i & 0x8000) != 0) {
print_char('-');
i = -i;
}
print_uint((uint16_t) i);
}
/**
* Print an error message, optionally with a line number if it's
* not INVALID_LINE_NUMBER.
*/
static void generic_error_message(uint8_t *message, uint16_t line_number) {
print("\n?");
print(message);
print(" ERROR");
if (line_number != INVALID_LINE_NUMBER) {
print(" IN ");
print_uint(line_number);
}
}
/**
* Display a syntax error message.
*/
void syntax_error(uint16_t line_number) {
generic_error_message("SYNTAX", line_number);
}
/**
* Display an error for a GOTO that went to a line that doesn't exist.
*/
void undefined_statement_error(uint16_t line_number) {
generic_error_message("UNDEF'D STATEMENT", line_number);
}
/**
* Display an out-of-memory error, which could also mean that various
* stacks have been overflowed.
*/
void out_of_memory_error(uint16_t line_number) {
generic_error_message("OUT OF MEMORY", line_number);
}
/**
* Display an error for when the user does a NEXT without a matching FOR.
*/
void next_without_for_error(uint16_t line_number) {
generic_error_message("NEXT WITHOUT FOR", line_number);
}
/**
* Display an error for when the user does a DIM on a variable a second time.
*/
void redimd_array_error(uint16_t line_number) {
generic_error_message("REDIM'D ARRAY", line_number);
}
/**
* Switch to graphics mode.
*/
void gr_statement(void) {
if (!g_gr_mode) {
int i;
// Mixed text and lo-res graphics mode.
hide_cursor();
*TEXT_OFF_SWITCH = 0;
*MIXED_ON_SWITCH = 0;
// Clear the graphics area.
for (i = 0; i < MIXED_GRAPHICS_HEIGHT; i++) {
memset(screen_pos(0, i), 0, SCREEN_WIDTH);
}
// Move the cursor to the text window.
if (g_cursor_y < MIXED_GRAPHICS_HEIGHT) {
move_cursor(0, MIXED_GRAPHICS_HEIGHT);
}
g_gr_mode = 1;
}
}
/**
* Switch to text mode.
*/
void text_statement(void) {
if (g_gr_mode) {
// Text mode.
*TEXT_ON_SWITCH = 0;
hide_cursor();
g_gr_mode = 0;
}
}
/**
* Set the low-res color.
*/
void color_statement(uint16_t color) {
g_gr_color_high = (uint8_t) ((color << 4) & 0xF0);
g_gr_color_low = (uint8_t) (color & 0x0F);
}
/**
* Plot a pixel in low-res graphics mode.
*/
void plot_statement(uint16_t x, uint16_t y) {
uint8_t *pos = screen_pos(x, y >> 1);
if ((y & 1) == 0) {
// Even, bottom pixel.
*pos = (*pos & 0xF0) | g_gr_color_low;
} else {
// Odd, top pixel.
*pos = (*pos & 0x0F) | g_gr_color_high;
}
}
/**
* Find a FOR loop info structure by variable address, or null if not found.
*/
static ForInfo *find_for_info(uint16_t var_address) {
int i;
ForInfo *f;
// Work backwards through the stack, since the variable we're looking
// for is likely to be the most recent one.
f = &g_for_info[g_for_count - 1];
for (i = g_for_count - 1; i >= 0; i--) {
if (f->var_address == var_address) {
// Found it.
return f;
}
f -= 1;
}
return 0;
}
/**
* Remove any FOR loop for this variable anywhere in the stack, if any.
*/
static void remove_for_info(uint16_t var_address) {
ForInfo *f = find_for_info(var_address);
if (f != 0) {
// Compute the index of this entry.
int index = f - g_for_info;
// Shift the rest over.
memmove(f, f + 1, sizeof(ForInfo)*(g_for_count - index - 1));
g_for_count -= 1;
}
}
/**
* Push a FOR statement on the stack.
*/
void for_statement(uint16_t line_number, uint16_t var_address, int16_t end_value, int16_t step,
uint16_t loop_top_addr) {
// First, kill any existing loop for this variable.
remove_for_info(var_address);
// Add the loop to our stack.
if (g_for_count == MAX_FOR) {
// TODO should quit program. Return a failure value, and have called return.
out_of_memory_error(line_number);
} else {
ForInfo *f = &g_for_info[g_for_count++];
f->var_address = var_address;
f->end_value = end_value;
f->step = step;
f->loop_top_addr = loop_top_addr;
}
}
/**
* Handle a NEXT statement. Returns the address to jump to at the top of the loop,
* or zero to not jump.
*/
uint16_t next_statement(uint16_t line_number, uint16_t var_address) {
ForInfo *f;
uint16_t jump_addr = 0;
if (var_address == 0) {
// Pick top of stack.
if (g_for_count == 0) {
// Stack is empty.
f = 0;
} else {
f = &g_for_info[g_for_count - 1];
}
} else {
f = find_for_info(var_address);
}
if (f == 0) {
next_without_for_error(line_number);
} else {
uint16_t *var;
// Pop off every loop below us in the stack.
g_for_count = f - g_for_info + 1;
// Step the loop variable.
var = (uint16_t *) f->var_address;
*var += f->step;
// TODO if the step is negative, switch inequality here:
if (*var > f->end_value) {
// We're done, remove our FOR loop.
g_for_count -= 1;
// Continue after the NEXT statement.
} else {
// Loop back to the top of the NEXT statement.
jump_addr = f->loop_top_addr;
}
}
return jump_addr;
}
/**
* Allocate an array. Size is in words, and var_addr points to
* the variable that will store the array location.
*/
void allocate_array(uint16_t size, uint16_t var_addr) {
// Actual size is one more. DIM X(10) allocates 11-entry array.
size += 1;
// Check for overflow.
if (g_arrays_size + size > MAX_ARRAY_WORDS) {
print("Too many arrays.\n");
} else {
// Allocate next chunk.
*(uint16_t *) var_addr = (uint16_t) (g_arrays + g_arrays_size);
g_arrays_size += size;
}
}