
Fast Font Rendering for the Apple II using Transposed Fonts

Normal font rendering: glyphs stored sequentially

Compiled font rendering: glyph data embedded in code

* jump table to find definition of glyph, column in Y
register

* one entry in jump table for each glyph; each entry can write
glyph to any column or row

* immediate mode data for each scan line of glyph

* indirect indexed addressing to store on screen, must increment
address by $400 to move to next scan line

* requires tool to generate code

* each font requires separate jump table and glyph definitions

* can write to either hi-res page

* indexed addressing to read glyph; address set using self-modifying code

* indirect indexed addressing to write to screen; must increment by $400
each line

* works with any font in memory

* can write to either hi-res page

Transposed font rendering: glyph bytes reordered

* jump table to find row, column in X register, glyph index in Y register

* one entry in jump table for each row; each entry can write any
glyph to any column in one row

* the big win: no pointer addition or index incrementing necessary
to write entire glyph

* requires tool to generate code and transpose font: e.g. 128 glyph font:
 8 rows of 128 bytes each. First row of 128 bytes contains topmost
byte of each glyph, 2nd row contains row below that, etc.

* each font requires new jump table and row definition

* need second jump table and new entries for each row to write to
second hi-res page.

TransposedFontRow0 .byte ... , $9e, $9f, $9e, $9f, $bf, ...
TransposedFontRow1 .byte ... , $bf, $bf, $bf, $bf, $bf, ...
TransposedFontRow2 .byte ... , $b3, $b3, $b3, $b3, $83, ...
TransposedFontRow3 .byte ... , $bf, $9f, $83, $b3, $9f, ...
TransposedFontRow4 .byte ... , $bf, $b3, $b3, $b3, $83, ...
TransposedFontRow5 .byte ... , $b3, $bf, $bf, $bf, $bf, ...
TransposedFontRow6 .byte ... , $b3, $9f, $9e, $9f, $bf, ...
TransposedFontRow7 .byte ... , $80, $80, $80, $80, $80, ...

Speed comparison:
Code generator now available! See:

https://github.com/robmcmullen/asmgen

Requires Python 3.6 to generate code;
target assembler is configurable. * includes built-in 1024 byte font; others can use any font in memory

