contiki/core/lib/settings.c

476 lines
13 KiB
C
Raw Normal View History

core/lib/settings: Generalized Settings Manager to work on any platform This commit moves the Settings Manager from the AVR codebase into the Contiki core library. Any platform that implements the Contiki EEPROM API can now use the Settings Manager's key-value store for storing their persistent configuration info. The Settings Manager is a EEPROM-based key-value store. Keys are 16-bit integers and values may be up to 16,383 bytes long. It is intended to be used to store configuration-related information, like network settings, radio channels, etc. * Robust data format which requires no initialization. * Supports multiple values with the same key. * Data can be appended without erasing EEPROM. * Max size of settings data can be easily increased in the future, as long as it doesn't overlap with application data. The format was inspired by the [OLPC manufacturing data format][]. Since the beginning of EEPROM often contains application-specific information, the best place to store settings is at the end of EEPROM (the "top"). Because we are starting at the end of EEPROM, it makes sense to grow the list of key-value pairs downward, toward the start of EEPROM. Each key-value pair is stored in memory in the following format: Order | Size | Name | Description --------:|---------:|--------------|------------------------------- 0 | 2 | `key` | 16-bit key -2 | 1 | `size_check` | One's-complement of next byte -3 | 1 or 2 | `size` | The size of `value`, in bytes -4 or -5 | variable | `value` | Value associated with `key` The end of the key-value pairs is denoted by the first invalid entry. An invalid entry has any of the following attributes: * The `size_check` byte doesn't match the one's compliment of the `size` byte (or `size_low` byte). * The key has a value of 0x0000. [OLPC manufacturing data format]: http://wiki.laptop.org/go/Manufacturing_data
2012-05-17 09:03:52 -07:00
/*
* Copyright (c) 2013, Robert Quattlebaum.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file is part of the Contiki operating system.
*
*/
#ifdef SETTINGS_CONF_SKIP_CONVENIENCE_FUNCS
#undef SETTINGS_CONF_SKIP_CONVENIENCE_FUNCS
#endif
#define SETTINGS_CONF_SKIP_CONVENIENCE_FUNCS 1
core/lib/settings: Generalized Settings Manager to work on any platform This commit moves the Settings Manager from the AVR codebase into the Contiki core library. Any platform that implements the Contiki EEPROM API can now use the Settings Manager's key-value store for storing their persistent configuration info. The Settings Manager is a EEPROM-based key-value store. Keys are 16-bit integers and values may be up to 16,383 bytes long. It is intended to be used to store configuration-related information, like network settings, radio channels, etc. * Robust data format which requires no initialization. * Supports multiple values with the same key. * Data can be appended without erasing EEPROM. * Max size of settings data can be easily increased in the future, as long as it doesn't overlap with application data. The format was inspired by the [OLPC manufacturing data format][]. Since the beginning of EEPROM often contains application-specific information, the best place to store settings is at the end of EEPROM (the "top"). Because we are starting at the end of EEPROM, it makes sense to grow the list of key-value pairs downward, toward the start of EEPROM. Each key-value pair is stored in memory in the following format: Order | Size | Name | Description --------:|---------:|--------------|------------------------------- 0 | 2 | `key` | 16-bit key -2 | 1 | `size_check` | One's-complement of next byte -3 | 1 or 2 | `size` | The size of `value`, in bytes -4 or -5 | variable | `value` | Value associated with `key` The end of the key-value pairs is denoted by the first invalid entry. An invalid entry has any of the following attributes: * The `size_check` byte doesn't match the one's compliment of the `size` byte (or `size_low` byte). * The key has a value of 0x0000. [OLPC manufacturing data format]: http://wiki.laptop.org/go/Manufacturing_data
2012-05-17 09:03:52 -07:00
#include "contiki.h"
#include "settings.h"
#include "dev/eeprom.h"
#if CONTIKI_CONF_SETTINGS_MANAGER
#if !EEPROM_CONF_SIZE
#error CONTIKI_CONF_SETTINGS_MANAGER has been set, but EEPROM_CONF_SIZE hasnt!
#endif
#ifndef EEPROM_END_ADDR
#define EEPROM_END_ADDR (EEPROM_CONF_SIZE - 1)
#endif
#ifndef SETTINGS_MAX_SIZE
/** The maximum amount EEPROM dedicated to settings. */
#define SETTINGS_MAX_SIZE (127) /**< Defaults to 127 bytes */
#endif
#ifndef SETTINGS_TOP_ADDR
/** The top address in EEPROM that settings should use. Inclusive. */
#define SETTINGS_TOP_ADDR (settings_iter_t)(EEPROM_END_ADDR)
#endif
#ifndef SETTINGS_BOTTOM_ADDR
/** The lowest address in EEPROM that settings should use. Inclusive. */
#define SETTINGS_BOTTOM_ADDR (SETTINGS_TOP_ADDR + 1 - SETTINGS_MAX_SIZE)
#endif
typedef struct {
#if SETTINGS_CONF_SUPPORT_LARGE_VALUES
uint8_t size_extra;
#endif
uint8_t size_low;
uint8_t size_check;
settings_key_t key;
} item_header_t;
/*****************************************************************************/
// MARK: - Public Travesal Functions
/*****************************************************************************/
/*---------------------------------------------------------------------------*/
settings_iter_t
settings_iter_begin()
{
return settings_iter_is_valid(SETTINGS_TOP_ADDR) ? SETTINGS_TOP_ADDR : 0;
}
/*---------------------------------------------------------------------------*/
settings_iter_t
settings_iter_next(settings_iter_t ret)
{
if(ret) {
/* A settings iterator always points to the first byte
* after the actual key-value pair in memory. This means that
* the address of our value in EEPROM just happens
* to be the address of our next iterator.
*/
ret = settings_iter_get_value_addr(ret);
return settings_iter_is_valid(ret) ? ret : 0;
}
return SETTINGS_INVALID_ITER;
}
/*---------------------------------------------------------------------------*/
uint8_t
settings_iter_is_valid(settings_iter_t iter)
{
item_header_t header = { 0 };
if(iter == EEPROM_NULL) {
return 0;
}
if(iter < SETTINGS_BOTTOM_ADDR + sizeof(header)) {
return 0;
}
eeprom_read(iter - sizeof(header), (uint8_t *)&header, sizeof(header));
if((uint8_t) header.size_check != (uint8_t) ~ header.size_low) {
return 0;
}
if(iter < SETTINGS_BOTTOM_ADDR + sizeof(header) + settings_iter_get_value_length(iter)) {
return 0;
}
return 1;
}
/*---------------------------------------------------------------------------*/
settings_key_t
settings_iter_get_key(settings_iter_t iter)
{
item_header_t header;
eeprom_read(iter - sizeof(header), (uint8_t *)&header, sizeof(header));
if((uint8_t) header.size_check != (uint8_t)~header.size_low) {
return SETTINGS_INVALID_KEY;
}
return header.key;
}
/*---------------------------------------------------------------------------*/
settings_length_t
settings_iter_get_value_length(settings_iter_t iter)
{
item_header_t header;
settings_length_t ret = 0;
eeprom_read(iter - sizeof(header), (uint8_t *)&header, sizeof(header) );
if((uint8_t)header.size_check == (uint8_t)~header.size_low) {
ret = header.size_low;
#if SETTINGS_CONF_SUPPORT_LARGE_VALUES
if(ret & (1 << 7)) {
ret = ((ret & ~(1 << 7)) << 7) | header.size_extra;
}
#endif
}
return ret;
}
/*---------------------------------------------------------------------------*/
eeprom_addr_t
settings_iter_get_value_addr(settings_iter_t iter)
{
settings_length_t len = settings_iter_get_value_length(iter);
#if SETTINGS_CONF_SUPPORT_LARGE_VALUES
len += (len >= 128);
#endif
return iter - sizeof(item_header_t) - len;
}
/*---------------------------------------------------------------------------*/
settings_length_t
settings_iter_get_value_bytes(settings_iter_t iter, void *bytes,
settings_length_t max_length)
{
max_length = MIN(max_length, settings_iter_get_value_length(iter));
eeprom_read(settings_iter_get_value_addr(iter), bytes, max_length);
return max_length;
}
/*---------------------------------------------------------------------------*/
settings_status_t
settings_iter_delete(settings_iter_t iter)
{
settings_status_t ret = SETTINGS_STATUS_FAILURE;
settings_iter_t next = settings_iter_next(iter);
if(!next) {
/* Special case: we are the last item. we can get away with
* just wiping out our own header.
*/
item_header_t header;
memset(&header, 0xFF, sizeof(header));
eeprom_write(iter - sizeof(header), (uint8_t *)&header, sizeof(header));
ret = SETTINGS_STATUS_OK;
}
/* This case requires the settings store to be shifted.
* Currently unimplemented. TODO: Writeme!
*/
ret = SETTINGS_STATUS_UNIMPLEMENTED;
return ret;
}
/*****************************************************************************/
// MARK: - Public Functions
/*****************************************************************************/
/*---------------------------------------------------------------------------*/
uint8_t
settings_check(settings_key_t key, uint8_t index)
{
uint8_t ret = 0;
settings_iter_t iter;
for(iter = settings_iter_begin(); iter; iter = settings_iter_next(iter)) {
if(settings_iter_get_key(iter) == key) {
if(!index) {
ret = 1;
break;
} else {
index--;
}
}
}
return ret;
}
/*---------------------------------------------------------------------------*/
settings_status_t
settings_get(settings_key_t key, uint8_t index, uint8_t *value,
settings_length_t * value_size)
{
settings_status_t ret = SETTINGS_STATUS_NOT_FOUND;
settings_iter_t iter;
for(iter = settings_iter_begin(); iter; iter = settings_iter_next(iter)) {
if(settings_iter_get_key(iter) == key) {
if(!index) {
/* We found it! */
*value_size = settings_iter_get_value_bytes(iter,
(void *)value,
*value_size);
ret = SETTINGS_STATUS_OK;
break;
} else {
/* Nope, keep looking */
index--;
}
}
}
return ret;
}
/*---------------------------------------------------------------------------*/
settings_status_t
settings_add(settings_key_t key, const uint8_t *value,
settings_length_t value_size)
{
settings_status_t ret = SETTINGS_STATUS_FAILURE;
settings_iter_t iter;
item_header_t header;
/* Find the last item. */
for(iter = settings_iter_begin(); settings_iter_next(iter);
iter = settings_iter_next(iter)) {
/* This block intentionally left blank. */
}
if(iter) {
/* Value address of item is the same as the iterator for next item. */
iter = settings_iter_get_value_addr(iter);
} else {
/* This will be the first setting! */
iter = SETTINGS_TOP_ADDR;
}
if(iter < SETTINGS_BOTTOM_ADDR + value_size + sizeof(header)) {
/* This value is too big to store. */
ret = SETTINGS_STATUS_OUT_OF_SPACE;
goto bail;
}
header.key = key;
if(value_size < 0x80) {
/* If the value size is less than 128, then
* we can get away with only using one byte
* to store the size.
*/
header.size_low = value_size;
}
#if SETTINGS_CONF_SUPPORT_LARGE_VALUES
else if(value_size <= SETTINGS_MAX_VALUE_SIZE) {
/* If the value size is larger than or equal to 128,
* then we need to use two bytes. Store
* the most significant 7 bits in the first
* size byte (with MSB set) and store the
* least significant bits in the second
* byte (with LSB clear)
*/
header.size_low = (value_size >> 7) | 0x80;
header.size_extra = value_size & ~0x80;
}
#endif
else {
/* Value size way too big! */
ret = SETTINGS_STATUS_VALUE_TOO_BIG;
goto bail;
}
header.size_check = ~header.size_low;
/* Write the header first */
eeprom_write(iter - sizeof(header), (uint8_t *)&header, sizeof(header));
/* Sanity check, remove once confident */
if(settings_iter_get_value_length(iter) != value_size) {
goto bail;
}
/* Now write the data */
eeprom_write(settings_iter_get_value_addr(iter), (uint8_t *)value, value_size);
/* This should be the last item. If this is not the case,
* then we need to clear out the phantom setting.
*/
if((iter = settings_iter_next(iter))) {
memset(&header, 0xFF, sizeof(header));
eeprom_write(iter - sizeof(header),(uint8_t *)&header, sizeof(header));
}
ret = SETTINGS_STATUS_OK;
bail:
return ret;
}
/*---------------------------------------------------------------------------*/
settings_status_t
settings_set(settings_key_t key, const uint8_t *value,
settings_length_t value_size)
{
settings_status_t ret = SETTINGS_STATUS_FAILURE;
settings_iter_t iter;
for(iter = settings_iter_begin(); iter; iter = settings_iter_next(iter)) {
if(settings_iter_get_key(iter) == key) {
break;
}
}
if((iter == EEPROM_NULL) || !settings_iter_is_valid(iter)) {
ret = settings_add(key, value, value_size);
goto bail;
}
if(value_size != settings_iter_get_value_length(iter)) {
/* Requires the settings store to be shifted. Currently unimplemented. */
ret = SETTINGS_STATUS_UNIMPLEMENTED;
goto bail;
}
/* Now write the data */
eeprom_write(settings_iter_get_value_addr(iter),
(uint8_t *)value, value_size);
ret = SETTINGS_STATUS_OK;
bail:
return ret;
}
/*---------------------------------------------------------------------------*/
settings_status_t
settings_delete(settings_key_t key, uint8_t index)
{
settings_status_t ret = SETTINGS_STATUS_NOT_FOUND;
settings_iter_t iter;
for(iter = settings_iter_begin(); iter; iter = settings_iter_next(iter)) {
if(settings_iter_get_key(iter) == key) {
if(!index) {
/* We found it! */
ret = settings_iter_delete(iter);
break;
} else {
/* Nope, keep looking */
index--;
}
}
}
return ret;
}
/*---------------------------------------------------------------------------*/
void
settings_wipe(void)
{
/* Simply making the first item invalid will effectively
* clear the key-value store.
*/
const uint32_t x = 0xFFFFFF;
eeprom_write(SETTINGS_TOP_ADDR - sizeof(x), (uint8_t *)&x, sizeof(x));
}
/*****************************************************************************/
// MARK: - Other Functions
/*****************************************************************************/
#if DEBUG
#include <stdio.h>
/*---------------------------------------------------------------------------*/
void
settings_debug_dump(void)
{
settings_iter_t iter;
printf("{\n");
for(iter = settings_iter_begin(); iter; iter = settings_iter_next(iter)) {
settings_length_t len = settings_iter_get_value_length(iter);
eeprom_addr_t addr = settings_iter_get_value_addr(iter);
uint8_t byte;
union {
settings_key_t key;
char bytes[0];
} u;
u.key = settings_iter_get_key(iter);
printf("\t\"%c%c\" = <", u.bytes[0], u.bytes[1]);
for(; len; len--, addr++) {
eeprom_read(addr, &byte, 1);
printf("%02X", byte);
if(len != 1) {
printf(" ");
}
}
printf(">;\n");
}
printf("}\n");
}
#endif /* DEBUG */
#endif /* CONTIKI_CONF_SETTINGS_MANAGER */