contiki/core/dev/simple-cc2420.c

533 lines
14 KiB
C
Raw Normal View History

/*
* Copyright (c) 2007, Swedish Institute of Computer Science
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file is part of the Contiki operating system.
*
* @(#)$Id: simple-cc2420.c,v 1.8 2007/05/25 08:06:15 adamdunkels Exp $
*/
/*
* This code is almost device independent and should be easy to port.
*/
#include <stdio.h>
#include <string.h>
#include "contiki.h"
#if defined(__AVR__)
#include <avr/io.h>
#elif defined(__MSP430__)
#include <io.h>
#endif
#include "dev/spi.h"
#include "dev/simple-cc2420.h"
#include "dev/cc2420_const.h"
#include "net/rime/rimestats.h"
#define FOOTER1_CRC_OK 0x80
#define FOOTER1_CORRELATION 0x7f
#define DEBUG 0
#if DEBUG
#define PRINTF(...) printf(__VA_ARGS__)
#else
#define PRINTF(...) do {} while (0)
#endif
void simple_cc2420_arch_init(void);
/*---------------------------------------------------------------------------*/
PROCESS(simple_cc2420_process, "CC2420 driver");
/*---------------------------------------------------------------------------*/
static void (* receiver_callback)(const struct radio_driver *);
int simple_cc2420_on(void);
int simple_cc2420_off(void);
u16_t simple_cc2420_read(u8_t *buf, u16_t bufsize);
int simple_cc2420_send(const u8_t *data, u16_t len);
void simple_cc2420_set_receiver(void (* recv)(const struct radio_driver *d));
signed char simple_cc2420_last_rssi;
u8_t simple_cc2420_last_correlation;
const struct radio_driver simple_cc2420_driver =
{
simple_cc2420_send,
simple_cc2420_read,
simple_cc2420_set_receiver,
simple_cc2420_on,
simple_cc2420_off,
};
static u8_t receive_on;
/* Radio stuff in network byte order. */
static u16_t pan_id;
/*---------------------------------------------------------------------------*/
static void
strobe(enum cc2420_register regname)
{
FASTSPI_STROBE(regname);
}
/*---------------------------------------------------------------------------*/
static unsigned int
status(void)
{
u8_t status;
FASTSPI_UPD_STATUS(status);
return status;
}
/*---------------------------------------------------------------------------*/
static void
on(void)
{
ENERGEST_ON(ENERGEST_TYPE_RECEIVE);
PRINTF("on\n");
receive_on = 1;
strobe(CC2420_SRXON);
strobe(CC2420_SFLUSHRX);
ENABLE_FIFOP_INT();
}
static void
off(void)
{
u8_t spiStatusByte;
PRINTF("off\n");
receive_on = 0;
/* Wait for transmission to end before turning radio off. */
do {
spiStatusByte = status();
} while(spiStatusByte & BV(CC2420_TX_ACTIVE));
strobe(CC2420_SRFOFF);
DISABLE_FIFOP_INT();
ENERGEST_OFF(ENERGEST_TYPE_RECEIVE);
}
/*---------------------------------------------------------------------------*/
static u8_t locked, lock_on, lock_off;
#define GET_LOCK() locked = 1
static void RELEASE_LOCK(void) {
if(lock_on) {
on();
lock_on = 0;
}
if(lock_off) {
off();
lock_off = 0;
}
locked = 0;
}
/*---------------------------------------------------------------------------*/
static unsigned
getreg(enum cc2420_register regname)
{
unsigned reg;
FASTSPI_GETREG(regname, reg);
return reg;
}
/*---------------------------------------------------------------------------*/
static void
setreg(enum cc2420_register regname, unsigned value)
{
FASTSPI_SETREG(regname, value);
}
/*---------------------------------------------------------------------------*/
#define AUTOACK (1 << 4)
#define ADR_DECODE (1 << 11)
#define RXFIFO_PROTECTION (1 << 9)
#define CORR_THR(n) (((n) & 0x1f) << 6)
#define FIFOP_THR(n) ((n) & 0x7f)
#define RXBPF_LOCUR (1 << 13);
/*---------------------------------------------------------------------------*/
void
simple_cc2420_set_receiver(void (* recv)(const struct radio_driver *))
{
receiver_callback = recv;
}
/*---------------------------------------------------------------------------*/
void
simple_cc2420_init(void)
{
u16_t reg;
{
int s = splhigh();
simple_cc2420_arch_init(); /* Initalize ports and SPI. */
DISABLE_FIFOP_INT();
FIFOP_INT_INIT();
splx(s);
}
/* Turn on voltage regulator and reset. */
SET_VREG_ACTIVE();
//clock_delay(250); OK
SET_RESET_ACTIVE();
clock_delay(127);
SET_RESET_INACTIVE();
//clock_delay(125); OK
/* Turn on the crystal oscillator. */
strobe(CC2420_SXOSCON);
/* Turn off automatic packet acknowledgment. */
reg = getreg(CC2420_MDMCTRL0);
reg &= ~AUTOACK;
setreg(CC2420_MDMCTRL0, reg);
/* Turn off address decoding. */
reg = getreg(CC2420_MDMCTRL0);
reg &= ~ADR_DECODE;
setreg(CC2420_MDMCTRL0, reg);
/* Change default values as recomended in the data sheet, */
/* correlation threshold = 20, RX bandpass filter = 1.3uA. */
setreg(CC2420_MDMCTRL1, CORR_THR(20));
reg = getreg(CC2420_RXCTRL1);
reg |= RXBPF_LOCUR;
setreg(CC2420_RXCTRL1, reg);
/* Set the FIFOP threshold to maximum. */
setreg(CC2420_IOCFG0, FIFOP_THR(127));
/* Turn off "Security enable" (page 32). */
reg = getreg(CC2420_SECCTRL0);
reg &= ~RXFIFO_PROTECTION;
setreg(CC2420_SECCTRL0, reg);
simple_cc2420_set_chan_pan_addr(11, 0xffff, 0x0000, NULL);
process_start(&simple_cc2420_process, NULL);
}
/*---------------------------------------------------------------------------*/
int
simple_cc2420_send(const u8_t *payload, u16_t payload_len)
{
u8_t spiStatusByte;
int i;
/* This code uses the CC2420 CCA (Clear Channel Assessment) to
* implement Carrier Sense Multiple Access with Collision Avoidance
* (CSMA-CA) and requires the receiver to be enabled and ready.
*/
if(!receive_on) {
return -2;
}
/* PRINTF("simple_cc2420_send: %d bytes\n", payload_len);*/
GET_LOCK();
RIMESTATS_ADD(lltx);
/* Wait for previous transmission to finish and RSSI. */
do {
spiStatusByte = status();
if(!(spiStatusByte & BV(CC2420_RSSI_VALID))) { /* RSSI needed by CCA */
continue;
}
} while(spiStatusByte & BV(CC2420_TX_ACTIVE));
/* Write packet to TX FIFO, appending FCS if AUTOCRC is enabled. */
strobe(CC2420_SFLUSHTX); /* Cancel send that never started. */
ENERGEST_ON(ENERGEST_TYPE_TRANSMIT);
2007-03-21 23:19:15 +00:00
{
u8_t total_len = /*2 +*/ payload_len + 2; /* 2 bytes time stamp,
2 bytes footer. */
2007-03-21 23:19:15 +00:00
FASTSPI_WRITE_FIFO(&total_len, 1);
}
FASTSPI_WRITE_FIFO(payload, payload_len);
/* {
rtimer_clock_t t;
t = rtimer_arch_now();
FASTSPI_WRITE_FIFO(&t, 2);
}*/
if(FIFOP_IS_1 && !FIFO_IS_1) {
/* RXFIFO overflow, send on retransmit. */
PRINTF("rxfifo overflow!\n");
RELEASE_LOCK();
return -4;
}
/* The TX FIFO can only hold one packet! Make sure to not overrun
* FIFO by waiting for transmission to start here and synchronizing
* with the CC2420_TX_ACTIVE check in cc2420_send.
*
* Note that we may have to wait up to 320 us (20 symbols) before
* transmission starts.
*/
#ifdef TMOTE_SKY
#define LOOP_20_SYMBOLS 100 /* 326us (msp430 @ 2.4576MHz) */
#elif __AVR__
#define LOOP_20_SYMBOLS 500 /* XXX */
#endif
strobe(CC2420_STXONCCA);
for(i = LOOP_20_SYMBOLS; i > 0; i--) {
if(SFD_IS_1) {
/* PRINTF("simple_cc2420: do_send() transmission has started\n");*/
do {
spiStatusByte = status();
} while(spiStatusByte & BV(CC2420_TX_ACTIVE));
ENERGEST_OFF(ENERGEST_TYPE_TRANSMIT);
RELEASE_LOCK();
return 0; /* Transmission has started. */
}
}
PRINTF("simple_cc2420: do_send() transmission never started\n");
RELEASE_LOCK();
return -3; /* Transmission never started! */
}
/*---------------------------------------------------------------------------*/
static volatile u8_t packet_seen;
/*---------------------------------------------------------------------------*/
int
simple_cc2420_off(void)
{
if(receive_on == 0) {
return 1;
}
if(locked) {
lock_off = 1;
return 1;
}
if(packet_seen) {
lock_off = 1;
return 1;
}
off();
return 1;
}
/*---------------------------------------------------------------------------*/
int
simple_cc2420_on(void)
{
if(receive_on) {
return 1;
}
if(locked) {
lock_on = 1;
return 1;
}
on();
return 1;
}
/*---------------------------------------------------------------------------*/
void
simple_cc2420_set_chan_pan_addr(unsigned channel, /* 11 - 26 */
unsigned pan,
unsigned addr,
const u8_t *ieee_addr)
{
/*
* Subtract the base channel (11), multiply by 5, which is the
* channel spacing. 357 is 2405-2048 and 0x4000 is LOCK_THR = 1.
*/
u8_t spiStatusByte;
u16_t f = channel;
f = 5*(f - 11) + 357 + 0x4000;
/*
* Writing RAM requires crystal oscillator to be stable.
*/
do {
spiStatusByte = status();
} while(!(spiStatusByte & (BV(CC2420_XOSC16M_STABLE))));
pan_id = pan;
setreg(CC2420_FSCTRL, f);
FASTSPI_WRITE_RAM_LE(&pan, CC2420RAM_PANID, 2, f);
FASTSPI_WRITE_RAM_LE(&addr, CC2420RAM_SHORTADDR, 2, f);
if(ieee_addr != NULL) {
FASTSPI_WRITE_RAM_LE(ieee_addr, CC2420RAM_IEEEADDR, 8, f);
}
}
/*---------------------------------------------------------------------------*/
/*
* Interrupt either leaves frame intact in FIFO or reads *only* the
* MAC header and sets rx_fifo_remaining_bytes.
*
* In order to quickly empty the FIFO ack processing is done at
* interrupt priority rather than poll priority.
*/
static volatile rtimer_clock_t interrupt_time;
int
simple_cc2420_interrupt(void)
{
interrupt_time = rtimer_arch_now();
CLEAR_FIFOP_INT();
process_poll(&simple_cc2420_process);
packet_seen = 1;
return 1;
}
/*---------------------------------------------------------------------------*/
PROCESS_THREAD(simple_cc2420_process, ev, data)
{
PROCESS_BEGIN();
while(1) {
PROCESS_YIELD_UNTIL(ev == PROCESS_EVENT_POLL);
/* printf("Diff %d\n", rtimer_arch_now() - interrupt_time);*/
if(receiver_callback != NULL) {
receiver_callback(&simple_cc2420_driver);
} else {
PRINTF("simple_cc2420_process not receiving function\n");
FASTSPI_STROBE(CC2420_SFLUSHRX);
FASTSPI_STROBE(CC2420_SFLUSHRX);
}
}
PROCESS_END();
}
/*---------------------------------------------------------------------------*/
u16_t
simple_cc2420_read(u8_t *buf, u16_t bufsize)
{
u8_t footer[2];
int len;
if(!packet_seen) {
return 0;
}
GET_LOCK();
FASTSPI_READ_FIFO_BYTE(len);
if(len > SIMPLE_CC2420_MAX_PACKET_LEN) {
/* Oops, we must be out of sync. */
FASTSPI_STROBE(CC2420_SFLUSHRX);
FASTSPI_STROBE(CC2420_SFLUSHRX);
packet_seen = 0;
RIMESTATS_ADD(badsynch);
RELEASE_LOCK();
return 0;
}
if(len > 0) {
/* Read payload and two bytes of footer */
PRINTF("simple_cc2420_read: len %d\n", len);
if(len < 2) {
FASTSPI_READ_FIFO_GARBAGE(len);
RIMESTATS_ADD(tooshort);
} else if(len - 2 > bufsize) {
PRINTF("simple_cc2420_read too big len=%d bufsize %d\n", len, bufsize);
// FASTSPI_READ_FIFO_GARBAGE(2);
FASTSPI_READ_FIFO_NO_WAIT(buf, bufsize);
FASTSPI_READ_FIFO_GARBAGE(len - bufsize - 2);
FASTSPI_READ_FIFO_NO_WAIT(footer, 2);
// len = bufsize - 2; /* We eventually return len - 2 */
len = 2;
RIMESTATS_ADD(toolong);
} else {
// rtimer_clock_t t;
// FASTSPI_READ_FIFO_NO_WAIT(&t, 2); /* Time stamp */
FASTSPI_READ_FIFO_NO_WAIT(buf, len - 2);
/* PRINTF("simple_cc2420_read: data\n");*/
FASTSPI_READ_FIFO_NO_WAIT(footer, 2);
/* PRINTF("simple_cc2420_read: footer\n");*/
if(footer[1] & FOOTER1_CRC_OK) {
simple_cc2420_last_rssi = footer[0];
simple_cc2420_last_correlation = footer[1] & FOOTER1_CORRELATION;
/* if((h.fc0 & FC0_TYPE_MASK) == FC0_TYPE_DATA) {
uip_len = len - 2;
}*/
RIMESTATS_ADD(llrx);
} else {
RIMESTATS_ADD(badcrc);
len = 2;
}
// PRINTF("Time 0x%02x\n", t);
}
}
/* Clean up in case of FIFO overflow! This happens for every full
* length frame and is signaled by FIFOP = 1 and FIFO = 0.
*/
if(FIFOP_IS_1 && !FIFO_IS_1) {
PRINTF("simple_cc2420_read: FIFOP_IS_1 1\n");
strobe(CC2420_SFLUSHRX);
strobe(CC2420_SFLUSHRX);
}
if(FIFOP_IS_1) {
PRINTF("simple_cc2420_read: FIFOP_IS_1 2\n");
/* strobe(CC2420_SFLUSHRX);
strobe(CC2420_SFLUSHRX);*/
/* Another packet has been received and needs attention. */
process_poll(&simple_cc2420_process);
packet_seen = 1;
} else {
packet_seen = 0;
}
RELEASE_LOCK();
if(len < 2) {
return 0;
}
return len - 2; /* Remove two bytes for the footer, two bytes for time stamp. */
}
/*---------------------------------------------------------------------------*/
void
simple_cc2420_set_txpower(u8_t power)
{
u16_t reg;
GET_LOCK();
reg = getreg(CC2420_TXCTRL);
reg = (reg & 0xffe0) | (power & 0x1f);
setreg(CC2420_TXCTRL, reg);
RELEASE_LOCK();
}
/*---------------------------------------------------------------------------*/