contiki/core/net/uip.h

2200 lines
62 KiB
C
Raw Normal View History

/**
* \addtogroup uip
* @{
*/
/**
* \file
* Header file for the uIP TCP/IP stack.
2008-10-14 09:40:56 +00:00
* \author Adam Dunkels <adam@dunkels.com>
* \author Julien Abeille <jabeille@cisco.com> (IPv6 related code)
* \author Mathilde Durvy <mdurvy@cisco.com> (IPv6 related code)
*
* The uIP TCP/IP stack header file contains definitions for a number
* of C macros that are used by uIP programs as well as internal uIP
* structures, TCP/IP header structures and function declarations.
*
*/
/*
* Copyright (c) 2001-2003, Adam Dunkels.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* This file is part of the uIP TCP/IP stack.
*
*
*/
#ifndef __UIP_H__
#define __UIP_H__
#include "net/uipopt.h"
/**
* Representation of an IP address.
*
*/
typedef union uip_ip4addr_t {
uint8_t u8[4]; /* Initializer, must come first. */
uint16_t u16[2];
} uip_ip4addr_t;
typedef union uip_ip6addr_t {
uint8_t u8[16]; /* Initializer, must come first. */
uint16_t u16[8];
} uip_ip6addr_t;
#if UIP_CONF_IPV6
typedef uip_ip6addr_t uip_ipaddr_t;
#else /* UIP_CONF_IPV6 */
typedef uip_ip4addr_t uip_ipaddr_t;
#endif /* UIP_CONF_IPV6 */
2008-10-14 09:40:56 +00:00
/*---------------------------------------------------------------------------*/
/** \brief 16 bit 802.15.4 address */
typedef struct uip_802154_shortaddr {
uint8_t addr[2];
} uip_802154_shortaddr;
/** \brief 64 bit 802.15.4 address */
typedef struct uip_802154_longaddr {
uint8_t addr[8];
} uip_802154_longaddr;
/** \brief 802.11 address */
typedef struct uip_80211_addr {
uint8_t addr[6];
} uip_80211_addr;
/** \brief 802.3 address */
typedef struct uip_eth_addr {
uint8_t addr[6];
} uip_eth_addr;
2008-10-14 09:40:56 +00:00
#if UIP_CONF_LL_802154
/** \brief 802.15.4 address */
typedef uip_802154_longaddr uip_lladdr_t;
2008-10-14 09:40:56 +00:00
#define UIP_802154_SHORTADDR_LEN 2
#define UIP_802154_LONGADDR_LEN 8
#define UIP_LLADDR_LEN UIP_802154_LONGADDR_LEN
#else /*UIP_CONF_LL_802154*/
#if UIP_CONF_LL_80211
/** \brief 802.11 address */
typedef uip_80211_addr uip_lladdr_t;
2008-10-14 09:40:56 +00:00
#define UIP_LLADDR_LEN 6
#else /*UIP_CONF_LL_80211*/
2009-03-15 20:21:16 +00:00
/** \brief Ethernet address */
typedef uip_eth_addr uip_lladdr_t;
2008-10-14 09:40:56 +00:00
#define UIP_LLADDR_LEN 6
#endif /*UIP_CONF_LL_80211*/
#endif /*UIP_CONF_LL_802154*/
#include "net/tcpip.h"
/*---------------------------------------------------------------------------*/
/* First, the functions that should be called from the
2009-03-15 20:21:16 +00:00
* system. Initialization, the periodic timer, and incoming packets are
* handled by the following three functions.
*/
/**
* \defgroup uipconffunc uIP configuration functions
* @{
*
* The uIP configuration functions are used for setting run-time
* parameters in uIP such as IP addresses.
*/
/**
* Set the IP address of this host.
*
* The IP address is represented as a 4-byte array where the first
* octet of the IP address is put in the first member of the 4-byte
* array.
*
* Example:
\code
uip_ipaddr_t addr;
uip_ipaddr(&addr, 192,168,1,2);
uip_sethostaddr(&addr);
\endcode
* \param addr A pointer to an IP address of type uip_ipaddr_t;
*
* \sa uip_ipaddr()
*
* \hideinitializer
*/
#define uip_sethostaddr(addr) uip_ipaddr_copy(&uip_hostaddr, (addr))
/**
* Get the IP address of this host.
*
* The IP address is represented as a 4-byte array where the first
* octet of the IP address is put in the first member of the 4-byte
* array.
*
* Example:
\code
uip_ipaddr_t hostaddr;
uip_gethostaddr(&hostaddr);
\endcode
* \param addr A pointer to a uip_ipaddr_t variable that will be
* filled in with the currently configured IP address.
*
* \hideinitializer
*/
#define uip_gethostaddr(addr) uip_ipaddr_copy((addr), &uip_hostaddr)
/**
* Set the default router's IP address.
*
* \param addr A pointer to a uip_ipaddr_t variable containing the IP
* address of the default router.
*
* \sa uip_ipaddr()
*
* \hideinitializer
*/
#define uip_setdraddr(addr) uip_ipaddr_copy(&uip_draddr, (addr))
/**
* Set the netmask.
*
* \param addr A pointer to a uip_ipaddr_t variable containing the IP
* address of the netmask.
*
* \sa uip_ipaddr()
*
* \hideinitializer
*/
#define uip_setnetmask(addr) uip_ipaddr_copy(&uip_netmask, (addr))
/**
* Get the default router's IP address.
*
* \param addr A pointer to a uip_ipaddr_t variable that will be
* filled in with the IP address of the default router.
*
* \hideinitializer
*/
#define uip_getdraddr(addr) uip_ipaddr_copy((addr), &uip_draddr)
/**
* Get the netmask.
*
* \param addr A pointer to a uip_ipaddr_t variable that will be
* filled in with the value of the netmask.
*
* \hideinitializer
*/
#define uip_getnetmask(addr) uip_ipaddr_copy((addr), &uip_netmask)
/** @} */
/**
* \defgroup uipinit uIP initialization functions
* @{
*
* The uIP initialization functions are used for booting uIP.
*/
/**
* uIP initialization function.
*
* This function should be called at boot up to initilize the uIP
* TCP/IP stack.
*/
void uip_init(void);
/**
* uIP initialization function.
*
* This function may be used at boot time to set the initial ip_id.
*/
void uip_setipid(uint16_t id);
/** @} */
/**
* \defgroup uipdevfunc uIP device driver functions
* @{
*
* These functions are used by a network device driver for interacting
* with uIP.
*/
/**
* Process an incoming packet.
*
* This function should be called when the device driver has received
* a packet from the network. The packet from the device driver must
* be present in the uip_buf buffer, and the length of the packet
* should be placed in the uip_len variable.
*
* When the function returns, there may be an outbound packet placed
* in the uip_buf packet buffer. If so, the uip_len variable is set to
* the length of the packet. If no packet is to be sent out, the
* uip_len variable is set to 0.
*
* The usual way of calling the function is presented by the source
* code below.
\code
2008-10-14 09:40:56 +00:00
uip_len = devicedriver_poll();
if(uip_len > 0) {
uip_input();
if(uip_len > 0) {
devicedriver_send();
}
}
\endcode
*
* \note If you are writing a uIP device driver that needs ARP
* (Address Resolution Protocol), e.g., when running uIP over
* Ethernet, you will need to call the uIP ARP code before calling
* this function:
\code
2008-10-14 09:40:56 +00:00
#define BUF ((struct uip_eth_hdr *)&uip_buf[0])
uip_len = ethernet_devicedrver_poll();
if(uip_len > 0) {
if(BUF->type == UIP_HTONS(UIP_ETHTYPE_IP)) {
2008-10-14 09:40:56 +00:00
uip_arp_ipin();
uip_input();
if(uip_len > 0) {
uip_arp_out();
ethernet_devicedriver_send();
}
} else if(BUF->type == UIP_HTONS(UIP_ETHTYPE_ARP)) {
2008-10-14 09:40:56 +00:00
uip_arp_arpin();
if(uip_len > 0) {
ethernet_devicedriver_send();
}
}
\endcode
*
* \hideinitializer
*/
#define uip_input() uip_process(UIP_DATA)
2008-10-14 09:40:56 +00:00
/**
* Periodic processing for a connection identified by its number.
*
* This function does the necessary periodic processing (timers,
* polling) for a uIP TCP conneciton, and should be called when the
* periodic uIP timer goes off. It should be called for every
* connection, regardless of whether they are open of closed.
*
* When the function returns, it may have an outbound packet waiting
* for service in the uIP packet buffer, and if so the uip_len
* variable is set to a value larger than zero. The device driver
* should be called to send out the packet.
*
2009-03-15 20:21:16 +00:00
* The usual way of calling the function is through a for() loop like
* this:
\code
2008-10-14 09:40:56 +00:00
for(i = 0; i < UIP_CONNS; ++i) {
uip_periodic(i);
if(uip_len > 0) {
devicedriver_send();
}
}
\endcode
*
* \note If you are writing a uIP device driver that needs ARP
* (Address Resolution Protocol), e.g., when running uIP over
* Ethernet, you will need to call the uip_arp_out() function before
* calling the device driver:
\code
2008-10-14 09:40:56 +00:00
for(i = 0; i < UIP_CONNS; ++i) {
uip_periodic(i);
if(uip_len > 0) {
uip_arp_out();
ethernet_devicedriver_send();
}
}
\endcode
*
* \param conn The number of the connection which is to be periodically polled.
*
* \hideinitializer
*/
2008-10-14 09:40:56 +00:00
#if UIP_TCP
#define uip_periodic(conn) do { uip_conn = &uip_conns[conn]; \
uip_process(UIP_TIMER); } while (0)
/**
*
*
*/
#define uip_conn_active(conn) (uip_conns[conn].tcpstateflags != UIP_CLOSED)
/**
* Perform periodic processing for a connection identified by a pointer
* to its structure.
*
* Same as uip_periodic() but takes a pointer to the actual uip_conn
* struct instead of an integer as its argument. This function can be
* used to force periodic processing of a specific connection.
*
* \param conn A pointer to the uip_conn struct for the connection to
* be processed.
*
* \hideinitializer
*/
2008-10-14 09:40:56 +00:00
#define uip_periodic_conn(conn) do { uip_conn = conn; \
uip_process(UIP_TIMER); } while (0)
/**
2009-03-15 20:21:16 +00:00
* Request that a particular connection should be polled.
*
* Similar to uip_periodic_conn() but does not perform any timer
* processing. The application is polled for new data.
*
* \param conn A pointer to the uip_conn struct for the connection to
* be processed.
*
* \hideinitializer
*/
2008-10-14 09:40:56 +00:00
#define uip_poll_conn(conn) do { uip_conn = conn; \
uip_process(UIP_POLL_REQUEST); } while (0)
2008-10-14 09:40:56 +00:00
#endif /* UIP_TCP */
#if UIP_UDP
/**
* Periodic processing for a UDP connection identified by its number.
*
* This function is essentially the same as uip_periodic(), but for
* UDP connections. It is called in a similar fashion as the
* uip_periodic() function:
\code
2008-10-14 09:40:56 +00:00
for(i = 0; i < UIP_UDP_CONNS; i++) {
uip_udp_periodic(i);
if(uip_len > 0) {
devicedriver_send();
}
}
\endcode
*
* \note As for the uip_periodic() function, special care has to be
* taken when using uIP together with ARP and Ethernet:
\code
2008-10-14 09:40:56 +00:00
for(i = 0; i < UIP_UDP_CONNS; i++) {
uip_udp_periodic(i);
if(uip_len > 0) {
uip_arp_out();
ethernet_devicedriver_send();
}
}
\endcode
*
* \param conn The number of the UDP connection to be processed.
*
* \hideinitializer
*/
#define uip_udp_periodic(conn) do { uip_udp_conn = &uip_udp_conns[conn]; \
2008-10-14 09:40:56 +00:00
uip_process(UIP_UDP_TIMER); } while(0)
/**
* Periodic processing for a UDP connection identified by a pointer to
* its structure.
*
* Same as uip_udp_periodic() but takes a pointer to the actual
* uip_conn struct instead of an integer as its argument. This
* function can be used to force periodic processing of a specific
* connection.
*
* \param conn A pointer to the uip_udp_conn struct for the connection
* to be processed.
*
* \hideinitializer
*/
2008-10-14 09:40:56 +00:00
#define uip_udp_periodic_conn(conn) do { uip_udp_conn = conn; \
uip_process(UIP_UDP_TIMER); } while(0)
#endif /* UIP_UDP */
2008-10-14 09:40:56 +00:00
/** \brief Abandon the reassembly of the current packet */
void uip_reass_over(void);
/**
* The uIP packet buffer.
*
* The uip_buf array is used to hold incoming and outgoing
* packets. The device driver should place incoming data into this
* buffer. When sending data, the device driver should read the link
* level headers and the TCP/IP headers from this buffer. The size of
* the link level headers is configured by the UIP_LLH_LEN define.
*
* \note The application data need not be placed in this buffer, so
* the device driver must read it from the place pointed to by the
* uip_appdata pointer as illustrated by the following example:
\code
void
devicedriver_send(void)
{
2008-10-14 09:40:56 +00:00
hwsend(&uip_buf[0], UIP_LLH_LEN);
if(uip_len <= UIP_LLH_LEN + UIP_TCPIP_HLEN) {
hwsend(&uip_buf[UIP_LLH_LEN], uip_len - UIP_LLH_LEN);
} else {
hwsend(&uip_buf[UIP_LLH_LEN], UIP_TCPIP_HLEN);
hwsend(uip_appdata, uip_len - UIP_TCPIP_HLEN - UIP_LLH_LEN);
}
}
\endcode
2008-10-14 09:40:56 +00:00
*/
typedef union {
uint32_t u32[(UIP_BUFSIZE + 3) / 4];
uint8_t u8[UIP_BUFSIZE];
} uip_buf_t;
CCIF extern uip_buf_t uip_aligned_buf;
#define uip_buf (uip_aligned_buf.u8)
2008-10-14 09:40:56 +00:00
/** @} */
/*---------------------------------------------------------------------------*/
/* Functions that are used by the uIP application program. Opening and
* closing connections, sending and receiving data, etc. is all
* handled by the functions below.
2008-10-14 09:40:56 +00:00
*/
/**
* \defgroup uipappfunc uIP application functions
* @{
*
* Functions used by an application running of top of uIP.
*/
/**
* Start listening to the specified port.
*
* \note Since this function expects the port number in network byte
* order, a conversion using UIP_HTONS() or uip_htons() is necessary.
*
\code
uip_listen(UIP_HTONS(80));
\endcode
*
* \param port A 16-bit port number in network byte order.
*/
void uip_listen(uint16_t port);
/**
* Stop listening to the specified port.
*
* \note Since this function expects the port number in network byte
* order, a conversion using UIP_HTONS() or uip_htons() is necessary.
*
\code
uip_unlisten(UIP_HTONS(80));
\endcode
*
* \param port A 16-bit port number in network byte order.
*/
void uip_unlisten(uint16_t port);
/**
* Connect to a remote host using TCP.
*
* This function is used to start a new connection to the specified
2009-03-15 20:21:16 +00:00
* port on the specified host. It allocates a new connection identifier,
* sets the connection to the SYN_SENT state and sets the
* retransmission timer to 0. This will cause a TCP SYN segment to be
* sent out the next time this connection is periodically processed,
* which usually is done within 0.5 seconds after the call to
* uip_connect().
*
2009-03-15 20:21:16 +00:00
* \note This function is available only if support for active open
* has been configured by defining UIP_ACTIVE_OPEN to 1 in uipopt.h.
*
* \note Since this function requires the port number to be in network
* byte order, a conversion using UIP_HTONS() or uip_htons() is necessary.
*
\code
uip_ipaddr_t ipaddr;
uip_ipaddr(&ipaddr, 192,168,1,2);
uip_connect(&ipaddr, UIP_HTONS(80));
\endcode
*
2009-03-15 20:21:16 +00:00
* \param ripaddr The IP address of the remote host.
*
* \param port A 16-bit port number in network byte order.
*
* \return A pointer to the uIP connection identifier for the new connection,
* or NULL if no connection could be allocated.
*
*/
struct uip_conn *uip_connect(uip_ipaddr_t *ripaddr, uint16_t port);
/**
* \internal
*
* Check if a connection has outstanding (i.e., unacknowledged) data.
*
* \param conn A pointer to the uip_conn structure for the connection.
*
* \hideinitializer
*/
#define uip_outstanding(conn) ((conn)->len)
/**
* Send data on the current connection.
*
* This function is used to send out a single segment of TCP
* data. Only applications that have been invoked by uIP for event
* processing can send data.
*
* The amount of data that actually is sent out after a call to this
2009-03-15 20:21:16 +00:00
* function is determined by the maximum amount of data TCP allows. uIP
* will automatically crop the data so that only the appropriate
* amount of data is sent. The function uip_mss() can be used to query
* uIP for the amount of data that actually will be sent.
*
* \note This function does not guarantee that the sent data will
* arrive at the destination. If the data is lost in the network, the
* application will be invoked with the uip_rexmit() event being
* set. The application will then have to resend the data using this
* function.
*
* \param data A pointer to the data which is to be sent.
*
* \param len The maximum amount of data bytes to be sent.
*
* \hideinitializer
*/
CCIF void uip_send(const void *data, int len);
/**
2009-03-15 20:21:16 +00:00
* The length of any incoming data that is currently available (if available)
* in the uip_appdata buffer.
*
* The test function uip_data() must first be used to check if there
* is any data available at all.
*
* \hideinitializer
*/
/*void uip_datalen(void);*/
#define uip_datalen() uip_len
/**
* The length of any out-of-band data (urgent data) that has arrived
* on the connection.
*
* \note The configuration parameter UIP_URGDATA must be set for this
* function to be enabled.
*
* \hideinitializer
*/
#define uip_urgdatalen() uip_urglen
/**
* Close the current connection.
*
* This function will close the current connection in a nice way.
*
* \hideinitializer
*/
#define uip_close() (uip_flags = UIP_CLOSE)
/**
* Abort the current connection.
*
* This function will abort (reset) the current connection, and is
2009-03-15 20:21:16 +00:00
* usually used when an error has occurred that prevents using the
* uip_close() function.
*
* \hideinitializer
*/
#define uip_abort() (uip_flags = UIP_ABORT)
/**
* Tell the sending host to stop sending data.
*
* This function will close our receiver's window so that we stop
* receiving data for the current connection.
*
* \hideinitializer
*/
#define uip_stop() (uip_conn->tcpstateflags |= UIP_STOPPED)
/**
* Find out if the current connection has been previously stopped with
* uip_stop().
*
* \hideinitializer
*/
#define uip_stopped(conn) ((conn)->tcpstateflags & UIP_STOPPED)
/**
* Restart the current connection, if is has previously been stopped
* with uip_stop().
*
* This function will open the receiver's window again so that we
* start receiving data for the current connection.
*
* \hideinitializer
*/
2008-10-14 09:40:56 +00:00
#define uip_restart() do { uip_flags |= UIP_NEWDATA; \
uip_conn->tcpstateflags &= ~UIP_STOPPED; \
} while(0)
/* uIP tests that can be made to determine in what state the current
connection is, and what the application function should do. */
/**
* Is the current connection a UDP connection?
*
* This function checks whether the current connection is a UDP connection.
*
* \hideinitializer
*
*/
#define uip_udpconnection() (uip_conn == NULL)
/**
* Is new incoming data available?
*
* Will reduce to non-zero if there is new data for the application
* present at the uip_appdata pointer. The size of the data is
2009-03-15 20:21:16 +00:00
* available through the uip_len variable.
*
* \hideinitializer
*/
#define uip_newdata() (uip_flags & UIP_NEWDATA)
/**
* Has previously sent data been acknowledged?
*
* Will reduce to non-zero if the previously sent data has been
* acknowledged by the remote host. This means that the application
* can send new data.
*
* \hideinitializer
*/
#define uip_acked() (uip_flags & UIP_ACKDATA)
/**
* Has the connection just been connected?
*
* Reduces to non-zero if the current connection has been connected to
* a remote host. This will happen both if the connection has been
* actively opened (with uip_connect()) or passively opened (with
* uip_listen()).
*
* \hideinitializer
*/
#define uip_connected() (uip_flags & UIP_CONNECTED)
/**
* Has the connection been closed by the other end?
*
* Is non-zero if the connection has been closed by the remote
* host. The application may then do the necessary clean-ups.
*
* \hideinitializer
*/
#define uip_closed() (uip_flags & UIP_CLOSE)
/**
* Has the connection been aborted by the other end?
*
* Non-zero if the current connection has been aborted (reset) by the
* remote host.
*
* \hideinitializer
*/
#define uip_aborted() (uip_flags & UIP_ABORT)
/**
* Has the connection timed out?
*
* Non-zero if the current connection has been aborted due to too many
* retransmissions.
*
* \hideinitializer
*/
#define uip_timedout() (uip_flags & UIP_TIMEDOUT)
/**
* Do we need to retransmit previously data?
*
* Reduces to non-zero if the previously sent data has been lost in
* the network, and the application should retransmit it. The
* application should send the exact same data as it did the last
* time, using the uip_send() function.
*
* \hideinitializer
*/
#define uip_rexmit() (uip_flags & UIP_REXMIT)
/**
* Is the connection being polled by uIP?
*
* Is non-zero if the reason the application is invoked is that the
* current connection has been idle for a while and should be
* polled.
*
* The polling event can be used for sending data without having to
* wait for the remote host to send data.
*
* \hideinitializer
*/
#define uip_poll() (uip_flags & UIP_POLL)
/**
2009-03-15 20:21:16 +00:00
* Get the initial maximum segment size (MSS) of the current
* connection.
*
* \hideinitializer
*/
#define uip_initialmss() (uip_conn->initialmss)
/**
2009-03-15 20:21:16 +00:00
* Get the current maximum segment size that can be sent on the current
* connection.
*
2009-03-15 20:21:16 +00:00
* The current maximum segment size that can be sent on the
* connection is computed from the receiver's window and the MSS of
* the connection (which also is available by calling
* uip_initialmss()).
*
* \hideinitializer
*/
#define uip_mss() (uip_conn->mss)
/**
* Set up a new UDP connection.
*
* This function sets up a new UDP connection. The function will
* automatically allocate an unused local port for the new
* connection. However, another port can be chosen by using the
* uip_udp_bind() call, after the uip_udp_new() function has been
* called.
*
* Example:
\code
uip_ipaddr_t addr;
struct uip_udp_conn *c;
uip_ipaddr(&addr, 192,168,2,1);
c = uip_udp_new(&addr, UIP_HTONS(12345));
if(c != NULL) {
uip_udp_bind(c, UIP_HTONS(12344));
}
\endcode
* \param ripaddr The IP address of the remote host.
*
* \param rport The remote port number in network byte order.
*
2011-12-01 14:22:48 +01:00
* \return The uip_udp_conn structure for the new connection, or NULL
* if no connection could be allocated.
*/
struct uip_udp_conn *uip_udp_new(const uip_ipaddr_t *ripaddr, uint16_t rport);
/**
2011-12-01 14:22:48 +01:00
* Remove a UDP connection.
*
* \param conn A pointer to the uip_udp_conn structure for the connection.
*
* \hideinitializer
*/
#define uip_udp_remove(conn) (conn)->lport = 0
/**
* Bind a UDP connection to a local port.
*
* \param conn A pointer to the uip_udp_conn structure for the
* connection.
*
* \param port The local port number, in network byte order.
*
* \hideinitializer
*/
#define uip_udp_bind(conn, port) (conn)->lport = port
/**
* Send a UDP datagram of length len on the current connection.
*
* This function can only be called in response to a UDP event (poll
* or newdata). The data must be present in the uip_buf buffer, at the
* place pointed to by the uip_appdata pointer.
*
* \param len The length of the data in the uip_buf buffer.
*
* \hideinitializer
*/
#define uip_udp_send(len) uip_send((char *)uip_appdata, len)
/** @} */
/* uIP convenience and converting functions. */
/**
* \defgroup uipconvfunc uIP conversion functions
* @{
*
* These functions can be used for converting between different data
* formats used by uIP.
*/
2007-02-01 14:27:17 +00:00
/**
* Convert an IP address to four bytes separated by commas.
*
* Example:
\code
uip_ipaddr_t ipaddr;
printf("ipaddr=%d.%d.%d.%d\n", uip_ipaddr_to_quad(&ipaddr));
\endcode
*
2007-03-25 17:15:43 +00:00
* \param a A pointer to a uip_ipaddr_t.
2007-02-01 14:27:17 +00:00
* \hideinitializer
*/
#define uip_ipaddr_to_quad(a) (a)->u8[0],(a)->u8[1],(a)->u8[2],(a)->u8[3]
/**
* Construct an IP address from four bytes.
*
* This function constructs an IP address of the type that uIP handles
* internally from four bytes. The function is handy for specifying IP
* addresses to use with e.g. the uip_connect() function.
*
* Example:
\code
uip_ipaddr_t ipaddr;
struct uip_conn *c;
uip_ipaddr(&ipaddr, 192,168,1,2);
c = uip_connect(&ipaddr, UIP_HTONS(80));
\endcode
*
* \param addr A pointer to a uip_ipaddr_t variable that will be
* filled in with the IP address.
*
* \param addr0 The first octet of the IP address.
* \param addr1 The second octet of the IP address.
* \param addr2 The third octet of the IP address.
* \param addr3 The forth octet of the IP address.
*
* \hideinitializer
*/
2008-10-14 09:40:56 +00:00
#define uip_ipaddr(addr, addr0,addr1,addr2,addr3) do { \
(addr)->u8[0] = addr0; \
(addr)->u8[1] = addr1; \
(addr)->u8[2] = addr2; \
(addr)->u8[3] = addr3; \
} while(0)
/**
* Construct an IPv6 address from eight 16-bit words.
*
* This function constructs an IPv6 address.
*
* \hideinitializer
*/
#define uip_ip6addr(addr, addr0,addr1,addr2,addr3,addr4,addr5,addr6,addr7) do { \
(addr)->u16[0] = UIP_HTONS(addr0); \
(addr)->u16[1] = UIP_HTONS(addr1); \
(addr)->u16[2] = UIP_HTONS(addr2); \
(addr)->u16[3] = UIP_HTONS(addr3); \
(addr)->u16[4] = UIP_HTONS(addr4); \
(addr)->u16[5] = UIP_HTONS(addr5); \
(addr)->u16[6] = UIP_HTONS(addr6); \
(addr)->u16[7] = UIP_HTONS(addr7); \
2008-10-14 09:40:56 +00:00
} while(0)
/**
2011-12-01 14:22:48 +01:00
* Construct an IPv6 address from sixteen 8-bit words.
2008-10-14 09:40:56 +00:00
*
* This function constructs an IPv6 address.
*
* \hideinitializer
*/
#define uip_ip6addr_u8(addr, addr0,addr1,addr2,addr3,addr4,addr5,addr6,addr7,addr8,addr9,addr10,addr11,addr12,addr13,addr14,addr15) do { \
(addr)->u8[0] = addr0; \
(addr)->u8[1] = addr1; \
(addr)->u8[2] = addr2; \
(addr)->u8[3] = addr3; \
(addr)->u8[4] = addr4; \
(addr)->u8[5] = addr5; \
(addr)->u8[6] = addr6; \
(addr)->u8[7] = addr7; \
(addr)->u8[8] = addr8; \
(addr)->u8[9] = addr9; \
(addr)->u8[10] = addr10; \
(addr)->u8[11] = addr11; \
(addr)->u8[12] = addr12; \
(addr)->u8[13] = addr13; \
(addr)->u8[14] = addr14; \
(addr)->u8[15] = addr15; \
} while(0)
/**
2011-12-01 14:22:48 +01:00
* Copy an IP address from one place to another.
*
* Copies an IP address from one place to another.
*
* Example:
\code
uip_ipaddr_t ipaddr1, ipaddr2;
uip_ipaddr(&ipaddr1, 192,16,1,2);
uip_ipaddr_copy(&ipaddr2, &ipaddr1);
\endcode
*
* \param dest The destination for the copy.
* \param src The source from where to copy.
*
* \hideinitializer
*/
#ifndef uip_ipaddr_copy
#define uip_ipaddr_copy(dest, src) (*(dest) = *(src))
#endif
#ifndef uip_ip4addr_copy
#define uip_ip4addr_copy(dest, src) (*(dest) = *(src))
#endif
#ifndef uip_ip6addr_copy
#define uip_ip6addr_copy(dest, src) (*(dest) = *(src))
#endif
/**
* Compare two IP addresses
*
* Compares two IP addresses.
*
* Example:
\code
uip_ipaddr_t ipaddr1, ipaddr2;
uip_ipaddr(&ipaddr1, 192,16,1,2);
if(uip_ipaddr_cmp(&ipaddr2, &ipaddr1)) {
2011-12-01 14:22:48 +01:00
printf("They are the same");
}
\endcode
*
* \param addr1 The first IP address.
* \param addr2 The second IP address.
*
* \hideinitializer
*/
#define uip_ip4addr_cmp(addr1, addr2) ((addr1)->u16[0] == (addr2)->u16[0] && \
(addr1)->u16[1] == (addr2)->u16[1])
#define uip_ip6addr_cmp(addr1, addr2) (memcmp(addr1, addr2, sizeof(uip_ip6addr_t)) == 0)
#if UIP_CONF_IPV6
#define uip_ipaddr_cmp(addr1, addr2) uip_ip6addr_cmp(addr1, addr2)
#else /* UIP_CONF_IPV6 */
#define uip_ipaddr_cmp(addr1, addr2) uip_ip4addr_cmp(addr1, addr2)
#endif /* UIP_CONF_IPV6 */
/**
* Compare two IP addresses with netmasks
*
* Compares two IP addresses with netmasks. The masks are used to mask
* out the bits that are to be compared.
*
* Example:
\code
uip_ipaddr_t ipaddr1, ipaddr2, mask;
uip_ipaddr(&mask, 255,255,255,0);
uip_ipaddr(&ipaddr1, 192,16,1,2);
uip_ipaddr(&ipaddr2, 192,16,1,3);
if(uip_ipaddr_maskcmp(&ipaddr1, &ipaddr2, &mask)) {
2008-10-14 09:40:56 +00:00
printf("They are the same");
}
\endcode
*
* \param addr1 The first IP address.
* \param addr2 The second IP address.
* \param mask The netmask.
*
* \hideinitializer
*/
2008-10-14 09:40:56 +00:00
#define uip_ipaddr_maskcmp(addr1, addr2, mask) \
(((((uint16_t *)addr1)[0] & ((uint16_t *)mask)[0]) == \
(((uint16_t *)addr2)[0] & ((uint16_t *)mask)[0])) && \
((((uint16_t *)addr1)[1] & ((uint16_t *)mask)[1]) == \
(((uint16_t *)addr2)[1] & ((uint16_t *)mask)[1])))
2008-10-14 09:40:56 +00:00
#define uip_ipaddr_prefixcmp(addr1, addr2, length) (memcmp(addr1, addr2, length>>3) == 0)
2008-10-14 09:40:56 +00:00
/**
* Check if an address is a broadcast address for a network.
*
* Checks if an address is the broadcast address for a network. The
* network is defined by an IP address that is on the network and the
* network's netmask.
*
* \param addr The IP address.
* \param netaddr The network's IP address.
* \param netmask The network's netmask.
*
* \hideinitializer
*/
/*#define uip_ipaddr_isbroadcast(addr, netaddr, netmask)
2008-10-14 09:40:56 +00:00
((uip_ipaddr_t *)(addr)).u16 & ((uip_ipaddr_t *)(addr)).u16*/
/**
* Mask out the network part of an IP address.
*
* Masks out the network part of an IP address, given the address and
* the netmask.
*
* Example:
\code
uip_ipaddr_t ipaddr1, ipaddr2, netmask;
uip_ipaddr(&ipaddr1, 192,16,1,2);
uip_ipaddr(&netmask, 255,255,255,0);
uip_ipaddr_mask(&ipaddr2, &ipaddr1, &netmask);
\endcode
*
* In the example above, the variable "ipaddr2" will contain the IP
* address 192.168.1.0.
*
* \param dest Where the result is to be placed.
* \param src The IP address.
* \param mask The netmask.
*
* \hideinitializer
*/
2008-10-14 09:40:56 +00:00
#define uip_ipaddr_mask(dest, src, mask) do { \
((uint16_t *)dest)[0] = ((uint16_t *)src)[0] & ((uint16_t *)mask)[0]; \
((uint16_t *)dest)[1] = ((uint16_t *)src)[1] & ((uint16_t *)mask)[1]; \
2008-10-14 09:40:56 +00:00
} while(0)
/**
* Pick the first octet of an IP address.
*
* Picks out the first octet of an IP address.
*
* Example:
\code
uip_ipaddr_t ipaddr;
uint8_t octet;
uip_ipaddr(&ipaddr, 1,2,3,4);
octet = uip_ipaddr1(&ipaddr);
\endcode
*
* In the example above, the variable "octet" will contain the value 1.
*
* \hideinitializer
*/
#define uip_ipaddr1(addr) ((addr)->u8[0])
/**
* Pick the second octet of an IP address.
*
* Picks out the second octet of an IP address.
*
* Example:
\code
uip_ipaddr_t ipaddr;
uint8_t octet;
uip_ipaddr(&ipaddr, 1,2,3,4);
octet = uip_ipaddr2(&ipaddr);
\endcode
*
* In the example above, the variable "octet" will contain the value 2.
*
* \hideinitializer
*/
#define uip_ipaddr2(addr) ((addr)->u8[1])
/**
* Pick the third octet of an IP address.
*
* Picks out the third octet of an IP address.
*
* Example:
\code
uip_ipaddr_t ipaddr;
uint8_t octet;
uip_ipaddr(&ipaddr, 1,2,3,4);
octet = uip_ipaddr3(&ipaddr);
\endcode
*
* In the example above, the variable "octet" will contain the value 3.
*
* \hideinitializer
*/
#define uip_ipaddr3(addr) ((addr)->u8[2])
/**
* Pick the fourth octet of an IP address.
*
* Picks out the fourth octet of an IP address.
*
* Example:
\code
uip_ipaddr_t ipaddr;
uint8_t octet;
uip_ipaddr(&ipaddr, 1,2,3,4);
octet = uip_ipaddr4(&ipaddr);
\endcode
*
* In the example above, the variable "octet" will contain the value 4.
*
* \hideinitializer
*/
#define uip_ipaddr4(addr) ((addr)->u8[3])
/**
* Convert 16-bit quantity from host byte order to network byte order.
*
* This macro is primarily used for converting constants from host
* byte order to network byte order. For converting variables to
* network byte order, use the uip_htons() function instead.
*
* \hideinitializer
*/
#ifndef UIP_HTONS
# if UIP_BYTE_ORDER == UIP_BIG_ENDIAN
# define UIP_HTONS(n) (n)
# define UIP_HTONL(n) (n)
# else /* UIP_BYTE_ORDER == UIP_BIG_ENDIAN */
# define UIP_HTONS(n) (uint16_t)((((uint16_t) (n)) << 8) | (((uint16_t) (n)) >> 8))
# define UIP_HTONL(n) (((uint32_t)UIP_HTONS(n) << 16) | UIP_HTONS((uint32_t)(n) >> 16))
# endif /* UIP_BYTE_ORDER == UIP_BIG_ENDIAN */
#else
#error "UIP_HTONS already defined!"
#endif /* UIP_HTONS */
/**
2011-12-01 14:22:48 +01:00
* Convert a 16-bit quantity from host byte order to network byte order.
*
* This function is primarily used for converting variables from host
* byte order to network byte order. For converting constants to
* network byte order, use the UIP_HTONS() macro instead.
*/
#ifndef uip_htons
CCIF uint16_t uip_htons(uint16_t val);
#endif /* uip_htons */
#ifndef uip_ntohs
#define uip_ntohs uip_htons
#endif
#ifndef uip_htonl
CCIF uint32_t uip_htonl(uint32_t val);
#endif /* uip_htonl */
#ifndef uip_ntohl
#define uip_ntohl uip_htonl
2007-04-04 11:37:20 +00:00
#endif
/** @} */
/**
* Pointer to the application data in the packet buffer.
*
* This pointer points to the application data when the application is
* called. If the application wishes to send data, the application may
* use this space to write the data into before calling uip_send().
*/
CCIF extern void *uip_appdata;
#if UIP_URGDATA > 0
/* uint8_t *uip_urgdata:
*
* This pointer points to any urgent data that has been received. Only
* present if compiled with support for urgent data (UIP_URGDATA).
*/
extern void *uip_urgdata;
#endif /* UIP_URGDATA > 0 */
/**
* \defgroup uipdrivervars Variables used in uIP device drivers
* @{
*
* uIP has a few global variables that are used in device drivers for
* uIP.
*/
/**
* The length of the packet in the uip_buf buffer.
*
* The global variable uip_len holds the length of the packet in the
* uip_buf buffer.
*
* When the network device driver calls the uIP input function,
* uip_len should be set to the length of the packet in the uip_buf
* buffer.
*
* When sending packets, the device driver should use the contents of
* the uip_len variable to determine the length of the outgoing
* packet.
*
*/
CCIF extern uint16_t uip_len;
2008-10-14 09:40:56 +00:00
/**
* The length of the extension headers
2008-10-14 09:40:56 +00:00
*/
extern uint8_t uip_ext_len;
/** @} */
#if UIP_URGDATA > 0
extern uint16_t uip_urglen, uip_surglen;
#endif /* UIP_URGDATA > 0 */
/**
* Representation of a uIP TCP connection.
*
* The uip_conn structure is used for identifying a connection. All
* but one field in the structure are to be considered read-only by an
2009-03-15 20:21:16 +00:00
* application. The only exception is the appstate field whose purpose
* is to let the application store application-specific state (e.g.,
* file pointers) for the connection. The type of this field is
* configured in the "uipopt.h" header file.
*/
struct uip_conn {
uip_ipaddr_t ripaddr; /**< The IP address of the remote host. */
uint16_t lport; /**< The local TCP port, in network byte order. */
uint16_t rport; /**< The local remote TCP port, in network byte
order. */
uint8_t rcv_nxt[4]; /**< The sequence number that we expect to
receive next. */
uint8_t snd_nxt[4]; /**< The sequence number that was last sent by
us. */
uint16_t len; /**< Length of the data that was previously sent. */
uint16_t mss; /**< Current maximum segment size for the
connection. */
uint16_t initialmss; /**< Initial maximum segment size for the
connection. */
uint8_t sa; /**< Retransmission time-out calculation state
variable. */
uint8_t sv; /**< Retransmission time-out calculation state
variable. */
uint8_t rto; /**< Retransmission time-out. */
uint8_t tcpstateflags; /**< TCP state and flags. */
uint8_t timer; /**< The retransmission timer. */
uint8_t nrtx; /**< The number of retransmissions for the last
segment sent. */
/** The application state. */
uip_tcp_appstate_t appstate;
};
/**
* Pointer to the current TCP connection.
*
* The uip_conn pointer can be used to access the current TCP
* connection.
*/
2008-10-14 09:40:56 +00:00
CCIF extern struct uip_conn *uip_conn;
2008-10-14 09:40:56 +00:00
#if UIP_TCP
/* The array containing all uIP connections. */
CCIF extern struct uip_conn uip_conns[UIP_CONNS];
2008-10-14 09:40:56 +00:00
#endif
/**
* \addtogroup uiparch
* @{
*/
/**
* 4-byte array used for the 32-bit sequence number calculations.
*/
extern uint8_t uip_acc32[4];
/** @} */
/**
* Representation of a uIP UDP connection.
*/
struct uip_udp_conn {
uip_ipaddr_t ripaddr; /**< The IP address of the remote peer. */
uint16_t lport; /**< The local port number in network byte order. */
uint16_t rport; /**< The remote port number in network byte order. */
uint8_t ttl; /**< Default time-to-live. */
/** The application state. */
uip_udp_appstate_t appstate;
};
/**
* The current UDP connection.
*/
extern struct uip_udp_conn *uip_udp_conn;
extern struct uip_udp_conn uip_udp_conns[UIP_UDP_CONNS];
2008-10-14 09:40:56 +00:00
struct uip_fallback_interface {
void (*init)(void);
void (*output)(void);
};
2008-10-14 09:40:56 +00:00
#if UIP_CONF_ICMP6
struct uip_icmp6_conn {
uip_icmp6_appstate_t appstate;
};
extern struct uip_icmp6_conn uip_icmp6_conns;
#endif /*UIP_CONF_ICMP6*/
/**
* The uIP TCP/IP statistics.
*
* This is the variable in which the uIP TCP/IP statistics are gathered.
*/
#if UIP_STATISTICS == 1
extern struct uip_stats uip_stat;
#define UIP_STAT(s) s
#else
#define UIP_STAT(s)
#endif /* UIP_STATISTICS == 1 */
/**
* The structure holding the TCP/IP statistics that are gathered if
* UIP_STATISTICS is set to 1.
*
*/
struct uip_stats {
struct {
uip_stats_t recv; /**< Number of received packets at the IP
layer. */
uip_stats_t sent; /**< Number of sent packets at the IP
layer. */
uip_stats_t forwarded;/**< Number of forwarded packets at the IP
layer. */
uip_stats_t drop; /**< Number of dropped packets at the IP
layer. */
uip_stats_t vhlerr; /**< Number of packets dropped due to wrong
IP version or header length. */
uip_stats_t hblenerr; /**< Number of packets dropped due to wrong
IP length, high byte. */
uip_stats_t lblenerr; /**< Number of packets dropped due to wrong
IP length, low byte. */
2011-12-01 14:22:48 +01:00
uip_stats_t fragerr; /**< Number of packets dropped because they
were IP fragments. */
uip_stats_t chkerr; /**< Number of packets dropped due to IP
checksum errors. */
2011-12-01 14:22:48 +01:00
uip_stats_t protoerr; /**< Number of packets dropped because they
were neither ICMP, UDP nor TCP. */
} ip; /**< IP statistics. */
struct {
uip_stats_t recv; /**< Number of received ICMP packets. */
uip_stats_t sent; /**< Number of sent ICMP packets. */
uip_stats_t drop; /**< Number of dropped ICMP packets. */
uip_stats_t typeerr; /**< Number of ICMP packets with a wrong
type. */
2008-10-14 09:40:56 +00:00
uip_stats_t chkerr; /**< Number of ICMP packets with a bad
checksum. */
} icmp; /**< ICMP statistics. */
2008-10-14 09:40:56 +00:00
#if UIP_TCP
struct {
uip_stats_t recv; /**< Number of recived TCP segments. */
uip_stats_t sent; /**< Number of sent TCP segments. */
uip_stats_t drop; /**< Number of dropped TCP segments. */
uip_stats_t chkerr; /**< Number of TCP segments with a bad
checksum. */
uip_stats_t ackerr; /**< Number of TCP segments with a bad ACK
number. */
2011-12-01 14:22:48 +01:00
uip_stats_t rst; /**< Number of received TCP RST (reset) segments. */
uip_stats_t rexmit; /**< Number of retransmitted TCP segments. */
2011-12-01 14:22:48 +01:00
uip_stats_t syndrop; /**< Number of dropped SYNs because too few
connections were available. */
uip_stats_t synrst; /**< Number of SYNs for closed ports,
triggering a RST. */
} tcp; /**< TCP statistics. */
2008-10-14 09:40:56 +00:00
#endif
#if UIP_UDP
struct {
uip_stats_t drop; /**< Number of dropped UDP segments. */
uip_stats_t recv; /**< Number of recived UDP segments. */
uip_stats_t sent; /**< Number of sent UDP segments. */
uip_stats_t chkerr; /**< Number of UDP segments with a bad
checksum. */
} udp; /**< UDP statistics. */
#endif /* UIP_UDP */
#if UIP_CONF_IPV6
2008-10-14 09:40:56 +00:00
struct {
uip_stats_t drop; /**< Number of dropped ND6 packets. */
uip_stats_t recv; /**< Number of recived ND6 packets */
uip_stats_t sent; /**< Number of sent ND6 packets */
} nd6;
#endif /*UIP_CONF_IPV6*/
};
/*---------------------------------------------------------------------------*/
/* All the stuff below this point is internal to uIP and should not be
* used directly by an application or by a device driver.
*/
/*---------------------------------------------------------------------------*/
2008-10-14 09:40:56 +00:00
/* uint8_t uip_flags:
*
* When the application is called, uip_flags will contain the flags
* that are defined in this file. Please read below for more
2009-03-15 20:21:16 +00:00
* information.
*/
CCIF extern uint8_t uip_flags;
/* The following flags may be set in the global variable uip_flags
before calling the application callback. The UIP_ACKDATA,
UIP_NEWDATA, and UIP_CLOSE flags may both be set at the same time,
2009-03-15 20:21:16 +00:00
whereas the others are mutually exclusive. Note that these flags
should *NOT* be accessed directly, but only through the uIP
functions/macros. */
#define UIP_ACKDATA 1 /* Signifies that the outstanding data was
acked and the application should send
out new data instead of retransmitting
the last data. */
#define UIP_NEWDATA 2 /* Flags the fact that the peer has sent
us new data. */
#define UIP_REXMIT 4 /* Tells the application to retransmit the
data that was last sent. */
#define UIP_POLL 8 /* Used for polling the application, to
check if the application has data that
it wants to send. */
#define UIP_CLOSE 16 /* The remote host has closed the
connection, thus the connection has
gone away. Or the application signals
that it wants to close the
connection. */
#define UIP_ABORT 32 /* The remote host has aborted the
connection, thus the connection has
gone away. Or the application signals
that it wants to abort the
connection. */
#define UIP_CONNECTED 64 /* We have got a connection from a remote
host and have set up a new connection
for it, or an active connection has
been successfully established. */
#define UIP_TIMEDOUT 128 /* The connection has been aborted due to
too many retransmissions. */
2008-10-14 09:40:56 +00:00
/**
2009-03-15 20:21:16 +00:00
* \brief process the options within a hop by hop or destination option header
* \retval 0: nothing to send,
2008-10-14 09:40:56 +00:00
* \retval 1: drop pkt
* \retval 2: ICMP error message to send
*/
/*static uint8_t
2008-10-14 09:40:56 +00:00
uip_ext_hdr_options_process(); */
/* uip_process(flag):
*
* The actual uIP function which does all the work.
*/
void uip_process(uint8_t flag);
2008-10-14 09:40:56 +00:00
/* The following flags are passed as an argument to the uip_process()
function. They are used to distinguish between the two cases where
uip_process() is called. It can be called either because we have
incoming data that should be processed, or because the periodic
timer has fired. These values are never used directly, but only in
2009-03-15 20:21:16 +00:00
the macros defined in this file. */
#define UIP_DATA 1 /* Tells uIP that there is incoming
data in the uip_buf buffer. The
length of the data is stored in the
global variable uip_len. */
#define UIP_TIMER 2 /* Tells uIP that the periodic timer
has fired. */
#define UIP_POLL_REQUEST 3 /* Tells uIP that a connection should
be polled. */
#define UIP_UDP_SEND_CONN 4 /* Tells uIP that a UDP datagram
should be constructed in the
uip_buf buffer. */
#if UIP_UDP
#define UIP_UDP_TIMER 5
#endif /* UIP_UDP */
/* The TCP states used in the uip_conn->tcpstateflags. */
#define UIP_CLOSED 0
#define UIP_SYN_RCVD 1
#define UIP_SYN_SENT 2
#define UIP_ESTABLISHED 3
#define UIP_FIN_WAIT_1 4
#define UIP_FIN_WAIT_2 5
#define UIP_CLOSING 6
#define UIP_TIME_WAIT 7
#define UIP_LAST_ACK 8
#define UIP_TS_MASK 15
#define UIP_STOPPED 16
/* The TCP and IP headers. */
struct uip_tcpip_hdr {
#if UIP_CONF_IPV6
/* IPv6 header. */
uint8_t vtc,
tcflow;
uint16_t flow;
uint8_t len[2];
uint8_t proto, ttl;
uip_ip6addr_t srcipaddr, destipaddr;
#else /* UIP_CONF_IPV6 */
/* IPv4 header. */
uint8_t vhl,
tos,
len[2],
ipid[2],
ipoffset[2],
ttl,
proto;
uint16_t ipchksum;
uip_ipaddr_t srcipaddr, destipaddr;
#endif /* UIP_CONF_IPV6 */
/* TCP header. */
uint16_t srcport,
destport;
uint8_t seqno[4],
ackno[4],
tcpoffset,
flags,
wnd[2];
uint16_t tcpchksum;
uint8_t urgp[2];
uint8_t optdata[4];
};
/* The ICMP and IP headers. */
struct uip_icmpip_hdr {
#if UIP_CONF_IPV6
/* IPv6 header. */
uint8_t vtc,
tcf;
uint16_t flow;
uint8_t len[2];
uint8_t proto, ttl;
uip_ip6addr_t srcipaddr, destipaddr;
#else /* UIP_CONF_IPV6 */
/* IPv4 header. */
uint8_t vhl,
tos,
len[2],
ipid[2],
ipoffset[2],
ttl,
proto;
uint16_t ipchksum;
uip_ipaddr_t srcipaddr, destipaddr;
#endif /* UIP_CONF_IPV6 */
2008-10-14 09:40:56 +00:00
/* ICMP header. */
uint8_t type, icode;
uint16_t icmpchksum;
#if !UIP_CONF_IPV6
uint16_t id, seqno;
uint8_t payload[1];
#endif /* !UIP_CONF_IPV6 */
};
/* The UDP and IP headers. */
struct uip_udpip_hdr {
#if UIP_CONF_IPV6
/* IPv6 header. */
uint8_t vtc,
tcf;
uint16_t flow;
uint8_t len[2];
uint8_t proto, ttl;
uip_ip6addr_t srcipaddr, destipaddr;
#else /* UIP_CONF_IPV6 */
/* IP header. */
uint8_t vhl,
tos,
len[2],
ipid[2],
ipoffset[2],
ttl,
proto;
uint16_t ipchksum;
uip_ipaddr_t srcipaddr, destipaddr;
#endif /* UIP_CONF_IPV6 */
/* UDP header. */
uint16_t srcport,
destport;
uint16_t udplen;
uint16_t udpchksum;
};
/*
2008-10-14 09:40:56 +00:00
* In IPv6 the length of the L3 headers before the transport header is
* not fixed, due to the possibility to include extension option headers
* after the IP header. hence we split here L3 and L4 headers
2008-10-14 09:40:56 +00:00
*/
/* The IP header */
struct uip_ip_hdr {
#if UIP_CONF_IPV6
/* IPV6 header */
uint8_t vtc;
uint8_t tcflow;
uint16_t flow;
uint8_t len[2];
uint8_t proto, ttl;
2008-10-14 09:40:56 +00:00
uip_ip6addr_t srcipaddr, destipaddr;
#else /* UIP_CONF_IPV6 */
/* IPV4 header */
uint8_t vhl,
2008-10-14 09:40:56 +00:00
tos,
len[2],
ipid[2],
ipoffset[2],
ttl,
proto;
uint16_t ipchksum;
2008-10-14 09:40:56 +00:00
uip_ipaddr_t srcipaddr, destipaddr;
#endif /* UIP_CONF_IPV6 */
};
/*
* IPv6 extension option headers: we are able to process
* the 4 extension headers defined in RFC2460 (IPv6):
2008-10-14 09:40:56 +00:00
* - Hop by hop option header, destination option header:
* These two are not used by any core IPv6 protocol, hence
2008-10-14 09:40:56 +00:00
* we just read them and go to the next. They convey options,
* the options defined in RFC2460 are Pad1 and PadN, which do
* some padding, and that we do not need to read (the length
2008-10-14 09:40:56 +00:00
* field in the header is enough)
* - Routing header: this one is most notably used by MIPv6,
* which we do not implement, hence we just read it and go
2008-10-14 09:40:56 +00:00
* to the next
* - Fragmentation header: we read this header and are able to
2008-10-14 09:40:56 +00:00
* reassemble packets
*
* We do not offer any means to send packets with extension headers
*
* We do not implement Authentication and ESP headers, which are
2008-10-14 09:40:56 +00:00
* used in IPSec and defined in RFC4302,4303,4305,4385
*/
/* common header part */
typedef struct uip_ext_hdr {
uint8_t next;
uint8_t len;
} uip_ext_hdr;
2008-10-14 09:40:56 +00:00
/* Hop by Hop option header */
typedef struct uip_hbho_hdr {
uint8_t next;
uint8_t len;
} uip_hbho_hdr;
2008-10-14 09:40:56 +00:00
/* destination option header */
typedef struct uip_desto_hdr {
uint8_t next;
uint8_t len;
} uip_desto_hdr;
2008-10-14 09:40:56 +00:00
/* We do not define structures for PAD1 and PADN options */
/*
* routing header
2008-10-14 09:40:56 +00:00
* the routing header as 4 common bytes, then routing header type
* specific data there are several types of routing header. Type 0 was
* deprecated as per RFC5095 most notable other type is 2, used in
* RFC3775 (MIPv6) here we do not implement MIPv6, so we just need to
* parse the 4 first bytes
*/
typedef struct uip_routing_hdr {
uint8_t next;
uint8_t len;
uint8_t routing_type;
uint8_t seg_left;
} uip_routing_hdr;
2008-10-14 09:40:56 +00:00
/* fragmentation header */
typedef struct uip_frag_hdr {
uint8_t next;
uint8_t res;
uint16_t offsetresmore;
uint32_t id;
} uip_frag_hdr;
2008-10-14 09:40:56 +00:00
/*
* an option within the destination or hop by hop option headers
2008-10-14 09:40:56 +00:00
* it contains type an length, which is true for all options but PAD1
*/
typedef struct uip_ext_hdr_opt {
uint8_t type;
uint8_t len;
} uip_ext_hdr_opt;
2008-10-14 09:40:56 +00:00
/* PADN option */
typedef struct uip_ext_hdr_opt_padn {
uint8_t opt_type;
uint8_t opt_len;
} uip_ext_hdr_opt_padn;
2008-10-14 09:40:56 +00:00
/* RPL option */
typedef struct uip_ext_hdr_opt_rpl {
uint8_t opt_type;
uint8_t opt_len;
uint8_t flags;
uint8_t instance;
uint16_t senderrank;
} uip_ext_hdr_opt_rpl;
2008-10-14 09:40:56 +00:00
/* TCP header */
struct uip_tcp_hdr {
uint16_t srcport;
uint16_t destport;
uint8_t seqno[4];
uint8_t ackno[4];
uint8_t tcpoffset;
uint8_t flags;
uint8_t wnd[2];
uint16_t tcpchksum;
uint8_t urgp[2];
uint8_t optdata[4];
2008-10-14 09:40:56 +00:00
};
/* The ICMP headers. */
struct uip_icmp_hdr {
uint8_t type, icode;
uint16_t icmpchksum;
2008-10-14 09:40:56 +00:00
#if !UIP_CONF_IPV6
uint16_t id, seqno;
2008-10-14 09:40:56 +00:00
#endif /* !UIP_CONF_IPV6 */
};
/* The UDP headers. */
struct uip_udp_hdr {
uint16_t srcport;
uint16_t destport;
uint16_t udplen;
uint16_t udpchksum;
2008-10-14 09:40:56 +00:00
};
/**
* The buffer size available for user data in the \ref uip_buf buffer.
*
* This macro holds the available size for user data in the \ref
* uip_buf buffer. The macro is intended to be used for checking
* bounds of available user data.
*
* Example:
\code
snprintf(uip_appdata, UIP_APPDATA_SIZE, "%u\n", i);
\endcode
*
* \hideinitializer
*/
#define UIP_APPDATA_SIZE (UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN)
#define UIP_APPDATA_PTR (void *)&uip_buf[UIP_LLH_LEN + UIP_TCPIP_HLEN]
#define UIP_PROTO_ICMP 1
#define UIP_PROTO_TCP 6
#define UIP_PROTO_UDP 17
#define UIP_PROTO_ICMP6 58
2008-10-14 09:40:56 +00:00
#if UIP_CONF_IPV6
/** @{ */
/** \brief extension headers types */
#define UIP_PROTO_HBHO 0
#define UIP_PROTO_DESTO 60
#define UIP_PROTO_ROUTING 43
2008-10-14 09:40:56 +00:00
#define UIP_PROTO_FRAG 44
#define UIP_PROTO_NONE 59
/** @} */
/** @{ */
/** \brief Destination and Hop By Hop extension headers option types */
#define UIP_EXT_HDR_OPT_PAD1 0
#define UIP_EXT_HDR_OPT_PADN 1
#define UIP_EXT_HDR_OPT_RPL 0x63
2008-10-14 09:40:56 +00:00
/** @} */
/** @{ */
/**
* \brief Bitmaps for extension header processing
*
* When processing extension headers, we should record somehow which one we
2008-10-14 09:40:56 +00:00
* see, because you cannot have twice the same header, except for destination
* We store all this in one uint8_t bitmap one bit for each header expected. The
* order in the bitmap is the order recommended in RFC2460
2008-10-14 09:40:56 +00:00
*/
#define UIP_EXT_HDR_BITMAP_HBHO 0x01
#define UIP_EXT_HDR_BITMAP_DESTO1 0x02
#define UIP_EXT_HDR_BITMAP_ROUTING 0x04
#define UIP_EXT_HDR_BITMAP_FRAG 0x08
#define UIP_EXT_HDR_BITMAP_AH 0x10
#define UIP_EXT_HDR_BITMAP_ESP 0x20
#define UIP_EXT_HDR_BITMAP_DESTO2 0x40
/** @} */
#endif /* UIP_CONF_IPV6 */
/* Header sizes. */
#if UIP_CONF_IPV6
#define UIP_IPH_LEN 40
2008-10-14 09:40:56 +00:00
#define UIP_FRAGH_LEN 8
#else /* UIP_CONF_IPV6 */
#define UIP_IPH_LEN 20 /* Size of IP header */
#endif /* UIP_CONF_IPV6 */
2008-10-14 09:40:56 +00:00
#define UIP_UDPH_LEN 8 /* Size of UDP header */
#define UIP_TCPH_LEN 20 /* Size of TCP header */
2008-10-14 09:40:56 +00:00
#ifdef UIP_IPH_LEN
#define UIP_ICMPH_LEN 4 /* Size of ICMP header */
#endif
#define UIP_IPUDPH_LEN (UIP_UDPH_LEN + UIP_IPH_LEN) /* Size of IP +
2008-10-14 09:40:56 +00:00
* UDP
* header */
#define UIP_IPTCPH_LEN (UIP_TCPH_LEN + UIP_IPH_LEN) /* Size of IP +
2008-10-14 09:40:56 +00:00
* TCP
* header */
#define UIP_TCPIP_HLEN UIP_IPTCPH_LEN
2008-10-14 09:40:56 +00:00
#define UIP_IPICMPH_LEN (UIP_IPH_LEN + UIP_ICMPH_LEN) /* size of ICMP
+ IP header */
#define UIP_LLIPH_LEN (UIP_LLH_LEN + UIP_IPH_LEN) /* size of L2
+ IP header */
#if UIP_CONF_IPV6
/**
* The sums below are quite used in ND. When used for uip_buf, we
* include link layer length when used for uip_len, we do not, hence
* we need values with and without LLH_LEN we do not use capital
* letters as these values are variable
*/
#define uip_l2_l3_hdr_len (UIP_LLH_LEN + UIP_IPH_LEN + uip_ext_len)
#define uip_l2_l3_icmp_hdr_len (UIP_LLH_LEN + UIP_IPH_LEN + uip_ext_len + UIP_ICMPH_LEN)
#define uip_l3_hdr_len (UIP_IPH_LEN + uip_ext_len)
#define uip_l3_icmp_hdr_len (UIP_IPH_LEN + uip_ext_len + UIP_ICMPH_LEN)
#endif /*UIP_CONF_IPV6*/
#if UIP_FIXEDADDR
CCIF extern const uip_ipaddr_t uip_hostaddr, uip_netmask, uip_draddr;
#else /* UIP_FIXEDADDR */
CCIF extern uip_ipaddr_t uip_hostaddr, uip_netmask, uip_draddr;
#endif /* UIP_FIXEDADDR */
CCIF extern const uip_ipaddr_t uip_broadcast_addr;
2008-02-07 01:35:00 +00:00
CCIF extern const uip_ipaddr_t uip_all_zeroes_addr;
2008-10-14 09:40:56 +00:00
#if UIP_FIXEDETHADDR
CCIF extern const uip_lladdr_t uip_lladdr;
#else
CCIF extern uip_lladdr_t uip_lladdr;
#endif
2008-10-14 09:40:56 +00:00
#if UIP_CONF_IPV6
/** Length of the link local prefix */
#define UIP_LLPREF_LEN 10
/**
* \brief Is IPv6 address a the unspecified address
* a is of type uip_ipaddr_t
*/
#define uip_is_addr_loopback(a) \
((((a)->u16[0]) == 0) && \
(((a)->u16[1]) == 0) && \
(((a)->u16[2]) == 0) && \
(((a)->u16[3]) == 0) && \
(((a)->u16[4]) == 0) && \
(((a)->u16[5]) == 0) && \
(((a)->u16[6]) == 0) && \
(((a)->u8[14]) == 0) && \
(((a)->u8[15]) == 0x01))
2008-10-14 09:40:56 +00:00
/**
2009-03-15 20:21:16 +00:00
* \brief Is IPv6 address a the unspecified address
* a is of type uip_ipaddr_t
*/
2008-10-14 09:40:56 +00:00
#define uip_is_addr_unspecified(a) \
((((a)->u16[0]) == 0) && \
(((a)->u16[1]) == 0) && \
(((a)->u16[2]) == 0) && \
(((a)->u16[3]) == 0) && \
(((a)->u16[4]) == 0) && \
(((a)->u16[5]) == 0) && \
(((a)->u16[6]) == 0) && \
(((a)->u16[7]) == 0))
2009-03-15 20:21:16 +00:00
/** \brief Is IPv6 address a the link local all-nodes multicast address */
2008-10-14 09:40:56 +00:00
#define uip_is_addr_linklocal_allnodes_mcast(a) \
((((a)->u8[0]) == 0xff) && \
(((a)->u8[1]) == 0x02) && \
(((a)->u16[1]) == 0) && \
(((a)->u16[2]) == 0) && \
(((a)->u16[3]) == 0) && \
(((a)->u16[4]) == 0) && \
(((a)->u16[5]) == 0) && \
(((a)->u16[6]) == 0) && \
(((a)->u8[14]) == 0) && \
(((a)->u8[15]) == 0x01))
/** \brief Is IPv6 address a the link local all-routers multicast address */
#define uip_is_addr_linklocal_allrouters_mcast(a) \
((((a)->u8[0]) == 0xff) && \
(((a)->u8[1]) == 0x02) && \
(((a)->u16[1]) == 0) && \
(((a)->u16[2]) == 0) && \
(((a)->u16[3]) == 0) && \
(((a)->u16[4]) == 0) && \
(((a)->u16[5]) == 0) && \
(((a)->u16[6]) == 0) && \
(((a)->u8[14]) == 0) && \
(((a)->u8[15]) == 0x02))
/**
* \brief Checks whether the address a is link local.
* a is of type uip_ipaddr_t
*/
#define uip_is_addr_linklocal(a) \
((a)->u8[0] == 0xfe && \
(a)->u8[1] == 0x80)
2008-10-14 09:40:56 +00:00
/** \brief set IP address a to unspecified */
#define uip_create_unspecified(a) uip_ip6addr(a, 0, 0, 0, 0, 0, 0, 0, 0)
/** \brief set IP address a to the link local all-nodes multicast address */
#define uip_create_linklocal_allnodes_mcast(a) uip_ip6addr(a, 0xff02, 0, 0, 0, 0, 0, 0, 0x0001)
/** \brief set IP address a to the link local all-routers multicast address */
#define uip_create_linklocal_allrouters_mcast(a) uip_ip6addr(a, 0xff02, 0, 0, 0, 0, 0, 0, 0x0002)
#define uip_create_linklocal_prefix(addr) do { \
(addr)->u16[0] = UIP_HTONS(0xfe80); \
(addr)->u16[1] = 0; \
(addr)->u16[2] = 0; \
(addr)->u16[3] = 0; \
} while(0)
2008-10-14 09:40:56 +00:00
/**
* \brief is addr (a) a solicited node multicast address, see RFC3513
* a is of type uip_ipaddr_t*
2008-10-14 09:40:56 +00:00
*/
#define uip_is_addr_solicited_node(a) \
((((a)->u8[0]) == 0xFF) && \
(((a)->u8[1]) == 0x02) && \
(((a)->u16[1]) == 0x00) && \
(((a)->u16[2]) == 0x00) && \
(((a)->u16[3]) == 0x00) && \
(((a)->u16[4]) == 0x00) && \
(((a)->u8[10]) == 0x00) && \
(((a)->u8[11]) == 0x01) && \
(((a)->u8[12]) == 0xFF))
2008-10-14 09:40:56 +00:00
/**
* \briefput in b the solicited node address corresponding to address a
* both a and b are of type uip_ipaddr_t*
* */
#define uip_create_solicited_node(a, b) \
(((b)->u8[0]) = 0xFF); \
(((b)->u8[1]) = 0x02); \
(((b)->u16[1]) = 0); \
(((b)->u16[2]) = 0); \
(((b)->u16[3]) = 0); \
(((b)->u16[4]) = 0); \
(((b)->u8[10]) = 0); \
(((b)->u8[11]) = 0x01); \
(((b)->u8[12]) = 0xFF); \
(((b)->u8[13]) = ((a)->u8[13])); \
(((b)->u16[7]) = ((a)->u16[7]))
/**
* \brief is addr (a) a link local unicast address, see RFC3513
2008-10-14 09:40:56 +00:00
* i.e. is (a) on prefix FE80::/10
* a is of type uip_ipaddr_t*
2008-10-14 09:40:56 +00:00
*/
#define uip_is_addr_link_local(a) \
((((a)->u8[0]) == 0xFE) && \
(((a)->u8[1]) == 0x80))
/**
* \brief was addr (a) forged based on the mac address m
2008-10-14 09:40:56 +00:00
* a type is uip_ipaddr_t
* m type is uiplladdr_t
*/
#if UIP_CONF_LL_802154
#define uip_is_addr_mac_addr_based(a, m) \
((((a)->u8[8]) == (((m)->addr[0]) ^ 0x02)) && \
(((a)->u8[9]) == (m)->addr[1]) && \
(((a)->u8[10]) == (m)->addr[2]) && \
(((a)->u8[11]) == (m)->addr[3]) && \
(((a)->u8[12]) == (m)->addr[4]) && \
(((a)->u8[13]) == (m)->addr[5]) && \
(((a)->u8[14]) == (m)->addr[6]) && \
(((a)->u8[15]) == (m)->addr[7]))
#else
#define uip_is_addr_mac_addr_based(a, m) \
((((a)->u8[8]) == (((m)->addr[0]) | 0x02)) && \
(((a)->u8[9]) == (m)->addr[1]) && \
(((a)->u8[10]) == (m)->addr[2]) && \
(((a)->u8[11]) == 0xff) && \
(((a)->u8[12]) == 0xfe) && \
(((a)->u8[13]) == (m)->addr[3]) && \
(((a)->u8[14]) == (m)->addr[4]) && \
(((a)->u8[15]) == (m)->addr[5]))
2008-10-14 09:40:56 +00:00
#endif /*UIP_CONF_LL_802154*/
/**
* \brief is address a multicast address, see RFC 3513
* a is of type uip_ipaddr_t*
2008-10-14 09:40:56 +00:00
* */
#define uip_is_addr_mcast(a) \
(((a)->u8[0]) == 0xFF)
2008-10-14 09:40:56 +00:00
/**
* \brief is group-id of multicast address a
* the all nodes group-id
2008-10-14 09:40:56 +00:00
*/
#define uip_is_mcast_group_id_all_nodes(a) \
((((a)->u16[1]) == 0) && \
(((a)->u16[2]) == 0) && \
(((a)->u16[3]) == 0) && \
(((a)->u16[4]) == 0) && \
(((a)->u16[5]) == 0) && \
(((a)->u16[6]) == 0) && \
(((a)->u8[14]) == 0) && \
(((a)->u8[15]) == 1))
2008-10-14 09:40:56 +00:00
/**
* \brief is group-id of multicast address a
* the all routers group-id
2008-10-14 09:40:56 +00:00
*/
#define uip_is_mcast_group_id_all_routers(a) \
((((a)->u16[1]) == 0) && \
(((a)->u16[2]) == 0) && \
(((a)->u16[3]) == 0) && \
(((a)->u16[4]) == 0) && \
(((a)->u16[5]) == 0) && \
(((a)->u16[6]) == 0) && \
(((a)->u8[14]) == 0) && \
(((a)->u8[15]) == 2))
2008-10-14 09:40:56 +00:00
/**
* \brief are last three bytes of both addresses equal?
* This is used to compare solicited node multicast addresses
*/
#define uip_are_solicited_bytes_equal(a, b) \
((((a)->u8[13]) == ((b)->u8[13])) && \
(((a)->u8[14]) == ((b)->u8[14])) && \
(((a)->u8[15]) == ((b)->u8[15])))
2008-10-14 09:40:56 +00:00
#endif /*UIP_CONF_IPV6*/
/**
* Calculate the Internet checksum over a buffer.
*
* The Internet checksum is the one's complement of the one's
* complement sum of all 16-bit words in the buffer.
*
* See RFC1071.
*
* \param buf A pointer to the buffer over which the checksum is to be
* computed.
*
* \param len The length of the buffer over which the checksum is to
* be computed.
*
* \return The Internet checksum of the buffer.
*/
uint16_t uip_chksum(uint16_t *buf, uint16_t len);
/**
* Calculate the IP header checksum of the packet header in uip_buf.
*
* The IP header checksum is the Internet checksum of the 20 bytes of
* the IP header.
*
* \return The IP header checksum of the IP header in the uip_buf
* buffer.
*/
uint16_t uip_ipchksum(void);
/**
* Calculate the TCP checksum of the packet in uip_buf and uip_appdata.
*
* The TCP checksum is the Internet checksum of data contents of the
* TCP segment, and a pseudo-header as defined in RFC793.
*
* \return The TCP checksum of the TCP segment in uip_buf and pointed
* to by uip_appdata.
*/
uint16_t uip_tcpchksum(void);
/**
* Calculate the UDP checksum of the packet in uip_buf and uip_appdata.
*
* The UDP checksum is the Internet checksum of data contents of the
* UDP segment, and a pseudo-header as defined in RFC768.
*
* \return The UDP checksum of the UDP segment in uip_buf and pointed
* to by uip_appdata.
*/
uint16_t uip_udpchksum(void);
2008-10-14 09:40:56 +00:00
/**
* Calculate the ICMP checksum of the packet in uip_buf.
*
2008-10-14 09:40:56 +00:00
* \return The ICMP checksum of the ICMP packet in uip_buf
*/
uint16_t uip_icmp6chksum(void);
2008-10-14 09:40:56 +00:00
#endif /* __UIP_H__ */
/** @} */