1153 lines
32 KiB
C
Raw Normal View History

/*
* Copyright (c) 2015, Texas Instruments Incorporated - http://www.ti.com/
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*---------------------------------------------------------------------------*/
/**
* \addtogroup rf-core
* @{
*
* \defgroup rf-core-prop CC13xx Prop mode driver
*
* @{
*
* \file
* Implementation of the CC13xx prop mode NETSTACK_RADIO driver
*/
/*---------------------------------------------------------------------------*/
#include "contiki.h"
#include "dev/radio.h"
#include "dev/cc26xx-uart.h"
#include "dev/oscillators.h"
#include "dev/watchdog.h"
#include "net/packetbuf.h"
#include "net/rime/rimestats.h"
#include "net/linkaddr.h"
#include "net/netstack.h"
#include "sys/energest.h"
#include "sys/clock.h"
#include "sys/rtimer.h"
#include "sys/cc.h"
#include "lpm.h"
#include "ti-lib.h"
#include "rf-core/rf-core.h"
#include "rf-core/rf-ble.h"
#include "rf-core/dot-15-4g.h"
/*---------------------------------------------------------------------------*/
/* RF core and RF HAL API */
#include "hw_rfc_dbell.h"
#include "hw_rfc_pwr.h"
/*---------------------------------------------------------------------------*/
/* RF Core Mailbox API */
#include "rf-core/api/mailbox.h"
#include "rf-core/api/common_cmd.h"
#include "rf-core/api/data_entry.h"
#include "rf-core/api/prop_mailbox.h"
#include "rf-core/api/prop_cmd.h"
/*---------------------------------------------------------------------------*/
/* CC13xxware patches */
#include "rf_patches/rf_patch_cpe_genfsk.h"
/*---------------------------------------------------------------------------*/
#include "rf-core/smartrf-settings.h"
/*---------------------------------------------------------------------------*/
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <stdbool.h>
/*---------------------------------------------------------------------------*/
#define DEBUG 0
#if DEBUG
#define PRINTF(...) printf(__VA_ARGS__)
#else
#define PRINTF(...)
#endif
/*---------------------------------------------------------------------------*/
/* Data entry status field constants */
#define DATA_ENTRY_STATUS_PENDING 0x00 /* Not in use by the Radio CPU */
#define DATA_ENTRY_STATUS_ACTIVE 0x01 /* Open for r/w by the radio CPU */
#define DATA_ENTRY_STATUS_BUSY 0x02 /* Ongoing r/w */
#define DATA_ENTRY_STATUS_FINISHED 0x03 /* Free to use and to free */
#define DATA_ENTRY_STATUS_UNFINISHED 0x04 /* Partial RX entry */
/*---------------------------------------------------------------------------*/
/* Data whitener. 1: Whitener, 0: No whitener */
#ifdef PROP_MODE_CONF_DW
#define PROP_MODE_DW PROP_MODE_CONF_DW
#else
#define PROP_MODE_DW 0
#endif
#ifdef PROP_MODE_CONF_USE_CRC16
#define PROP_MODE_USE_CRC16 PROP_MODE_CONF_USE_CRC16
#else
#define PROP_MODE_USE_CRC16 0
#endif
/*---------------------------------------------------------------------------*/
#ifdef PROP_MODE_CONF_SNIFFER
#define PROP_MODE_SNIFFER PROP_MODE_CONF_SNIFFER
#else
#define PROP_MODE_SNIFFER 0
#endif
#if PROP_MODE_SNIFFER
static const uint8_t magic[] = { 0x53, 0x6E, 0x69, 0x66 };
#endif
/*---------------------------------------------------------------------------*/
/**
* \brief Returns the current status of a running Radio Op command
* \param a A pointer with the buffer used to initiate the command
* \return The value of the Radio Op buffer's status field
*
* This macro can be used to e.g. return the status of a previously
* initiated background operation, or of an immediate command
*/
#define RF_RADIO_OP_GET_STATUS(a) GET_FIELD_V(a, radioOp, status)
/*---------------------------------------------------------------------------*/
/* Special value returned by CMD_IEEE_CCA_REQ when an RSSI is not available */
#define RF_CMD_CCA_REQ_RSSI_UNKNOWN -128
/* Used for the return value of channel_clear */
#define RF_CCA_CLEAR 1
#define RF_CCA_BUSY 0
/* Used as an error return value for get_cca_info */
#define RF_GET_CCA_INFO_ERROR 0xFF
/*
* Values of the individual bits of the ccaInfo field in CMD_IEEE_CCA_REQ's
* status struct
*/
#define RF_CMD_CCA_REQ_CCA_STATE_IDLE 0 /* 00 */
#define RF_CMD_CCA_REQ_CCA_STATE_BUSY 1 /* 01 */
#define RF_CMD_CCA_REQ_CCA_STATE_INVALID 2 /* 10 */
#ifdef PROP_MODE_CONF_RSSI_THRESHOLD
#define PROP_MODE_RSSI_THRESHOLD PROP_MODE_CONF_RSSI_THRESHOLD
#else
#define PROP_MODE_RSSI_THRESHOLD 0xA6
#endif
static int8_t rssi_threshold = PROP_MODE_RSSI_THRESHOLD;
/*---------------------------------------------------------------------------*/
static int on(void);
static int off(void);
static rfc_propRxOutput_t rx_stats;
/*---------------------------------------------------------------------------*/
/* Defines and variables related to the .15.4g PHY HDR */
#define DOT_4G_MAX_FRAME_LEN 2047
#define DOT_4G_PHR_LEN 2
/* PHY HDR bits */
#define DOT_4G_PHR_CRC16 0x10
#define DOT_4G_PHR_DW 0x08
#if PROP_MODE_USE_CRC16
/* CRC16 */
#define DOT_4G_PHR_CRC_BIT DOT_4G_PHR_CRC16
#define CRC_LEN 2
#else
/* CRC32 */
#define DOT_4G_PHR_CRC_BIT 0
#define CRC_LEN 4
#endif
#if PROP_MODE_DW
#define DOT_4G_PHR_DW_BIT DOT_4G_PHR_DW
#else
#define DOT_4G_PHR_DW_BIT 0
#endif
/*---------------------------------------------------------------------------*/
/* How long to wait for an ongoing ACK TX to finish before starting frame TX */
#define TX_WAIT_TIMEOUT (RTIMER_SECOND >> 11)
/* How long to wait for the RF to enter RX in rf_cmd_ieee_rx */
#define ENTER_RX_WAIT_TIMEOUT (RTIMER_SECOND >> 10)
/*---------------------------------------------------------------------------*/
/* TX Power dBm lookup table - values from SmartRF Studio */
typedef struct output_config {
radio_value_t dbm;
uint16_t tx_power; /* Value for the PROP_DIV_RADIO_SETUP.txPower field */
} output_config_t;
static const output_config_t output_power[] = {
{ 14, 0xa73f },
{ 13, 0xa73f }, /* 12.5 */
{ 12, 0xb818 },
{ 11, 0x50da },
{ 10, 0x38d3 },
{ 9, 0x2ccd },
{ 8, 0x24cb },
{ 7, 0x20c9 },
{ 6, 0x1cc7 },
{ 5, 0x18c6 },
{ 4, 0x18c5 },
{ 3, 0x14c4 },
{ 2, 0x1042 },
{ 1, 0x10c3 },
{ 0, 0x0041 },
{-10, 0x08c0 },
};
#define OUTPUT_CONFIG_COUNT (sizeof(output_power) / sizeof(output_config_t))
/* Max and Min Output Power in dBm */
#define OUTPUT_POWER_MIN (output_power[OUTPUT_CONFIG_COUNT - 1].dbm)
#define OUTPUT_POWER_MAX (output_power[0].dbm)
#define OUTPUT_POWER_UNKNOWN 0xFFFF
/* Default TX Power - position in output_power[] */
const output_config_t *tx_power_current = &output_power[1];
/*---------------------------------------------------------------------------*/
#ifdef PROP_MODE_CONF_LO_DIVIDER
#define PROP_MODE_LO_DIVIDER PROP_MODE_CONF_LO_DIVIDER
#else
#define PROP_MODE_LO_DIVIDER 0x05
#endif
/*---------------------------------------------------------------------------*/
#define DATA_ENTRY_LENSZ_NONE 0
#define DATA_ENTRY_LENSZ_BYTE 1
#define DATA_ENTRY_LENSZ_WORD 2 /* 2 bytes */
#define RX_BUF_SIZE 140
/* Receive buffers: 1 frame in each */
static uint8_t rx_buf_0[RX_BUF_SIZE] CC_ALIGN(4);
static uint8_t rx_buf_1[RX_BUF_SIZE] CC_ALIGN(4);
/* The RX Data Queue */
static dataQueue_t rx_data_queue = { 0 };
/* Receive entry pointer to keep track of read items */
volatile static uint8_t *rx_read_entry;
/*---------------------------------------------------------------------------*/
/* The outgoing frame buffer */
#define TX_BUF_PAYLOAD_LEN 180
#define TX_BUF_HDR_LEN 2
static uint8_t tx_buf[TX_BUF_HDR_LEN + TX_BUF_PAYLOAD_LEN] CC_ALIGN(4);
/*---------------------------------------------------------------------------*/
static uint8_t
rf_is_on(void)
{
if(!rf_core_is_accessible()) {
return 0;
}
return smartrf_settings_cmd_prop_rx_adv.status == RF_CORE_RADIO_OP_STATUS_ACTIVE;
}
/*---------------------------------------------------------------------------*/
static uint8_t
transmitting(void)
{
return smartrf_settings_cmd_prop_tx_adv.status == RF_CORE_RADIO_OP_STATUS_ACTIVE;
}
/*---------------------------------------------------------------------------*/
static radio_value_t
get_rssi(void)
{
uint32_t cmd_status;
int8_t rssi;
uint8_t was_off = 0;
rfc_CMD_GET_RSSI_t cmd;
/* If we are off, turn on first */
if(!rf_is_on()) {
was_off = 1;
if(on() != RF_CORE_CMD_OK) {
PRINTF("get_rssi: on() failed\n");
return RF_CMD_CCA_REQ_RSSI_UNKNOWN;
}
}
memset(&cmd, 0x00, sizeof(cmd));
cmd.commandNo = CMD_GET_RSSI;
rssi = RF_CMD_CCA_REQ_RSSI_UNKNOWN;
if(rf_core_send_cmd((uint32_t)&cmd, &cmd_status) == RF_CORE_CMD_OK) {
/* Current RSSI in bits 23:16 of cmd_status */
rssi = (cmd_status >> 16) & 0xFF;
}
/* If we were off, turn back off */
if(was_off) {
off();
}
return rssi;
}
/*---------------------------------------------------------------------------*/
static uint8_t
get_channel(void)
{
uint32_t freq_khz;
freq_khz = smartrf_settings_cmd_fs.frequency * 1000;
/*
* For some channels, fractFreq * 1000 / 65536 will return 324.99xx.
* Casting the result to uint32_t will truncate decimals resulting in the
* function returning channel - 1 instead of channel. Thus, we do a quick
* positive integer round up.
*/
freq_khz += (((smartrf_settings_cmd_fs.fractFreq * 1000) + 65535) / 65536);
return (freq_khz - DOT_15_4G_CHAN0_FREQUENCY) / DOT_15_4G_CHANNEL_SPACING;
}
/*---------------------------------------------------------------------------*/
static void
set_channel(uint8_t channel)
{
uint32_t new_freq;
uint16_t freq, frac;
new_freq = DOT_15_4G_CHAN0_FREQUENCY + (channel * DOT_15_4G_CHANNEL_SPACING);
freq = (uint16_t)(new_freq / 1000);
frac = (new_freq - (freq * 1000)) * 65536 / 1000;
PRINTF("set_channel: %u = 0x%04x.0x%04x (%lu)\n", channel, freq, frac,
new_freq);
smartrf_settings_cmd_prop_radio_div_setup.centerFreq = freq;
smartrf_settings_cmd_fs.frequency = freq;
smartrf_settings_cmd_fs.fractFreq = frac;
}
/*---------------------------------------------------------------------------*/
/* Returns the current TX power in dBm */
static radio_value_t
get_tx_power(void)
{
return tx_power_current->dbm;
}
/*---------------------------------------------------------------------------*/
/*
* The caller must make sure to send a new CMD_PROP_RADIO_DIV_SETP to the
* radio after calling this function.
*/
static void
set_tx_power(radio_value_t power)
{
int i;
for(i = OUTPUT_CONFIG_COUNT - 1; i >= 0; --i) {
if(power <= output_power[i].dbm) {
/*
* Merely save the value. It will be used in all subsequent usages of
* CMD_PROP_RADIO_DIV_SETP, including one immediately after this function
* has returned
*/
tx_power_current = &output_power[i];
return;
}
}
}
/*---------------------------------------------------------------------------*/
static int
prop_div_radio_setup(void)
{
uint32_t cmd_status;
rfc_radioOp_t *cmd = (rfc_radioOp_t *)&smartrf_settings_cmd_prop_radio_div_setup;
/* Adjust loDivider depending on the selected band */
smartrf_settings_cmd_prop_radio_div_setup.loDivider = PROP_MODE_LO_DIVIDER;
/* Update to the correct TX power setting */
smartrf_settings_cmd_prop_radio_div_setup.txPower = tx_power_current->tx_power;
/* Send Radio setup to RF Core */
if(rf_core_send_cmd((uint32_t)cmd, &cmd_status) != RF_CORE_CMD_OK) {
PRINTF("prop_div_radio_setup: DIV_SETUP, CMDSTA=0x%08lx, status=0x%04x\n",
cmd_status, cmd->status);
return RF_CORE_CMD_ERROR;
}
/* Wait until radio setup is done */
if(rf_core_wait_cmd_done(cmd) != RF_CORE_CMD_OK) {
PRINTF("prop_div_radio_setup: DIV_SETUP wait, CMDSTA=0x%08lx,"
"status=0x%04x\n", cmd_status, cmd->status);
return RF_CORE_CMD_ERROR;
}
return RF_CORE_CMD_OK;
}
/*---------------------------------------------------------------------------*/
static uint8_t
rf_cmd_prop_rx()
{
uint32_t cmd_status;
rtimer_clock_t t0;
volatile rfc_CMD_PROP_RX_ADV_t *cmd_rx_adv;
int ret;
cmd_rx_adv = (rfc_CMD_PROP_RX_ADV_t *)&smartrf_settings_cmd_prop_rx_adv;
cmd_rx_adv->status = RF_CORE_RADIO_OP_STATUS_IDLE;
/*
* Set the max Packet length. This is for the payload only, therefore
* 2047 - length offset
*/
cmd_rx_adv->maxPktLen = DOT_4G_MAX_FRAME_LEN - cmd_rx_adv->lenOffset;
ret = rf_core_send_cmd((uint32_t)cmd_rx_adv, &cmd_status);
if(ret != RF_CORE_CMD_OK) {
PRINTF("rf_cmd_prop_rx: send_cmd ret=%d, CMDSTA=0x%08lx, status=0x%04x\n",
ret, cmd_status, cmd_rx_adv->status);
return RF_CORE_CMD_ERROR;
}
t0 = RTIMER_NOW();
while(cmd_rx_adv->status != RF_CORE_RADIO_OP_STATUS_ACTIVE &&
(RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + ENTER_RX_WAIT_TIMEOUT)));
/* Wait to enter RX */
if(cmd_rx_adv->status != RF_CORE_RADIO_OP_STATUS_ACTIVE) {
PRINTF("rf_cmd_prop_rx: CMDSTA=0x%08lx, status=0x%04x\n",
cmd_status, cmd_rx_adv->status);
return RF_CORE_CMD_ERROR;
}
return ret;
}
/*---------------------------------------------------------------------------*/
static int
rx_on_prop(void)
{
int ret;
if(rf_is_on()) {
PRINTF("rx_on_prop: We were on. PD=%u, RX=0x%04x\n",
rf_core_is_accessible(), smartrf_settings_cmd_prop_rx_adv.status);
return RF_CORE_CMD_OK;
}
/* Put CPE in RX using the currently configured parameters */
ret = rf_cmd_prop_rx();
if(ret) {
ENERGEST_ON(ENERGEST_TYPE_LISTEN);
}
return ret;
}
/*---------------------------------------------------------------------------*/
static int
rx_off_prop(void)
{
uint32_t cmd_status;
int ret;
/* If we are off, do nothing */
if(!rf_is_on()) {
return RF_CORE_CMD_OK;
}
/* Send a CMD_ABORT command to RF Core */
if(rf_core_send_cmd(CMDR_DIR_CMD(CMD_ABORT), &cmd_status) != RF_CORE_CMD_OK) {
PRINTF("rx_off_prop: CMD_ABORT status=0x%08lx\n", cmd_status);
/* Continue nonetheless */
}
while(rf_is_on());
if(smartrf_settings_cmd_prop_rx_adv.status == PROP_DONE_STOPPED ||
smartrf_settings_cmd_prop_rx_adv.status == PROP_DONE_ABORT) {
/* Stopped gracefully */
ENERGEST_OFF(ENERGEST_TYPE_LISTEN);
ret = RF_CORE_CMD_OK;
} else {
PRINTF("rx_off_prop: status=0x%04x\n",
smartrf_settings_cmd_prop_rx_adv.status);
ret = RF_CORE_CMD_ERROR;
}
return ret;
}
/*---------------------------------------------------------------------------*/
static uint8_t
request(void)
{
/*
* We rely on the RDC layer to turn us on and off. Thus, if we are on we
* will only allow sleep, standby otherwise
*/
if(rf_is_on()) {
return LPM_MODE_SLEEP;
}
return LPM_MODE_MAX_SUPPORTED;
}
/*---------------------------------------------------------------------------*/
LPM_MODULE(prop_lpm_module, request, NULL, NULL, LPM_DOMAIN_NONE);
/*---------------------------------------------------------------------------*/
static int
prop_fs(void)
{
uint32_t cmd_status;
rfc_radioOp_t *cmd = (rfc_radioOp_t *)&smartrf_settings_cmd_fs;
/* Send the command to the RF Core */
if(rf_core_send_cmd((uint32_t)cmd, &cmd_status) != RF_CORE_CMD_OK) {
PRINTF("prop_fs: CMD_FS, CMDSTA=0x%08lx, status=0x%04x\n",
cmd_status, cmd->status);
return RF_CORE_CMD_ERROR;
}
/* Wait until the command is done */
if(rf_core_wait_cmd_done(cmd) != RF_CORE_CMD_OK) {
PRINTF("prop_fs: CMD_FS wait, CMDSTA=0x%08lx, status=0x%04x\n",
cmd_status, cmd->status);
return RF_CORE_CMD_ERROR;
}
return RF_CORE_CMD_OK;
}
/*---------------------------------------------------------------------------*/
static void
soft_off_prop(void)
{
uint32_t cmd_status;
volatile rfc_radioOp_t *cmd = rf_core_get_last_radio_op();
if(!rf_core_is_accessible()) {
return;
}
/* Send a CMD_ABORT command to RF Core */
if(rf_core_send_cmd(CMDR_DIR_CMD(CMD_ABORT), &cmd_status) != RF_CORE_CMD_OK) {
PRINTF("soft_off_prop: CMD_ABORT status=0x%08lx\n", cmd_status);
return;
}
while((cmd->status & RF_CORE_RADIO_OP_MASKED_STATUS) ==
RF_CORE_RADIO_OP_MASKED_STATUS_RUNNING);
}
/*---------------------------------------------------------------------------*/
static uint8_t
soft_on_prop(void)
{
if(prop_div_radio_setup() != RF_CORE_CMD_OK) {
PRINTF("soft_on_prop: prop_div_radio_setup() failed\n");
return RF_CORE_CMD_ERROR;
}
if(prop_fs() != RF_CORE_CMD_OK) {
PRINTF("soft_on_prop: prop_fs() failed\n");
return RF_CORE_CMD_ERROR;
}
return rx_on_prop();
}
/*---------------------------------------------------------------------------*/
static const rf_core_primary_mode_t mode_prop = {
soft_off_prop,
soft_on_prop,
};
/*---------------------------------------------------------------------------*/
static int
init(void)
{
rfc_dataEntry_t *entry;
lpm_register_module(&prop_lpm_module);
if(ti_lib_chipinfo_chip_family_is_cc13xx() == false) {
return RF_CORE_CMD_ERROR;
}
rf_core_set_modesel();
/* Initialise RX buffers */
memset(rx_buf_0, 0, RX_BUF_SIZE);
memset(rx_buf_1, 0, RX_BUF_SIZE);
entry = (rfc_dataEntry_t *)rx_buf_0;
entry->status = DATA_ENTRY_STATUS_PENDING;
entry->config.type = DATA_ENTRY_TYPE_GEN;
entry->config.lenSz = DATA_ENTRY_LENSZ_WORD;
entry->length = RX_BUF_SIZE - 8;
entry->pNextEntry = rx_buf_1;
entry = (rfc_dataEntry_t *)rx_buf_1;
entry->status = DATA_ENTRY_STATUS_PENDING;
entry->config.type = DATA_ENTRY_TYPE_GEN;
entry->config.lenSz = DATA_ENTRY_LENSZ_WORD;
entry->length = RX_BUF_SIZE - 8;
entry->pNextEntry = rx_buf_0;
/* Set of RF Core data queue. Circular buffer, no last entry */
rx_data_queue.pCurrEntry = rx_buf_0;
rx_data_queue.pLastEntry = NULL;
/* Initialize current read pointer to first element (used in ISR) */
rx_read_entry = rx_buf_0;
smartrf_settings_cmd_prop_rx_adv.pQueue = &rx_data_queue;
smartrf_settings_cmd_prop_rx_adv.pOutput = (uint8_t *)&rx_stats;
set_channel(RF_CORE_CHANNEL);
if(on() != RF_CORE_CMD_OK) {
PRINTF("init: on() failed\n");
return RF_CORE_CMD_ERROR;
}
ENERGEST_ON(ENERGEST_TYPE_LISTEN);
rf_core_primary_mode_register(&mode_prop);
process_start(&rf_core_process, NULL);
return 1;
}
/*---------------------------------------------------------------------------*/
static int
prepare(const void *payload, unsigned short payload_len)
{
int len = MIN(payload_len, TX_BUF_PAYLOAD_LEN);
memcpy(&tx_buf[TX_BUF_HDR_LEN], payload, len);
return RF_CORE_CMD_OK;
}
/*---------------------------------------------------------------------------*/
static int
transmit(unsigned short transmit_len)
{
int ret;
uint8_t was_off = 0;
uint32_t cmd_status;
volatile rfc_CMD_PROP_TX_ADV_t *cmd_tx_adv;
/* Length in .15.4g PHY HDR. Includes the CRC but not the HDR itself */
uint16_t total_length;
if(!rf_is_on()) {
was_off = 1;
if(on() != RF_CORE_CMD_OK) {
PRINTF("transmit: on() failed\n");
return RADIO_TX_ERR;
}
}
/*
* Prepare the .15.4g PHY header
* MS=0, Length MSBits=0, DW and CRC configurable
* Total length = transmit_len (payload) + CRC length
*
* The Radio will flip the bits around, so tx_buf[0] must have the length
* LSBs (PHR[15:8] and tx_buf[1] will have PHR[7:0]
*/
total_length = transmit_len + CRC_LEN;
tx_buf[0] = total_length & 0xFF;
tx_buf[1] = (total_length >> 8) + DOT_4G_PHR_DW_BIT + DOT_4G_PHR_CRC_BIT;
/* Prepare the CMD_PROP_TX_ADV command */
cmd_tx_adv = (rfc_CMD_PROP_TX_ADV_t *)&smartrf_settings_cmd_prop_tx_adv;
/*
* pktLen: Total number of bytes in the TX buffer, including the header if
* one exists, but not including the CRC (which is not present in the buffer)
*/
cmd_tx_adv->pktLen = transmit_len + DOT_4G_PHR_LEN;
cmd_tx_adv->pPkt = tx_buf;
/* Abort RX */
rx_off_prop();
/* Enable the LAST_COMMAND_DONE interrupt to wake us up */
rf_core_cmd_done_en(false);
ret = rf_core_send_cmd((uint32_t)cmd_tx_adv, &cmd_status);
if(ret) {
/* If we enter here, TX actually started */
ENERGEST_OFF(ENERGEST_TYPE_LISTEN);
ENERGEST_ON(ENERGEST_TYPE_TRANSMIT);
watchdog_periodic();
/* Idle away while the command is running */
while((cmd_tx_adv->status & RF_CORE_RADIO_OP_MASKED_STATUS)
== RF_CORE_RADIO_OP_MASKED_STATUS_RUNNING) {
lpm_sleep();
}
if(cmd_tx_adv->status == RF_CORE_RADIO_OP_STATUS_PROP_DONE_OK) {
/* Sent OK */
RIMESTATS_ADD(lltx);
ret = RADIO_TX_OK;
} else {
/* Operation completed, but frame was not sent */
PRINTF("transmit: Not Sent OK status=0x%04x\n",
cmd_tx_adv->status);
ret = RADIO_TX_ERR;
}
} else {
/* Failure sending the CMD_PROP_TX command */
PRINTF("transmit: PROP_TX_ERR ret=%d, CMDSTA=0x%08lx, status=0x%04x\n",
ret, cmd_status, cmd_tx_adv->status);
ret = RADIO_TX_ERR;
}
/*
* Update ENERGEST state here, before a potential call to off(), which
* will correctly update it if required.
*/
ENERGEST_OFF(ENERGEST_TYPE_TRANSMIT);
ENERGEST_ON(ENERGEST_TYPE_LISTEN);
/*
* Disable LAST_FG_COMMAND_DONE interrupt. We don't really care about it
* except when we are transmitting
*/
rf_core_cmd_done_dis();
/* Workaround. Set status to IDLE */
cmd_tx_adv->status = RF_CORE_RADIO_OP_STATUS_IDLE;
rx_on_prop();
if(was_off) {
off();
}
return ret;
}
/*---------------------------------------------------------------------------*/
static int
send(const void *payload, unsigned short payload_len)
{
prepare(payload, payload_len);
return transmit(payload_len);
}
/*---------------------------------------------------------------------------*/
static int
read_frame(void *buf, unsigned short buf_len)
{
rfc_dataEntryGeneral_t *entry = (rfc_dataEntryGeneral_t *)rx_read_entry;
uint8_t *data_ptr = &entry->data;
int len = 0;
if(entry->status == DATA_ENTRY_STATUS_FINISHED) {
/*
* First 2 bytes in the data entry are the length.
* Our data entry consists of: Payload + RSSI (1 byte) + Status (1 byte)
* This length includes all of those.
*/
len = (*(uint16_t *)data_ptr);
data_ptr += 2;
len -= 2;
if(len > 0) {
if(len <= buf_len) {
memcpy(buf, data_ptr, len);
}
packetbuf_set_attr(PACKETBUF_ATTR_RSSI, (int8_t)data_ptr[len]);
#if PROP_MODE_SNIFFER
{
int i;
cc26xx_uart_write_byte(magic[0]);
cc26xx_uart_write_byte(magic[1]);
cc26xx_uart_write_byte(magic[2]);
cc26xx_uart_write_byte(magic[3]);
cc26xx_uart_write_byte(len + 2);
for(i = 0; i < len; ++i) {
cc26xx_uart_write_byte(((uint8_t *)(buf))[i]);
}
cc26xx_uart_write_byte((uint8_t)rx_stats.lastRssi);
cc26xx_uart_write_byte(0x80);
while(cc26xx_uart_busy() == UART_BUSY);
}
#endif
}
/* Move read entry pointer to next entry */
rx_read_entry = entry->pNextEntry;
entry->status = DATA_ENTRY_STATUS_PENDING;
}
return len;
}
/*---------------------------------------------------------------------------*/
static int
channel_clear(void)
{
uint8_t was_off = 0;
uint32_t cmd_status;
int8_t rssi = RF_CMD_CCA_REQ_RSSI_UNKNOWN;
/*
* If we are in the middle of a BLE operation, we got called by ContikiMAC
* from within an interrupt context. Indicate a clear channel
*/
if(rf_ble_is_active() == RF_BLE_ACTIVE) {
return RF_CCA_CLEAR;
}
if(!rf_core_is_accessible()) {
was_off = 1;
if(on() != RF_CORE_CMD_OK) {
PRINTF("channel_clear: on() failed\n");
if(was_off) {
off();
}
return RF_CCA_CLEAR;
}
} else {
if(transmitting()) {
PRINTF("channel_clear: called while in TX\n");
return RF_CCA_CLEAR;
}
}
while(rssi == RF_CMD_CCA_REQ_RSSI_UNKNOWN || rssi == 0) {
if(rf_core_send_cmd(CMDR_DIR_CMD(CMD_GET_RSSI), &cmd_status)
!= RF_CORE_CMD_OK) {
break;
}
/* Current RSSI in bits 23:16 of cmd_status */
rssi = (cmd_status >> 16) & 0xFF;
}
if(was_off) {
off();
}
if(rssi >= rssi_threshold) {
return RF_CCA_BUSY;
}
return RF_CCA_CLEAR;
}
/*---------------------------------------------------------------------------*/
static int
receiving_packet(void)
{
if(!rf_is_on()) {
return 0;
}
if(channel_clear() == RF_CCA_CLEAR) {
return 0;
}
return 1;
}
/*---------------------------------------------------------------------------*/
static int
pending_packet(void)
{
int rv = 0;
volatile rfc_dataEntry_t *entry = (rfc_dataEntry_t *)rx_data_queue.pCurrEntry;
/* Go through all RX buffers and check their status */
do {
if(entry->status == DATA_ENTRY_STATUS_FINISHED) {
rv += 1;
process_poll(&rf_core_process);
}
entry = (rfc_dataEntry_t *)entry->pNextEntry;
} while(entry != (rfc_dataEntry_t *)rx_data_queue.pCurrEntry);
/* If we didn't find an entry at status finished, no frames are pending */
return rv;
}
/*---------------------------------------------------------------------------*/
static int
on(void)
{
/*
* If we are in the middle of a BLE operation, we got called by ContikiMAC
* from within an interrupt context. Abort, but pretend everything is OK.
*/
if(rf_ble_is_active() == RF_BLE_ACTIVE) {
return RF_CORE_CMD_OK;
}
/*
* Request the HF XOSC as the source for the HF clock. Needed before we can
* use the FS. This will only request, it will _not_ perform the switch.
*/
oscillators_request_hf_xosc();
if(rf_is_on()) {
PRINTF("on: We were on. PD=%u, RX=0x%04x \n", rf_core_is_accessible(),
smartrf_settings_cmd_prop_rx_adv.status);
return RF_CORE_CMD_OK;
}
if(!rf_core_is_accessible()) {
if(rf_core_power_up() != RF_CORE_CMD_OK) {
PRINTF("on: rf_core_power_up() failed\n");
rf_core_power_down();
return RF_CORE_CMD_ERROR;
}
rf_patch_cpe_genfsk();
if(rf_core_start_rat() != RF_CORE_CMD_OK) {
PRINTF("on: rf_core_start_rat() failed\n");
rf_core_power_down();
return RF_CORE_CMD_ERROR;
}
}
rf_core_setup_interrupts();
/*
* Trigger a switch to the XOSC, so that we can subsequently use the RF FS
* This will block until the XOSC is actually ready, but give how we
* requested it early on, this won't be too long a wait/
*/
oscillators_switch_to_hf_xosc();
if(prop_div_radio_setup() != RF_CORE_CMD_OK) {
PRINTF("on: prop_div_radio_setup() failed\n");
return RF_CORE_CMD_ERROR;
}
if(prop_fs() != RF_CORE_CMD_OK) {
PRINTF("on: prop_fs() failed\n");
return RF_CORE_CMD_ERROR;
}
return rx_on_prop();
}
/*---------------------------------------------------------------------------*/
static int
off(void)
{
rfc_dataEntry_t *entry;
/*
* If we are in the middle of a BLE operation, we got called by ContikiMAC
* from within an interrupt context. Abort, but pretend everything is OK.
*/
if(rf_ble_is_active() == RF_BLE_ACTIVE) {
return RF_CORE_CMD_OK;
}
rx_off_prop();
rf_core_power_down();
ENERGEST_OFF(ENERGEST_TYPE_LISTEN);
/* Switch HF clock source to the RCOSC to preserve power */
oscillators_switch_to_hf_rc();
/* We pulled the plug, so we need to restore the status manually */
smartrf_settings_cmd_prop_rx_adv.status = RF_CORE_RADIO_OP_STATUS_IDLE;
entry = (rfc_dataEntry_t *)rx_buf_0;
entry->status = DATA_ENTRY_STATUS_PENDING;
entry = (rfc_dataEntry_t *)rx_buf_1;
entry->status = DATA_ENTRY_STATUS_PENDING;
return RF_CORE_CMD_OK;
}
/*---------------------------------------------------------------------------*/
static radio_result_t
get_value(radio_param_t param, radio_value_t *value)
{
if(!value) {
return RADIO_RESULT_INVALID_VALUE;
}
switch(param) {
case RADIO_PARAM_POWER_MODE:
/* On / off */
*value = rf_is_on() ? RADIO_POWER_MODE_ON : RADIO_POWER_MODE_OFF;
return RADIO_RESULT_OK;
case RADIO_PARAM_CHANNEL:
*value = (radio_value_t)get_channel();
return RADIO_RESULT_OK;
case RADIO_PARAM_TXPOWER:
*value = get_tx_power();
return RADIO_RESULT_OK;
case RADIO_PARAM_CCA_THRESHOLD:
*value = rssi_threshold;
return RADIO_RESULT_OK;
case RADIO_PARAM_RSSI:
*value = get_rssi();
if(*value == RF_CMD_CCA_REQ_RSSI_UNKNOWN) {
return RADIO_RESULT_ERROR;
} else {
return RADIO_RESULT_OK;
}
case RADIO_CONST_CHANNEL_MIN:
*value = 0;
return RADIO_RESULT_OK;
case RADIO_CONST_CHANNEL_MAX:
*value = DOT_15_4G_CHANNEL_MAX;
return RADIO_RESULT_OK;
case RADIO_CONST_TXPOWER_MIN:
*value = OUTPUT_POWER_MIN;
return RADIO_RESULT_OK;
case RADIO_CONST_TXPOWER_MAX:
*value = OUTPUT_POWER_MAX;
return RADIO_RESULT_OK;
default:
return RADIO_RESULT_NOT_SUPPORTED;
}
}
/*---------------------------------------------------------------------------*/
static radio_result_t
set_value(radio_param_t param, radio_value_t value)
{
uint8_t was_off = 0;
radio_result_t rv = RADIO_RESULT_OK;
switch(param) {
case RADIO_PARAM_POWER_MODE:
if(value == RADIO_POWER_MODE_ON) {
if(on() != RF_CORE_CMD_OK) {
PRINTF("set_value: on() failed (1)\n");
return RADIO_RESULT_ERROR;
}
return RADIO_RESULT_OK;
}
if(value == RADIO_POWER_MODE_OFF) {
off();
return RADIO_RESULT_OK;
}
return RADIO_RESULT_INVALID_VALUE;
case RADIO_PARAM_CHANNEL:
if(value < 0 ||
value > DOT_15_4G_CHANNEL_MAX) {
return RADIO_RESULT_INVALID_VALUE;
}
if(get_channel() == (uint8_t)value) {
/* We already have that very same channel configured.
* Nothing to do here. */
return RADIO_RESULT_OK;
}
set_channel((uint8_t)value);
break;
case RADIO_PARAM_TXPOWER:
if(value < OUTPUT_POWER_MIN || value > OUTPUT_POWER_MAX) {
return RADIO_RESULT_INVALID_VALUE;
}
soft_off_prop();
set_tx_power(value);
if(soft_on_prop() != RF_CORE_CMD_OK) {
PRINTF("set_value: soft_on_prop() failed\n");
rv = RADIO_RESULT_ERROR;
}
return RADIO_RESULT_OK;
case RADIO_PARAM_CCA_THRESHOLD:
rssi_threshold = (int8_t)value;
break;
default:
return RADIO_RESULT_NOT_SUPPORTED;
}
/* If we reach here we had no errors. Apply new settings */
if(!rf_is_on()) {
was_off = 1;
if(on() != RF_CORE_CMD_OK) {
PRINTF("set_value: on() failed (2)\n");
return RADIO_RESULT_ERROR;
}
}
if(rx_off_prop() != RF_CORE_CMD_OK) {
PRINTF("set_value: rx_off_prop() failed\n");
rv = RADIO_RESULT_ERROR;
}
if(rx_on_prop() != RF_CORE_CMD_OK) {
PRINTF("set_value: rx_on_prop() failed\n");
rv = RADIO_RESULT_ERROR;
}
/* If we were off, turn back off */
if(was_off) {
off();
}
return rv;
}
/*---------------------------------------------------------------------------*/
static radio_result_t
get_object(radio_param_t param, void *dest, size_t size)
{
return RADIO_RESULT_NOT_SUPPORTED;
}
/*---------------------------------------------------------------------------*/
static radio_result_t
set_object(radio_param_t param, const void *src, size_t size)
{
return RADIO_RESULT_NOT_SUPPORTED;
}
/*---------------------------------------------------------------------------*/
const struct radio_driver prop_mode_driver = {
init,
prepare,
transmit,
send,
read_frame,
channel_clear,
receiving_packet,
pending_packet,
on,
off,
get_value,
set_value,
get_object,
set_object,
};
/*---------------------------------------------------------------------------*/
/**
* @}
* @}
*/