20 Commits

Author SHA1 Message Date
Michael LeMay
4cdb7ba9b6 x86: Add TSS-based protection domain support
This patch extends the protection domain framework with an additional
plugin to use Task-State Segment (TSS) structures to offload much of
the work of switching protection domains to the CPU.  This can save
space compared to paging, since paging requires two 4KiB page tables
and one 32-byte page table plus one whole-system TSS and an additional
32-byte data structure for each protection domain, whereas the
approach implemented by this patch just requires a 128-byte data
structure for each protection domain.  Only a small number of
protection domains will typically be used, so
n * 128 < 8328 + (n * 32).

For additional information, please refer to cpu/x86/mm/README.md.

GCC 6 is introducing named address spaces for the FS and GS segments
[1].  LLVM Clang also provides address spaces for the FS and GS
segments [2].  This patch also adds support to the multi-segment X86
memory management subsystem for using these features instead of inline
assembly blocks, which enables type checking to detect some address
space mismatches.

[1] https://gcc.gnu.org/onlinedocs/gcc/Named-Address-Spaces.html
[2] http://llvm.org/releases/3.3/tools/clang/docs/LanguageExtensions.html#target-specific-extensions
2016-04-22 08:16:39 -07:00
Michael LeMay
3908253038 x86: Add support for (paging-based) protection domains
This patch implements a simple, lightweight form of protection domains
using a pluggable framework.  Currently, the following plugin is
available:

 - Flat memory model with paging.

The overall goal of a protection domain implementation within this
framework is to define a set of resources that should be accessible to
each protection domain and to prevent that protection domain from
accessing other resources.  The details of each implementation of
protection domains may differ substantially, but they should all be
guided by the principle of least privilege.  However, that idealized
principle is balanced against the practical objectives of limiting the
number of relatively time-consuming context switches and minimizing
changes to existing code.

For additional information, please refer to cpu/x86/mm/README.md.

This patch also causes the C compiler to be used as the default linker
and assembler.
2016-03-21 17:18:06 -07:00
Michael LeMay
93126b57bb x86, galileo: Use IMRs to restrict DMA
This patch configures Isolated Memory Regions (IMRs) to block DMA to
code and data regions that do not contain any data that needs to be
DMA-accessible.
2016-03-17 08:35:49 -07:00
Michael LeMay
58a00b7c23 x86, galileo: Add driver for Isolated Memory Regions (IMRs)
The Intel Quark X1000 SoC includes support for Isolated Memory Regions
(IMRs), which are specified using range registers and associated
control registers that are accessible via the message bus.  This patch
adds a driver for accessing those registers.
2016-03-17 08:35:49 -07:00
Michael LeMay
25c07613c2 x86: Add driver for message bus
The Intel Quark X1000 SoC includes a message bus that is accessible
via PCI configuration registers.  It communicates to various SoC
components such as the Isolated Memory Region (IMR) registers and the
Remote Management Unit.  This patch adds a driver for accessing the
message bus.
2016-03-17 08:35:48 -07:00
Michael LeMay
c815fa4511 x86: Use shared ISR for I2C and GPIO
This patch permits interrupts to be generated by both the I2C and GPIO
controllers for simultaneously-executing applications. The controllers
share a single interrupt pin, INTC. Prior to this patch,
quarkX1000_gpio_init() routed INTA to PIRQC and IRQ 10 (due to an
incorrect assumption that INTA is connected to the GPIO controller),
and quarkX1000_i2c_init() routed INTC to PIRQC and IRQ 9. The I2C
controller initialization is a prerequisite for GPIO initialization,
so the final configuration was that INTA and INTC were both routed to
PIRQC and IRQ 10. Thus, only the GPIO ISR was being invoked, even if
the I2C controller was actually responsible for the interrupt.

This patch refactors the I2C and GPIO ISR setup and handler code so
that the shared portions are combined in
cpu/x86/drivers/legacy_pc/shared-isr.[ch].  The I2C and GPIO drivers
communicate their interrupt information to the shared component by
placing structures in a specific section of the binary.
2016-02-16 21:19:44 -08:00
Michael LeMay
52d75dce0d x86: Remove spurious UEFI-related info message
This patch removes a spurious info message in a UEFI-related portion
of a Makefile.
2015-12-21 08:06:14 -02:00
Michael LeMay
f85654a82f x86, galileo: Add UEFI support
This patch adds support for optionally building EFI binaries in
addition to Multiboot ELF binaries.  It includes a script,
build_uefi.sh, that downloads tool and library sources from the EDK II
project, builds the GenFw tool that is used to create UEFI binaries,
and creates a makefile that is included from the main x86 common
makefile and enables UEFI support in the Contiki build system.  If the
script is not run prior to building Contiki, then an informational
message will be displayed with instructions for running build_uefi.sh
if UEFI support is desired.  This patch also adds the path to the
auto-generated makefile to .gitignore.

This patch modifies the linker script for the Intel Quark X1000 to
account for the output file section offsets and alignment expectations
of the EDK II GenFw project.

This patch also adds a newlib patch to remove the weak symbol
attribute from floating point stdio support routines.  See
<newlib>/newlib/README for an explanation of how the newlib developers
intended for _printf_float and _scanf_float to be linked.  Newlib
declares them as weak symbols with the intention that developers would
force them to be linked only when needed using a linker command line
option.  However, some but not all Contiki programs require them, so
we cannot simply always include or exclude them.  Instead, we remove
the weak symbol attributes and rely on the linker to automatically
determine whether or not they should be linked.  This avoids an issue
in which weak symbols were undefined in the intermediate DLL generated
as part of the UEFI build process.  That resulted in the GenFw program
emitting "ERROR 3000" messages when it encountered relocations
referencing such an undefined symbol.

Finally, this patch updates README.md to both make some revisions to
account for the UART support introduced in previous patches as well as
to provide instructions for using the UEFI support.
2015-12-21 08:06:14 -02:00
Michael LeMay
abeed93da5 x86: Add driver for Intel Quark X1000 built-in Ethernet
This patch adds a simple, space-efficient driver for the Ethernet
interface built into the Intel Quark X1000.  It only allocates a
single packet descriptor for each of the transmit and receive
directions, computes checksums on the CPU, and enables
store-and-forward mode for both transmit and receive directions.
2015-12-21 08:06:14 -02:00
Ricardo de Almeida Gonzaga
a27af5b395 x86: Add Intel Quark X1000 I2C support
This patch adds the i2c.c, i2c.h and i2c-registers.h files,
which support access to I2C controller configuration register
through a function interface.
2015-12-21 08:06:14 -02:00
Ricardo de Almeida Gonzaga
2d552285cd x86: Add Intel Quark X1000 GPIO Controller (non-legacy) support
This patch adds the gpio.c and gpio.h files, which support
access to GPIO Controller (non-legacy) configuration register
through a function interface.

It doesn't add interrupt support due to pinmux reasons. On
Galileo Gen 2 we need to configure a pin as input/interrupt
using pinmux and this can only be achieved through I2C. There's
one pin exported by default as GPIO output and we used this one
to test this driver.

In the future, we plan to add an I2C driver and a pinmux configuration
driver in order to solve this kind of problems.
2015-12-21 08:06:14 -02:00
Michael LeMay
0dcd5e9b5a x86: Revise CFLAGS and LDFLAGS for LLVM Clang compatibility
This patch slightly revises CFLAGS and LDFLAGS to specify the
optimization and debugging options and linker script in a way that is
compatible with using Clang as the C compiler and to invoke the linker
(i.e. CC = clang and LD = clang).
2015-12-21 08:06:14 -02:00
Michael LeMay
15f947fe40 x86: Add Intel Quark X1000 UART support.
This patch adds a driver that wraps the generic 16X50 UART driver with
specific support for the two Intel Quark X1000 built-in UARTs.
2015-12-21 08:06:14 -02:00
Michael LeMay
6acdf50262 x86: Add driver for MMIO-accessible 16X50 UART
This patch adds a driver for an MMIO-accessible 16X50 UART.  It
assumes that the boot firmware assigned an MMIO range to the UART.  It
operates in polled mode with FIFOs enabled.
2015-12-21 08:06:14 -02:00
Michael LeMay
2dccb55e15 x86: Add PCI support
This patch adds the pci.c and pci.h files, which support access to PCI
configuration registers through a function interface.  It defines the
PCI configuration register access I/O port addresses and the
pci_config_addr union and structure to assist in specifying addresses
of PCI configuration registers.  It also defines the PCI configuration
register identifier for PCI BAR0.

This patch also adds wrappers for 32-bit 'in' and 'out' port I/O
instructions.  They were placed in helpers.S, since they may be useful
to other modules besides just the PCI support module.
2015-12-21 08:06:14 -02:00
Andre Guedes
96e50ec2c4 galileo: Fix Makefile.galileo
This patch moves the compiler and linking options related to QuarkX1000
SoC to Makefile.x86_quarkX1000 since it is more suitable. For instance,
'-m32' should be used in any platform based on QuarkX1000, not only
Galileo. The same rationale applies for the others options (e.g. -march,
mtune).
2015-12-21 08:06:14 -02:00
Andre Guedes
cb0510ebcf x86: Disable NMI while initializing RTC
According to [1], we should disable non-maskable and maskable interrupts
while initializing RTC. Otherwise, the RTC may be left in an undefined
state (non-functional) if an interrupt occurs. Currently, maskable
interrupts are already disabled, but NMI is not.

This patch adds helpers APIs to enable/disable non-maskable interrupts
(NMI) and changes rtc_init() to disable NMI while initializing the RTC.

NMI enable/disable code is legacy-PC specific therefore it was put in
driver/legacy_pc/ directory.

Regarding the RTC initialization changes, just calling nmi_disable() and
nmi_enable is not enough since NMI and RTC share the same IO port. So We
should also set the NMI_ENABLE bit while selecting the RTC_INDEX.

Additionally, the nmi_disable() call is not strictly required since we
set the NMI_ENABLE bit while selecting the RTC_INDEX. However, to make
clear hat we are disabling NMI and to improve readability (by matching
NMI disable/enable), the nmi_disable() call was purposely used.

[1] http://wiki.osdev.org/RTC
2015-12-21 08:06:14 -02:00
Andre Guedes
a8849b2909 x86: Move bootstrap code and linker script to cpu/x86
This is a refactoring patch, no functionality is changed. It moves
loader.S and galileo.ld from platform/galileo/ to cpu/x86/ directory
since they seem to be more SoC-specific than platform-specific.

It also renames galileo.ld to quarkX1000.ld since it can be used by
any platform based on Quark X1000 SoC, not only Galileo.

Furthermore, this patch also renames loader.S to bootstrap_quarkX1000.S
since it is pretty much a bootstrap code to any platform based on Quark
X1000 SoC.
2015-12-21 08:06:14 -02:00
Jesus Sanchez-Palencia
80fe1de0b1 x86: Isolate SoC specific cpu_init code
This commit turns cpu_init() into a SoC-agnostic function by
removing any SoC specific calls and isolating them into their
own SoC implementation.

We start this by isolating all IRQs initialization code from
the legacy-pc target, pic_init() and spurious IRQ7 registration,
into a new interface: irq_init() from irq.h. Future SoCs will have
to provide their own implementation of this interface.

This model is to be followed by future initialization code that
we may need to add and which is not common to all x86 SoCs.
2015-12-21 08:06:14 -02:00
Jesus Sanchez-Palencia
b2fa72bb98 x86: Break Makefile.x86 into common and pc specific ones
Now the cpu/x86/ provides a Makefile.x86_common and a
Makefile.x86_pc. The former includes the common Makefile
and adds legacy pc specific implementations (currently,
drivers only) into the building context, while the latter
has everything that defines the bootstrap of a x86 CPU.

This commit also fixes platform/galileo/ so it includes the
correct makefile - Makefile.x86_quarkX1000. Galileo uses
a Quark X1000 SoC which is not an IBM Generic PC-like CPU,
but it does provide most of a PCs peripherals through
its "Legacy Bridge". Thus, it makes sense that QuarkX1000's
Makefile includes code from the legacy_pc x86 cpu.
2015-12-21 08:06:14 -02:00