Jonas Olsson 01e36532c2 Add support for the CC13xx CPU
This commit:

* Moves all cpu files from cpu/cc26xx to cpu/cc26xx-cc13xx
* Bumps the CC26xxware submodule to the latest TI release
* Adds CC13xxware as a submodule
* Adds support for sub-ghz mode / IEEE 802.15.4g
* Splits the driver into multiple files for clarity. We now have the following structure:
  * A common module that handles access to the RF core, interrupts etc
  * A module that takes care of BLE functionality
  * A netstack radio driver for IEEE mode (2.4GHz)
  * A netstack radio driver for PROP mode (sub-ghz - multiple bands)

This commit also adds tick suppression functionality, applicable to all chips of the CC26xx and CC13xx families. Instead waking up on every clock tick simply to increment our software counter, we now only wake up just in time to service the next scheduled etimer. ContikiMAC-triggered wakeups are unaffected.

Laslty, this commit also applies a number of minor changes:
* Addition of missing includes
* Removal of stub functions
* Removal of a woraround for a CC26xxware bug that has now been fixed
2015-08-23 19:54:42 +01:00

214 lines
12 KiB
C

/******************************************************************************
* Filename: data_entry.h
* Revised: 2015-08-04 11:44:20 +0200 (Tue, 04 Aug 2015)
* Revision: 44329
*
* Description: Definition of API for data exchange
*
* Copyright (c) 2015, Texas Instruments Incorporated
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2) Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3) Neither the name of the ORGANIZATION nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
#ifndef DATA_ENTRY_H_
#define DATA_ENTRY_H_
#ifndef __RFC_STRUCT
#ifdef __GNUC__
#define __RFC_STRUCT __attribute__ ((aligned (4)))
#else
#define __RFC_STRUCT
#endif
#endif
//! \addtogroup rfc
//! @{
//! \addtogroup data_entry
//! @{
#include <stdint.h>
#include "mailbox.h"
typedef struct __RFC_STRUCT rfc_dataEntry_s rfc_dataEntry_t;
typedef struct __RFC_STRUCT rfc_dataEntryGeneral_s rfc_dataEntryGeneral_t;
typedef struct __RFC_STRUCT rfc_dataEntryMulti_s rfc_dataEntryMulti_t;
typedef struct __RFC_STRUCT rfc_dataEntryPointer_s rfc_dataEntryPointer_t;
typedef struct __RFC_STRUCT rfc_dataEntryPartial_s rfc_dataEntryPartial_t;
//! \addtogroup dataEntry
//! @{
struct __RFC_STRUCT rfc_dataEntry_s {
uint8_t* pNextEntry; //!< Pointer to next entry in the queue, NULL if this is the last entry
uint8_t status; //!< Indicates status of entry, including whether it is free for the system CPU to write to
struct {
uint8_t type:2; //!< \brief Type of data entry structure<br>
//!< 0: General data entry <br>
//!< 1: Multi-element Rx entry<br>
//!< 2: Pointer entry<br>
//!< 3: Partial read Rx entry
uint8_t lenSz:2; //!< \brief Size of length word in start of each Rx entry element<br>
//!< 0: No length indicator<br>
//!< 1: One byte length indicator<br>
//!< 2: Two bytes length indicator<br>
//!< 3: <i>Reserved</i>
uint8_t irqIntv:4; //!< \brief For partial read Rx entry only: The number of bytes between interrupt generated
//!< by the radio CPU (0: 16 bytes)
} config;
uint16_t length; //!< \brief For pointer entries: Number of bytes in the data buffer pointed to<br>
//!< For other entries: Number of bytes following this length field
};
//! @}
//! \addtogroup dataEntryGeneral
//! @{
//! General data entry structure (type = 0)
struct __RFC_STRUCT rfc_dataEntryGeneral_s {
uint8_t* pNextEntry; //!< Pointer to next entry in the queue, NULL if this is the last entry
uint8_t status; //!< Indicates status of entry, including whether it is free for the system CPU to write to
struct {
uint8_t type:2; //!< \brief Type of data entry structure<br>
//!< 0: General data entry <br>
//!< 1: Multi-element Rx entry<br>
//!< 2: Pointer entry<br>
//!< 3: Partial read Rx entry
uint8_t lenSz:2; //!< \brief Size of length word in start of each Rx entry element<br>
//!< 0: No length indicator<br>
//!< 1: One byte length indicator<br>
//!< 2: Two bytes length indicator<br>
//!< 3: <i>Reserved</i>
uint8_t irqIntv:4; //!< \brief For partial read Rx entry only: The number of bytes between interrupt generated
//!< by the radio CPU (0: 16 bytes)
} config;
uint16_t length; //!< \brief For pointer entries: Number of bytes in the data buffer pointed to<br>
//!< For other entries: Number of bytes following this length field
uint8_t data; //!< First byte of the data array to be received or transmitted
};
//! @}
//! \addtogroup dataEntryMulti
//! @{
//! Multi-element data entry structure (type = 1)
struct __RFC_STRUCT rfc_dataEntryMulti_s {
uint8_t* pNextEntry; //!< Pointer to next entry in the queue, NULL if this is the last entry
uint8_t status; //!< Indicates status of entry, including whether it is free for the system CPU to write to
struct {
uint8_t type:2; //!< \brief Type of data entry structure<br>
//!< 0: General data entry <br>
//!< 1: Multi-element Rx entry<br>
//!< 2: Pointer entry<br>
//!< 3: Partial read Rx entry
uint8_t lenSz:2; //!< \brief Size of length word in start of each Rx entry element<br>
//!< 0: No length indicator<br>
//!< 1: One byte length indicator<br>
//!< 2: Two bytes length indicator<br>
//!< 3: <i>Reserved</i>
uint8_t irqIntv:4; //!< \brief For partial read Rx entry only: The number of bytes between interrupt generated
//!< by the radio CPU (0: 16 bytes)
} config;
uint16_t length; //!< \brief For pointer entries: Number of bytes in the data buffer pointed to<br>
//!< For other entries: Number of bytes following this length field
uint16_t numElements; //!< Number of entry elements committed in the entry
uint16_t nextIndex; //!< Index to the byte after the last byte of the last entry element committed by the radio CPU
uint8_t rxData; //!< First byte of the data array of received data entry elements
};
//! @}
//! \addtogroup dataEntryPointer
//! @{
//! Pointer data entry structure (type = 2)
struct __RFC_STRUCT rfc_dataEntryPointer_s {
uint8_t* pNextEntry; //!< Pointer to next entry in the queue, NULL if this is the last entry
uint8_t status; //!< Indicates status of entry, including whether it is free for the system CPU to write to
struct {
uint8_t type:2; //!< \brief Type of data entry structure<br>
//!< 0: General data entry <br>
//!< 1: Multi-element Rx entry<br>
//!< 2: Pointer entry<br>
//!< 3: Partial read Rx entry
uint8_t lenSz:2; //!< \brief Size of length word in start of each Rx entry element<br>
//!< 0: No length indicator<br>
//!< 1: One byte length indicator<br>
//!< 2: Two bytes length indicator<br>
//!< 3: <i>Reserved</i>
uint8_t irqIntv:4; //!< \brief For partial read Rx entry only: The number of bytes between interrupt generated
//!< by the radio CPU (0: 16 bytes)
} config;
uint16_t length; //!< \brief For pointer entries: Number of bytes in the data buffer pointed to<br>
//!< For other entries: Number of bytes following this length field
uint8_t* pData; //!< Pointer to data buffer of data to be received ro transmitted
};
//! @}
//! \addtogroup dataEntryPartial
//! @{
//! Partial read data entry structure (type = 3)
struct __RFC_STRUCT rfc_dataEntryPartial_s {
uint8_t* pNextEntry; //!< Pointer to next entry in the queue, NULL if this is the last entry
uint8_t status; //!< Indicates status of entry, including whether it is free for the system CPU to write to
struct {
uint8_t type:2; //!< \brief Type of data entry structure<br>
//!< 0: General data entry <br>
//!< 1: Multi-element Rx entry<br>
//!< 2: Pointer entry<br>
//!< 3: Partial read Rx entry
uint8_t lenSz:2; //!< \brief Size of length word in start of each Rx entry element<br>
//!< 0: No length indicator<br>
//!< 1: One byte length indicator<br>
//!< 2: Two bytes length indicator<br>
//!< 3: <i>Reserved</i>
uint8_t irqIntv:4; //!< \brief For partial read Rx entry only: The number of bytes between interrupt generated
//!< by the radio CPU (0: 16 bytes)
} config;
uint16_t length; //!< \brief For pointer entries: Number of bytes in the data buffer pointed to<br>
//!< For other entries: Number of bytes following this length field
struct {
uint16_t numElements:13; //!< Number of entry elements committed in the entry
uint16_t bEntryOpen:1; //!< 1 if the entry contains an element that is still open for appending data
uint16_t bFirstCont:1; //!< 1 if the first element is a continuation of the last packet from the previous entry
uint16_t bLastCont:1; //!< 1 if the packet in the last element continues in the next entry
} pktStatus;
uint16_t nextIndex; //!< Index to the byte after the last byte of the last entry element committed by the radio CPU
uint8_t rxData; //!< First byte of the data array of received data entry elements
};
//! @}
//! @}
//! @}
#endif /* DATA_ENTRY_H_ */