977 lines
21 KiB
C

/*
* Copyright (c) 2010, Swedish Institute of Computer Science
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/**
* \file
* Logic engine used for quickly evaluating data constraints in relations.
* \author
* Nicolas Tsiftes <nvt@sics.se>
*/
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "aql.h"
#include "lvm.h"
#define DEBUG DEBUG_NONE
#include "debug.h"
/*
* The logic engine determines whether a logical predicate is true for
* each tuple in a relation. It uses a stack-based execution model of
* operations that are arranged in prefix (Polish) notation.
*/
/* Default option values. */
#ifndef LVM_MAX_NAME_LENGTH
#define LVM_MAX_NAME_LENGTH 16
#endif
#ifndef LVM_MAX_VARIABLE_ID
#define LVM_MAX_VARIABLE_ID 8
#endif
#ifndef LVM_USE_FLOATS
#define LVM_USE_FLOATS 0
#endif
#define IS_CONNECTIVE(op) ((op) & LVM_CONNECTIVE)
struct variable {
operand_type_t type;
operand_value_t value;
char name[LVM_MAX_NAME_LENGTH + 1];
};
typedef struct variable variable_t;
struct derivation {
operand_value_t max;
operand_value_t min;
uint8_t derived;
};
typedef struct derivation derivation_t;
/* Registered variables for a LVM expression. Their values may be
changed between executions of the expression. */
static variable_t variables[LVM_MAX_VARIABLE_ID - 1];
/* Range derivations of variables that are used for index searches. */
static derivation_t derivations[LVM_MAX_VARIABLE_ID - 1];
#if DEBUG
static void
print_derivations(derivation_t *d)
{
int i;
for(i = 0; i < LVM_MAX_VARIABLE_ID; i++) {
if(d[i].derived) {
printf("%s is constrained to (%ld,%ld)\n", variables[i].name,
d[i].min.l, d[i].max.l);
}
}
}
#endif /* DEBUG */
static variable_id_t
lookup(char *name)
{
variable_t *var;
for(var = variables; var <= &variables[LVM_MAX_VARIABLE_ID - 1] && var->name[0] != '\0'; var++) {
if(strcmp(var->name, name) == 0) {
break;
}
}
return (variable_id_t)(var - &variables[0]);
}
static operator_t *
get_operator(lvm_instance_t *p)
{
operator_t *operator;
operator = (operator_t *)&p->code[p->ip];
p->ip += sizeof(operator_t);
return operator;
}
static void
get_operand(lvm_instance_t *p, operand_t *operand)
{
memcpy(operand, &p->code[p->ip], sizeof(*operand));
p->ip += sizeof(*operand);
}
static node_type_t
get_type(lvm_instance_t *p)
{
node_type_t node_type;
node_type = *(node_type_t *)(p->code + p->ip);
p->ip += sizeof(node_type);
return node_type;
}
static long
operand_to_long(operand_t *operand)
{
switch(operand->type) {
case LVM_LONG:
return operand->value.l;
#if LVM_USE_FLOATS
case LVM_FLOAT:
return (long)operand->value.f;
break;
#endif /* LVM_USE_FLOATS */
case LVM_VARIABLE:
return variables[operand->value.id].value.l;
default:
return 0;
}
}
static lvm_status_t
eval_expr(lvm_instance_t *p, operator_t op, operand_t *result)
{
int i;
node_type_t type;
operator_t *operator;
operand_t operand[2];
long value[2];
long result_value;
lvm_status_t r;
for(i = 0; i < 2; i++) {
type = get_type(p);
switch(type) {
case LVM_ARITH_OP:
operator = get_operator(p);
r = eval_expr(p, *operator, &operand[i]);
if(LVM_ERROR(r)) {
return r;
}
break;
case LVM_OPERAND:
get_operand(p, &operand[i]);
break;
default:
return SEMANTIC_ERROR;
}
value[i] = operand_to_long(&operand[i]);
}
switch(op) {
case LVM_ADD:
result_value = value[0] + value[1];
break;
case LVM_SUB:
result_value = value[0] - value[1];
break;
case LVM_MUL:
result_value = value[0] * value[1];
break;
case LVM_DIV:
if(value[1] == 0) {
return MATH_ERROR;
}
result_value = value[0] / value[1];
break;
default:
return EXECUTION_ERROR;
}
result->type = LVM_LONG;
result->value.l = result_value;
return TRUE;
}
static int
eval_logic(lvm_instance_t *p, operator_t *op)
{
int i;
int r;
operand_t operand;
long result[2];
node_type_t type;
operator_t *operator;
long l1, l2;
int logic_result[2];
unsigned arguments;
if(IS_CONNECTIVE(*op)) {
arguments = *op == LVM_NOT ? 1 : 2;
for(i = 0; i < arguments; i++) {
type = get_type(p);
if(type != LVM_CMP_OP) {
return SEMANTIC_ERROR;
}
operator = get_operator(p);
logic_result[i] = eval_logic(p, operator);
if(LVM_ERROR(logic_result[i])) {
return logic_result[i];
}
}
if(*op == LVM_NOT) {
return !logic_result[0];
} else if(*op == LVM_AND) {
return logic_result[0] == TRUE && logic_result[1] == TRUE;
} else {
return logic_result[0] == TRUE || logic_result[1] == TRUE;
}
}
for(i = 0; i < 2; i++) {
type = get_type(p);
switch(type) {
case LVM_ARITH_OP:
operator = get_operator(p);
r = eval_expr(p, *operator, &operand);
if(LVM_ERROR(r)) {
return r;
}
break;
case LVM_OPERAND:
get_operand(p, &operand);
break;
default:
return SEMANTIC_ERROR;
}
result[i] = operand_to_long(&operand);
}
l1 = result[0];
l2 = result[1];
PRINTF("Result1: %ld\nResult2: %ld\n", l1, l2);
switch(*op) {
case LVM_EQ:
return l1 == l2;
case LVM_NEQ:
return l1 != l2;
case LVM_GE:
return l1 > l2;
case LVM_GEQ:
return l1 >= l2;
case LVM_LE:
return l1 < l2;
case LVM_LEQ:
return l1 <= l2;
default:
break;
}
return EXECUTION_ERROR;
}
void
lvm_reset(lvm_instance_t *p, unsigned char *code, lvm_ip_t size)
{
memset(code, 0, size);
p->code = code;
p->size = size;
p->end = 0;
p->ip = 0;
p->error = 0;
memset(variables, 0, sizeof(variables));
memset(derivations, 0, sizeof(derivations));
}
lvm_ip_t
lvm_jump_to_operand(lvm_instance_t *p)
{
lvm_ip_t old_end;
old_end = p->end;
p->end += sizeof(operator_t) + sizeof(node_type_t);
if(p->end >= p->size) {
p->error = __LINE__;
p->end = old_end;
}
return old_end;
}
lvm_ip_t
lvm_shift_for_operator(lvm_instance_t *p, lvm_ip_t end)
{
unsigned char *ptr;
lvm_ip_t old_end;
old_end = p->end;
if(p->end + sizeof(operator_t) > p->size || end >= old_end) {
p->error = __LINE__;
return 0;
}
ptr = p->code + end;
memmove(ptr + sizeof(operator_t) + sizeof(node_type_t), ptr, old_end - end);
p->end = end;
return old_end + sizeof(operator_t) + sizeof(node_type_t);
}
lvm_ip_t
lvm_get_end(lvm_instance_t *p)
{
return p->end;
}
lvm_ip_t
lvm_set_end(lvm_instance_t *p, lvm_ip_t end)
{
lvm_ip_t old_end;
if(end >= p->size) {
p->error = __LINE__;
return p->end;
}
old_end = p->end;
p->end = end;
return old_end;
}
void
lvm_set_type(lvm_instance_t *p, node_type_t type)
{
*(node_type_t *)(p->code + p->end) = type;
p->end += sizeof(type);
}
lvm_status_t
lvm_execute(lvm_instance_t *p)
{
node_type_t type;
operator_t *operator;
lvm_status_t status;
p->ip = 0;
status = EXECUTION_ERROR;
type = get_type(p);
switch(type) {
case LVM_CMP_OP:
operator = get_operator(p);
status = eval_logic(p, operator);
if(!LVM_ERROR(status)) {
PRINTF("The statement is %s\n", status == TRUE ? "true" : "false");
} else {
PRINTF("Execution error: %d\n", (int)status);
}
break;
default:
PRINTF("Error: The code must start with a relational operator\n");
}
return status;
}
void
lvm_set_op(lvm_instance_t *p, operator_t op)
{
lvm_set_type(p, LVM_ARITH_OP);
memcpy(&p->code[p->end], &op, sizeof(op));
p->end += sizeof(op);
}
void
lvm_set_relation(lvm_instance_t *p, operator_t op)
{
lvm_set_type(p, LVM_CMP_OP);
memcpy(&p->code[p->end], &op, sizeof(op));
p->end += sizeof(op);
}
void
lvm_set_operand(lvm_instance_t *p, operand_t *op)
{
lvm_set_type(p, LVM_OPERAND);
memcpy(&p->code[p->end], op, sizeof(*op));
p->end += sizeof(*op);
}
void
lvm_set_long(lvm_instance_t *p, long l)
{
operand_t op;
op.type = LVM_LONG;
op.value.l = l;
lvm_set_operand(p, &op);
}
lvm_status_t
lvm_register_variable(char *name, operand_type_t type)
{
variable_id_t id;
variable_t *var;
id = lookup(name);
if(id == LVM_MAX_VARIABLE_ID) {
return VARIABLE_LIMIT_REACHED;
}
var = &variables[id];
if(var->name[0] == '\0') {
strncpy(var->name, name, sizeof(var->name) - 1);
var->name[sizeof(var->name) - 1] = '\0';
var->type = type;
}
return TRUE;
}
lvm_status_t
lvm_set_variable_value(char *name, operand_value_t value)
{
variable_id_t id;
id = lookup(name);
if(id == LVM_MAX_VARIABLE_ID) {
return INVALID_IDENTIFIER;
}
variables[id].value = value;
return TRUE;
}
void
lvm_set_variable(lvm_instance_t *p, char *name)
{
operand_t op;
variable_id_t id;
id = lookup(name);
if(id < LVM_MAX_VARIABLE_ID) {
PRINTF("var id = %d\n", id);
op.type = LVM_VARIABLE;
op.value.id = id;
lvm_set_operand(p, &op);
}
}
void
lvm_clone(lvm_instance_t *dst, lvm_instance_t *src)
{
memcpy(dst, src, sizeof(*dst));
}
static void
create_intersection(derivation_t *result, derivation_t *d1, derivation_t *d2)
{
int i;
for(i = 0; i < LVM_MAX_VARIABLE_ID; i++) {
if(!d1[i].derived && !d2[i].derived) {
continue;
} else if(d1[i].derived && !d2[i].derived) {
result[i].min.l = d1[i].min.l;
result[i].max.l = d1[i].max.l;
} else if(!d1[i].derived && d2[i].derived) {
result[i].min.l = d2[i].min.l;
result[i].max.l = d2[i].max.l;
} else {
/* Both derivations have been made; create an
intersection of the ranges. */
if(d1[i].min.l > d2[i].min.l) {
result[i].min.l = d1[i].min.l;
} else {
result[i].min.l = d2[i].min.l;
}
if(d1[i].max.l < d2[i].max.l) {
result[i].max.l = d1[i].max.l;
} else {
result[i].max.l = d2[i].max.l;
}
}
result[i].derived = 1;
}
#if DEBUG
PRINTF("Created an intersection of D1 and D2\n");
PRINTF("D1: \n");
print_derivations(d1);
PRINTF("D2: \n");
print_derivations(d2);
PRINTF("Result: \n");
print_derivations(result);
#endif /* DEBUG */
}
static void
create_union(derivation_t *result, derivation_t *d1, derivation_t *d2)
{
int i;
for(i = 0; i < LVM_MAX_VARIABLE_ID; i++) {
if(!d1[i].derived && !d2[i].derived) {
continue;
} else if(d1[i].derived && !d2[i].derived) {
result[i].min.l = d1[i].min.l;
result[i].max.l = d1[i].max.l;
} else if(!d1[i].derived && d2[i].derived) {
result[i].min.l = d2[i].min.l;
result[i].max.l = d2[i].max.l;
} else {
/* Both derivations have been made; create a
union of the ranges. */
if(d1[i].min.l > d2[i].min.l) {
result[i].min.l = d2[i].min.l;
} else {
result[i].min.l = d1[i].min.l;
}
if(d1[i].max.l < d2[i].max.l) {
result[i].max.l = d2[i].max.l;
} else {
result[i].max.l = d1[i].max.l;
}
}
result[i].derived = 1;
}
#if DEBUG
PRINTF("Created a union of D1 and D2\n");
PRINTF("D1: \n");
print_derivations(d1);
PRINTF("D2: \n");
print_derivations(d2);
PRINTF("Result: \n");
print_derivations(result);
#endif /* DEBUG */
}
static int
derive_relation(lvm_instance_t *p, derivation_t *local_derivations)
{
operator_t *operator;
node_type_t type;
operand_t operand[2];
int i;
int var;
int variable_id;
operand_value_t *value;
derivation_t *derivation;
type = get_type(p);
operator = get_operator(p);
if(IS_CONNECTIVE(*operator)) {
derivation_t d1[LVM_MAX_VARIABLE_ID];
derivation_t d2[LVM_MAX_VARIABLE_ID];
if(*operator != LVM_AND && *operator != LVM_OR) {
return DERIVATION_ERROR;
}
PRINTF("Attempting to infer ranges from a logical connective\n");
memset(d1, 0, sizeof(d1));
memset(d2, 0, sizeof(d2));
if(LVM_ERROR(derive_relation(p, d1)) ||
LVM_ERROR(derive_relation(p, d2))) {
return DERIVATION_ERROR;
}
if(*operator == LVM_AND) {
create_intersection(local_derivations, d1, d2);
} else if(*operator == LVM_OR) {
create_union(local_derivations, d1, d2);
}
return TRUE;
}
for(i = 0; i < 2; i++) {
type = get_type(p);
switch(type) {
case LVM_OPERAND:
get_operand(p, &operand[i]);
break;
default:
return DERIVATION_ERROR;
}
}
if(operand[0].type == LVM_VARIABLE && operand[1].type == LVM_VARIABLE) {
return DERIVATION_ERROR;
}
/* Determine which of the operands that is the variable. */
if(operand[0].type == LVM_VARIABLE) {
if(operand[1].type == LVM_VARIABLE) {
return DERIVATION_ERROR;
}
var = 0;
variable_id = operand[0].value.id;
value = &operand[1].value;
} else {
var = 1;
variable_id = operand[1].value.id;
value = &operand[0].value;
}
if(variable_id >= LVM_MAX_VARIABLE_ID) {
return DERIVATION_ERROR;
}
PRINTF("variable id %d, value %ld\n", variable_id, *(long *)value);
derivation = local_derivations + variable_id;
/* Default values. */
derivation->max.l = LONG_MAX;
derivation->min.l = LONG_MIN;
switch(*operator) {
case LVM_EQ:
derivation->max = *value;
derivation->min = *value;
break;
case LVM_GE:
derivation->min.l = value->l + 1;
break;
case LVM_GEQ:
derivation->min.l = value->l;
break;
case LVM_LE:
derivation->max.l = value->l - 1;
break;
case LVM_LEQ:
derivation->max.l = value->l;
break;
default:
return DERIVATION_ERROR;
}
derivation->derived = 1;
return TRUE;
}
lvm_status_t
lvm_derive(lvm_instance_t *p)
{
return derive_relation(p, derivations);
}
lvm_status_t
lvm_get_derived_range(lvm_instance_t *p, char *name,
operand_value_t *min, operand_value_t *max)
{
int i;
for(i = 0; i < LVM_MAX_VARIABLE_ID; i++) {
if(strcmp(name, variables[i].name) == 0) {
if(derivations[i].derived) {
*min = derivations[i].min;
*max = derivations[i].max;
return TRUE;
}
return DERIVATION_ERROR;
}
}
return INVALID_IDENTIFIER;
}
#if DEBUG
static lvm_ip_t
print_operator(lvm_instance_t *p, lvm_ip_t index)
{
operator_t operator;
struct operator_map {
operator_t op;
char *representation;
};
struct operator_map operator_map[] = {
{LVM_ADD, "+"},
{LVM_SUB, "-"},
{LVM_MUL, "*"},
{LVM_DIV, "/"},
{LVM_GE, ">"},
{LVM_GEQ, ">="},
{LVM_LE, "<"},
{LVM_LEQ, "<="},
{LVM_EQ, "="},
{LVM_NEQ, "<>"},
{LVM_AND, "/\\"},
{LVM_OR, "\\/"},
{LVM_NOT, "!"}
};
int i;
memcpy(&operator, p->code + index, sizeof(operator));
for(i = 0; i < sizeof(operator_map) / sizeof(operator_map[0]); i++) {
if(operator_map[i].op == operator) {
PRINTF("%s ", operator_map[i].representation);
break;
}
}
return index + sizeof(operator_t);
}
static lvm_ip_t
print_operand(lvm_instance_t *p, lvm_ip_t index)
{
operand_t operand;
memcpy(&operand, p->code + index, sizeof(operand));
switch(operand.type) {
case LVM_VARIABLE:
if(operand.value.id >= LVM_MAX_VARIABLE_ID || variables[operand.value.id].name == NULL) {
PRINTF("var(id:%d):?? ", operand.value.id);
} else {
PRINTF("var(%s):%ld ", variables[operand.value.id].name,
variables[operand.value.id].value.l);
}
break;
case LVM_LONG:
PRINTF("long:%ld ", operand.value.l);
break;
default:
PRINTF("?? ");
break;
}
return index + sizeof(operand_t);
}
static lvm_ip_t
print_relation(lvm_instance_t *p, lvm_ip_t index)
{
/* Relational operators are stored as ordinary operators. */
return print_operator(p, index);
}
#endif /* DEBUG */
void
lvm_print_code(lvm_instance_t *p)
{
#if DEBUG
lvm_ip_t ip;
PRINTF("Code: ");
for(ip = 0; ip < p->end;) {
switch(*(node_type_t *)(p->code + ip)) {
case LVM_CMP_OP:
ip = print_relation(p, ip + sizeof(node_type_t));
break;
case LVM_ARITH_OP:
ip = print_operator(p, ip + sizeof(node_type_t));
break;
case LVM_OPERAND:
ip = print_operand(p, ip + sizeof(node_type_t));
break;
default:
PRINTF("Invalid opcode: 0x%x ", p->code[ip]);
ip = p->end;
break;
}
}
putchar('\n');
#endif
}
void
lvm_print_derivations(lvm_instance_t *p)
{
#if DEBUG
print_derivations(derivations);
#endif /* DEBUG */
}
#ifdef TEST
int
main(void)
{
lvm_instance_t p;
unsigned char code[256];
lvm_reset(&p, code, sizeof(code));
lvm_register_variable("z", LVM_LONG);
lvm_set_variable_value("z", (operand_value_t)15L);
lvm_register_variable("y", LVM_LONG);
lvm_set_variable_value("y", (operand_value_t)109L);
/* Infix: 109 = y /\ 20 > 70 - (6 + z * 3) => 109 = 109 /\ 20 > 19 => true */
lvm_set_relation(&p, LVM_AND);
lvm_set_relation(&p, LVM_EQ);
lvm_set_long(&p, 109);
lvm_set_variable(&p, "y");
lvm_set_relation(&p, LVM_GE);
lvm_set_long(&p, 20);
lvm_set_op(&p, LVM_SUB);
lvm_set_long(&p, 70);
lvm_set_op(&p, LVM_ADD);
lvm_set_long(&p, 6);
lvm_set_op(&p, LVM_MUL);
lvm_set_variable(&p, "z");
lvm_set_long(&p, 3);
lvm_print_code(&p);
lvm_execute(&p);
/* Infix: !(9999 + 1 < -1 + 10001) => !(10000 < 10000) => true */
lvm_reset(&p, code, sizeof(code));
lvm_set_relation(&p, LVM_NOT);
lvm_set_relation(&p, LVM_LE);
lvm_set_op(&p, LVM_ADD);
lvm_set_long(&p, 9999);
lvm_set_long(&p, 1);
lvm_set_op(&p, LVM_ADD);
lvm_set_long(&p, -1);
lvm_set_long(&p, 10001);
lvm_print_code(&p);
lvm_execute(&p);
/* Derivation tests */
/* Infix: a = 5 => a:(5,5) */
lvm_reset(&p, code, sizeof(code));
lvm_register_variable("a", LVM_LONG);
lvm_set_relation(&p, LVM_EQ);
lvm_set_variable(&p, "a");
lvm_set_long(&p, 5);
lvm_derive(&p);
lvm_print_derivations(&p);
/* Infix: a < 10 => a:(-oo,9) */
lvm_reset(&p, code, sizeof(code));
lvm_register_variable("a", LVM_LONG);
lvm_set_relation(&p, LVM_LE);
lvm_set_variable(&p, "a");
lvm_set_long(&p, 10);
lvm_derive(&p);
lvm_print_derivations(&p);
/* Infix: a < 100 /\ 10 < a => a:(11,99) */
lvm_reset(&p, code, sizeof(code));
lvm_register_variable("a", LVM_LONG);
lvm_set_relation(&p, LVM_AND);
lvm_set_relation(&p, LVM_LE);
lvm_set_variable(&p, "a");
lvm_set_long(&p, 100);
lvm_set_relation(&p, LVM_GE);
lvm_set_long(&p, 10);
lvm_set_variable(&p, "a");
lvm_derive(&p);
lvm_print_derivations(&p);
/* Infix: a < 100 /\ b > 100 => a:(-oo,99), b:(101,oo) */
lvm_reset(&p, code, sizeof(code));
lvm_register_variable("a", LVM_LONG);
lvm_register_variable("b", LVM_LONG);
lvm_set_relation(&p, LVM_AND);
lvm_set_relation(&p, LVM_LE);
lvm_set_variable(&p, "a");
lvm_set_long(&p, 100);
lvm_set_relation(&p, LVM_GE);
lvm_set_variable(&p, "b");
lvm_set_long(&p, 100);
lvm_derive(&p);
lvm_print_derivations(&p);
/* Infix: a < 100 \/ a < 1000 \/ a < 1902 => a:(-oo,1901) */
lvm_reset(&p, code, sizeof(code));
lvm_register_variable("a", LVM_LONG);
lvm_set_relation(&p, LVM_OR);
lvm_set_relation(&p, LVM_LE);
lvm_set_variable(&p, "a");
lvm_set_long(&p, 100);
lvm_set_relation(&p, LVM_OR);
lvm_set_relation(&p, LVM_LE);
lvm_set_long(&p, 1000);
lvm_set_variable(&p, "a");
lvm_set_relation(&p, LVM_LE);
lvm_set_variable(&p, "a");
lvm_set_long(&p, 1902);
lvm_derive(&p);
lvm_print_derivations(&p);
/* Infix: (a < 100 /\ a < 90 /\ a > 80 /\ a < 105) \/ b > 10000 =>
a:(81,89), b:(10001:oo) */
lvm_reset(&p, code, sizeof(code));
lvm_register_variable("a", LVM_LONG);
lvm_register_variable("b", LVM_LONG);
lvm_set_relation(&p, LVM_OR);
lvm_set_relation(&p, LVM_GE);
lvm_set_variable(&p, "b");
lvm_set_long(&p, 10000);
lvm_set_relation(&p, LVM_AND);
lvm_set_relation(&p, LVM_LE);
lvm_set_variable(&p, "a");
lvm_set_long(&p, 100);
lvm_set_relation(&p, LVM_AND);
lvm_set_relation(&p, LVM_LE);
lvm_set_variable(&p, "a");
lvm_set_long(&p, 90);
lvm_set_relation(&p, LVM_AND);
lvm_set_relation(&p, LVM_GE);
lvm_set_variable(&p, "a");
lvm_set_long(&p, 80);
lvm_set_relation(&p, LVM_LE);
lvm_set_variable(&p, "a");
lvm_set_long(&p, 105);
lvm_derive(&p);
lvm_print_derivations(&p);
printf("Done\n");
return 0;
}
#endif