contiki/cpu/arm/stm32l152/STM32L1xx_HAL_Driver/Src/stm32l1xx_hal_adc.c
2015-07-24 16:30:10 +02:00

1760 lines
61 KiB
C
Raw Blame History

/**
******************************************************************************
* @file stm32l1xx_hal_adc.c
* @author MCD Application conversion
* @version V1.0.0
* @date 5-September-2014
* @brief This file provides firmware functions to manage the following
* functionalities of the Analog to Digital Convertor (ADC)
* peripheral:
* + Initialization and de-initialization functions
* ++ Initialization and Configuration of ADC
* + Operation functions
* ++ Start, stop, get result of conversions of regular
* group, using 3 possible modes: polling, interruption or DMA.
* + Control functions
* ++ Analog Watchdog configuration
* ++ Channels configuration on regular group
* + State functions
* ++ ADC state machine management
* ++ Interrupts and flags management
* Other functions (extended functions) are available in file
* "stm32l1xx_hal_adc_ex.c".
*
@verbatim
==============================================================================
##### ADC specific features #####
==============================================================================
[..]
(#) 12-bit, 10-bit, 8-bit or 6-bit configurable resolution
(#) Interrupt generation at the end of regular conversion, end of injected
conversion, and in case of analog watchdog or overrun events.
(#) Single and continuous conversion modes.
(#) Scan mode for automatic conversion of channel 0 to channel 'n'.
(#) Data alignment with in-built data coherency.
(#) Channel-wise programmable sampling time.
(#) ADC conversion Regular or Injected groups.
(#) External trigger (timer or EXTI) with configurable polarity for both
regular and injected groups.
(#) DMA request generation for transfer of conversions data of regular group.
(#) ADC calibration
(#) ADC offset on injected channels
(#) ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at
slower speed.
(#) ADC input range: from Vref<65> (connected to Vssa) to Vref+ (connected to
Vdda or to an external voltage reference).
##### How to use this driver #####
==============================================================================
[..]
(#) Enable the ADC interface
As prerequisite, ADC clock must be configured at RCC top level.
Two clocks settings are mandatory:
- ADC clock (core clock):
Example:
Into HAL_ADC_MspInit() (recommended code location):
__ADC1_CLK_ENABLE();
- ADC clock (conversions clock):
Only one possible clock source: derived from HSI RC 16MHz oscillator
(HSI).
Example:
Into HAL_ADC_MspInit() or with main setting of RCC:
RCC_OscInitTypeDef RCC_OscInitStructure;
HAL_RCC_GetOscConfig(&RCC_OscInitStructure);
RCC_OscInitStructure.OscillatorType = (... | RCC_OSCILLATORTYPE_HSI);
RCC_OscInitStructure.HSIState = RCC_HSI_ON;
RCC_OscInitStructure.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStructure.PLL.PLLState = RCC_PLL_NONE;
RCC_OscInitStructure.PLL.PLLSource = ...
RCC_OscInitStructure.PLL...
HAL_RCC_OscConfig(&RCC_OscInitStructure);
Note: ADC is connected directly to HSI RC 16MHz oscillator.
Therefore, RCC PLL setting has no impact on ADC.
PLL can be disabled (".PLL.PLLState = RCC_PLL_NONE") or
enabled with HSI16 as clock source
(".PLL.PLLSource = RCC_PLLSOURCE_HSI") to be used as device
main clock source SYSCLK.
The only mandatory setting is ".HSIState = RCC_HSI_ON"
Note: ADC clock prescaler is configured at ADC level with
parameter "ClockPrescaler" using function HAL_ADC_Init().
(#) ADC pins configuration
(++) Enable the clock for the ADC GPIOs using the following function:
__GPIOx_CLK_ENABLE();
(++) Configure these ADC pins in analog mode using HAL_GPIO_Init();
(#) Configure the ADC parameters (conversion resolution, data alignment,
continuous mode, ...) using the HAL_ADC_Init() function.
(#) Activate the ADC peripheral using one of the start functions:
HAL_ADC_Start(), HAL_ADC_Start_IT(), HAL_ADC_Start_DMA().
*** Channels configuration to regular group ***
================================================
[..]
(+) To configure the ADC regular group features, use
HAL_ADC_Init() and HAL_ADC_ConfigChannel() functions.
(+) To read the ADC converted values, use the HAL_ADC_GetValue() function.
*** DMA for regular group configuration ***
===========================================
[..]
(+) To enable the DMA mode for regular group, use the
HAL_ADC_Start_DMA() function.
(+) To enable the generation of DMA requests continuously at the end of
the last DMA transfer, use the HAL_ADC_Init() function.
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_hal.h"
/** @addtogroup STM32L1xx_HAL_Driver
* @{
*/
/** @defgroup ADC ADC
* @brief ADC HAL module driver
* @{
*/
#ifdef HAL_ADC_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup ADC_Private_Constants ADC Private Constants
* @{
*/
/* Fixed timeout values for ADC calibration, enable settling time. */
/* Values defined to be higher than worst cases: low clocks freq, */
/* maximum prescaler. */
/* Ex of profile low frequency : Clock source at 0.1 MHz, ADC clock */
/* prescaler 4, sampling time 7.5 ADC clock cycles, resolution 12 bits. */
/* Unit: ms */
#define ADC_ENABLE_TIMEOUT ((uint32_t) 2)
#define ADC_DISABLE_TIMEOUT ((uint32_t) 2)
/* Delay for ADC stabilization time. */
/* Maximum delay is 3.5us (refer to device datasheet, parameter tSTAB). */
/* Delay in CPU cycles, fixed to worst case: maximum CPU frequency 32MHz to */
/* have the minimum number of CPU cycles to fulfill this delay. */
#define ADC_STAB_DELAY_CPU_CYCLES ((uint32_t)112)
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup ADC_Private_Functions ADC Private Functions
* @{
*/
static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma);
static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma);
static void ADC_DMAError(DMA_HandleTypeDef *hdma);
/**
* @}
*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup ADC_Exported_Functions ADC Exported Functions
* @{
*/
/** @defgroup ADC_Exported_Functions_Group1 Initialization/de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Initialize and configure the ADC.
(+) De-initialize the ADC
@endverbatim
* @{
*/
/**
* @brief Initializes the ADC peripheral and regular group according to
* parameters specified in structure "ADC_InitTypeDef".
* @note As prerequisite, ADC clock must be configured at RCC top level
* (clock source APB2).
* See commented example code below that can be copied and uncommented
* into HAL_ADC_MspInit().
* @note Possibility to update parameters on the fly:
* This function initializes the ADC MSP (HAL_ADC_MspInit()) only when
* coming from ADC state reset. Following calls to this function can
* be used to reconfigure some parameters of ADC_InitTypeDef
* structure on the fly, without modifying MSP configuration. If ADC
* MSP has to be modified again, HAL_ADC_DeInit() must be called
* before HAL_ADC_Init().
* The setting of these parameters is conditioned to ADC state.
* For parameters constraints, see comments of structure
* "ADC_InitTypeDef".
* @note This function configures the ADC within 2 scopes: scope of entire
* ADC and scope of regular group. For parameters details, see comments
* of structure "ADC_InitTypeDef".
* @param hadc: ADC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc)
{
HAL_StatusTypeDef tmpHALStatus = HAL_OK;
uint32_t tmp_cr1 = 0;
uint32_t tmp_cr2 = 0;
/* Check ADC handle */
if(hadc == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler));
assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution));
assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign));
assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode));
assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection));
assert_param(IS_ADC_AUTOWAIT(hadc->Init.LowPowerAutoWait));
assert_param(IS_ADC_AUTOPOWEROFF(hadc->Init.LowPowerAutoPowerOff));
assert_param(IS_ADC_CHANNELSBANK(hadc->Init.ChannelsBank));
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
assert_param(IS_ADC_EXTTRIG(hadc->Init.ExternalTrigConv));
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests));
if(hadc->Init.ScanConvMode != ADC_SCAN_DISABLE)
{
assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion));
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode));
assert_param(IS_ADC_REGULAR_DISCONT_NUMBER(hadc->Init.NbrOfDiscConversion));
}
if(hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START)
{
assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge));
}
/* As prerequisite, into HAL_ADC_MspInit(), ADC clock must be configured */
/* at RCC top level. */
/* Refer to header of this file for more details on clock enabling */
/* procedure. */
/* Actions performed only if ADC is coming from state reset: */
/* - Initialization of ADC MSP */
if (hadc->State == HAL_ADC_STATE_RESET)
{
/* Enable SYSCFG clock to control the routing Interface (RI) */
__SYSCFG_CLK_ENABLE();
/* Init the low level hardware */
HAL_ADC_MspInit(hadc);
}
/* Configuration of ADC parameters if previous preliminary actions are */
/* correctly completed. */
if (tmpHALStatus != HAL_ERROR)
{
/* Initialize the ADC state */
hadc->State = HAL_ADC_STATE_BUSY;
/* Set ADC parameters */
/* Configuration of common ADC clock: clock source HSI with selectable */
/* prescaler */
MODIFY_REG(ADC->CCR ,
ADC_CCR_ADCPRE ,
hadc->Init.ClockPrescaler );
/* Configuration of ADC: */
/* - external trigger polarity */
/* - End of conversion selection */
/* - DMA continuous request */
/* - Channels bank (Banks availability depends on devices categories) */
/* - continuous conversion mode */
tmp_cr2 |= (hadc->Init.DataAlign |
hadc->Init.EOCSelection |
__ADC_CR2_DMACONTREQ(hadc->Init.DMAContinuousRequests) |
hadc->Init.ChannelsBank |
__ADC_CR2_CONTINUOUS(hadc->Init.ContinuousConvMode) );
/* Enable external trigger if trigger selection is different of software */
/* start. */
/* Note: This configuration keeps the hardware feature of parameter */
/* ExternalTrigConvEdge "trigger edge none" equivalent to */
/* software start. */
if (hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START)
{
tmp_cr2 |= ( hadc->Init.ExternalTrigConv |
hadc->Init.ExternalTrigConvEdge );
}
/* Parameters update conditioned to ADC state: */
/* Parameters that can be updated only when ADC is disabled: */
/* - delay selection (LowPowerAutoWait mode) */
/* - resolution */
/* - auto power off (LowPowerAutoPowerOff mode) */
/* - scan mode */
/* - discontinuous mode disable/enable */
/* - discontinuous mode number of conversions */
if ((__HAL_ADC_IS_ENABLED(hadc) == RESET))
{
tmp_cr2 |= hadc->Init.LowPowerAutoWait;
tmp_cr1 |= (hadc->Init.Resolution |
hadc->Init.LowPowerAutoPowerOff |
__ADC_CR1_SCAN(hadc->Init.ScanConvMode) );
/* Enable discontinuous mode only if continuous mode is disabled */
if ((hadc->Init.DiscontinuousConvMode == ENABLE) &&
(hadc->Init.ContinuousConvMode == DISABLE) )
{
/* Enable discontinuous mode of regular group */
/* Set the number of channels to be converted in discontinuous mode */
tmp_cr1 |= ((ADC_CR1_DISCEN) |
__ADC_CR1_DISCONTINUOUS_NUM(hadc->Init.NbrOfDiscConversion));
}
/* Update ADC configuration register CR1 with previous settings */
MODIFY_REG(hadc->Instance->CR1,
ADC_CR1_RES |
ADC_CR1_PDI |
ADC_CR1_PDD |
ADC_CR1_DISCNUM |
ADC_CR1_DISCEN |
ADC_CR1_SCAN ,
tmp_cr1 );
}
/* Update ADC configuration register CR2 with previous settings */
MODIFY_REG(hadc->Instance->CR2 ,
__ADC_CR2_MASK_ADCINIT() ,
tmp_cr2 );
/* Configuration of regular group sequencer: */
/* - if scan mode is disabled, regular channels sequence length is set to */
/* 0x00: 1 channel converted (channel on regular rank 1) */
/* Parameter "NbrOfConversion" is discarded. */
/* Note: Scan mode is present by hardware on this device and, if */
/* disabled, discards automatically nb of conversions. Anyway, nb of */
/* conversions is forced to 0x00 for alignment over all STM32 devices. */
/* - if scan mode is enabled, regular channels sequence length is set to */
/* parameter "NbrOfConversion" */
if (hadc->Init.ScanConvMode == ADC_SCAN_ENABLE)
{
MODIFY_REG(hadc->Instance->SQR1 ,
ADC_SQR1_L ,
__ADC_SQR1_L(hadc->Init.NbrOfConversion) );
}
else
{
MODIFY_REG(hadc->Instance->SQR1,
ADC_SQR1_L ,
0x00000000 );
}
/* Check back that ADC registers have effectively been configured to */
/* ensure of no potential problem of ADC core IP clocking. */
/* Check through register CR2 (excluding execution control bits ADON, */
/* JSWSTART, SWSTART and injected trigger bits JEXTEN and JEXTSEL). */
if ((READ_REG(hadc->Instance->CR2) & ~(ADC_CR2_ADON |
ADC_CR2_SWSTART | ADC_CR2_JSWSTART |
ADC_CR2_JEXTEN | ADC_CR2_JEXTSEL ))
== tmp_cr2)
{
/* Set ADC error code to none */
__HAL_ADC_CLEAR_ERRORCODE(hadc);
/* Initialize the ADC state */
hadc->State = HAL_ADC_STATE_READY;
}
else
{
/* Update ADC state machine to error */
hadc->State = HAL_ADC_STATE_ERROR;
/* Set ADC error code to ADC IP internal error */
hadc->ErrorCode |= HAL_ADC_ERROR_INTERNAL;
tmpHALStatus = HAL_ERROR;
}
}
else
{
/* Update ADC state machine to error */
hadc->State = HAL_ADC_STATE_ERROR;
tmpHALStatus = HAL_ERROR;
}
/* Return function status */
return tmpHALStatus;
}
/**
* @brief Deinitialize the ADC peripheral registers to its default reset values.
* @note To not impact other ADCs, reset of common ADC registers have been
* left commented below.
* If needed, the example code can be copied and uncommented into
* function HAL_ADC_MspDeInit().
* @param hadc: ADC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef* hadc)
{
HAL_StatusTypeDef tmpHALStatus = HAL_OK;
/* Check ADC handle */
if(hadc == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Change ADC state */
hadc->State = HAL_ADC_STATE_BUSY;
/* Stop potential conversion on going, on regular and injected groups */
/* Disable ADC peripheral */
tmpHALStatus = ADC_ConversionStop_Disable(hadc);
/* Configuration of ADC parameters if previous preliminary actions are */
/* correctly completed. */
if (tmpHALStatus != HAL_ERROR)
{
/* ========== Reset ADC registers ========== */
/* Reset register SR */
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD | ADC_FLAG_JEOC | ADC_FLAG_EOC |
ADC_FLAG_JSTRT | ADC_FLAG_STRT));
/* Reset register CR1 */
CLEAR_BIT(hadc->Instance->CR1, (ADC_CR1_OVRIE | ADC_CR1_RES | ADC_CR1_AWDEN |
ADC_CR1_JAWDEN | ADC_CR1_PDI | ADC_CR1_PDD |
ADC_CR1_DISCNUM | ADC_CR1_JDISCEN | ADC_CR1_DISCEN |
ADC_CR1_JAUTO | ADC_CR1_AWDSGL | ADC_CR1_SCAN |
ADC_CR1_JEOCIE | ADC_CR1_AWDIE | ADC_CR1_EOCIE |
ADC_CR1_AWDCH ));
/* Reset register CR2 */
__ADC_CR2_CLEAR(hadc);
/* Reset register SMPR0 */
__ADC_SMPR0_CLEAR(hadc);
/* Reset register SMPR1 */
CLEAR_BIT(hadc->Instance->SMPR1, (ADC_SMPR1_SMP29 | ADC_SMPR1_SMP28 | ADC_SMPR1_SMP27 |
ADC_SMPR1_SMP26 | ADC_SMPR1_SMP25 | ADC_SMPR1_SMP24 |
ADC_SMPR1_SMP23 | ADC_SMPR1_SMP22 | ADC_SMPR1_SMP21 |
ADC_SMPR1_SMP20 ));
/* Reset register SMPR2 */
CLEAR_BIT(hadc->Instance->SMPR2, (ADC_SMPR2_SMP19 | ADC_SMPR2_SMP18 | ADC_SMPR2_SMP17 |
ADC_SMPR2_SMP16 | ADC_SMPR2_SMP15 | ADC_SMPR2_SMP14 |
ADC_SMPR2_SMP13 | ADC_SMPR2_SMP12 | ADC_SMPR2_SMP11 |
ADC_SMPR2_SMP10 ));
/* Reset register SMPR3 */
CLEAR_BIT(hadc->Instance->SMPR3, (ADC_SMPR3_SMP9 | ADC_SMPR3_SMP8 | ADC_SMPR3_SMP7 |
ADC_SMPR3_SMP6 | ADC_SMPR3_SMP5 | ADC_SMPR3_SMP4 |
ADC_SMPR3_SMP3 | ADC_SMPR3_SMP2 | ADC_SMPR3_SMP1 |
ADC_SMPR3_SMP0 ));
/* Reset register JOFR1 */
CLEAR_BIT(hadc->Instance->JOFR1, ADC_JOFR1_JOFFSET1);
/* Reset register JOFR2 */
CLEAR_BIT(hadc->Instance->JOFR2, ADC_JOFR2_JOFFSET2);
/* Reset register JOFR3 */
CLEAR_BIT(hadc->Instance->JOFR3, ADC_JOFR3_JOFFSET3);
/* Reset register JOFR4 */
CLEAR_BIT(hadc->Instance->JOFR4, ADC_JOFR4_JOFFSET4);
/* Reset register HTR */
CLEAR_BIT(hadc->Instance->HTR, ADC_HTR_HT);
/* Reset register LTR */
CLEAR_BIT(hadc->Instance->LTR, ADC_LTR_LT);
/* Reset register SQR1 */
CLEAR_BIT(hadc->Instance->SQR1, (ADC_SQR1_L | __ADC_SQR1_SQXX));
/* Reset register SQR2 */
CLEAR_BIT(hadc->Instance->SQR2, (ADC_SQR2_SQ24 | ADC_SQR2_SQ23 | ADC_SQR2_SQ22 |
ADC_SQR2_SQ21 | ADC_SQR2_SQ20 | ADC_SQR2_SQ19 ));
/* Reset register SQR3 */
CLEAR_BIT(hadc->Instance->SQR3, (ADC_SQR3_SQ18 | ADC_SQR3_SQ17 | ADC_SQR3_SQ16 |
ADC_SQR3_SQ15 | ADC_SQR3_SQ14 | ADC_SQR3_SQ13 ));
/* Reset register SQR4 */
CLEAR_BIT(hadc->Instance->SQR4, (ADC_SQR4_SQ12 | ADC_SQR4_SQ11 | ADC_SQR4_SQ10 |
ADC_SQR4_SQ9 | ADC_SQR4_SQ8 | ADC_SQR4_SQ7 ));
/* Reset register SQR5 */
CLEAR_BIT(hadc->Instance->SQR5, (ADC_SQR5_SQ6 | ADC_SQR5_SQ5 | ADC_SQR5_SQ4 |
ADC_SQR5_SQ3 | ADC_SQR5_SQ2 | ADC_SQR5_SQ1 ));
/* Reset register JSQR */
CLEAR_BIT(hadc->Instance->JSQR, (ADC_JSQR_JL |
ADC_JSQR_JSQ4 | ADC_JSQR_JSQ3 |
ADC_JSQR_JSQ2 | ADC_JSQR_JSQ1 ));
/* Reset register JSQR */
CLEAR_BIT(hadc->Instance->JSQR, (ADC_JSQR_JL |
ADC_JSQR_JSQ4 | ADC_JSQR_JSQ3 |
ADC_JSQR_JSQ2 | ADC_JSQR_JSQ1 ));
/* Reset register DR */
/* bits in access mode read only, no direct reset applicable*/
/* Reset registers JDR1, JDR2, JDR3, JDR4 */
/* bits in access mode read only, no direct reset applicable*/
/* Reset register CCR */
CLEAR_BIT(ADC->CCR, ADC_CCR_TSVREFE);
/* ========== Hard reset ADC peripheral ========== */
/* Performs a global reset of the entire ADC peripheral: ADC state is */
/* forced to a similar state after device power-on. */
/* If needed, copy-paste and uncomment the following reset code into */
/* function "void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)": */
/* */
/* __ADC1_FORCE_RESET() */
/* __ADC1_RELEASE_RESET() */
/* DeInit the low level hardware */
HAL_ADC_MspDeInit(hadc);
/* Set ADC error code to none */
__HAL_ADC_CLEAR_ERRORCODE(hadc);
/* Change ADC state */
hadc->State = HAL_ADC_STATE_RESET;
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmpHALStatus;
}
/**
* @brief Initializes the ADC MSP.
* @param hadc: ADC handle
* @retval None
*/
__weak void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)
{
/* NOTE : This function should not be modified. When the callback is needed,
function HAL_ADC_MspInit must be implemented in the user file.
*/
}
/**
* @brief DeInitializes the ADC MSP.
* @param hadc: ADC handle
* @retval None
*/
__weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc)
{
/* NOTE : This function should not be modified. When the callback is needed,
function HAL_ADC_MspDeInit must be implemented in the user file.
*/
}
/**
* @}
*/
/** @defgroup ADC_Exported_Functions_Group2 IO operation functions
* @brief IO operation functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Start conversion of regular group.
(+) Stop conversion of regular group.
(+) Poll for conversion complete on regular group.
(+) Poll for conversion event.
(+) Get result of regular channel conversion.
(+) Start conversion of regular group and enable interruptions.
(+) Stop conversion of regular group and disable interruptions.
(+) Handle ADC interrupt request
(+) Start conversion of regular group and enable DMA transfer.
(+) Stop conversion of regular group and disable ADC DMA transfer.
@endverbatim
* @{
*/
/**
* @brief Enables ADC, starts conversion of regular group.
* Interruptions enabled in this function: None.
* @param hadc: ADC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc)
{
HAL_StatusTypeDef tmpHALStatus = HAL_OK;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* Enable the ADC peripheral */
tmpHALStatus = ADC_Enable(hadc);
/* Start conversion if ADC is effectively enabled */
if (tmpHALStatus != HAL_ERROR)
{
/* State machine update: Check if an injected conversion is ongoing */
if(hadc->State == HAL_ADC_STATE_BUSY_INJ)
{
/* Change ADC state */
hadc->State = HAL_ADC_STATE_BUSY_INJ_REG;
}
else
{
/* Change ADC state */
hadc->State = HAL_ADC_STATE_BUSY_REG;
}
/* Set ADC error code to none */
__HAL_ADC_CLEAR_ERRORCODE(hadc);
/* Clear regular group conversion flag and overrun flag */
/* (To ensure of no unknown state from potential previous ADC operations) */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC);
/* Start conversion of regular group if software start has been selected. */
/* If external trigger has been selected, conversion will start at next */
/* trigger event. */
if (__HAL_ADC_IS_SOFTWARE_START_REGULAR(hadc))
{
/* Start ADC conversion on regular group */
SET_BIT(hadc->Instance->CR2, ADC_CR2_SWSTART);
}
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmpHALStatus;
}
/**
* @brief Stop ADC conversion of regular group (and injected channels in
* case of auto_injection mode), disable ADC peripheral.
* @note: ADC peripheral disable is forcing interruption of potential
* conversion on injected group. If injected group is under use, it
* should be preliminarily stopped using HAL_ADCEx_InjectedStop function.
* @param hadc: ADC handle
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc)
{
HAL_StatusTypeDef tmpHALStatus = HAL_OK;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* Stop potential conversion on going, on regular and injected groups */
/* Disable ADC peripheral */
tmpHALStatus = ADC_ConversionStop_Disable(hadc);
/* Check if ADC is effectively disabled */
if (tmpHALStatus != HAL_ERROR)
{
/* Change ADC state */
hadc->State = HAL_ADC_STATE_READY;
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmpHALStatus;
}
/**
* @brief Wait for regular group conversion to be completed.
* @param hadc: ADC handle
* @param Timeout: Timeout value in millisecond.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout)
{
uint32_t tickstart = 0;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait until End of Conversion flag is raised */
while(HAL_IS_BIT_CLR(hadc->Instance->SR, ADC_FLAG_EOC))
{
/* Check if timeout is disabled (set to infinite wait) */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Update ADC state machine to timeout */
hadc->State = HAL_ADC_STATE_TIMEOUT;
/* Process unlocked */
__HAL_UNLOCK(hadc);
return HAL_ERROR;
}
}
}
/* Clear end of conversion flag of regular group if low power feature "Auto */
/* Wait" is disabled, to not interfere with this feature until data */
/* register is read using function HAL_ADC_GetValue(). */
if (hadc->Init.LowPowerAutoWait == DISABLE)
{
/* Clear regular group conversion flag */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC);
}
/* Update state machine on conversion status if not in error state */
if(hadc->State != HAL_ADC_STATE_ERROR)
{
/* Update ADC state machine */
if(hadc->State != HAL_ADC_STATE_EOC_INJ_REG)
{
/* Check if a conversion is ready on injected group */
if(hadc->State == HAL_ADC_STATE_EOC_INJ)
{
/* Change ADC state */
hadc->State = HAL_ADC_STATE_EOC_INJ_REG;
}
else
{
/* Change ADC state */
hadc->State = HAL_ADC_STATE_EOC_REG;
}
}
}
/* Return ADC state */
return HAL_OK;
}
/**
* @brief Poll for conversion event.
* @param hadc: ADC handle
* @param EventType: the ADC event type.
* This parameter can be one of the following values:
* @arg AWD_EVENT: ADC Analog watchdog event.
* @arg OVR_EVENT: ADC Overrun event
* @param Timeout: Timeout value in millisecond.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef* hadc, uint32_t EventType, uint32_t Timeout)
{
uint32_t tickstart = 0;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
assert_param(IS_ADC_EVENT_TYPE(EventType));
/* Get timeout */
tickstart = HAL_GetTick();
/* Check selected event flag */
while(__HAL_ADC_GET_FLAG(hadc, EventType) == RESET)
{
/* Check if timeout is disabled (set to infinite wait) */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Update ADC state machine to timeout */
hadc->State = HAL_ADC_STATE_TIMEOUT;
/* Process unlocked */
__HAL_UNLOCK(hadc);
return HAL_ERROR;
}
}
}
switch(EventType)
{
/* Analog watchdog (level out of window) event */
case AWD_EVENT:
/* Change ADC state */
hadc->State = HAL_ADC_STATE_AWD;
/* Clear ADC analog watchdog flag */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD);
break;
/* Overrun event */
default: /* Case OVR_EVENT */
/* Change ADC state */
hadc->State = HAL_ADC_STATE_ERROR;
/* Set ADC error code to overrun */
hadc->ErrorCode |= HAL_ADC_ERROR_OVR;
/* Clear ADC Overrun flag */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
break;
}
/* Return ADC state */
return HAL_OK;
}
/**
* @brief Enables ADC, starts conversion of regular group with interruption.
* Interruptions enabled in this function: EOC (end of conversion),
* overrun.
* Each of these interruptions has its dedicated callback function.
* @param hadc: ADC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc)
{
HAL_StatusTypeDef tmpHALStatus = HAL_OK;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* Enable the ADC peripheral */
tmpHALStatus = ADC_Enable(hadc);
/* Start conversion if ADC is effectively enabled */
if (tmpHALStatus != HAL_ERROR)
{
/* State machine update: Check if an injected conversion is ongoing */
if(hadc->State == HAL_ADC_STATE_BUSY_INJ)
{
/* Change ADC state */
hadc->State = HAL_ADC_STATE_BUSY_INJ_REG;
}
else
{
/* Change ADC state */
hadc->State = HAL_ADC_STATE_BUSY_REG;
}
/* Set ADC error code to none */
__HAL_ADC_CLEAR_ERRORCODE(hadc);
/* Clear regular group conversion flag and overrun flag */
/* (To ensure of no unknown state from potential previous ADC operations) */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC);
/* Enable end of conversion interrupt for regular group */
__HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_OVR));
/* Start conversion of regular group if software start has been selected. */
/* If external trigger has been selected, conversion will start at next */
/* trigger event. */
if (__HAL_ADC_IS_SOFTWARE_START_REGULAR(hadc))
{
/* Start ADC conversion on regular group */
SET_BIT(hadc->Instance->CR2, ADC_CR2_SWSTART);
}
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmpHALStatus;
}
/**
* @brief Stop ADC conversion of regular group (and injected group in
* case of auto_injection mode), disable interrution of
* end-of-conversion, disable ADC peripheral.
* @param hadc: ADC handle
* @retval None
*/
HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc)
{
HAL_StatusTypeDef tmpHALStatus = HAL_OK;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* Stop potential conversion on going, on regular and injected groups */
/* Disable ADC peripheral */
tmpHALStatus = ADC_ConversionStop_Disable(hadc);
/* Check if ADC is effectively disabled */
if (tmpHALStatus != HAL_ERROR)
{
/* Disable ADC end of conversion interrupt for regular group */
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC);
/* Change ADC state */
hadc->State = HAL_ADC_STATE_READY;
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmpHALStatus;
}
/**
* @brief Enables ADC, starts conversion of regular group and transfers result
* through DMA.
* Interruptions enabled in this function:
* overrun, DMA half transfer, DMA transfer complete.
* Each of these interruptions has its dedicated callback function.
* @param hadc: ADC handle
* @param pData: The destination Buffer address.
* @param Length: The length of data to be transferred from ADC peripheral to memory.
* @retval None
*/
HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length)
{
HAL_StatusTypeDef tmpHALStatus = HAL_OK;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* Enable the ADC peripheral */
tmpHALStatus = ADC_Enable(hadc);
/* Start conversion if ADC is effectively enabled */
if (tmpHALStatus != HAL_ERROR)
{
/* State machine update: Check if an injected conversion is ongoing */
if(hadc->State == HAL_ADC_STATE_BUSY_INJ)
{
/* Change ADC state */
hadc->State = HAL_ADC_STATE_BUSY_INJ_REG;
}
else
{
/* Change ADC state */
hadc->State = HAL_ADC_STATE_BUSY_REG;
}
/* Set ADC error code to none */
__HAL_ADC_CLEAR_ERRORCODE(hadc);
/* Set the DMA transfer complete callback */
hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt;
/* Set the DMA half transfer complete callback */
hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt;
/* Set the DMA error callback */
hadc->DMA_Handle->XferErrorCallback = ADC_DMAError;
/* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */
/* start (in case of SW start): */
/* Clear regular group conversion flag and overrun flag */
/* (To ensure of no unknown state from potential previous ADC operations) */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC);
/* Enable ADC overrun interrupt */
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);
/* Enable ADC DMA mode */
hadc->Instance->CR2 |= ADC_CR2_DMA;
/* Start the DMA channel */
HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length);
/* Start conversion of regular group if software start has been selected. */
/* If external trigger has been selected, conversion will start at next */
/* trigger event. */
/* Note: Alternate trigger for single conversion could be to force an */
/* additional set of bit ADON "hadc->Instance->CR2 |= ADC_CR2_ADON;"*/
if (__HAL_ADC_IS_SOFTWARE_START_REGULAR(hadc))
{
/* Start ADC conversion on regular group */
SET_BIT(hadc->Instance->CR2, ADC_CR2_SWSTART);
}
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmpHALStatus;
}
/**
* @brief Stop ADC conversion of regular group (and injected group in
* case of auto_injection mode), disable ADC DMA transfer, disable
* ADC peripheral.
* @note: ADC peripheral disable is forcing interruption of potential
* conversion on injected group. If injected group is under use, it
* should be preliminarily stopped using HAL_ADCEx_InjectedStop function.
* @param hadc: ADC handle
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc)
{
HAL_StatusTypeDef tmpHALStatus = HAL_OK;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* Stop potential conversion on going, on regular and injected groups */
/* Disable ADC peripheral */
tmpHALStatus = ADC_ConversionStop_Disable(hadc);
/* Check if ADC is effectively disabled */
if (tmpHALStatus != HAL_ERROR)
{
/* Disable ADC DMA mode */
hadc->Instance->CR2 &= ~ADC_CR2_DMA;
/* Disable the DMA channel (in case of DMA in circular mode or stop while */
/* DMA transfer is on going) */
tmpHALStatus = HAL_DMA_Abort(hadc->DMA_Handle);
/* Check if DMA channel effectively disabled */
if (tmpHALStatus != HAL_ERROR)
{
/* Change ADC state */
hadc->State = HAL_ADC_STATE_READY;
}
else
{
/* Update ADC state machine to error */
hadc->State = HAL_ADC_STATE_ERROR;
}
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmpHALStatus;
}
/**
* @brief Get ADC regular group conversion result.
* @param hadc: ADC handle
* @retval Converted value
*/
uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef* hadc)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Note: EOC flag is not cleared here by software because automatically */
/* cleared by hardware when reading register DR. */
/* Return ADC converted value */
return hadc->Instance->DR;
}
/**
* @brief DMA transfer complete callback.
* @param hdma: pointer to DMA handle.
* @retval None
*/
static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma)
{
/* Retrieve ADC handle corresponding to current DMA handle */
ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
/* Update state machine on conversion status if not in error state */
if(hadc->State != HAL_ADC_STATE_ERROR)
{
/* Update ADC state machine */
if(hadc->State != HAL_ADC_STATE_EOC_INJ_REG)
{
/* Check if a conversion is ready on injected group */
if(hadc->State == HAL_ADC_STATE_EOC_INJ)
{
/* Change ADC state */
hadc->State = HAL_ADC_STATE_EOC_INJ_REG;
}
else
{
/* Change ADC state */
hadc->State = HAL_ADC_STATE_EOC_REG;
}
}
}
/* Conversion complete callback */
HAL_ADC_ConvCpltCallback(hadc);
}
/**
* @brief DMA half transfer complete callback.
* @param hdma: pointer to DMA handle.
* @retval None
*/
static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma)
{
/* Retrieve ADC handle corresponding to current DMA handle */
ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
/* Half conversion callback */
HAL_ADC_ConvHalfCpltCallback(hadc);
}
/**
* @brief DMA error callback
* @param hdma: pointer to DMA handle.
* @retval None
*/
static void ADC_DMAError(DMA_HandleTypeDef *hdma)
{
/* Retrieve ADC handle corresponding to current DMA handle */
ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
/* Change ADC state */
hadc->State = HAL_ADC_STATE_ERROR;
/* Set ADC error code to DMA error */
hadc->ErrorCode |= HAL_ADC_ERROR_DMA;
/* Error callback */
HAL_ADC_ErrorCallback(hadc);
}
/**
* @brief Handles ADC interrupt request
* @param hadc: ADC handle
* @retval None
*/
void HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion));
/* ========== Check End of Conversion flag for regular group ========== */
if(__HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_EOC))
{
if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC) )
{
/* Update state machine on conversion status if not in error state */
if(hadc->State != HAL_ADC_STATE_ERROR)
{
/* Update ADC state machine */
if(hadc->State != HAL_ADC_STATE_EOC_INJ_REG)
{
/* Check if a conversion is ready on injected group */
if(hadc->State == HAL_ADC_STATE_EOC_INJ)
{
/* Change ADC state */
hadc->State = HAL_ADC_STATE_EOC_INJ_REG;
}
else
{
/* Change ADC state */
hadc->State = HAL_ADC_STATE_EOC_REG;
}
}
}
/* Disable interruption if no further conversion upcoming regular */
/* external trigger or by continuous mode */
if(__HAL_ADC_IS_SOFTWARE_START_REGULAR(hadc) &&
(hadc->Init.ContinuousConvMode == DISABLE) )
{
/* Disable ADC end of single conversion interrupt */
/* Note: Overrun interrupt was enabled with EOC interrupt in */
/* HAL_ADC_Start_IT(), but is not disabled here because can be used by */
/* overrun IRQ process below. */
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC);
}
/* Conversion complete callback */
HAL_ADC_ConvCpltCallback(hadc);
/* Clear regular group conversion flag */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC);
}
}
/* ========== Check End of Conversion flag for injected group ========== */
if(__HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_JEOC))
{
if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOC))
{
/* Update state machine on conversion status if not in error state */
if(hadc->State != HAL_ADC_STATE_ERROR)
{
/* Update ADC state machine */
if(hadc->State != HAL_ADC_STATE_EOC_INJ_REG)
{
if(hadc->State == HAL_ADC_STATE_EOC_REG)
{
/* Change ADC state */
hadc->State = HAL_ADC_STATE_EOC_INJ_REG;
}
else
{
/* Change ADC state */
hadc->State = HAL_ADC_STATE_EOC_INJ;
}
}
}
/* Disable interruption if no further conversion upcoming injected */
/* external trigger or by automatic injected conversion with regular */
/* group having no further conversion upcoming (same conditions as */
/* regular group interruption disabling above). */
if(__HAL_ADC_IS_SOFTWARE_START_INJECTED(hadc) ||
(HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) &&
(__HAL_ADC_IS_SOFTWARE_START_REGULAR(hadc) &&
(hadc->Init.ContinuousConvMode == DISABLE) ) ) )
{
/* Disable ADC end of single conversion interrupt */
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
}
/* Conversion complete callback */
HAL_ADCEx_InjectedConvCpltCallback(hadc);
/* Clear injected group conversion flag */
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_JSTRT | ADC_FLAG_JEOC));
}
}
/* ========== Check Analog watchdog flags ========== */
if(__HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_AWD))
{
if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD))
{
/* Change ADC state */
hadc->State = HAL_ADC_STATE_AWD;
/* Clear the ADCx's Analog watchdog flag */
__HAL_ADC_CLEAR_FLAG(hadc,ADC_FLAG_AWD);
/* Level out of window callback */
HAL_ADC_LevelOutOfWindowCallback(hadc);
}
}
/* ========== Check Overrun flag ========== */
if(__HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_OVR))
{
if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_OVR))
{
/* Change ADC state to error state */
hadc->State = HAL_ADC_STATE_ERROR;
/* Set ADC error code to overrun */
hadc->ErrorCode |= HAL_ADC_ERROR_OVR;
/* Error callback */
HAL_ADC_ErrorCallback(hadc);
/* Clear the Overrun flag */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
}
}
}
/**
* @brief Conversion complete callback in non blocking mode
* @param hadc: ADC handle
* @retval None
*/
__weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
{
/* NOTE : This function should not be modified. When the callback is needed,
function HAL_ADC_ConvCpltCallback must be implemented in the user file.
*/
}
/**
* @brief Conversion DMA half-transfer callback in non blocking mode
* @param hadc: ADC handle
* @retval None
*/
__weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc)
{
/* NOTE : This function should not be modified. When the callback is needed,
function HAL_ADC_ConvHalfCpltCallback must be implemented in the user file.
*/
}
/**
* @brief Analog watchdog callback in non blocking mode.
* @param hadc: ADC handle
* @retval None
*/
__weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef* hadc)
{
/* NOTE : This function should not be modified. When the callback is needed,
function HAL_ADC_LevelOutOfWindowCallback must be implemented in the user file.
*/
}
/**
* @brief ADC error callback in non blocking mode
* (ADC conversion with interruption or transfer by DMA)
* @param hadc: ADC handle
* @retval None
*/
__weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc)
{
/* NOTE : This function should not be modified. When the callback is needed,
function HAL_ADC_ErrorCallback must be implemented in the user file.
*/
}
/**
* @}
*/
/** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions
* @brief Peripheral Control functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Configure channels on regular group
(+) Configure the analog watchdog
@endverbatim
* @{
*/
/**
* @brief Configures the the selected channel to be linked to the regular
* group.
* @note In case of usage of internal measurement channels:
* Vbat/VrefInt/TempSensor.
* These internal paths can be be disabled using function
* HAL_ADC_DeInit().
* @note Possibility to update parameters on the fly:
* This function initializes channel into regular group, following
* calls to this function can be used to reconfigure some parameters
* of structure "ADC_ChannelConfTypeDef" on the fly, without reseting
* the ADC.
* The setting of these parameters is conditioned to ADC state.
* For parameters constraints, see comments of structure
* "ADC_ChannelConfTypeDef".
* @param hadc: ADC handle
* @param sConfig: Structure of ADC channel for regular group.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig)
{
HAL_StatusTypeDef tmpHALStatus = HAL_OK;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
assert_param(IS_ADC_CHANNEL(sConfig->Channel));
assert_param(IS_ADC_REGULAR_RANK(sConfig->Rank));
assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime));
/* Process locked */
__HAL_LOCK(hadc);
/* Regular sequence configuration */
/* For Rank 1 to 6 */
if (sConfig->Rank < 7)
{
MODIFY_REG(hadc->Instance->SQR5,
__ADC_SQR5_RK(ADC_SQR5_SQ1, sConfig->Rank),
__ADC_SQR5_RK(sConfig->Channel, sConfig->Rank) );
}
/* For Rank 7 to 12 */
else if (sConfig->Rank < 13)
{
MODIFY_REG(hadc->Instance->SQR4,
__ADC_SQR4_RK(ADC_SQR4_SQ7, sConfig->Rank),
__ADC_SQR4_RK(sConfig->Channel, sConfig->Rank) );
}
/* For Rank 13 to 18 */
else if (sConfig->Rank < 19)
{
MODIFY_REG(hadc->Instance->SQR3,
__ADC_SQR3_RK(ADC_SQR3_SQ13, sConfig->Rank),
__ADC_SQR3_RK(sConfig->Channel, sConfig->Rank) );
}
/* For Rank 19 to 24 */
else if (sConfig->Rank < 25)
{
MODIFY_REG(hadc->Instance->SQR2,
__ADC_SQR2_RK(ADC_SQR2_SQ19, sConfig->Rank),
__ADC_SQR2_RK(sConfig->Channel, sConfig->Rank) );
}
/* For Rank 25 to 28 */
else
{
MODIFY_REG(hadc->Instance->SQR1,
__ADC_SQR1_RK(ADC_SQR1_SQ25, sConfig->Rank),
__ADC_SQR1_RK(sConfig->Channel, sConfig->Rank) );
}
/* Channel sampling time configuration */
/* For channels 0 to 9 */
if (sConfig->Channel < ADC_CHANNEL_10)
{
MODIFY_REG(hadc->Instance->SMPR3,
__ADC_SMPR3(ADC_SMPR3_SMP0, sConfig->Channel),
__ADC_SMPR3(sConfig->SamplingTime, sConfig->Channel) );
}
/* For channels 10 to 19 */
else if (sConfig->Channel < ADC_CHANNEL_20)
{
MODIFY_REG(hadc->Instance->SMPR2,
__ADC_SMPR2(ADC_SMPR2_SMP10, sConfig->Channel),
__ADC_SMPR2(sConfig->SamplingTime, sConfig->Channel) );
}
/* For channels 20 to 26 for devices Cat.1, Cat.2, Cat.3 */
/* For channels 20 to 29 for devices Cat4, Cat.5 */
else if (sConfig->Channel <= ADC_SMPR1_CHANNEL_MAX)
{
MODIFY_REG(hadc->Instance->SMPR1,
__ADC_SMPR1(ADC_SMPR1_SMP20, sConfig->Channel),
__ADC_SMPR1(sConfig->SamplingTime, sConfig->Channel) );
}
/* For channels 30 to 31 for devices Cat4, Cat.5 */
else
{
__ADC_SMPR0_CHANNEL_SET(hadc, sConfig->SamplingTime, sConfig->Channel);
}
/* If ADC1 Channel_16 or Channel_17 is selected, enable Temperature sensor */
/* and VREFINT measurement path. */
if ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) ||
(sConfig->Channel == ADC_CHANNEL_VREFINT) )
{
SET_BIT(ADC->CCR, ADC_CCR_TSVREFE);
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmpHALStatus;
}
/**
* @brief Configures the analog watchdog.
* @param hadc: ADC handle
* @param AnalogWDGConfig: Structure of ADC analog watchdog configuration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef* hadc, ADC_AnalogWDGConfTypeDef* AnalogWDGConfig)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
assert_param(IS_ADC_ANALOG_WATCHDOG_MODE(AnalogWDGConfig->WatchdogMode));
assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode));
assert_param(IS_ADC_RANGE(AnalogWDGConfig->HighThreshold));
assert_param(IS_ADC_RANGE(AnalogWDGConfig->LowThreshold));
if((AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REG) ||
(AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_INJEC) ||
(AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REGINJEC) )
{
assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel));
}
/* Process locked */
__HAL_LOCK(hadc);
/* Analog watchdog configuration */
/* Configure ADC Analog watchdog interrupt */
if(AnalogWDGConfig->ITMode == ENABLE)
{
/* Enable the ADC Analog watchdog interrupt */
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_AWD);
}
else
{
/* Disable the ADC Analog watchdog interrupt */
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_AWD);
}
/* Configuration of analog watchdog: */
/* - Set the analog watchdog enable mode: regular and/or injected groups, */
/* one or all channels. */
/* - Set the Analog watchdog channel (is not used if watchdog */
/* mode "all channels": ADC_CFGR_AWD1SGL=0). */
hadc->Instance->CR1 &= ~( ADC_CR1_AWDSGL |
ADC_CR1_JAWDEN |
ADC_CR1_AWDEN |
ADC_CR1_AWDCH );
hadc->Instance->CR1 |= ( AnalogWDGConfig->WatchdogMode |
AnalogWDGConfig->Channel );
/* Set the high threshold */
hadc->Instance->HTR = AnalogWDGConfig->HighThreshold;
/* Set the low threshold */
hadc->Instance->LTR = AnalogWDGConfig->LowThreshold;
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup ADC_Exported_Functions_Group4 Peripheral State functions
* @brief Peripheral State functions
*
@verbatim
===============================================================================
##### Peripheral State and Errors functions #####
===============================================================================
[..]
This subsection provides functions to get in run-time the status of the
peripheral.
(+) Check the ADC state
(+) Check the ADC error code
@endverbatim
* @{
*/
/**
* @brief return the ADC state
* @param hadc: ADC handle
* @retval HAL state
*/
HAL_ADC_StateTypeDef HAL_ADC_GetState(ADC_HandleTypeDef* hadc)
{
/* Return ADC state */
return hadc->State;
}
/**
* @brief Return the ADC error code
* @param hadc: ADC handle
* @retval ADC Error Code
*/
uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc)
{
return hadc->ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
/** @defgroup ADC_Private_Functions ADC Private Functions
* @{
*/
/**
* @brief Enable the selected ADC.
* @note Prerequisite condition to use this function: ADC must be disabled
* and voltage regulator must be enabled (done into HAL_ADC_Init()).
* @param hadc: ADC handle
* @retval HAL status.
*/
HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef* hadc)
{
uint32_t wait_loop_index = 0;
uint32_t tickstart = 0;
/* ADC enable and wait for ADC ready (in case of ADC is disabled or */
/* enabling phase not yet completed: flag ADC ready not yet set). */
/* Timeout implemented to not be stuck if ADC cannot be enabled (possible */
/* causes: ADC clock not running, ...). */
if (__HAL_ADC_IS_ENABLED(hadc) == RESET)
{
/* Enable the Peripheral */
__ADC_ENABLE(hadc);
/* Delay for ADC stabilization time. */
/* Delay fixed to worst case: maximum CPU frequency */
while(wait_loop_index < ADC_STAB_DELAY_CPU_CYCLES)
{
wait_loop_index++;
}
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait for ADC effectively enabled */
while(__HAL_ADC_IS_ENABLED(hadc) == RESET)
{
if((HAL_GetTick() - tickstart ) > ADC_ENABLE_TIMEOUT)
{
/* Update ADC state machine to error */
hadc->State = HAL_ADC_STATE_ERROR;
/* Set ADC error code to ADC IP internal error */
hadc->ErrorCode |= HAL_ADC_ERROR_INTERNAL;
/* Process unlocked */
__HAL_UNLOCK(hadc);
return HAL_ERROR;
}
}
}
/* Return HAL status */
return HAL_OK;
}
/**
* @brief Stop ADC conversion and disable the selected ADC
* @note Prerequisite condition to use this function: ADC conversions must be
* stopped to disable the ADC.
* @param hadc: ADC handle
* @retval HAL status.
*/
HAL_StatusTypeDef ADC_ConversionStop_Disable(ADC_HandleTypeDef* hadc)
{
uint32_t tickstart = 0;
/* Verification if ADC is not already disabled: */
if (__HAL_ADC_IS_ENABLED(hadc) != RESET)
{
/* Disable the ADC peripheral */
__ADC_DISABLE(hadc);
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait for ADC effectively disabled */
while(__HAL_ADC_IS_ENABLED(hadc) != RESET)
{
if((HAL_GetTick() - tickstart ) > ADC_DISABLE_TIMEOUT)
{
/* Update ADC state machine to error */
hadc->State = HAL_ADC_STATE_ERROR;
/* Set ADC error code to ADC IP internal error */
hadc->ErrorCode |= HAL_ADC_ERROR_INTERNAL;
return HAL_ERROR;
}
}
}
/* Return HAL status */
return HAL_OK;
}
/**
* @}
*/
#endif /* HAL_ADC_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/