contiki/cpu/arm/stm32l152/STM32L1xx_HAL_Driver/Src/stm32l1xx_hal_opamp.c
2015-07-24 16:30:10 +02:00

1005 lines
40 KiB
C

/**
******************************************************************************
* @file stm32l1xx_hal_opamp.c
* @author MCD Application Team
* @version V1.0.0
* @date 5-September-2014
* @brief OPAMP HAL module driver.
*
* This file provides firmware functions to manage the following
* functionalities of the operational amplifiers (OPAMP1 ,... ,OPAMP3)
* peripheral:
* + OPAMP configuration
* + OPAMP calibration
*
* Thanks to
* + Initialization and de-initialization functions
* + IO operation functions
* + Peripheral Control functions
* + Peripheral State functions
*
@verbatim
================================================================================
##### OPAMP Peripheral Features #####
================================================================================
[..] The device integrates up to 3 operational amplifiers OPAMP1, OPAMP2,
OPAMP3 (OPAMP3 availability depends on device category)
(#) The OPAMP(s) provides several exclusive running modes.
(+) Standalone mode
(+) Follower mode
(#) The OPAMP(s) provide(s) calibration capabilities.
(+) Calibration aims at correcting some offset for running mode.
(+) The OPAMP uses either factory calibration settings OR user defined
calibration (trimming) settings (i.e. trimming mode).
(+) The user defined settings can be figured out using self calibration
handled by HAL_OPAMP_SelfCalibrate, HAL_OPAMPEx_SelfCalibrateAll
(+) HAL_OPAMP_SelfCalibrate:
(++) Runs automatically the calibration in 2 steps: for transistors
differential pair high (PMOS) or low (NMOS)
(++) Enables the user trimming mode
(++) Updates the init structure with trimming values with fresh calibration
results.
The user may store the calibration results for larger
(ex monitoring the trimming as a function of temperature
for instance)
(++) for devices having several OPAMPs, HAL_OPAMPEx_SelfCalibrateAll
runs calibration of all OPAMPs in parallel to save trimming search
wait time.
(#) Running mode: Standalone mode
(+) Gain is set externally (gain depends on external loads).
(+) Follower mode also possible externally by connecting the inverting input to
the output.
(#) Running mode: Follower mode
(+) No Inverting Input is connected.
(+) The OPAMP(s) output(s) are internally connected to inverting input
(#) The OPAMPs inverting input can be selected among the list shown
in table below.
(#) The OPAMPs non inverting input can be selected among the list shown
in table below.
[..] Table 1. OPAMPs inverting/non-inverting inputs for STM32L1 devices:
+--------------------------------------------------------------------------+
| | HAL param | OPAMP1 | OPAMP2 | OPAMP3(4) |
| | name | | | |
|----------------|------------|--------------|--------------|--------------|
| Inverting | VM0 | PA2 | PA7 | PC2 |
| input (1) | VM1 | VINM pin (2) | VINM pin (2) | VINM pin (2) |
|----------------|------------|--------------|--------------|--------------|
| Non Inverting | VP0 | PA1 | PA6 | PC1 |
| input | DAC_CH1 (3)| DAC_CH1 | DAC_CH1 | --- |
| | DAC_CH2 (3)| --- | DAC_CH2 | DAC_CH2 |
+--------------------------------------------------------------------------+
(1): NA in follower mode.
(2): OPAMP input OPAMPx_VINM are dedicated OPAMP pins, their availability
depends on device package.
(3): DAC channels 1 and 2 are connected internally to OPAMP. Nevertheless,
I/O pins connected to DAC can still be used as DAC output (pins PA4
and PA5).
(4): OPAMP3 availability depends on device category.
[..] Table 2. OPAMPs outputs for STM32L1 devices:
+--------------------------------------------------------+
| | OPAMP1 | OPAMP2 | OPAMP3(4) |
|-----------------|------------|------------|------------|
| Output | PA3 | PB0 | PC3 |
+--------------------------------------------------------+
(4) : OPAMP3 availability depends on device category
##### How to use this driver #####
================================================================================
[..]
*** Calibration ***
============================================
To run the opamp calibration self calibration:
(#) Start calibration using HAL_OPAMP_SelfCalibrate.
Store the calibration results.
*** Running mode ***
============================================
To use the opamp, perform the following steps:
(#) Fill in the HAL_OPAMP_MspInit() to
(+) Enable the OPAMP Peripheral clock using macro "__OPAMP_CLK_ENABLE()"
(++) Configure the opamp input AND output in analog mode using
HAL_GPIO_Init() to map the opamp output to the GPIO pin.
(#) Configure the opamp using HAL_OPAMP_Init() function:
(+) Select the mode
(+) Select the inverting input
(+) Select the non-inverting input
(+) Select either factory or user defined trimming mode.
(+) If the user defined trimming mode is enabled, select PMOS & NMOS trimming values
(typ. settings returned by HAL_OPAMP_SelfCalibrate function).
(#) Enable the opamp using HAL_OPAMP_Start() function.
(#) Disable the opamp using HAL_OPAMP_Stop() function.
(#) Lock the opamp in running mode using HAL_OPAMP_Lock() function.
Caution: On STM32L1, HAL OPAMP lock is software lock only (not
hardware lock as on some other STM32 devices)
(#) If needed, unlock the opamp using HAL_OPAMPEx_Unlock() function.
*** Running mode: change of configuration while OPAMP ON ***
============================================
To Re-configure OPAMP when OPAMP is ON (change on the fly)
(#) If needed, Fill in the HAL_OPAMP_MspInit()
(+) This is the case for instance if you wish to use new OPAMP I/O
(#) Configure the opamp using HAL_OPAMP_Init() function:
(+) As in configure case, selects first the parameters you wish to modify.
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_hal.h"
/** @addtogroup STM32L1xx_HAL_Driver
* @{
*/
/** @defgroup OPAMP OPAMP
* @brief OPAMP HAL module driver
* @{
*/
#ifdef HAL_OPAMP_MODULE_ENABLED
#if defined (STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined (STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE) || defined (STM32L162xC) || defined (STM32L152xC) || defined (STM32L151xC)
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup OPAMP_Exported_Functions OPAMP Exported Functions
* @{
*/
/** @defgroup OPAMP_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..] This section provides functions allowing to:
@endverbatim
* @{
*/
/**
* @brief Initializes the OPAMP according to the specified
* parameters in the OPAMP_InitTypeDef and create the associated handle.
* @note If the selected opamp is locked, initialization can't be performed.
* To unlock the configuration, perform a system reset.
* @param hopamp: OPAMP handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_OPAMP_Init(OPAMP_HandleTypeDef* hopamp)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t tmp_csr = 0; /* Temporary variable to update register CSR, except bits ANAWSSELx, S7SEL2, OPA_RANGE, OPAxCALOUT */
/* Check the OPAMP handle allocation and lock status */
/* Init not allowed if calibration is ongoing */
if((hopamp == NULL) || (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED)
|| (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY) )
{
status = HAL_ERROR;
}
else
{
/* Check the parameter */
assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
/* Set OPAMP parameters */
assert_param(IS_OPAMP_FUNCTIONAL_NORMALMODE(hopamp->Init.Mode));
assert_param(IS_OPAMP_NONINVERTING_INPUT(hopamp->Init.NonInvertingInput));
assert_param(IS_OPAMP_POWERMODE(hopamp->Init.PowerMode));
assert_param(IS_OPAMP_POWER_SUPPLY_RANGE(hopamp->Init.PowerSupplyRange));
assert_param(IS_OPAMP_TRIMMING(hopamp->Init.UserTrimming));
if (hopamp->Init.Mode != OPAMP_FOLLOWER_MODE)
{
assert_param(IS_OPAMP_INVERTING_INPUT(hopamp->Init.InvertingInput));
}
if (hopamp->Init.UserTrimming == OPAMP_TRIMMING_USER)
{
if (hopamp->Init.PowerMode == OPAMP_POWERMODE_NORMAL)
{
assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValueP));
assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValueN));
}
else
{
assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValuePLowPower));
assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValueNLowPower));
}
}
/* Call MSP init function */
HAL_OPAMP_MspInit(hopamp);
/* Set OPAMP parameters */
/* - Set internal switches in function of: */
/* - OPAMP selected mode: standalone or follower. */
/* - Non-inverting input connection */
/* - Inverting input connection */
/* - Set power supply range */
/* - Set power mode and associated calibration parameters */
/* Get OPAMP CSR register into temporary variable */
tmp_csr = OPAMP->CSR;
/* Open all switches on non-inverting input, inverting input and output */
/* feedback. */
CLEAR_BIT(tmp_csr, __OPAMP_CSR_ALL_SWITCHES(hopamp));
/* Set internal switches in function of OPAMP mode selected: standalone */
/* or follower. */
/* If follower mode is selected, feedback switch S3 is closed and */
/* inverting inputs switches are let opened. */
/* If standalone mode is selected, feedback switch S3 is let opened and */
/* the selected inverting inputs switch is closed. */
if (hopamp->Init.Mode == OPAMP_FOLLOWER_MODE)
{
/* Follower mode: Close switches S3 and SanB */
SET_BIT(tmp_csr, __OPAMP_CSR_S3SELX(hopamp));
}
else
{
/* Set internal switches in function of inverting input selected: */
/* Close switch to connect comparator inverting input to the selected */
/* input: dedicated IO pin or alternative IO pin available on some */
/* device packages. */
if (hopamp->Init.InvertingInput == OPAMP_INVERTINGINPUT_VM0)
{
/* Close switch to connect comparator non-inverting input to */
/* dedicated IO pin low-leakage. */
SET_BIT(tmp_csr, __OPAMP_CSR_S4SELX(hopamp));
}
else
{
/* Close switch to connect comparator inverting input to alternative */
/* IO pin available on some device packages. */
SET_BIT(tmp_csr, __OPAMP_CSR_ANAWSELX(hopamp));
}
}
/* Set internal switches in function of non-inverting input selected: */
/* Close switch to connect comparator non-inverting input to the selected */
/* input: dedicated IO pin or DAC channel. */
if (hopamp->Init.NonInvertingInput == OPAMP_NONINVERTINGINPUT_VP0)
{
/* Close switch to connect comparator non-inverting input to */
/* dedicated IO pin low-leakage. */
SET_BIT(tmp_csr, __OPAMP_CSR_S5SELX(hopamp));
}
else if (hopamp->Init.NonInvertingInput == OPAMP_NONINVERTINGINPUT_DAC_CH1)
{
/* Particular case for connection to DAC channel 1: */
/* OPAMP_NONINVERTINGINPUT_DAC_CH1 available on OPAMP1 and OPAMP2 only */
/* (OPAMP3 availability depends on device category). */
if ((hopamp->Instance == OPAMP1) || (hopamp->Instance == OPAMP2))
{
/* Close switch to connect comparator non-inverting input to */
/* DAC channel 1. */
SET_BIT(tmp_csr, __OPAMP_CSR_S6SELX(hopamp));
}
else
{
/* Set HAL status to error if another OPAMP instance as OPAMP1 or */
/* OPAMP2 is intended to be connected to DAC channel 2. */
status = HAL_ERROR;
}
}
else /* if (hopamp->Init.NonInvertingInput == */
/* OPAMP_NONINVERTINGINPUT_DAC_CH2 ) */
{
/* Particular case for connection to DAC channel 2: */
/* OPAMP_NONINVERTINGINPUT_DAC_CH2 available on OPAMP2 and OPAMP3 only */
/* (OPAMP3 availability depends on device category). */
if (hopamp->Instance == OPAMP2)
{
/* Close switch to connect comparator non-inverting input to */
/* DAC channel 2. */
SET_BIT(tmp_csr, OPAMP_CSR_S7SEL2);
}
/* If OPAMP3 is selected (if available) */
else if (hopamp->Instance != OPAMP1)
{
/* Close switch to connect comparator non-inverting input to */
/* DAC channel 2. */
SET_BIT(tmp_csr, __OPAMP_CSR_S6SELX(hopamp));
}
else
{
/* Set HAL status to error if another OPAMP instance as OPAMP2 or */
/* OPAMP3 (if available) is intended to be connected to DAC channel 2.*/
status = HAL_ERROR;
}
}
/* Continue OPAMP configuration if settings of switches are correct */
if (status != HAL_ERROR)
{
/* Set power mode and associated calibration parameters */
if (hopamp->Init.PowerMode != OPAMP_POWERMODE_LOWPOWER)
{
/* Set normal mode */
CLEAR_BIT(tmp_csr, __OPAMP_CSR_OPAXLPM(hopamp));
if (hopamp->Init.UserTrimming == OPAMP_TRIMMING_USER)
{
/* Set calibration mode (factory or user) and values for */
/* transistors differential pair high (PMOS) and low (NMOS) for */
/* normal mode. */
MODIFY_REG(OPAMP->OTR, OPAMP_OTR_OT_USER |
__OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_N, OPAMP_TRIM_VALUE_MASK) |
__OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_P, OPAMP_TRIM_VALUE_MASK) ,
hopamp->Init.UserTrimming |
__OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_N, hopamp->Init.TrimmingValueN) |
__OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_P, hopamp->Init.TrimmingValueP) );
}
else
{
/* Set calibration mode to factory */
CLEAR_BIT(OPAMP->OTR, OPAMP_OTR_OT_USER);
}
}
else
{
/* Set low power mode */
SET_BIT(tmp_csr, __OPAMP_CSR_OPAXLPM(hopamp));
if (hopamp->Init.UserTrimming == OPAMP_TRIMMING_USER)
{
/* Set calibration mode to user trimming */
SET_BIT(OPAMP->OTR, OPAMP_OTR_OT_USER);
/* Set values for transistors differential pair high (PMOS) and low */
/* (NMOS) for low power mode. */
MODIFY_REG(OPAMP->LPOTR, __OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_N, OPAMP_TRIM_VALUE_MASK) |
__OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_P, OPAMP_TRIM_VALUE_MASK) ,
__OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_N, hopamp->Init.TrimmingValueNLowPower) |
__OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_P, hopamp->Init.TrimmingValuePLowPower) );
}
else
{
/* Set calibration mode to factory trimming */
CLEAR_BIT(OPAMP->OTR, OPAMP_OTR_OT_USER);
}
}
/* Configure the power supply range */
MODIFY_REG(tmp_csr, OPAMP_CSR_AOP_RANGE,
hopamp->Init.PowerSupplyRange);
/* Set OPAMP CSR register from temporary variable */
/* This allows to apply all changes on one time, in case of update on */
/* the fly with OPAMP previously set and running: */
/* - to avoid hazardous transient switches settings (risk of short */
/* circuit) */
/* - to avoid interruption of input signal */
OPAMP->CSR = tmp_csr;
/* Update the OPAMP state */
/* If coming from state reset: Update from state RESET to state READY */
/* else: remain in state READY or BUSY (no update) */
if (hopamp->State == HAL_OPAMP_STATE_RESET)
{
hopamp->State = HAL_OPAMP_STATE_READY;
}
}
}
return status;
}
/**
* @brief DeInitializes the OPAMP peripheral
* @note Deinitialization can't be performed if the OPAMP configuration is locked.
* To unlock the configuration, perform a system reset.
* @param hopamp: OPAMP handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_OPAMP_DeInit(OPAMP_HandleTypeDef* hopamp)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the OPAMP handle allocation */
/* Check if OPAMP locked */
/* DeInit not allowed if calibration is ongoing */
if((hopamp == NULL) || (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED) \
|| (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY))
{
status = HAL_ERROR;
}
else
{
/* Check the parameter */
assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
/* Open all switches on non-inverting input, inverting input and output */
/* feedback. */
CLEAR_BIT(OPAMP->CSR, __OPAMP_CSR_ALL_SWITCHES(hopamp));
/* DeInit the low level hardware */
HAL_OPAMP_MspDeInit(hopamp);
/* Update the OPAMP state*/
hopamp->State = HAL_OPAMP_STATE_RESET;
}
/* Process unlocked */
__HAL_UNLOCK(hopamp);
return status;
}
/**
* @brief Initializes the OPAMP MSP.
* @param hopamp: OPAMP handle
* @retval None
*/
__weak void HAL_OPAMP_MspInit(OPAMP_HandleTypeDef* hopamp)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the function "HAL_OPAMP_MspInit()" must be implemented in the user file.
*/
}
/**
* @brief DeInitializes OPAMP MSP.
* @param hopamp: OPAMP handle
* @retval None
*/
__weak void HAL_OPAMP_MspDeInit(OPAMP_HandleTypeDef* hopamp)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the function "HAL_OPAMP_MspDeInit()" must be implemented in the user file.
*/
}
/**
* @}
*/
/** @defgroup OPAMP_Exported_Functions_Group2 IO operation functions
* @brief IO operation functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to manage the OPAMP
start, stop and calibration actions.
@endverbatim
* @{
*/
/**
* @brief Start the opamp
* @param hopamp: OPAMP handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_OPAMP_Start(OPAMP_HandleTypeDef* hopamp)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the OPAMP handle allocation */
/* Check if OPAMP locked */
if((hopamp == NULL) || (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED))
{
status = HAL_ERROR;
}
else
{
/* Check the parameter */
assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
if(hopamp->State == HAL_OPAMP_STATE_READY)
{
/* Enable the selected opamp */
CLEAR_BIT (OPAMP->CSR, __OPAMP_CSR_OPAXPD(hopamp));
/* Update the OPAMP state */
/* From HAL_OPAMP_STATE_READY to HAL_OPAMP_STATE_BUSY */
hopamp->State = HAL_OPAMP_STATE_BUSY;
}
else
{
status = HAL_ERROR;
}
}
return status;
}
/**
* @brief Stop the opamp
* @param hopamp: OPAMP handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_OPAMP_Stop(OPAMP_HandleTypeDef* hopamp)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the OPAMP handle allocation */
/* Check if OPAMP locked */
/* Check if OPAMP calibration ongoing */
if((hopamp == NULL) || (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED) \
|| (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY))
{
status = HAL_ERROR;
}
else
{
/* Check the parameter */
assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
if(hopamp->State == HAL_OPAMP_STATE_BUSY)
{
/* Disable the selected opamp */
SET_BIT (OPAMP->CSR, __OPAMP_CSR_OPAXPD(hopamp));
/* Update the OPAMP state*/
/* From HAL_OPAMP_STATE_BUSY to HAL_OPAMP_STATE_READY*/
hopamp->State = HAL_OPAMP_STATE_READY;
}
else
{
status = HAL_ERROR;
}
}
return status;
}
/**
* @brief Run the self calibration of one OPAMP
* @note Trimming values (PMOS & NMOS) are updated and user trimming is
* enabled is calibration is succesful.
* @note Calibration is performed in the mode specified in OPAMP init
* structure (mode normal or low-power). To perform calibration for
* both modes, repeat this function twice after OPAMP init structure
* accordingly updated.
* @note Calibration runs about 10 ms (5 dichotmy steps, repeated for P
* and N transistors: 10 steps with 1 ms for each step).
* @param hopamp: handle
* @retval Updated offset trimming values (PMOS & NMOS), user trimming is enabled
* @retval HAL status
*/
HAL_StatusTypeDef HAL_OPAMP_SelfCalibrate(OPAMP_HandleTypeDef* hopamp)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t* opamp_trimmingvalue = 0;
uint32_t opamp_trimmingvaluen = 0;
uint32_t opamp_trimmingvaluep = 0;
uint32_t trimming_diff_pair = 0; /* Selection of differential transistors pair high or low */
__IO uint32_t* tmp_opamp_reg_trimming; /* Selection of register of trimming depending on power mode: OTR or LPOTR */
uint32_t tmp_opamp_otr_otuser = 0; /* Selection of bit OPAMP_OTR_OT_USER depending on trimming register pointed: OTR or LPOTR */
uint32_t tmp_Opaxcalout_DefaultSate = 0; /* Bit OPAMP_CSR_OPAXCALOUT default state when trimming value is 00000b. Used to detect the bit toggling */
uint32_t tmp_OpaxSwitchesContextBackup = 0;
uint8_t trimming_diff_pair_iteration_count = 0;
uint8_t delta = 0;
/* Check the OPAMP handle allocation */
/* Check if OPAMP locked */
if((hopamp == NULL) || (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED))
{
status = HAL_ERROR;
}
else
{
/* Check if OPAMP in calibration mode and calibration not yet enable */
if(hopamp->State == HAL_OPAMP_STATE_READY)
{
/* Check the parameter */
assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
assert_param(IS_OPAMP_POWERMODE(hopamp->Init.PowerMode));
/* Update OPAMP state */
hopamp->State = HAL_OPAMP_STATE_CALIBBUSY;
/* Backup of switches configuration to restore it at the end of the */
/* calibration. */
tmp_OpaxSwitchesContextBackup = READ_BIT(OPAMP->CSR, __OPAMP_CSR_ALL_SWITCHES(hopamp));
/* Open all switches on non-inverting input, inverting input and output */
/* feedback. */
CLEAR_BIT(OPAMP->CSR, __OPAMP_CSR_ALL_SWITCHES(hopamp));
/* Set calibration mode to user programmed trimming values */
SET_BIT(OPAMP->OTR, OPAMP_OTR_OT_USER);
/* Select trimming settings depending on power mode */
if (hopamp->Init.PowerMode == OPAMP_POWERMODE_NORMAL)
{
tmp_opamp_otr_otuser = OPAMP_OTR_OT_USER;
tmp_opamp_reg_trimming = &OPAMP->OTR;
}
else
{
tmp_opamp_otr_otuser = 0x00000000;
tmp_opamp_reg_trimming = &OPAMP->LPOTR;
}
/* Enable the selected opamp */
CLEAR_BIT (OPAMP->CSR, __OPAMP_CSR_OPAXPD(hopamp));
/* Perform trimming for both differential transistors pair high and low */
for (trimming_diff_pair_iteration_count = 0; trimming_diff_pair_iteration_count <=1; trimming_diff_pair_iteration_count++)
{
if (trimming_diff_pair_iteration_count == 0)
{
/* Calibration of transistors differential pair high (NMOS) */
trimming_diff_pair = OPAMP_FACTORYTRIMMING_N;
opamp_trimmingvalue = &opamp_trimmingvaluen;
/* Set bit OPAMP_CSR_OPAXCALOUT default state when trimming value */
/* is 00000b. Used to detect the bit toggling during trimming. */
tmp_Opaxcalout_DefaultSate = RESET;
/* Enable calibration for N differential pair */
MODIFY_REG(OPAMP->CSR, __OPAMP_CSR_OPAXCAL_L(hopamp),
__OPAMP_CSR_OPAXCAL_H(hopamp) );
}
else /* (trimming_diff_pair_iteration_count == 1) */
{
/* Calibration of transistors differential pair low (PMOS) */
trimming_diff_pair = OPAMP_FACTORYTRIMMING_P;
opamp_trimmingvalue = &opamp_trimmingvaluep;
/* Set bit OPAMP_CSR_OPAXCALOUT default state when trimming value */
/* is 00000b. Used to detect the bit toggling during trimming. */
tmp_Opaxcalout_DefaultSate = __OPAMP_CSR_OPAXCALOUT(hopamp);
/* Enable calibration for P differential pair */
MODIFY_REG(OPAMP->CSR, __OPAMP_CSR_OPAXCAL_H(hopamp),
__OPAMP_CSR_OPAXCAL_L(hopamp) );
}
/* Perform calibration parameter search by dichotomy sweep */
/* - Delta initial value 16: for 5 dichotomy steps: 16 for the */
/* initial range, then successive delta sweeps (8, 4, 2, 1). */
/* can extend the search range to +/- 15 units. */
/* - Trimming initial value 15: search range will go from 0 to 30 */
/* (Trimming value 31 is forbidden). */
*opamp_trimmingvalue = 15;
delta = 16;
while (delta != 0)
{
/* Set candidate trimming */
MODIFY_REG(*tmp_opamp_reg_trimming, __OPAMP_OFFSET_TRIM_SET(hopamp, trimming_diff_pair, OPAMP_TRIM_VALUE_MASK) ,
__OPAMP_OFFSET_TRIM_SET(hopamp, trimming_diff_pair, *opamp_trimmingvalue) | tmp_opamp_otr_otuser);
/* Offset trimming time: during calibration, minimum time needed */
/* between two steps to have 1 mV accuracy. */
HAL_Delay(OPAMP_TRIMMING_DELAY);
/* Divide range by 2 to continue dichotomy sweep */
delta >>= 1;
/* Set trimming values for next iteration in function of trimming */
/* result toggle (versus initial state). */
if (READ_BIT(OPAMP->CSR, __OPAMP_CSR_OPAXCALOUT(hopamp)) != tmp_Opaxcalout_DefaultSate)
{
/* If calibration output is has toggled, try lower trimming */
*opamp_trimmingvalue -= delta;
}
else
{
/* If calibration output is has not toggled, try higher trimming */
*opamp_trimmingvalue += delta;
}
}
}
/* Disable calibration for P and N differential pairs */
/* Disable the selected opamp */
CLEAR_BIT (OPAMP->CSR, (__OPAMP_CSR_OPAXCAL_H(hopamp) |
__OPAMP_CSR_OPAXCAL_L(hopamp) |
__OPAMP_CSR_OPAXPD(hopamp)) );
/* Backup of switches configuration to restore it at the end of the */
/* calibration. */
SET_BIT(OPAMP->CSR, tmp_OpaxSwitchesContextBackup);
/* Self calibration is successful */
/* Store calibration (user trimming) results in init structure. */
/* Set user trimming mode */
hopamp->Init.UserTrimming = OPAMP_TRIMMING_USER;
/* Affect calibration parameters depending on mode normal/low power */
if (hopamp->Init.PowerMode != OPAMP_POWERMODE_LOWPOWER)
{
/* Write calibration result N */
hopamp->Init.TrimmingValueN = opamp_trimmingvaluen;
/* Write calibration result P */
hopamp->Init.TrimmingValueP = opamp_trimmingvaluep;
}
else
{
/* Write calibration result N */
hopamp->Init.TrimmingValueNLowPower = opamp_trimmingvaluen;
/* Write calibration result P */
hopamp->Init.TrimmingValuePLowPower = opamp_trimmingvaluep;
}
/* Update OPAMP state */
hopamp->State = HAL_OPAMP_STATE_READY;
}
else
{
/* OPAMP can not be calibrated from this mode */
status = HAL_ERROR;
}
}
return status;
}
/**
* @brief Return the OPAMP factory trimming value
* Caution: On STM32L1 OPAMP, user can retrieve factory trimming if
* OPAMP has never been set to user trimming before.
* Therefore, this fonction must be called when OPAMP init
* parameter "UserTrimming" is set to trimming factory,
* and before OPAMP calibration (function
* "HAL_OPAMP_SelfCalibrate()").
* Otherwise, factory triming value cannot be retrieved and
* error status is returned.
* @param hopamp : OPAMP handle
* @param trimmingoffset : Trimming offset (P or N)
* This parameter must be a value of @ref OPAMP_FactoryTrimming
* @note Calibration parameter retrieved is corresponding to the mode
* specified in OPAMP init structure (mode normal or low-power).
* To retrieve calibration parameters for both modes, repeat this
* function after OPAMP init structure accordingly updated.
* @retval Trimming value (P or N): range: 0->31
* or OPAMP_FACTORYTRIMMING_DUMMY if trimming value is not available
* @{
*/
OPAMP_TrimmingValueTypeDef HAL_OPAMP_GetTrimOffset (OPAMP_HandleTypeDef *hopamp, uint32_t trimmingoffset)
{
OPAMP_TrimmingValueTypeDef trimmingvalue;
__IO uint32_t* tmp_opamp_reg_trimming; /* Selection of register of trimming depending on power mode: OTR or LPOTR */
/* Check the OPAMP handle allocation */
/* Value can be retrieved in HAL_OPAMP_STATE_READY state */
if((hopamp == NULL) || (hopamp->State == HAL_OPAMP_STATE_RESET)
|| (hopamp->State == HAL_OPAMP_STATE_BUSY)
|| (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY)
|| (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED))
{
trimmingvalue = OPAMP_FACTORYTRIMMING_DUMMY;
}
else
{
/* Check the parameter */
assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
assert_param(IS_OPAMP_FACTORYTRIMMING(trimmingoffset));
assert_param(IS_OPAMP_POWERMODE(hopamp->Init.PowerMode));
/* Check the trimming mode */
if (hopamp->Init.UserTrimming == OPAMP_TRIMMING_USER)
{
/* This fonction must called when OPAMP init parameter "UserTrimming" */
/* is set to trimming factory, and before OPAMP calibration (function */
/* "HAL_OPAMP_SelfCalibrate()"). */
/* Otherwise, factory triming value cannot be retrieved and error */
/* status is returned. */
trimmingvalue = OPAMP_FACTORYTRIMMING_DUMMY;
}
else
{
/* Select trimming settings depending on power mode */
if (hopamp->Init.PowerMode == OPAMP_POWERMODE_NORMAL)
{
tmp_opamp_reg_trimming = &OPAMP->OTR;
}
else
{
tmp_opamp_reg_trimming = &OPAMP->LPOTR;
}
/* Get factory trimming */
trimmingvalue = ((*tmp_opamp_reg_trimming >> __OPAMP_OFFSET_TRIM_BITSPOSITION(hopamp, trimmingoffset)) & OPAMP_TRIM_VALUE_MASK);
}
}
return trimmingvalue;
}
/**
* @}
*/
/**
* @}
*/
/** @defgroup OPAMP_Exported_Functions_Group3 Peripheral Control functions
* @brief Peripheral Control functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..]
@endverbatim
* @{
*/
/**
* @brief Lock the selected opamp configuration.
* Caution: On STM32L1, HAL OPAMP lock is software lock only (not
* hardware lock as on some other STM32 devices)
* @param hopamp: OPAMP handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_OPAMP_Lock(OPAMP_HandleTypeDef* hopamp)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the OPAMP handle allocation */
/* Check if OPAMP locked */
/* OPAMP can be locked when enabled and running in normal mode */
/* It is meaningless otherwise */
if((hopamp == NULL) || (hopamp->State == HAL_OPAMP_STATE_RESET) \
|| (hopamp->State == HAL_OPAMP_STATE_READY) \
|| (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY)\
|| (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED))
{
status = HAL_ERROR;
}
else
{
/* Check the parameter */
assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
/* OPAMP state changed to locked */
hopamp->State = HAL_OPAMP_STATE_BUSYLOCKED;
}
return status;
}
/**
* @}
*/
/** @defgroup OPAMP_Exported_Functions_Group4 Peripheral State functions
* @brief Peripheral State functions
*
@verbatim
===============================================================================
##### Peripheral State functions #####
===============================================================================
[..]
This subsection permit to get in run-time the status of the peripheral.
@endverbatim
* @{
*/
/**
* @brief Return the OPAMP state
* @param hopamp : OPAMP handle
* @retval HAL state
*/
HAL_OPAMP_StateTypeDef HAL_OPAMP_GetState(OPAMP_HandleTypeDef* hopamp)
{
/* Check the OPAMP handle allocation */
if(hopamp == NULL)
{
return HAL_OPAMP_STATE_RESET;
}
/* Check the parameter */
assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
return hopamp->State;
}
/**
* @}
*/
/**
* @}
*/
#endif /* STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE || STM32L162xC || STM32L152xC || STM32L151xC */
#endif /* HAL_OPAMP_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/