contiki/cpu/arm/stm32l152/STM32L1xx_HAL_Driver/Src/stm32l1xx_hal_rtc_ex.c
2015-07-24 16:30:10 +02:00

2483 lines
97 KiB
C

/**
******************************************************************************
* @file stm32l1xx_hal_rtc_ex.c
* @author MCD Application Team
* @version V1.0.0
* @date 5-September-2014
* @brief Extended RTC HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Real Time Clock (RTC) Extension peripheral:
* + RTC Time Stamp functions
* + RTC Tamper functions
* + RTC Wake-up functions
* + Extension Control functions
* + Extension RTC features functions
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
(+) Enable the RTC domain access.
(+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour
format using the HAL_RTC_Init() function.
*** RTC Wakeup configuration ***
================================
[..]
(+) To configure the RTC Wakeup Clock source and Counter use the HAL_RTCEx_SetWakeUpTimer()
function. You can also configure the RTC Wakeup timer with interrupt mode
using the HAL_RTCEx_SetWakeUpTimer_IT() function.
(+) To read the RTC WakeUp Counter register, use the HAL_RTCEx_GetWakeUpTimer()
function.
*** TimeStamp configuration ***
===============================
[..]
(+) Configure the RTC_AFx trigger and enable the RTC TimeStamp using the
HAL_RTCEx_SetTimeStamp() function. You can also configure the RTC TimeStamp with
interrupt mode using the HAL_RTCEx_SetTimeStamp_IT() function.
(+) To read the RTC TimeStamp Time and Date register, use the HAL_RTCEx_GetTimeStamp()
function.
(+) The TIMESTAMP alternate function can be mapped to RTC_AF1 (PC13).
*** Tamper configuration ***
============================
[..]
(+) Enable the RTC Tamper and configure the Tamper filter count, trigger Edge
or Level according to the Tamper filter (if equal to 0 Edge else Level)
value, sampling frequency, precharge or discharge and Pull-UP using the
HAL_RTCEx_SetTamper() function. You can configure RTC Tamper with interrupt
mode using HAL_RTCEx_SetTamper_IT() function.
(+) The TAMPER1 alternate function can be mapped to RTC_AF1 (PC13).
*** Backup Data Registers configuration ***
===========================================
[..]
(+) To write to the RTC Backup Data registers, use the HAL_RTCEx_BKUPWrite()
function.
(+) To read the RTC Backup Data registers, use the HAL_RTCEx_BKUPRead()
function.
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_hal.h"
/** @addtogroup STM32L1xx_HAL_Driver
* @{
*/
/** @addtogroup RTC
* @{
*/
#ifdef HAL_RTC_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @addtogroup RTC_Exported_Functions
* @{
*/
/** @addtogroup RTC_Exported_Functions_Group1
* @{
*/
/**
* @brief DeInitializes the RTC peripheral
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @note This function does not reset the RTC Backup Data registers.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
{
uint32_t tickstart = 0;
/* Check the parameters */
assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
/* Set RTC state */
hrtc->State = HAL_RTC_STATE_BUSY;
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
/* Set Initialization mode */
if(RTC_EnterInitMode(hrtc) != HAL_OK)
{
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* Set RTC state */
hrtc->State = HAL_RTC_STATE_ERROR;
return HAL_ERROR;
}
else
{
/* Reset TR, DR and CR registers */
hrtc->Instance->TR = (uint32_t)0x00000000;
hrtc->Instance->DR = (uint32_t)0x00002101;
/* Reset All CR bits except CR[2:0] */
hrtc->Instance->CR &= (uint32_t)0x00000007;
tickstart = HAL_GetTick();
/* Wait till WUTWF flag is set and if Time out is reached exit */
while(((hrtc->Instance->ISR) & RTC_ISR_WUTWF) == (uint32_t)RESET)
{
if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
{
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* Set RTC state */
hrtc->State = HAL_RTC_STATE_TIMEOUT;
return HAL_TIMEOUT;
}
}
/* Reset all RTC CR register bits */
hrtc->Instance->CR &= (uint32_t)0x00000000;
hrtc->Instance->WUTR = (uint32_t)0x0000FFFF;
hrtc->Instance->PRER = (uint32_t)0x007F00FF;
hrtc->Instance->CALIBR = (uint32_t)0x00000000;
hrtc->Instance->ALRMAR = (uint32_t)0x00000000;
hrtc->Instance->ALRMBR = (uint32_t)0x00000000;
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
hrtc->Instance->SHIFTR = (uint32_t)0x00000000;
hrtc->Instance->CALR = (uint32_t)0x00000000;
hrtc->Instance->ALRMASSR = (uint32_t)0x00000000;
hrtc->Instance->ALRMBSSR = (uint32_t)0x00000000;
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
/* Reset ISR register and exit initialization mode */
hrtc->Instance->ISR = (uint32_t)0x00000000;
/* Reset Tamper and alternate functions configuration register */
hrtc->Instance->TAFCR = 0x00000000;
/* Wait for synchro */
if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
{
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
hrtc->State = HAL_RTC_STATE_ERROR;
return HAL_ERROR;
}
}
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* De-Initialize RTC MSP */
HAL_RTC_MspDeInit(hrtc);
hrtc->State = HAL_RTC_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @}
*/
/** @addtogroup RTC_Exported_Functions_Group2
* @{
*/
/**
* @brief Gets RTC current time.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param sTime: Pointer to Time structure
* @param Format: Specifies the format of the entered parameters.
* This parameter can be one of the following values:
* @arg FORMAT_BIN: Binary data format
* @arg FORMAT_BCD: BCD data format
* @note Call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
* in the higher-order calendar shadow registers.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RTC_FORMAT(Format));
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
/* Get subseconds values from the correspondent registers*/
sTime->SubSeconds = (uint32_t)((hrtc->Instance->SSR) & RTC_SSR_SS);
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
/* Get the TR register */
tmpreg = (uint32_t)(hrtc->Instance->TR & RTC_TR_RESERVED_MASK);
/* Fill the structure fields with the read parameters */
sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> 16);
sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >>8);
sTime->Seconds = (uint8_t)(tmpreg & (RTC_TR_ST | RTC_TR_SU));
sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> 16);
/* Check the input parameters format */
if(Format == FORMAT_BIN)
{
/* Convert the time structure parameters to Binary format */
sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
}
return HAL_OK;
}
/**
* @}
*/
/** @addtogroup RTC_Exported_Functions_Group3
* @{
*/
/**
* @brief Sets the specified RTC Alarm.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param sAlarm: Pointer to Alarm structure
* @param Format: Specifies the format of the entered parameters.
* This parameter can be one of the following values:
* @arg FORMAT_BIN: Binary data format
* @arg FORMAT_BCD: BCD data format
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
{
uint32_t tickstart = 0;
uint32_t tmpreg = 0;
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
uint32_t subsecondtmpreg = 0;
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
/* Check the parameters */
assert_param(IS_RTC_FORMAT(Format));
assert_param(IS_ALARM(sAlarm->Alarm));
assert_param(IS_ALARM_MASK(sAlarm->AlarmMask));
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
if(Format == FORMAT_BIN)
{
if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
{
assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
}
else
{
sAlarm->AlarmTime.TimeFormat = 0x00;
assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
}
assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
{
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
}
else
{
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
}
tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << 16) | \
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << 8) | \
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << 24) | \
((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
((uint32_t)sAlarm->AlarmMask));
}
else
{
if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
{
tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
assert_param(IS_RTC_HOUR12(tmpreg));
assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
}
else
{
sAlarm->AlarmTime.TimeFormat = 0x00;
assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
}
assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
{
tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(tmpreg));
}
else
{
tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(tmpreg));
}
tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << 16) | \
((uint32_t)(sAlarm->AlarmTime.Minutes) << 8) | \
((uint32_t) sAlarm->AlarmTime.Seconds) | \
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \
((uint32_t)(sAlarm->AlarmDateWeekDay) << 24) | \
((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
((uint32_t)sAlarm->AlarmMask));
}
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
/* Configure the Alarm A or Alarm B Sub Second registers */
subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
/* Configure the Alarm register */
if(sAlarm->Alarm == RTC_ALARM_A)
{
/* Disable the Alarm A interrupt */
__HAL_RTC_ALARMA_DISABLE(hrtc);
/* In case of interrupt mode is used, the interrupt source must disabled */
__HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
tickstart = HAL_GetTick();
/* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET)
{
if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
{
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
hrtc->State = HAL_RTC_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_TIMEOUT;
}
}
hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
/* Configure the Alarm A Sub Second register */
hrtc->Instance->ALRMASSR = subsecondtmpreg;
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
/* Configure the Alarm state: Enable Alarm */
__HAL_RTC_ALARMA_ENABLE(hrtc);
}
else
{
/* Disable the Alarm B interrupt */
__HAL_RTC_ALARMB_DISABLE(hrtc);
/* In case of interrupt mode is used, the interrupt source must disabled */
__HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);
tickstart = HAL_GetTick();
/* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == RESET)
{
if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
{
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
hrtc->State = HAL_RTC_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_TIMEOUT;
}
}
hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
/* Configure the Alarm B Sub Second register */
hrtc->Instance->ALRMBSSR = subsecondtmpreg;
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
/* Configure the Alarm state: Enable Alarm */
__HAL_RTC_ALARMB_ENABLE(hrtc);
}
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief Sets the specified RTC Alarm with Interrupt
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param sAlarm: Pointer to Alarm structure
* @param Format: Specifies the format of the entered parameters.
* This parameter can be one of the following values:
* @arg FORMAT_BIN: Binary data format
* @arg FORMAT_BCD: BCD data format
* @note The Alarm register can only be written when the corresponding Alarm
* is disabled (Use the HAL_RTC_DeactivateAlarm()).
* @note The HAL_RTC_SetTime() must be called before enabling the Alarm feature.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
{
uint32_t tickstart = 0;
uint32_t tmpreg = 0;
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
uint32_t subsecondtmpreg = 0;
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
/* Check the parameters */
assert_param(IS_RTC_FORMAT(Format));
assert_param(IS_ALARM(sAlarm->Alarm));
assert_param(IS_ALARM_MASK(sAlarm->AlarmMask));
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
if(Format == FORMAT_BIN)
{
if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
{
assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
}
else
{
sAlarm->AlarmTime.TimeFormat = 0x00;
assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
}
assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
{
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
}
else
{
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
}
tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << 16) | \
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << 8) | \
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << 24) | \
((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
((uint32_t)sAlarm->AlarmMask));
}
else
{
if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
{
tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
assert_param(IS_RTC_HOUR12(tmpreg));
assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
}
else
{
sAlarm->AlarmTime.TimeFormat = 0x00;
assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
}
assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
{
tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(tmpreg));
}
else
{
tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(tmpreg));
}
tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << 16) | \
((uint32_t)(sAlarm->AlarmTime.Minutes) << 8) | \
((uint32_t) sAlarm->AlarmTime.Seconds) | \
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \
((uint32_t)(sAlarm->AlarmDateWeekDay) << 24) | \
((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
((uint32_t)sAlarm->AlarmMask));
}
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
/* Configure the Alarm A or Alarm B Sub Second registers */
subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
/* Configure the Alarm register */
if(sAlarm->Alarm == RTC_ALARM_A)
{
/* Disable the Alarm A interrupt */
__HAL_RTC_ALARMA_DISABLE(hrtc);
/* Clear flag alarm A */
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
tickstart = HAL_GetTick();
/* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET)
{
if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
{
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
hrtc->State = HAL_RTC_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_TIMEOUT;
}
}
hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
/* Configure the Alarm A Sub Second register */
hrtc->Instance->ALRMASSR = subsecondtmpreg;
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
/* Configure the Alarm state: Enable Alarm */
__HAL_RTC_ALARMA_ENABLE(hrtc);
/* Configure the Alarm interrupt */
__HAL_RTC_ALARM_ENABLE_IT(hrtc,RTC_IT_ALRA);
}
else
{
/* Disable the Alarm B interrupt */
__HAL_RTC_ALARMB_DISABLE(hrtc);
/* Clear flag alarm B */
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
tickstart = HAL_GetTick();
/* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == RESET)
{
if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
{
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
hrtc->State = HAL_RTC_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_TIMEOUT;
}
}
hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
/* Configure the Alarm B Sub Second register */
hrtc->Instance->ALRMBSSR = subsecondtmpreg;
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
/* Configure the Alarm state: Enable Alarm */
__HAL_RTC_ALARMB_ENABLE(hrtc);
/* Configure the Alarm interrupt */
__HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRB);
}
/* RTC Alarm Interrupt Configuration: EXTI configuration */
__HAL_RTC_ENABLE_IT(RTC_EXTI_LINE_ALARM_EVENT);
EXTI->RTSR |= RTC_EXTI_LINE_ALARM_EVENT;
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief Gets the RTC Alarm value and masks.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param sAlarm: Pointer to Date structure
* @param Alarm: Specifies the Alarm.
* This parameter can be one of the following values:
* @arg RTC_ALARM_A: AlarmA
* @arg RTC_ALARM_B: AlarmB
* @param Format: Specifies the format of the entered parameters.
* This parameter can be one of the following values:
* @arg FORMAT_BIN: Binary data format
* @arg FORMAT_BCD: BCD data format
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format)
{
uint32_t tmpreg = 0;
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
uint32_t subsecondtmpreg = 0;
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
/* Check the parameters */
assert_param(IS_RTC_FORMAT(Format));
assert_param(IS_ALARM(Alarm));
if(Alarm == RTC_ALARM_A)
{
/* AlarmA */
sAlarm->Alarm = RTC_ALARM_A;
tmpreg = (uint32_t)(hrtc->Instance->ALRMAR);
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMASSR) & RTC_ALRMASSR_SS);
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
}
else
{
sAlarm->Alarm = RTC_ALARM_B;
tmpreg = (uint32_t)(hrtc->Instance->ALRMBR);
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMBSSR) & RTC_ALRMBSSR_SS);
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
}
/* Fill the structure with the read parameters */
sAlarm->AlarmTime.Hours = (uint32_t)((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> 16);
sAlarm->AlarmTime.Minutes = (uint32_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> 8);
sAlarm->AlarmTime.Seconds = (uint32_t)(tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU));
sAlarm->AlarmTime.TimeFormat = (uint32_t)((tmpreg & RTC_ALRMAR_PM) >> 16);
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
sAlarm->AlarmDateWeekDay = (uint32_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> 24);
sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL);
sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
if(Format == FORMAT_BIN)
{
sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes);
sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds);
sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
}
return HAL_OK;
}
/**
* @}
*/
/** @defgroup RTC_Exported_Functions_Group6 Peripheral Control functions
* @brief Peripheral Control functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..]
This subsection provides functions allowing to
(+) Wait for RTC Time and Date Synchronization
@endverbatim
* @{
*/
/**
* @brief Waits until the RTC Time and Date registers (RTC_TR and RTC_DR) are
* synchronized with RTC APB clock.
* @note The RTC Resynchronization mode is write protected, use the
* __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
* @note To read the calendar through the shadow registers after Calendar
* initialization, calendar update or after wakeup from low power modes
* the software must first clear the RSF flag.
* The software must then wait until it is set again before reading
* the calendar, which means that the calendar registers have been
* correctly copied into the RTC_TR and RTC_DR shadow registers.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef* hrtc)
{
uint32_t tickstart = 0;
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
/* If RTC_CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */
if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET)
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
{
/* Clear RSF flag */
hrtc->Instance->ISR &= (uint32_t)RTC_RSF_MASK;
tickstart = HAL_GetTick();
/* Wait the registers to be synchronised */
while((hrtc->Instance->ISR & RTC_ISR_RSF) == (uint32_t)RESET)
{
if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
return HAL_OK;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/** @defgroup RTCEx RTCEx
* @brief RTC Extended HAL module driver
* @{
*/
/** @defgroup RTCEx_Exported_Functions RTCEx Exported Functions
* @{
*/
/** @defgroup RTCEx_Exported_Functions_Group4 RTC TimeStamp and Tamper functions
* @brief RTC TimeStamp and Tamper functions
*
@verbatim
===============================================================================
##### RTC TimeStamp and Tamper functions #####
===============================================================================
[..] This section provides functions allowing to configure TimeStamp feature
@endverbatim
* @{
*/
/**
* @brief Sets TimeStamp.
* @note This API must be called before enabling the TimeStamp feature.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param TimeStampEdge: Specifies the pin edge on which the TimeStamp is
* activated.
* This parameter can be one of the following values:
* @arg RTC_TIMESTAMPEDGE_RISING: the Time stamp event occurs on the
* rising edge of the related pin.
* @arg RTC_TIMESTAMPEDGE_FALLING: the Time stamp event occurs on the
* falling edge of the related pin.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_SetTimeStamp(RTC_HandleTypeDef *hrtc, uint32_t TimeStampEdge)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_TIMESTAMP_EDGE(TimeStampEdge));
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Get the RTC_CR register and clear the bits to be configured */
tmpreg = (uint32_t)(hrtc->Instance->CR & (uint32_t)~(RTC_CR_TSEDGE | RTC_CR_TSE));
tmpreg|= TimeStampEdge;
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
/* Configure the Time Stamp TSEDGE and Enable bits */
hrtc->Instance->CR = (uint32_t)tmpreg;
__HAL_RTC_TIMESTAMP_ENABLE(hrtc);
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief Sets TimeStamp with Interrupt.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @note This API must be called before enabling the TimeStamp feature.
* @param TimeStampEdge: Specifies the pin edge on which the TimeStamp is
* activated.
* This parameter can be one of the following values:
* @arg RTC_TIMESTAMPEDGE_RISING: the Time stamp event occurs on the
* rising edge of the related pin.
* @arg RTC_TIMESTAMPEDGE_FALLING: the Time stamp event occurs on the
* falling edge of the related pin.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_SetTimeStamp_IT(RTC_HandleTypeDef *hrtc, uint32_t TimeStampEdge)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_TIMESTAMP_EDGE(TimeStampEdge));
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Get the RTC_CR register and clear the bits to be configured */
tmpreg = (uint32_t)(hrtc->Instance->CR & (uint32_t)~(RTC_CR_TSEDGE | RTC_CR_TSE));
tmpreg |= TimeStampEdge;
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
/* Configure the Time Stamp TSEDGE and Enable bits */
hrtc->Instance->CR = (uint32_t)tmpreg;
__HAL_RTC_TIMESTAMP_ENABLE(hrtc);
/* Enable IT timestamp */
__HAL_RTC_TIMESTAMP_ENABLE_IT(hrtc,RTC_IT_TS);
/* RTC timestamp Interrupt Configuration: EXTI configuration */
__HAL_RTC_ENABLE_IT(RTC_EXTI_LINE_TAMPER_TIMESTAMP_EVENT);
EXTI->RTSR |= RTC_EXTI_LINE_TAMPER_TIMESTAMP_EVENT;
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief Deactivates TimeStamp.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_DeactivateTimeStamp(RTC_HandleTypeDef *hrtc)
{
uint32_t tmpreg = 0;
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
/* In case of interrupt mode is used, the interrupt source must disabled */
__HAL_RTC_TIMESTAMP_DISABLE_IT(hrtc, RTC_IT_TS);
/* Get the RTC_CR register and clear the bits to be configured */
tmpreg = (uint32_t)(hrtc->Instance->CR & (uint32_t)~(RTC_CR_TSEDGE | RTC_CR_TSE));
/* Configure the Time Stamp TSEDGE and Enable bits */
hrtc->Instance->CR = (uint32_t)tmpreg;
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief Gets the RTC TimeStamp value.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param sTimeStamp: Pointer to Time structure
* @param sTimeStampDate: Pointer to Date structure
* @param Format: specifies the format of the entered parameters.
* This parameter can be one of the following values:
* FORMAT_BIN: Binary data format
* FORMAT_BCD: BCD data format
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_GetTimeStamp(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef* sTimeStamp, RTC_DateTypeDef* sTimeStampDate, uint32_t Format)
{
uint32_t tmptime = 0, tmpdate = 0;
/* Check the parameters */
assert_param(IS_RTC_FORMAT(Format));
/* Get the TimeStamp time and date registers values */
tmptime = (uint32_t)(hrtc->Instance->TSTR & RTC_TR_RESERVED_MASK);
tmpdate = (uint32_t)(hrtc->Instance->TSDR & RTC_DR_RESERVED_MASK);
/* Fill the Time structure fields with the read parameters */
sTimeStamp->Hours = (uint8_t)((tmptime & (RTC_TR_HT | RTC_TR_HU)) >> 16);
sTimeStamp->Minutes = (uint8_t)((tmptime & (RTC_TR_MNT | RTC_TR_MNU)) >> 8);
sTimeStamp->Seconds = (uint8_t)(tmptime & (RTC_TR_ST | RTC_TR_SU));
sTimeStamp->TimeFormat = (uint8_t)((tmptime & (RTC_TR_PM)) >> 16);
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
sTimeStamp->SubSeconds = (uint32_t)((hrtc->Instance->TSSSR) & RTC_TSSSR_SS);
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
/* Fill the Date structure fields with the read parameters */
sTimeStampDate->Year = 0;
sTimeStampDate->Month = (uint8_t)((tmpdate & (RTC_DR_MT | RTC_DR_MU)) >> 8);
sTimeStampDate->Date = (uint8_t)(tmpdate & (RTC_DR_DT | RTC_DR_DU));
sTimeStampDate->WeekDay = (uint8_t)((tmpdate & (RTC_DR_WDU)) >> 13);
/* Check the input parameters format */
if(Format == FORMAT_BIN)
{
/* Convert the TimeStamp structure parameters to Binary format */
sTimeStamp->Hours = (uint8_t)RTC_Bcd2ToByte(sTimeStamp->Hours);
sTimeStamp->Minutes = (uint8_t)RTC_Bcd2ToByte(sTimeStamp->Minutes);
sTimeStamp->Seconds = (uint8_t)RTC_Bcd2ToByte(sTimeStamp->Seconds);
/* Convert the DateTimeStamp structure parameters to Binary format */
sTimeStampDate->Month = (uint8_t)RTC_Bcd2ToByte(sTimeStampDate->Month);
sTimeStampDate->Date = (uint8_t)RTC_Bcd2ToByte(sTimeStampDate->Date);
sTimeStampDate->WeekDay = (uint8_t)RTC_Bcd2ToByte(sTimeStampDate->WeekDay);
}
/* Clear the TIMESTAMP Flag */
__HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc, RTC_FLAG_TSF);
return HAL_OK;
}
/**
* @brief Sets Tamper
* @note By calling this API we disable the tamper interrupt for all tampers.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param sTamper: Pointer to Tamper Structure.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_SetTamper(RTC_HandleTypeDef *hrtc, RTC_TamperTypeDef* sTamper)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_TAMPER(sTamper->Tamper));
assert_param(IS_TAMPER_TRIGGER(sTamper->Trigger));
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
assert_param(IS_TAMPER_FILTER(sTamper->Filter));
assert_param(IS_TAMPER_SAMPLING_FREQ(sTamper->SamplingFrequency));
assert_param(IS_TAMPER_PRECHARGE_DURATION(sTamper->PrechargeDuration));
assert_param(IS_TAMPER_PULLUP_STATE(sTamper->TamperPullUp));
assert_param(IS_TAMPER_TIMESTAMPONTAMPER_DETECTION(sTamper->TimeStampOnTamperDetection));
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
if((sTamper->Trigger == RTC_TAMPERTRIGGER_RISINGEDGE))
{
/* Configure the RTC_TAFCR register */
sTamper->Trigger = RTC_TAMPERTRIGGER_RISINGEDGE;
}
else
{
sTamper->Trigger = (uint32_t)(sTamper->Tamper << 1);
}
tmpreg = ((uint32_t)sTamper->Tamper | (uint32_t)sTamper->Trigger | (uint32_t)sTamper->Filter |\
(uint32_t)sTamper->SamplingFrequency | (uint32_t)sTamper->PrechargeDuration |\
(uint32_t)sTamper->TamperPullUp | sTamper->TimeStampOnTamperDetection);
hrtc->Instance->TAFCR &= (uint32_t)~((uint32_t)sTamper->Tamper | (uint32_t)(sTamper->Tamper << 1) | (uint32_t)RTC_TAFCR_TAMPTS |\
(uint32_t)RTC_TAFCR_TAMPFREQ | (uint32_t)RTC_TAFCR_TAMPFLT | (uint32_t)RTC_TAFCR_TAMPPRCH |\
(uint32_t)RTC_TAFCR_TAMPPUDIS | (uint32_t)RTC_TAFCR_TAMPIE);
#else
tmpreg = ((uint32_t)sTamper->Tamper | (uint32_t)(sTamper->Trigger));
hrtc->Instance->TAFCR &= (uint32_t)~((uint32_t)RTC_TAFCR_TAMP1E | (uint32_t)RTC_TAFCR_TAMP1TRG);
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
hrtc->Instance->TAFCR |= tmpreg;
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief Sets Tamper with interrupt.
* @note By calling this API we force the tamper interrupt for all tampers.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param sTamper: Pointer to RTC Tamper.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_SetTamper_IT(RTC_HandleTypeDef *hrtc, RTC_TamperTypeDef* sTamper)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_TAMPER(sTamper->Tamper));
assert_param(IS_TAMPER_TRIGGER(sTamper->Trigger));
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
assert_param(IS_TAMPER_FILTER(sTamper->Filter));
assert_param(IS_TAMPER_SAMPLING_FREQ(sTamper->SamplingFrequency));
assert_param(IS_TAMPER_PRECHARGE_DURATION(sTamper->PrechargeDuration));
assert_param(IS_TAMPER_PULLUP_STATE(sTamper->TamperPullUp));
assert_param(IS_TAMPER_TIMESTAMPONTAMPER_DETECTION(sTamper->TimeStampOnTamperDetection));
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
/* Configure the tamper trigger */
if((sTamper->Trigger == RTC_TAMPERTRIGGER_RISINGEDGE))
{
sTamper->Trigger = RTC_TAMPERTRIGGER_RISINGEDGE;
}
else
{
sTamper->Trigger = (uint32_t) (sTamper->Tamper<<1);
}
tmpreg = ((uint32_t)sTamper->Tamper | (uint32_t)sTamper->Trigger | (uint32_t)sTamper->Filter |\
(uint32_t)sTamper->SamplingFrequency | (uint32_t)sTamper->PrechargeDuration |\
(uint32_t)sTamper->TamperPullUp | sTamper->TimeStampOnTamperDetection);
hrtc->Instance->TAFCR &= (uint32_t)~((uint32_t)sTamper->Tamper | (uint32_t)(sTamper->Tamper << 1) | (uint32_t)RTC_TAFCR_TAMPTS |\
(uint32_t)RTC_TAFCR_TAMPFREQ | (uint32_t)RTC_TAFCR_TAMPFLT | (uint32_t)RTC_TAFCR_TAMPPRCH |\
(uint32_t)RTC_TAFCR_TAMPPUDIS);
#else
tmpreg = ((uint32_t)sTamper->Tamper | (uint32_t)sTamper->Trigger);
hrtc->Instance->TAFCR &= (uint32_t)~((uint32_t)RTC_TAFCR_TAMP1E | (uint32_t)RTC_TAFCR_TAMP1TRG | (uint32_t)RTC_TAFCR_TAMPIE);
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
hrtc->Instance->TAFCR |= tmpreg;
/* Configure the Tamper Interrupt in the RTC_TAFCR */
hrtc->Instance->TAFCR |= (uint32_t)RTC_TAFCR_TAMPIE;
/* RTC Tamper Interrupt Configuration: EXTI configuration */
__HAL_RTC_ENABLE_IT(RTC_EXTI_LINE_TAMPER_TIMESTAMP_EVENT);
EXTI->RTSR |= RTC_EXTI_LINE_TAMPER_TIMESTAMP_EVENT;
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief Deactivates Tamper.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param Tamper: Selected tamper pin.
* This parameter can be a value of @ref RTCEx_Tamper_Pins_Definitions
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_DeactivateTamper(RTC_HandleTypeDef *hrtc, uint32_t Tamper)
{
assert_param(IS_TAMPER(Tamper));
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Disable the selected Tamper pin */
hrtc->Instance->TAFCR &= (uint32_t)~Tamper;
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief This function handles TimeStamp interrupt request.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval None
*/
void HAL_RTCEx_TamperTimeStampIRQHandler(RTC_HandleTypeDef *hrtc)
{
if(__HAL_RTC_TIMESTAMP_GET_IT(hrtc, RTC_IT_TS))
{
/* Get the status of the Interrupt */
if((uint32_t)(hrtc->Instance->CR & RTC_IT_TS) != (uint32_t)RESET)
{
/* TIMESTAMP callback */
HAL_RTCEx_TimeStampEventCallback(hrtc);
/* Clear the TIMESTAMP interrupt pending bit */
__HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc,RTC_FLAG_TSF);
}
}
/* Get the status of the Interrupt */
if(__HAL_RTC_TAMPER_GET_IT(hrtc,RTC_IT_TAMP1))
{
/* Get the TAMPER Interrupt enable bit and pending bit */
if(((hrtc->Instance->TAFCR & (RTC_TAFCR_TAMPIE))) != (uint32_t)RESET)
{
/* Tamper callback */
HAL_RTCEx_Tamper1EventCallback(hrtc);
/* Clear the Tamper interrupt pending bit */
__HAL_RTC_TAMPER_CLEAR_FLAG(hrtc,RTC_FLAG_TAMP1F);
}
}
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
/* Get the status of the Interrupt */
if(__HAL_RTC_TAMPER_GET_IT(hrtc, RTC_IT_TAMP2))
{
/* Get the TAMPER Interrupt enable bit and pending bit */
if(((hrtc->Instance->TAFCR & RTC_TAFCR_TAMPIE)) != (uint32_t)RESET)
{
/* Tamper callback */
HAL_RTCEx_Tamper2EventCallback(hrtc);
/* Clear the Tamper interrupt pending bit */
__HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP2F);
}
}
/* Get the status of the Interrupt */
if(__HAL_RTC_TAMPER_GET_IT(hrtc, RTC_IT_TAMP3))
{
/* Get the TAMPER Interrupt enable bit and pending bit */
if(((hrtc->Instance->TAFCR & RTC_TAFCR_TAMPIE)) != (uint32_t)RESET)
{
/* Tamper callback */
HAL_RTCEx_Tamper3EventCallback(hrtc);
/* Clear the Tamper interrupt pending bit */
__HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP3F);
}
}
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
/* Clear the EXTI s Flag for RTC TimeStamp and Tamper */
__HAL_RTC_CLEAR_FLAG(RTC_EXTI_LINE_TAMPER_TIMESTAMP_EVENT);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
}
/**
* @brief TimeStamp callback.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval None
*/
__weak void HAL_RTCEx_TimeStampEventCallback(RTC_HandleTypeDef *hrtc)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_RTCEx_TimeStampEventCallback could be implemented in the user file
*/
}
/**
* @brief Tamper 1 callback.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval None
*/
__weak void HAL_RTCEx_Tamper1EventCallback(RTC_HandleTypeDef *hrtc)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_RTCEx_Tamper1EventCallback could be implemented in the user file
*/
}
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
/**
* @brief Tamper 2 callback.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval None
*/
__weak void HAL_RTCEx_Tamper2EventCallback(RTC_HandleTypeDef *hrtc)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_RTCEx_Tamper2EventCallback could be implemented in the user file
*/
}
/**
* @brief Tamper 3 callback.
* @param hrtc: RTC handle
* @retval None
*/
__weak void HAL_RTCEx_Tamper3EventCallback(RTC_HandleTypeDef *hrtc)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_RTCEx_Tamper3EventCallback could be implemented in the user file
*/
}
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
/**
* @brief This function handles TimeStamp polling request.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_PollForTimeStampEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
{
uint32_t tickstart = HAL_GetTick();
while(__HAL_RTC_TIMESTAMP_GET_FLAG(hrtc, RTC_FLAG_TSF) == RESET)
{
if(__HAL_RTC_TIMESTAMP_GET_FLAG(hrtc, RTC_FLAG_TSOVF) != RESET)
{
/* Clear the TIMESTAMP OverRun Flag */
__HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc, RTC_FLAG_TSOVF);
/* Change TIMESTAMP state */
hrtc->State = HAL_RTC_STATE_ERROR;
return HAL_ERROR;
}
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
hrtc->State = HAL_RTC_STATE_TIMEOUT;
return HAL_TIMEOUT;
}
}
}
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
return HAL_OK;
}
/**
* @brief This function handles Tamper1 Polling.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_PollForTamper1Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
{
uint32_t tickstart = HAL_GetTick();
/* Get the status of the Interrupt */
while(__HAL_RTC_TAMPER_GET_FLAG(hrtc,RTC_FLAG_TAMP1F)== RESET)
{
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
hrtc->State = HAL_RTC_STATE_TIMEOUT;
return HAL_TIMEOUT;
}
}
}
/* Clear the Tamper Flag */
__HAL_RTC_TAMPER_CLEAR_FLAG(hrtc,RTC_FLAG_TAMP1F);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
return HAL_OK;
}
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
/**
* @brief This function handles Tamper2 Polling.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_PollForTamper2Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
{
uint32_t tickstart = HAL_GetTick();
/* Get the status of the Interrupt */
while(__HAL_RTC_TAMPER_GET_FLAG(hrtc,RTC_FLAG_TAMP2F) == RESET)
{
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
hrtc->State = HAL_RTC_STATE_TIMEOUT;
return HAL_TIMEOUT;
}
}
}
/* Clear the Tamper Flag */
__HAL_RTC_TAMPER_CLEAR_FLAG(hrtc,RTC_FLAG_TAMP2F);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
return HAL_OK;
}
/**
* @brief This function handles Tamper3 Polling.
* @param hrtc: RTC handle
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_PollForTamper3Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
{
uint32_t tickstart = HAL_GetTick();
/* Get the status of the Interrupt */
while(__HAL_RTC_TAMPER_GET_FLAG(hrtc,RTC_FLAG_TAMP3F) == RESET)
{
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
hrtc->State = HAL_RTC_STATE_TIMEOUT;
return HAL_TIMEOUT;
}
}
}
/* Clear the Tamper Flag */
__HAL_RTC_TAMPER_CLEAR_FLAG(hrtc,RTC_FLAG_TAMP3F);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
return HAL_OK;
}
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
/**
* @}
*/
/** @defgroup RTCEx_Exported_Functions_Group5 RTC Wake-up functions
* @brief RTC Wake-up functions
*
@verbatim
===============================================================================
##### RTC Wake-up functions #####
===============================================================================
[..] This section provides functions allowing to configure Wake-up feature
@endverbatim
* @{
*/
/**
* @brief Sets wake up timer.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param WakeUpCounter: Wake up counter
* @param WakeUpClock: Wake up clock
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_SetWakeUpTimer(RTC_HandleTypeDef *hrtc, uint32_t WakeUpCounter, uint32_t WakeUpClock)
{
uint32_t tickstart = 0;
/* Check the parameters */
assert_param(IS_WAKEUP_CLOCK(WakeUpClock));
assert_param(IS_WAKEUP_COUNTER(WakeUpCounter));
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
__HAL_RTC_WAKEUPTIMER_DISABLE(hrtc);
tickstart = HAL_GetTick();
/* Wait till RTC WUTWF flag is set and if Time out is reached exit */
while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) == RESET)
{
if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
{
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
hrtc->State = HAL_RTC_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_TIMEOUT;
}
}
/* Clear the Wakeup Timer clock source bits in CR register */
hrtc->Instance->CR &= (uint32_t)~RTC_CR_WUCKSEL;
/* Configure the clock source */
hrtc->Instance->CR |= (uint32_t)WakeUpClock;
/* Configure the Wakeup Timer counter */
hrtc->Instance->WUTR = (uint32_t)WakeUpCounter;
/* Enable the Wakeup Timer */
__HAL_RTC_WAKEUPTIMER_ENABLE(hrtc);
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief Sets wake up timer with interrupt
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param WakeUpCounter: Wake up counter
* @param WakeUpClock: Wake up clock
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_SetWakeUpTimer_IT(RTC_HandleTypeDef *hrtc, uint32_t WakeUpCounter, uint32_t WakeUpClock)
{
uint32_t tickstart = 0;
/* Check the parameters */
assert_param(IS_WAKEUP_CLOCK(WakeUpClock));
assert_param(IS_WAKEUP_COUNTER(WakeUpCounter));
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
__HAL_RTC_WAKEUPTIMER_DISABLE(hrtc);
tickstart = HAL_GetTick();
/* Wait till RTC WUTWF flag is set and if Time out is reached exit */
while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) == RESET)
{
if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
{
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
hrtc->State = HAL_RTC_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_TIMEOUT;
}
}
/* Configure the Wakeup Timer counter */
hrtc->Instance->WUTR = (uint32_t)WakeUpCounter;
/* Clear the Wakeup Timer clock source bits in CR register */
hrtc->Instance->CR &= (uint32_t)~RTC_CR_WUCKSEL;
/* Configure the clock source */
hrtc->Instance->CR |= (uint32_t)WakeUpClock;
/* RTC WakeUpTimer Interrupt Configuration: EXTI configuration */
__HAL_RTC_ENABLE_IT(RTC_EXTI_LINE_WAKEUPTIMER_EVENT);
EXTI->RTSR |= RTC_EXTI_LINE_WAKEUPTIMER_EVENT;
/* Configure the Interrupt in the RTC_CR register */
__HAL_RTC_WAKEUPTIMER_ENABLE_IT(hrtc,RTC_IT_WUT);
/* Enable the Wakeup Timer */
__HAL_RTC_WAKEUPTIMER_ENABLE(hrtc);
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief Deactivates wake up timer counter.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval HAL status
*/
uint32_t HAL_RTCEx_DeactivateWakeUpTimer(RTC_HandleTypeDef *hrtc)
{
uint32_t tickstart = 0;
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
/* Disable the Wakeup Timer */
__HAL_RTC_WAKEUPTIMER_DISABLE(hrtc);
/* In case of interrupt mode is used, the interrupt source must disabled */
__HAL_RTC_WAKEUPTIMER_DISABLE_IT(hrtc,RTC_IT_WUT);
tickstart = HAL_GetTick();
/* Wait till RTC WUTWF flag is set and if Time out is reached exit */
while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) == RESET)
{
if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
{
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
hrtc->State = HAL_RTC_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_TIMEOUT;
}
}
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief Gets wake up timer counter.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval Counter value
*/
uint32_t HAL_RTCEx_GetWakeUpTimer(RTC_HandleTypeDef *hrtc)
{
/* Get the counter value */
return ((uint32_t)(hrtc->Instance->WUTR & RTC_WUTR_WUT));
}
/**
* @brief This function handles Wake Up Timer interrupt request.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval None
*/
void HAL_RTCEx_WakeUpTimerIRQHandler(RTC_HandleTypeDef *hrtc)
{
if(__HAL_RTC_WAKEUPTIMER_GET_IT(hrtc, RTC_IT_WUT))
{
/* Get the status of the Interrupt */
if((uint32_t)(hrtc->Instance->CR & RTC_IT_WUT) != (uint32_t)RESET)
{
/* WAKEUPTIMER callback */
HAL_RTCEx_WakeUpTimerEventCallback(hrtc);
/* Clear the WAKEUPTIMER interrupt pending bit */
__HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(hrtc, RTC_FLAG_WUTF);
}
}
/* Clear the EXTI s line Flag for RTC WakeUpTimer */
__HAL_RTC_CLEAR_FLAG(RTC_EXTI_LINE_WAKEUPTIMER_EVENT);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
}
/**
* @brief Wake Up Timer callback.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval None
*/
__weak void HAL_RTCEx_WakeUpTimerEventCallback(RTC_HandleTypeDef *hrtc)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_RTCEx_WakeUpTimerEventCallback could be implemented in the user file
*/
}
/**
* @brief This function handles Wake Up Timer Polling.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_PollForWakeUpTimerEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
{
uint32_t tickstart = HAL_GetTick();
while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTF) == RESET)
{
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
hrtc->State = HAL_RTC_STATE_TIMEOUT;
return HAL_TIMEOUT;
}
}
}
/* Clear the WAKEUPTIMER Flag */
__HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(hrtc, RTC_FLAG_WUTF);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
return HAL_OK;
}
/**
* @}
*/
/** @defgroup RTCEx_Exported_Functions_Group7 Extended Peripheral Control functions
* @brief Extended Peripheral Control functions
*
@verbatim
===============================================================================
##### Extension Peripheral Control functions #####
===============================================================================
[..]
This subsection provides functions allowing to
(+) Writes a data in a specified RTC Backup data register
(+) Read a data in a specified RTC Backup data register
(+) Sets the Coarse calibration parameters.
(+) Deactivates the Coarse calibration parameters
(+) Sets the Smooth calibration parameters.
(+) Configures the Synchronization Shift Control Settings.
(+) Configures the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz).
(+) Deactivates the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz).
(+) Enables the RTC reference clock detection.
(+) Disable the RTC reference clock detection.
(+) Enables the Bypass Shadow feature.
(+) Disables the Bypass Shadow feature.
@endverbatim
* @{
*/
/**
* @brief Writes a data in a specified RTC Backup data register.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param BackupRegister: RTC Backup data Register number.
* This parameter can be: RTC_BKP_DRx where x can be from 0 to 19 to
* specify the register.
* @param Data: Data to be written in the specified RTC Backup data register.
* @retval None
*/
void HAL_RTCEx_BKUPWrite(RTC_HandleTypeDef *hrtc, uint32_t BackupRegister, uint32_t Data)
{
uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_RTC_BKP(BackupRegister));
tmp = (uint32_t)&(hrtc->Instance->BKP0R);
tmp += (BackupRegister * 4);
/* Write the specified register */
*(__IO uint32_t *)tmp = (uint32_t)Data;
}
/**
* @brief Reads data from the specified RTC Backup data Register.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param BackupRegister: RTC Backup data Register number.
* This parameter can be: RTC_BKP_DRx where x can be from 0 to 19 to
* specify the register.
* @retval Read value
*/
uint32_t HAL_RTCEx_BKUPRead(RTC_HandleTypeDef *hrtc, uint32_t BackupRegister)
{
uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_RTC_BKP(BackupRegister));
tmp = (uint32_t)&(hrtc->Instance->BKP0R);
tmp += (BackupRegister * 4);
/* Read the specified register */
return (*(__IO uint32_t *)tmp);
}
/**
* @brief Sets the Coarse calibration parameters.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param CalibSign: Specifies the sign of the coarse calibration value.
* This parameter can be one of the following values :
* @arg RTC_CALIBSIGN_POSITIVE: The value sign is positive
* @arg RTC_CALIBSIGN_NEGATIVE: The value sign is negative
* @param Value: value of coarse calibration expressed in ppm (coded on 5 bits).
*
* @note This Calibration value should be between 0 and 63 when using negative
* sign with a 2-ppm step.
*
* @note This Calibration value should be between 0 and 126 when using positive
* sign with a 4-ppm step.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_SetCoarseCalib(RTC_HandleTypeDef* hrtc, uint32_t CalibSign, uint32_t Value)
{
/* Check the parameters */
assert_param(IS_RTC_CALIB_SIGN(CalibSign));
assert_param(IS_RTC_CALIB_VALUE(Value));
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
/* Set Initialization mode */
if(RTC_EnterInitMode(hrtc) != HAL_OK)
{
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* Set RTC state*/
hrtc->State = HAL_RTC_STATE_ERROR;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_ERROR;
}
else
{
/* Enable the Coarse Calibration */
__HAL_RTC_COARSE_CALIB_ENABLE(hrtc);
/* Set the coarse calibration value */
hrtc->Instance->CALIBR = (uint32_t)(CalibSign|Value);
/* Exit Initialization mode */
hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT;
}
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* Change state */
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief Deactivates the Coarse calibration parameters.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_DeactivateCoarseCalib(RTC_HandleTypeDef* hrtc)
{
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
/* Set Initialization mode */
if(RTC_EnterInitMode(hrtc) != HAL_OK)
{
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* Set RTC state*/
hrtc->State = HAL_RTC_STATE_ERROR;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_ERROR;
}
else
{
/* Enable the Coarse Calibration */
__HAL_RTC_COARSE_CALIB_DISABLE(hrtc);
/* Exit Initialization mode */
hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT;
}
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* Change state */
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
/**
* @brief Sets the Smooth calibration parameters.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param SmoothCalibPeriod: Select the Smooth Calibration Period.
* This parameter can be can be one of the following values :
* @arg RTC_SMOOTHCALIB_PERIOD_32SEC: The smooth calibration periode is 32s.
* @arg RTC_SMOOTHCALIB_PERIOD_16SEC: The smooth calibration periode is 16s.
* @arg RTC_SMOOTHCALIB_PERIOD_8SEC: The smooth calibartion periode is 8s.
* @param SmoothCalibPlusPulses: Select to Set or reset the CALP bit.
* This parameter can be one of the following values:
* @arg RTC_SMOOTHCALIB_PLUSPULSES_SET: Add one RTCCLK puls every 2*11 pulses.
* @arg RTC_SMOOTHCALIB_PLUSPULSES_RESET: No RTCCLK pulses are added.
* @param SmouthCalibMinusPulsesValue: Select the value of CALM[8:0] bits.
* This parameter can be one any value from 0 to 0x000001FF.
* @note To deactivate the smooth calibration, the field SmoothCalibPlusPulses
* must be equal to SMOOTHCALIB_PLUSPULSES_RESET and the field
* SmouthCalibMinusPulsesValue must be equal to 0.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_SetSmoothCalib(RTC_HandleTypeDef* hrtc, uint32_t SmoothCalibPeriod, uint32_t SmoothCalibPlusPulses, uint32_t SmouthCalibMinusPulsesValue)
{
uint32_t tickstart = 0;
/* Check the parameters */
assert_param(IS_RTC_SMOOTH_CALIB_PERIOD(SmoothCalibPeriod));
assert_param(IS_RTC_SMOOTH_CALIB_PLUS(SmoothCalibPlusPulses));
assert_param(IS_RTC_SMOOTH_CALIB_MINUS(SmouthCalibMinusPulsesValue));
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
/* check if a calibration is pending*/
if((hrtc->Instance->ISR & RTC_ISR_RECALPF) != RESET)
{
tickstart = HAL_GetTick();
/* check if a calibration is pending*/
while((hrtc->Instance->ISR & RTC_ISR_RECALPF) != RESET)
{
if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
{
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_TIMEOUT;
}
}
}
/* Configure the Smooth calibration settings */
hrtc->Instance->CALR = (uint32_t)((uint32_t)SmoothCalibPeriod | (uint32_t)SmoothCalibPlusPulses | (uint32_t)SmouthCalibMinusPulsesValue);
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief Configures the Synchronization Shift Control Settings.
* @note When REFCKON is set, firmware must not write to Shift control register.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param ShiftAdd1S: Select to add or not 1 second to the time calendar.
* This parameter can be one of the following values :
* @arg RTC_SHIFTADD1S_SET: Add one second to the clock calendar.
* @arg RTC_SHIFTADD1S_RESET: No effect.
* @param ShiftSubFS: Select the number of Second Fractions to substitute.
* This parameter can be one any value from 0 to 0x7FFF.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_SetSynchroShift(RTC_HandleTypeDef* hrtc, uint32_t ShiftAdd1S, uint32_t ShiftSubFS)
{
uint32_t tickstart = 0;
/* Check the parameters */
assert_param(IS_RTC_SHIFT_ADD1S(ShiftAdd1S));
assert_param(IS_RTC_SHIFT_SUBFS(ShiftSubFS));
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
tickstart = HAL_GetTick();
/* Wait until the shift is completed*/
while((hrtc->Instance->ISR & RTC_ISR_SHPF) != RESET)
{
if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
{
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
hrtc->State = HAL_RTC_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_TIMEOUT;
}
}
/* Check if the reference clock detection is disabled */
if((hrtc->Instance->CR & RTC_CR_REFCKON) == RESET)
{
/* Configure the Shift settings */
hrtc->Instance->SHIFTR = (uint32_t)(uint32_t)(ShiftSubFS) | (uint32_t)(ShiftAdd1S);
/* Wait for synchro */
if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
{
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
hrtc->State = HAL_RTC_STATE_ERROR;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_ERROR;
}
}
else
{
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_ERROR;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_ERROR;
}
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
/**
* @brief Configures the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz).
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param CalibOutput : Select the Calibration output Selection .
* This parameter can be one of the following values:
* @arg RTC_CALIBOUTPUT_512HZ: A signal has a regular waveform at 512Hz.
* @arg RTC_CALIBOUTPUT_1HZ: A signal has a regular waveform at 1Hz.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_SetCalibrationOutPut(RTC_HandleTypeDef* hrtc, uint32_t CalibOutput)
#else
/**
* @brief Configure the Calibration Pinout (RTC_CALIB).
* @param hrtc : RTC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_SetCalibrationOutPut(RTC_HandleTypeDef* hrtc)
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
{
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
/* Check the parameters */
assert_param(IS_RTC_CALIB_OUTPUT(CalibOutput));
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
/* Clear flags before config */
hrtc->Instance->CR &= (uint32_t)~RTC_CR_COSEL;
/* Configure the RTC_CR register */
hrtc->Instance->CR |= (uint32_t)CalibOutput;
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
__HAL_RTC_CALIBRATION_OUTPUT_ENABLE(hrtc);
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief Deactivates the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz).
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_DeactivateCalibrationOutPut(RTC_HandleTypeDef* hrtc)
{
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
__HAL_RTC_CALIBRATION_OUTPUT_DISABLE(hrtc);
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief Enables the RTC reference clock detection.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_SetRefClock(RTC_HandleTypeDef* hrtc)
{
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
/* Set Initialization mode */
if(RTC_EnterInitMode(hrtc) != HAL_OK)
{
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* Set RTC state*/
hrtc->State = HAL_RTC_STATE_ERROR;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_ERROR;
}
else
{
__HAL_RTC_CLOCKREF_DETECTION_ENABLE(hrtc);
/* Exit Initialization mode */
hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT;
}
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief Disable the RTC reference clock detection.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_DeactivateRefClock(RTC_HandleTypeDef* hrtc)
{
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
/* Set Initialization mode */
if(RTC_EnterInitMode(hrtc) != HAL_OK)
{
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* Set RTC state*/
hrtc->State = HAL_RTC_STATE_ERROR;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_ERROR;
}
else
{
__HAL_RTC_CLOCKREF_DETECTION_DISABLE(hrtc);
/* Exit Initialization mode */
hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT;
}
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
#if defined(STM32L100xBA) || defined (STM32L151xBA) || defined (STM32L152xBA) || defined(STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined(STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined(STM32L151xE) || defined (STM32L152xE) || defined (STM32L162xE)
/**
* @brief Enables the Bypass Shadow feature.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @note When the Bypass Shadow is enabled the calendar value are taken
* directly from the Calendar counter.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_EnableBypassShadow(RTC_HandleTypeDef* hrtc)
{
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
/* Set the BYPSHAD bit */
hrtc->Instance->CR |= (uint8_t)RTC_CR_BYPSHAD;
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief Disables the Bypass Shadow feature.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @note When the Bypass Shadow is enabled the calendar value are taken
* directly from the Calendar counter.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_DisableBypassShadow(RTC_HandleTypeDef* hrtc)
{
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
/* Reset the BYPSHAD bit */
hrtc->Instance->CR &= (uint8_t)~RTC_CR_BYPSHAD;
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
#endif /* STM32L100xBA || STM32L151xBA || STM32L152xBA || STM32L100xC || STM32L151xC || STM32L152xC || STM32L162xC || STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L152xE || STM32L162xE */
/**
* @}
*/
/** @defgroup RTCEx_Exported_Functions_Group8 Extended features functions
* @brief Extended features functions
*
@verbatim
===============================================================================
##### Extended features functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) RTC Alram B callback
(+) RTC Poll for Alarm B request
@endverbatim
* @{
*/
/**
* @brief Alarm B callback.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval None
*/
__weak void HAL_RTCEx_AlarmBEventCallback(RTC_HandleTypeDef *hrtc)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_RTCEx_AlarmBEventCallback could be implemented in the user file
*/
}
/**
* @brief This function handles AlarmB Polling request.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_PollForAlarmBEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
{
uint32_t tickstart = HAL_GetTick();
while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBF) == RESET)
{
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
hrtc->State = HAL_RTC_STATE_TIMEOUT;
return HAL_TIMEOUT;
}
}
}
/* Clear the Alarm Flag */
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
return HAL_OK;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_RTC_MODULE_ENABLED */
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/