contiki/platform/zoul/dev/weather-meter.c

484 lines
17 KiB
C

/*
* Copyright (c) 2016, Zolertia <http://www.zolertia.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file is part of the Contiki operating system.
*
*/
/*---------------------------------------------------------------------------*/
/**
* \addtogroup zoul-weather-meter-sensor
* @{
*
* The Sparkfun's weather meter comprises an anemometer, wind vane and rain
* gauge, see https://www.sparkfun.com/products/8942
*
* \file
* Weather meter sensor driver
* \author
* Antonio Lignan <alinan@zolertia.com>
*/
/*---------------------------------------------------------------------------*/
#include <stdio.h>
#include "contiki.h"
#include "dev/adc-sensors.h"
#include "dev/weather-meter.h"
#include "dev/zoul-sensors.h"
#include "lib/sensors.h"
#include "dev/sys-ctrl.h"
#include "dev/gpio.h"
#include "dev/ioc.h"
#include "sys/timer.h"
#include "sys/rtimer.h"
/*---------------------------------------------------------------------------*/
#define DEBUG 0
#if DEBUG
#define PRINTF(...) printf(__VA_ARGS__)
#else
#define PRINTF(...)
#endif
/*---------------------------------------------------------------------------*/
#define DEBOUNCE_DURATION (CLOCK_SECOND >> 6)
/*---------------------------------------------------------------------------*/
#define ANEMOMETER_SENSOR_PORT_BASE GPIO_PORT_TO_BASE(ANEMOMETER_SENSOR_PORT)
#define ANEMOMETER_SENSOR_PIN_MASK GPIO_PIN_MASK(ANEMOMETER_SENSOR_PIN)
#define RAIN_GAUGE_SENSOR_PORT_BASE GPIO_PORT_TO_BASE(RAIN_GAUGE_SENSOR_PORT)
#define RAIN_GAUGE_SENSOR_PIN_MASK GPIO_PIN_MASK(RAIN_GAUGE_SENSOR_PIN)
/*---------------------------------------------------------------------------*/
void (*rain_gauge_int_callback)(uint16_t value);
void (*anemometer_int_callback)(uint16_t value);
/*---------------------------------------------------------------------------*/
static uint8_t enabled;
/*---------------------------------------------------------------------------*/
process_event_t anemometer_int_event;
process_event_t rain_gauge_int_event;
/*---------------------------------------------------------------------------*/
static struct rtimer rt;
static struct timer debouncetimer;
/*---------------------------------------------------------------------------*/
typedef struct {
uint16_t ticks;
uint16_t value;
uint8_t int_en;
uint16_t int_thres;
} weather_meter_sensors_t;
typedef struct {
uint16_t value_max;
uint64_t ticks_avg;
uint64_t value_avg;
uint32_t value_buf_xm;
uint16_t value_avg_xm;
} weather_meter_ext_t;
typedef struct {
uint16_t wind_vane;
weather_meter_sensors_t rain_gauge;
weather_meter_sensors_t anemometer;
} weather_meter_sensors;
typedef struct {
uint32_t value_buf_xm;
uint16_t value_prev;
uint16_t value_avg_xm;
} weather_meter_wind_vane_ext_t;
static weather_meter_sensors weather_sensors;
static weather_meter_ext_t anemometer;
static weather_meter_wind_vane_ext_t wind_vane;
/*---------------------------------------------------------------------------*/
typedef struct {
uint16_t mid_point;
uint16_t degree;
} wind_vane_mid_point_t;
/* From the datasheet we adjusted the values for a 3V divider, using a 10K
* resistor, the check values are the following:
* --------------------+------------------+-------------------------------
* Direction (Degrees) Resistance (Ohms) Voltage (mV)
* 0 33k 2532.55 *
* 22.5 6.57k 1308.44 *
* 45 8.2k 1486.81 *
* 67.5 891 269.97 *
* 90 1k 300.00 *
* 112.5 688 212.42 *
* 135 2.2k 595.08 *
* 157.5 1.41k 407.80 *
* 180 3.9k 925.89 *
* 202.5 3.14k 788.58 *
* 225 16k 2030.76 *
* 247.5 14.12k 1930.84 *
* 270 120k 3046.15 *
* 292.5 42.12k 2666.84 *
* 315 64.9k 2859.41 *
* 337.5 21.88k 2264.86 *
* --------------------+------------------+-------------------------------
*/
static const wind_vane_mid_point_t wind_vane_table[16] = {
{ 2124, 1125 },
{ 2699, 675 },
{ 3000, 900 },
{ 4078, 1575 },
{ 5950, 1350 },
{ 7885, 2025 },
{ 9258, 1800 },
{ 13084, 225 },
{ 14868, 450 },
{ 19308, 2475 },
{ 20307, 2250 },
{ 22648, 3375 },
{ 25325, 0 },
{ 26668, 2925 },
{ 28594, 3150 },
{ 30461, 2700 },
};
/*---------------------------------------------------------------------------*/
static int
weather_meter_wind_vane_degrees(uint16_t value)
{
uint8_t i;
for(i=0; i<16; i++) {
if(value <= wind_vane_table[i].mid_point) {
return (int)wind_vane_table[i].degree;
} else {
if(i == 15) {
return (int)wind_vane_table[i].degree;
}
}
}
PRINTF("Weather: invalid wind vane value\n");
return WEATHER_METER_ERROR;
}
/*---------------------------------------------------------------------------*/
static int
weather_meter_get_wind_dir(void)
{
weather_sensors.wind_vane = adc_sensors.value(WIND_VANE_ADC);
if((int16_t)weather_sensors.wind_vane < 0) {
weather_sensors.wind_vane = 0;
}
return weather_meter_wind_vane_degrees(weather_sensors.wind_vane);
}
/*---------------------------------------------------------------------------*/
void
rt_callback(struct rtimer *t, void *ptr)
{
uint32_t wind_speed;
int16_t wind_dir;
int16_t wind_dir_delta;
/* Disable to make the calculations in an interrupt-safe context */
GPIO_DISABLE_INTERRUPT(ANEMOMETER_SENSOR_PORT_BASE,
ANEMOMETER_SENSOR_PIN_MASK);
wind_speed = weather_sensors.anemometer.ticks;
wind_speed *= WEATHER_METER_ANEMOMETER_SPEED_1S;
weather_sensors.anemometer.value = (uint16_t)wind_speed;
anemometer.ticks_avg++;
anemometer.value_avg += weather_sensors.anemometer.value;
anemometer.value_buf_xm += weather_sensors.anemometer.value;
/* Take maximum value */
if(weather_sensors.anemometer.value > anemometer.value_max) {
anemometer.value_max = weather_sensors.anemometer.value;
}
/* Mitsuta method to get the wind direction average */
wind_dir = weather_meter_get_wind_dir();
wind_dir_delta = wind_dir - wind_vane.value_prev;
if(wind_dir_delta < -1800) {
wind_vane.value_prev += wind_dir_delta + 3600;
} else if(wind_dir_delta > 1800) {
wind_vane.value_prev += wind_dir_delta - 3600;
} else {
wind_vane.value_prev += wind_dir_delta;
}
wind_vane.value_buf_xm += wind_vane.value_prev;
/* Calculate the 2 minute average */
if(!(anemometer.ticks_avg % WEATHER_METER_AVG_PERIOD)) {
PRINTF("Weather: calculate the %u averages ***\n", WEATHER_METER_AVG_PERIOD);
if(anemometer.value_buf_xm) {
anemometer.value_avg_xm = anemometer.value_buf_xm / WEATHER_METER_AVG_PERIOD;
anemometer.value_buf_xm = 0;
} else {
anemometer.value_avg_xm = 0;
}
wind_vane.value_buf_xm = wind_vane.value_buf_xm / WEATHER_METER_AVG_PERIOD;
wind_vane.value_avg_xm = (uint16_t)wind_vane.value_buf_xm;
if(wind_vane.value_avg_xm >= 3600) {
wind_vane.value_avg_xm -= 3600;
}
if(wind_vane.value_avg_xm < 0) {
wind_vane.value_avg_xm += 3600;
}
wind_vane.value_buf_xm = 0;
wind_vane.value_prev = wind_dir;
}
/* Check for roll-over */
if(!anemometer.ticks_avg) {
anemometer.value_avg = 0;
}
weather_sensors.anemometer.ticks = 0;
/* Enable the interrupt again */
GPIO_ENABLE_INTERRUPT(ANEMOMETER_SENSOR_PORT_BASE,
ANEMOMETER_SENSOR_PIN_MASK);
rtimer_set(&rt, RTIMER_NOW() + RTIMER_SECOND, 1, rt_callback, NULL);
}
/*---------------------------------------------------------------------------*/
PROCESS(weather_meter_int_process, "Weather meter interrupt process handler");
/*---------------------------------------------------------------------------*/
PROCESS_THREAD(weather_meter_int_process, ev, data)
{
PROCESS_EXITHANDLER();
PROCESS_BEGIN();
while(1) {
PROCESS_YIELD();
if((ev == anemometer_int_event) && (weather_sensors.anemometer.int_en)) {
if(weather_sensors.anemometer.ticks >=
weather_sensors.anemometer.int_thres) {
anemometer_int_callback(weather_sensors.anemometer.ticks);
}
}
if((ev == rain_gauge_int_event) && (weather_sensors.rain_gauge.int_en)) {
if(weather_sensors.rain_gauge.ticks >=
weather_sensors.rain_gauge.int_thres) {
rain_gauge_int_callback(weather_sensors.rain_gauge.ticks);
}
}
}
PROCESS_END();
}
/*---------------------------------------------------------------------------*/
static void
weather_meter_interrupt_handler(uint8_t port, uint8_t pin)
{
uint32_t aux;
/* Prevent bounce events */
if(!timer_expired(&debouncetimer)) {
return;
}
timer_set(&debouncetimer, DEBOUNCE_DURATION);
/* We make a process_post() to check in the pollhandler any specific threshold
* value
*/
if((port == ANEMOMETER_SENSOR_PORT) && (pin == ANEMOMETER_SENSOR_PIN)) {
weather_sensors.anemometer.ticks++;
process_post(&weather_meter_int_process, anemometer_int_event, NULL);
} else if((port == RAIN_GAUGE_SENSOR_PORT) && (pin == RAIN_GAUGE_SENSOR_PIN)) {
weather_sensors.rain_gauge.ticks++;
aux = weather_sensors.rain_gauge.ticks * WEATHER_METER_AUX_RAIN_MM;
aux /= 1000;
weather_sensors.rain_gauge.value = (uint16_t)aux;
process_post(&weather_meter_int_process, rain_gauge_int_event, NULL);
}
}
/*---------------------------------------------------------------------------*/
static int
value(int type)
{
uint64_t aux;
if((type != WEATHER_METER_ANEMOMETER) &&
(type != WEATHER_METER_RAIN_GAUGE) &&
(type != WEATHER_METER_WIND_VANE) &&
(type != WEATHER_METER_WIND_VANE_AVG_X) &&
(type != WEATHER_METER_ANEMOMETER_AVG) &&
(type != WEATHER_METER_ANEMOMETER_AVG_X) &&
(type != WEATHER_METER_ANEMOMETER_MAX)) {
PRINTF("Weather: requested an invalid sensor value\n");
return WEATHER_METER_ERROR;
}
if(!enabled) {
PRINTF("Weather: module is not configured\n");
return WEATHER_METER_ERROR;
}
switch(type) {
case WEATHER_METER_WIND_VANE:
return weather_meter_get_wind_dir();
case WEATHER_METER_WIND_VANE_AVG_X:
return wind_vane.value_avg_xm;
case WEATHER_METER_ANEMOMETER:
return weather_sensors.anemometer.value;
case WEATHER_METER_ANEMOMETER_AVG:
if(anemometer.value_avg <= 0) {
return (uint16_t)anemometer.value_avg;
}
aux = anemometer.value_avg / anemometer.ticks_avg;
return (uint16_t)aux;
case WEATHER_METER_ANEMOMETER_AVG_X:
return anemometer.value_avg_xm;
case WEATHER_METER_ANEMOMETER_MAX:
return anemometer.value_max;
/* as the default return type is int, we have a lower resolution if returning
* the calculated value as it is truncated, an alternative is returning the
* ticks and calculating on your own with WEATHER_METER_AUX_RAIN_MM
*/
case WEATHER_METER_RAIN_GAUGE:
#if WEATHER_METER_RAIN_RETURN_TICKS
return weather_sensors.rain_gauge.ticks;
#else
return weather_sensors.rain_gauge.value;
#endif
default:
return WEATHER_METER_ERROR;
}
}
/*---------------------------------------------------------------------------*/
static int
configure(int type, int value)
{
if((type != WEATHER_METER_ACTIVE) &&
(type != WEATHER_METER_ANEMOMETER_INT_OVER) &&
(type != WEATHER_METER_RAIN_GAUGE_INT_OVER) &&
(type != WEATHER_METER_ANEMOMETER_INT_DIS) &&
(type != WEATHER_METER_RAIN_GAUGE_INT_DIS)) {
PRINTF("Weather: invalid configuration option\n");
return WEATHER_METER_ERROR;
}
if(type == WEATHER_METER_ACTIVE) {
anemometer.value_avg = 0;
anemometer.ticks_avg = 0;
weather_sensors.anemometer.int_en = 0;
weather_sensors.rain_gauge.int_en = 0;
weather_sensors.anemometer.ticks = 0;
weather_sensors.rain_gauge.ticks = 0;
weather_sensors.anemometer.value = 0;
weather_sensors.rain_gauge.value = 0;
if(!value) {
anemometer_int_callback = NULL;
rain_gauge_int_callback = NULL;
GPIO_DISABLE_INTERRUPT(ANEMOMETER_SENSOR_PORT_BASE,
ANEMOMETER_SENSOR_PIN_MASK);
GPIO_DISABLE_INTERRUPT(RAIN_GAUGE_SENSOR_PORT_BASE,
RAIN_GAUGE_SENSOR_PIN_MASK);
process_exit(&weather_meter_int_process);
enabled = 0;
PRINTF("Weather: disabled\n");
return WEATHER_METER_SUCCESS;
}
/* Configure the wind vane */
adc_sensors.configure(SENSORS_HW_INIT, WIND_VANE_ADC);
/* Configure anemometer interruption */
GPIO_SOFTWARE_CONTROL(ANEMOMETER_SENSOR_PORT_BASE, ANEMOMETER_SENSOR_PIN_MASK);
GPIO_SET_INPUT(ANEMOMETER_SENSOR_PORT_BASE, ANEMOMETER_SENSOR_PIN_MASK);
GPIO_DETECT_RISING(ANEMOMETER_SENSOR_PORT_BASE, ANEMOMETER_SENSOR_PIN_MASK);
GPIO_TRIGGER_SINGLE_EDGE(ANEMOMETER_SENSOR_PORT_BASE,
ANEMOMETER_SENSOR_PIN_MASK);
ioc_set_over(ANEMOMETER_SENSOR_PORT, ANEMOMETER_SENSOR_PIN, IOC_OVERRIDE_DIS);
gpio_register_callback(weather_meter_interrupt_handler, ANEMOMETER_SENSOR_PORT,
ANEMOMETER_SENSOR_PIN);
/* Configure rain gauge interruption */
GPIO_SOFTWARE_CONTROL(RAIN_GAUGE_SENSOR_PORT_BASE, RAIN_GAUGE_SENSOR_PIN_MASK);
GPIO_SET_INPUT(RAIN_GAUGE_SENSOR_PORT_BASE, RAIN_GAUGE_SENSOR_PIN_MASK);
GPIO_DETECT_RISING(RAIN_GAUGE_SENSOR_PORT_BASE, RAIN_GAUGE_SENSOR_PIN_MASK);
GPIO_TRIGGER_SINGLE_EDGE(RAIN_GAUGE_SENSOR_PORT_BASE,
RAIN_GAUGE_SENSOR_PIN_MASK);
ioc_set_over(RAIN_GAUGE_SENSOR_PORT, RAIN_GAUGE_SENSOR_PIN, IOC_OVERRIDE_DIS);
gpio_register_callback(weather_meter_interrupt_handler, RAIN_GAUGE_SENSOR_PORT,
RAIN_GAUGE_SENSOR_PIN);
process_start(&weather_meter_int_process, NULL);
/* Initialize here prior the first second tick */
wind_vane.value_prev = weather_meter_get_wind_dir();
rtimer_set(&rt, RTIMER_NOW() + RTIMER_SECOND, 1, rt_callback, NULL);
GPIO_ENABLE_INTERRUPT(ANEMOMETER_SENSOR_PORT_BASE, ANEMOMETER_SENSOR_PIN_MASK);
GPIO_ENABLE_INTERRUPT(RAIN_GAUGE_SENSOR_PORT_BASE, RAIN_GAUGE_SENSOR_PIN_MASK);
nvic_interrupt_enable(ANEMOMETER_SENSOR_VECTOR);
nvic_interrupt_enable(RAIN_GAUGE_SENSOR_VECTOR);
enabled = 1;
PRINTF("Weather: started\n");
return WEATHER_METER_SUCCESS;
}
switch(type) {
case WEATHER_METER_ANEMOMETER_INT_OVER:
weather_sensors.anemometer.int_en = 1;
weather_sensors.anemometer.int_thres = value;
PRINTF("Weather: anemometer threshold %u\n", value);
break;
case WEATHER_METER_RAIN_GAUGE_INT_OVER:
weather_sensors.rain_gauge.int_en = 1;
weather_sensors.rain_gauge.int_thres = value;
PRINTF("Weather: rain gauge threshold %u\n", value);
break;
case WEATHER_METER_ANEMOMETER_INT_DIS:
PRINTF("Weather: anemometer int disabled\n");
weather_sensors.anemometer.int_en = 0;
break;
case WEATHER_METER_RAIN_GAUGE_INT_DIS:
PRINTF("Weather: rain gauge int disabled\n");
weather_sensors.rain_gauge.int_en = 0;
break;
default:
return WEATHER_METER_ERROR;
}
return WEATHER_METER_SUCCESS;
}
/*---------------------------------------------------------------------------*/
SENSORS_SENSOR(weather_meter, WEATHER_METER_SENSOR, value, configure, NULL);
/*---------------------------------------------------------------------------*/
/** @} */