mirror of
https://github.com/oliverschmidt/contiki.git
synced 2025-01-18 03:30:31 +00:00
ab1491be69
Switch to CMSIS-CORE and remove the duplicate code. Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau.dev@gmail.com>
1127 lines
33 KiB
C
1127 lines
33 KiB
C
/*
|
|
* Copyright (c) 2012, Texas Instruments Incorporated - http://www.ti.com/
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
/**
|
|
* \addtogroup cc2538-rf
|
|
* @{
|
|
*
|
|
* \file
|
|
* Implementation of the cc2538 RF driver
|
|
*/
|
|
#include "contiki.h"
|
|
#include "dev/radio.h"
|
|
#include "sys/clock.h"
|
|
#include "sys/rtimer.h"
|
|
#include "net/packetbuf.h"
|
|
#include "net/rime/rimestats.h"
|
|
#include "net/linkaddr.h"
|
|
#include "net/netstack.h"
|
|
#include "sys/energest.h"
|
|
#include "dev/cc2538-rf.h"
|
|
#include "dev/rfcore.h"
|
|
#include "dev/sys-ctrl.h"
|
|
#include "dev/udma.h"
|
|
#include "reg.h"
|
|
|
|
#include <string.h>
|
|
/*---------------------------------------------------------------------------*/
|
|
#define CHECKSUM_LEN 2
|
|
|
|
/* uDMA channel control persistent flags */
|
|
#define UDMA_TX_FLAGS (UDMA_CHCTL_ARBSIZE_128 | UDMA_CHCTL_XFERMODE_AUTO \
|
|
| UDMA_CHCTL_SRCSIZE_8 | UDMA_CHCTL_DSTSIZE_8 \
|
|
| UDMA_CHCTL_SRCINC_8 | UDMA_CHCTL_DSTINC_NONE)
|
|
|
|
#define UDMA_RX_FLAGS (UDMA_CHCTL_ARBSIZE_128 | UDMA_CHCTL_XFERMODE_AUTO \
|
|
| UDMA_CHCTL_SRCSIZE_8 | UDMA_CHCTL_DSTSIZE_8 \
|
|
| UDMA_CHCTL_SRCINC_NONE | UDMA_CHCTL_DSTINC_8)
|
|
|
|
/*
|
|
* uDMA transfer threshold. DMA will only be used to read an incoming frame
|
|
* if its size is above this threshold
|
|
*/
|
|
#define UDMA_RX_SIZE_THRESHOLD 3
|
|
/*---------------------------------------------------------------------------*/
|
|
#include <stdio.h>
|
|
#define DEBUG 0
|
|
#if DEBUG
|
|
#define PRINTF(...) printf(__VA_ARGS__)
|
|
#else
|
|
#define PRINTF(...)
|
|
#endif
|
|
/*---------------------------------------------------------------------------*/
|
|
/* Local RF Flags */
|
|
#define RX_ACTIVE 0x80
|
|
#define RF_MUST_RESET 0x40
|
|
#define RF_ON 0x01
|
|
|
|
/* Bit Masks for the last byte in the RX FIFO */
|
|
#define CRC_BIT_MASK 0x80
|
|
#define LQI_BIT_MASK 0x7F
|
|
/* RSSI Offset */
|
|
#define RSSI_OFFSET 73
|
|
|
|
/* 192 usec off -> on interval (RX Callib -> SFD Wait). We wait a bit more */
|
|
#define ONOFF_TIME RTIMER_ARCH_SECOND / 3125
|
|
/*---------------------------------------------------------------------------*/
|
|
#ifdef CC2538_RF_CONF_AUTOACK
|
|
#define CC2538_RF_AUTOACK CC2538_RF_CONF_AUTOACK
|
|
#else
|
|
#define CC2538_RF_AUTOACK 1
|
|
#endif
|
|
/*---------------------------------------------------------------------------
|
|
* MAC timer
|
|
*---------------------------------------------------------------------------*/
|
|
/* Timer conversion */
|
|
#define RADIO_TO_RTIMER(X) ((uint32_t)((uint64_t)(X) * RTIMER_ARCH_SECOND / SYS_CTRL_32MHZ))
|
|
|
|
#define CLOCK_STABLE() do { \
|
|
while ( !(REG(SYS_CTRL_CLOCK_STA) & (SYS_CTRL_CLOCK_STA_XOSC_STB))); \
|
|
} while(0)
|
|
/*---------------------------------------------------------------------------*/
|
|
/* Are we currently in poll mode? Disabled by default */
|
|
static uint8_t volatile poll_mode = 0;
|
|
/* Do we perform a CCA before sending? Enabled by default. */
|
|
static uint8_t send_on_cca = 1;
|
|
static int8_t rssi;
|
|
static uint8_t crc_corr;
|
|
/*---------------------------------------------------------------------------*/
|
|
static uint8_t rf_flags;
|
|
static uint8_t rf_channel = CC2538_RF_CHANNEL;
|
|
|
|
static int on(void);
|
|
static int off(void);
|
|
/*---------------------------------------------------------------------------*/
|
|
/* TX Power dBm lookup table. Values from SmartRF Studio v1.16.0 */
|
|
typedef struct output_config {
|
|
radio_value_t power;
|
|
uint8_t txpower_val;
|
|
} output_config_t;
|
|
|
|
static const output_config_t output_power[] = {
|
|
{ 7, 0xFF },
|
|
{ 5, 0xED },
|
|
{ 3, 0xD5 },
|
|
{ 1, 0xC5 },
|
|
{ 0, 0xB6 },
|
|
{ -1, 0xB0 },
|
|
{ -3, 0xA1 },
|
|
{ -5, 0x91 },
|
|
{ -7, 0x88 },
|
|
{ -9, 0x72 },
|
|
{-11, 0x62 },
|
|
{-13, 0x58 },
|
|
{-15, 0x42 },
|
|
{-24, 0x00 },
|
|
};
|
|
|
|
#define OUTPUT_CONFIG_COUNT (sizeof(output_power) / sizeof(output_config_t))
|
|
|
|
/* Max and Min Output Power in dBm */
|
|
#define OUTPUT_POWER_MIN (output_power[OUTPUT_CONFIG_COUNT - 1].power)
|
|
#define OUTPUT_POWER_MAX (output_power[0].power)
|
|
/*---------------------------------------------------------------------------*/
|
|
PROCESS(cc2538_rf_process, "cc2538 RF driver");
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* \brief Get the current operating channel
|
|
* \return Returns a value in [11,26] representing the current channel
|
|
*/
|
|
static uint8_t
|
|
get_channel()
|
|
{
|
|
uint8_t chan = REG(RFCORE_XREG_FREQCTRL) & RFCORE_XREG_FREQCTRL_FREQ;
|
|
|
|
return (chan - CC2538_RF_CHANNEL_MIN) / CC2538_RF_CHANNEL_SPACING
|
|
+ CC2538_RF_CHANNEL_MIN;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* \brief Set the current operating channel
|
|
* \param channel The desired channel as a value in [11,26]
|
|
* \return Returns a value in [11,26] representing the current channel
|
|
* or a negative value if \e channel was out of bounds
|
|
*/
|
|
static int8_t
|
|
set_channel(uint8_t channel)
|
|
{
|
|
uint8_t was_on = 0;
|
|
|
|
PRINTF("RF: Set Channel\n");
|
|
|
|
if((channel < CC2538_RF_CHANNEL_MIN) || (channel > CC2538_RF_CHANNEL_MAX)) {
|
|
return CC2538_RF_CHANNEL_SET_ERROR;
|
|
}
|
|
|
|
/* Changes to FREQCTRL take effect after the next recalibration */
|
|
|
|
/* If we are off, save state, otherwise switch off and save state */
|
|
if((REG(RFCORE_XREG_FSMSTAT0) & RFCORE_XREG_FSMSTAT0_FSM_FFCTRL_STATE) != 0) {
|
|
was_on = 1;
|
|
off();
|
|
}
|
|
REG(RFCORE_XREG_FREQCTRL) = CC2538_RF_CHANNEL_MIN +
|
|
(channel - CC2538_RF_CHANNEL_MIN) * CC2538_RF_CHANNEL_SPACING;
|
|
|
|
/* switch radio back on only if radio was on before - otherwise will turn on radio foor sleepy nodes */
|
|
if(was_on) {
|
|
on();
|
|
}
|
|
|
|
rf_channel = channel;
|
|
|
|
return (int8_t)channel;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static radio_value_t
|
|
get_pan_id(void)
|
|
{
|
|
return (radio_value_t)(REG(RFCORE_FFSM_PAN_ID1) << 8 | REG(RFCORE_FFSM_PAN_ID0));
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static void
|
|
set_pan_id(uint16_t pan)
|
|
{
|
|
REG(RFCORE_FFSM_PAN_ID0) = pan & 0xFF;
|
|
REG(RFCORE_FFSM_PAN_ID1) = pan >> 8;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static radio_value_t
|
|
get_short_addr(void)
|
|
{
|
|
return (radio_value_t)(REG(RFCORE_FFSM_SHORT_ADDR1) << 8 | REG(RFCORE_FFSM_SHORT_ADDR0));
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static void
|
|
set_short_addr(uint16_t addr)
|
|
{
|
|
REG(RFCORE_FFSM_SHORT_ADDR0) = addr & 0xFF;
|
|
REG(RFCORE_FFSM_SHORT_ADDR1) = addr >> 8;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* \brief Reads the current signal strength (RSSI)
|
|
* \return The current RSSI in dBm
|
|
*
|
|
* This function reads the current RSSI on the currently configured
|
|
* channel.
|
|
*/
|
|
static radio_value_t
|
|
get_rssi(void)
|
|
{
|
|
int8_t rssi;
|
|
uint8_t was_off = 0;
|
|
|
|
/* If we are off, turn on first */
|
|
if((REG(RFCORE_XREG_FSMSTAT0) & RFCORE_XREG_FSMSTAT0_FSM_FFCTRL_STATE) == 0) {
|
|
was_off = 1;
|
|
on();
|
|
}
|
|
|
|
/* Wait on RSSI_VALID */
|
|
while((REG(RFCORE_XREG_RSSISTAT) & RFCORE_XREG_RSSISTAT_RSSI_VALID) == 0);
|
|
|
|
rssi = (int8_t)(REG(RFCORE_XREG_RSSI) & RFCORE_XREG_RSSI_RSSI_VAL) - RSSI_OFFSET;
|
|
|
|
/* If we were off, turn back off */
|
|
if(was_off) {
|
|
off();
|
|
}
|
|
|
|
return rssi;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
/* Returns the current CCA threshold in dBm */
|
|
static radio_value_t
|
|
get_cca_threshold(void)
|
|
{
|
|
return (int8_t)(REG(RFCORE_XREG_CCACTRL0) & RFCORE_XREG_CCACTRL0_CCA_THR) - RSSI_OFFSET;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
/* Sets the CCA threshold in dBm */
|
|
static void
|
|
set_cca_threshold(radio_value_t value)
|
|
{
|
|
REG(RFCORE_XREG_CCACTRL0) = (value & 0xFF) + RSSI_OFFSET;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
/* Returns the current TX power in dBm */
|
|
static radio_value_t
|
|
get_tx_power(void)
|
|
{
|
|
int i;
|
|
uint8_t reg_val = REG(RFCORE_XREG_TXPOWER) & 0xFF;
|
|
|
|
/*
|
|
* Find the TXPOWER value in the lookup table
|
|
* If the value has been written with set_tx_power, we should be able to
|
|
* find the exact value. However, in case the register has been written in
|
|
* a different fashion, we return the immediately lower value of the lookup
|
|
*/
|
|
for(i = 0; i < OUTPUT_CONFIG_COUNT; i++) {
|
|
if(reg_val >= output_power[i].txpower_val) {
|
|
return output_power[i].power;
|
|
}
|
|
}
|
|
return OUTPUT_POWER_MIN;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
/*
|
|
* Set TX power to 'at least' power dBm
|
|
* This works with a lookup table. If the value of 'power' does not exist in
|
|
* the lookup table, TXPOWER will be set to the immediately higher available
|
|
* value
|
|
*/
|
|
static void
|
|
set_tx_power(radio_value_t power)
|
|
{
|
|
int i;
|
|
|
|
for(i = OUTPUT_CONFIG_COUNT - 1; i >= 0; --i) {
|
|
if(power <= output_power[i].power) {
|
|
REG(RFCORE_XREG_TXPOWER) = output_power[i].txpower_val;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static void
|
|
set_frame_filtering(uint8_t enable)
|
|
{
|
|
if(enable) {
|
|
REG(RFCORE_XREG_FRMFILT0) |= RFCORE_XREG_FRMFILT0_FRAME_FILTER_EN;
|
|
} else {
|
|
REG(RFCORE_XREG_FRMFILT0) &= ~RFCORE_XREG_FRMFILT0_FRAME_FILTER_EN;
|
|
}
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static void
|
|
mac_timer_init(void)
|
|
{
|
|
CLOCK_STABLE();
|
|
REG(RFCORE_SFR_MTCTRL) |= RFCORE_SFR_MTCTRL_SYNC;
|
|
REG(RFCORE_SFR_MTCTRL) |= RFCORE_SFR_MTCTRL_RUN;
|
|
while(!(REG(RFCORE_SFR_MTCTRL) & RFCORE_SFR_MTCTRL_STATE));
|
|
REG(RFCORE_SFR_MTCTRL) &= ~RFCORE_SFR_MTCTRL_RUN;
|
|
while(REG(RFCORE_SFR_MTCTRL) & RFCORE_SFR_MTCTRL_STATE);
|
|
REG(RFCORE_SFR_MTCTRL) |= RFCORE_SFR_MTCTRL_SYNC;
|
|
REG(RFCORE_SFR_MTCTRL) |= (RFCORE_SFR_MTCTRL_RUN);
|
|
while(!(REG(RFCORE_SFR_MTCTRL) & RFCORE_SFR_MTCTRL_STATE));
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static void
|
|
set_poll_mode(uint8_t enable)
|
|
{
|
|
poll_mode = enable;
|
|
|
|
if(enable) {
|
|
mac_timer_init();
|
|
REG(RFCORE_XREG_RFIRQM0) &= ~RFCORE_XREG_RFIRQM0_FIFOP; /* mask out FIFOP interrupt source */
|
|
REG(RFCORE_SFR_RFIRQF0) &= ~RFCORE_SFR_RFIRQF0_FIFOP; /* clear pending FIFOP interrupt */
|
|
NVIC_DisableIRQ(RF_TX_RX_IRQn); /* disable RF interrupts */
|
|
} else {
|
|
REG(RFCORE_XREG_RFIRQM0) |= RFCORE_XREG_RFIRQM0_FIFOP; /* enable FIFOP interrupt source */
|
|
NVIC_EnableIRQ(RF_TX_RX_IRQn); /* enable RF interrupts */
|
|
}
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static void
|
|
set_send_on_cca(uint8_t enable)
|
|
{
|
|
send_on_cca = enable;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static void
|
|
set_auto_ack(uint8_t enable)
|
|
{
|
|
if(enable) {
|
|
REG(RFCORE_XREG_FRMCTRL0) |= RFCORE_XREG_FRMCTRL0_AUTOACK;
|
|
} else {
|
|
REG(RFCORE_XREG_FRMCTRL0) &= ~RFCORE_XREG_FRMCTRL0_AUTOACK;
|
|
}
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static uint32_t
|
|
get_sfd_timestamp(void)
|
|
{
|
|
uint64_t sfd, timer_val, buffer;
|
|
|
|
REG(RFCORE_SFR_MTMSEL) = (REG(RFCORE_SFR_MTMSEL) & ~RFCORE_SFR_MTMSEL_MTMSEL) | 0x00000000;
|
|
REG(RFCORE_SFR_MTCTRL) |= RFCORE_SFR_MTCTRL_LATCH_MODE;
|
|
timer_val = REG(RFCORE_SFR_MTM0) & RFCORE_SFR_MTM0_MTM0;
|
|
timer_val |= ((REG(RFCORE_SFR_MTM1) & RFCORE_SFR_MTM1_MTM1) << 8);
|
|
REG(RFCORE_SFR_MTMSEL) = (REG(RFCORE_SFR_MTMSEL) & ~RFCORE_SFR_MTMSEL_MTMOVFSEL) | 0x00000000;
|
|
timer_val |= ((REG(RFCORE_SFR_MTMOVF0) & RFCORE_SFR_MTMOVF0_MTMOVF0) << 16);
|
|
timer_val |= ((REG(RFCORE_SFR_MTMOVF1) & RFCORE_SFR_MTMOVF1_MTMOVF1) << 24);
|
|
buffer = REG(RFCORE_SFR_MTMOVF2) & RFCORE_SFR_MTMOVF2_MTMOVF2;
|
|
timer_val |= (buffer << 32);
|
|
|
|
REG(RFCORE_SFR_MTMSEL) = (REG(RFCORE_SFR_MTMSEL) & ~RFCORE_SFR_MTMSEL_MTMSEL) | 0x00000001;
|
|
REG(RFCORE_SFR_MTCTRL) |= RFCORE_SFR_MTCTRL_LATCH_MODE;
|
|
sfd = REG(RFCORE_SFR_MTM0) & RFCORE_SFR_MTM0_MTM0;
|
|
sfd |= ((REG(RFCORE_SFR_MTM1) & RFCORE_SFR_MTM1_MTM1) << 8);
|
|
REG(RFCORE_SFR_MTMSEL) = (REG(RFCORE_SFR_MTMSEL) & ~RFCORE_SFR_MTMSEL_MTMOVFSEL) | 0x00000010;
|
|
sfd |= ((REG(RFCORE_SFR_MTMOVF0) & RFCORE_SFR_MTMOVF0_MTMOVF0) << 16);
|
|
sfd |= ((REG(RFCORE_SFR_MTMOVF1) & RFCORE_SFR_MTMOVF1_MTMOVF1) << 24);
|
|
buffer = REG(RFCORE_SFR_MTMOVF2) & RFCORE_SFR_MTMOVF2_MTMOVF2;
|
|
sfd |= (buffer << 32);
|
|
|
|
return RTIMER_NOW() - RADIO_TO_RTIMER(timer_val - sfd);
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
/* Netstack API radio driver functions */
|
|
/*---------------------------------------------------------------------------*/
|
|
static int
|
|
channel_clear(void)
|
|
{
|
|
int cca;
|
|
uint8_t was_off = 0;
|
|
|
|
PRINTF("RF: CCA\n");
|
|
|
|
/* If we are off, turn on first */
|
|
if((REG(RFCORE_XREG_FSMSTAT0) & RFCORE_XREG_FSMSTAT0_FSM_FFCTRL_STATE) == 0) {
|
|
was_off = 1;
|
|
on();
|
|
}
|
|
|
|
/* Wait on RSSI_VALID */
|
|
while((REG(RFCORE_XREG_RSSISTAT) & RFCORE_XREG_RSSISTAT_RSSI_VALID) == 0);
|
|
|
|
if(REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_CCA) {
|
|
cca = CC2538_RF_CCA_CLEAR;
|
|
} else {
|
|
cca = CC2538_RF_CCA_BUSY;
|
|
}
|
|
|
|
/* If we were off, turn back off */
|
|
if(was_off) {
|
|
off();
|
|
}
|
|
|
|
return cca;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static int
|
|
on(void)
|
|
{
|
|
PRINTF("RF: On\n");
|
|
|
|
if(!(rf_flags & RX_ACTIVE)) {
|
|
CC2538_RF_CSP_ISFLUSHRX();
|
|
CC2538_RF_CSP_ISRXON();
|
|
|
|
rf_flags |= RX_ACTIVE;
|
|
}
|
|
|
|
ENERGEST_ON(ENERGEST_TYPE_LISTEN);
|
|
return 1;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static int
|
|
off(void)
|
|
{
|
|
PRINTF("RF: Off\n");
|
|
|
|
/* Wait for ongoing TX to complete (e.g. this could be an outgoing ACK) */
|
|
while(REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_TX_ACTIVE);
|
|
|
|
if(!(REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_FIFOP)) {
|
|
CC2538_RF_CSP_ISFLUSHRX();
|
|
}
|
|
|
|
/* Don't turn off if we are off as this will trigger a Strobe Error */
|
|
if(REG(RFCORE_XREG_RXENABLE) != 0) {
|
|
CC2538_RF_CSP_ISRFOFF();
|
|
}
|
|
|
|
rf_flags &= ~RX_ACTIVE;
|
|
|
|
ENERGEST_OFF(ENERGEST_TYPE_LISTEN);
|
|
return 1;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static int
|
|
init(void)
|
|
{
|
|
PRINTF("RF: Init\n");
|
|
|
|
if(rf_flags & RF_ON) {
|
|
return 0;
|
|
}
|
|
|
|
/* Enable clock for the RF Core while Running, in Sleep and Deep Sleep */
|
|
REG(SYS_CTRL_RCGCRFC) = 1;
|
|
REG(SYS_CTRL_SCGCRFC) = 1;
|
|
REG(SYS_CTRL_DCGCRFC) = 1;
|
|
|
|
REG(RFCORE_XREG_CCACTRL0) = CC2538_RF_CCA_THRES;
|
|
|
|
/*
|
|
* Changes from default values
|
|
* See User Guide, section "Register Settings Update"
|
|
*/
|
|
REG(RFCORE_XREG_TXFILTCFG) = 0x09; /** TX anti-aliasing filter bandwidth */
|
|
REG(RFCORE_XREG_AGCCTRL1) = 0x15; /** AGC target value */
|
|
REG(ANA_REGS_IVCTRL) = 0x0B; /** Bias currents */
|
|
|
|
/*
|
|
* Defaults:
|
|
* Auto CRC; Append RSSI, CRC-OK and Corr. Val.; CRC calculation;
|
|
* RX and TX modes with FIFOs
|
|
*/
|
|
REG(RFCORE_XREG_FRMCTRL0) = RFCORE_XREG_FRMCTRL0_AUTOCRC;
|
|
|
|
#if CC2538_RF_AUTOACK
|
|
REG(RFCORE_XREG_FRMCTRL0) |= RFCORE_XREG_FRMCTRL0_AUTOACK;
|
|
#endif
|
|
|
|
/* Disable source address matching and autopend */
|
|
REG(RFCORE_XREG_SRCMATCH) = 0;
|
|
|
|
/* MAX FIFOP threshold */
|
|
REG(RFCORE_XREG_FIFOPCTRL) = CC2538_RF_MAX_PACKET_LEN;
|
|
|
|
/* Set TX Power */
|
|
REG(RFCORE_XREG_TXPOWER) = CC2538_RF_TX_POWER;
|
|
|
|
set_channel(rf_channel);
|
|
|
|
/* Acknowledge all RF Error interrupts */
|
|
REG(RFCORE_XREG_RFERRM) = RFCORE_XREG_RFERRM_RFERRM;
|
|
NVIC_EnableIRQ(RF_ERR_IRQn);
|
|
|
|
if(CC2538_RF_CONF_TX_USE_DMA) {
|
|
/* Disable peripheral triggers for the channel */
|
|
udma_channel_mask_set(CC2538_RF_CONF_TX_DMA_CHAN);
|
|
|
|
/*
|
|
* Set the channel's DST. SRC can not be set yet since it will change for
|
|
* each transfer
|
|
*/
|
|
udma_set_channel_dst(CC2538_RF_CONF_TX_DMA_CHAN, RFCORE_SFR_RFDATA);
|
|
}
|
|
|
|
if(CC2538_RF_CONF_RX_USE_DMA) {
|
|
/* Disable peripheral triggers for the channel */
|
|
udma_channel_mask_set(CC2538_RF_CONF_RX_DMA_CHAN);
|
|
|
|
/*
|
|
* Set the channel's SRC. DST can not be set yet since it will change for
|
|
* each transfer
|
|
*/
|
|
udma_set_channel_src(CC2538_RF_CONF_RX_DMA_CHAN, RFCORE_SFR_RFDATA);
|
|
}
|
|
|
|
set_poll_mode(poll_mode);
|
|
|
|
process_start(&cc2538_rf_process, NULL);
|
|
|
|
rf_flags |= RF_ON;
|
|
|
|
ENERGEST_ON(ENERGEST_TYPE_LISTEN);
|
|
|
|
return 1;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static int
|
|
prepare(const void *payload, unsigned short payload_len)
|
|
{
|
|
uint8_t i;
|
|
|
|
PRINTF("RF: Prepare 0x%02x bytes\n", payload_len + CHECKSUM_LEN);
|
|
|
|
/*
|
|
* When we transmit in very quick bursts, make sure previous transmission
|
|
* is not still in progress before re-writing to the TX FIFO
|
|
*/
|
|
while(REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_TX_ACTIVE);
|
|
|
|
if((rf_flags & RX_ACTIVE) == 0) {
|
|
on();
|
|
}
|
|
|
|
CC2538_RF_CSP_ISFLUSHTX();
|
|
|
|
PRINTF("RF: data = ");
|
|
/* Send the phy length byte first */
|
|
REG(RFCORE_SFR_RFDATA) = payload_len + CHECKSUM_LEN;
|
|
|
|
if(CC2538_RF_CONF_TX_USE_DMA) {
|
|
PRINTF("<uDMA payload>");
|
|
|
|
/* Set the transfer source's end address */
|
|
udma_set_channel_src(CC2538_RF_CONF_TX_DMA_CHAN,
|
|
(uint32_t)(payload) + payload_len - 1);
|
|
|
|
/* Configure the control word */
|
|
udma_set_channel_control_word(CC2538_RF_CONF_TX_DMA_CHAN,
|
|
UDMA_TX_FLAGS | udma_xfer_size(payload_len));
|
|
|
|
/* Enabled the RF TX uDMA channel */
|
|
udma_channel_enable(CC2538_RF_CONF_TX_DMA_CHAN);
|
|
|
|
/* Trigger the uDMA transfer */
|
|
udma_channel_sw_request(CC2538_RF_CONF_TX_DMA_CHAN);
|
|
|
|
/*
|
|
* No need to wait for this to end. Even if transmit() gets called
|
|
* immediately, the uDMA controller will stream the frame to the TX FIFO
|
|
* faster than transmit() can empty it
|
|
*/
|
|
} else {
|
|
for(i = 0; i < payload_len; i++) {
|
|
REG(RFCORE_SFR_RFDATA) = ((unsigned char *)(payload))[i];
|
|
PRINTF("%02x", ((unsigned char *)(payload))[i]);
|
|
}
|
|
}
|
|
PRINTF("\n");
|
|
|
|
return 0;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static int
|
|
transmit(unsigned short transmit_len)
|
|
{
|
|
uint8_t counter;
|
|
int ret = RADIO_TX_ERR;
|
|
rtimer_clock_t t0;
|
|
uint8_t was_off = 0;
|
|
|
|
PRINTF("RF: Transmit\n");
|
|
|
|
if(!(rf_flags & RX_ACTIVE)) {
|
|
t0 = RTIMER_NOW();
|
|
on();
|
|
was_off = 1;
|
|
while(RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + ONOFF_TIME));
|
|
}
|
|
|
|
if(send_on_cca) {
|
|
if(channel_clear() == CC2538_RF_CCA_BUSY) {
|
|
RIMESTATS_ADD(contentiondrop);
|
|
return RADIO_TX_COLLISION;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* prepare() double checked that TX_ACTIVE is low. If SFD is high we are
|
|
* receiving. Abort transmission and bail out with RADIO_TX_COLLISION
|
|
*/
|
|
if(REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_SFD) {
|
|
RIMESTATS_ADD(contentiondrop);
|
|
return RADIO_TX_COLLISION;
|
|
}
|
|
|
|
/* Start the transmission */
|
|
ENERGEST_OFF(ENERGEST_TYPE_LISTEN);
|
|
ENERGEST_ON(ENERGEST_TYPE_TRANSMIT);
|
|
|
|
CC2538_RF_CSP_ISTXON();
|
|
|
|
counter = 0;
|
|
while(!((REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_TX_ACTIVE))
|
|
&& (counter++ < 3)) {
|
|
clock_delay_usec(6);
|
|
}
|
|
|
|
if(!(REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_TX_ACTIVE)) {
|
|
PRINTF("RF: TX never active.\n");
|
|
CC2538_RF_CSP_ISFLUSHTX();
|
|
ret = RADIO_TX_ERR;
|
|
} else {
|
|
/* Wait for the transmission to finish */
|
|
while(REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_TX_ACTIVE);
|
|
ret = RADIO_TX_OK;
|
|
}
|
|
ENERGEST_OFF(ENERGEST_TYPE_TRANSMIT);
|
|
ENERGEST_ON(ENERGEST_TYPE_LISTEN);
|
|
|
|
if(was_off) {
|
|
off();
|
|
}
|
|
|
|
RIMESTATS_ADD(lltx);
|
|
|
|
return ret;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static int
|
|
send(const void *payload, unsigned short payload_len)
|
|
{
|
|
prepare(payload, payload_len);
|
|
return transmit(payload_len);
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static int
|
|
read(void *buf, unsigned short bufsize)
|
|
{
|
|
uint8_t i;
|
|
uint8_t len;
|
|
|
|
PRINTF("RF: Read\n");
|
|
|
|
if((REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_FIFOP) == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* Check the length */
|
|
len = REG(RFCORE_SFR_RFDATA);
|
|
|
|
/* Check for validity */
|
|
if(len > CC2538_RF_MAX_PACKET_LEN) {
|
|
/* Oops, we must be out of sync. */
|
|
PRINTF("RF: bad sync\n");
|
|
|
|
RIMESTATS_ADD(badsynch);
|
|
CC2538_RF_CSP_ISFLUSHRX();
|
|
return 0;
|
|
}
|
|
|
|
if(len <= CC2538_RF_MIN_PACKET_LEN) {
|
|
PRINTF("RF: too short\n");
|
|
|
|
RIMESTATS_ADD(tooshort);
|
|
CC2538_RF_CSP_ISFLUSHRX();
|
|
return 0;
|
|
}
|
|
|
|
if(len - CHECKSUM_LEN > bufsize) {
|
|
PRINTF("RF: too long\n");
|
|
|
|
RIMESTATS_ADD(toolong);
|
|
CC2538_RF_CSP_ISFLUSHRX();
|
|
return 0;
|
|
}
|
|
|
|
/* If we reach here, chances are the FIFO is holding a valid frame */
|
|
PRINTF("RF: read (0x%02x bytes) = ", len);
|
|
len -= CHECKSUM_LEN;
|
|
|
|
/* Don't bother with uDMA for short frames (e.g. ACKs) */
|
|
if(CC2538_RF_CONF_RX_USE_DMA && len > UDMA_RX_SIZE_THRESHOLD) {
|
|
PRINTF("<uDMA payload>");
|
|
|
|
/* Set the transfer destination's end address */
|
|
udma_set_channel_dst(CC2538_RF_CONF_RX_DMA_CHAN,
|
|
(uint32_t)(buf) + len - 1);
|
|
|
|
/* Configure the control word */
|
|
udma_set_channel_control_word(CC2538_RF_CONF_RX_DMA_CHAN,
|
|
UDMA_RX_FLAGS | udma_xfer_size(len));
|
|
|
|
/* Enabled the RF RX uDMA channel */
|
|
udma_channel_enable(CC2538_RF_CONF_RX_DMA_CHAN);
|
|
|
|
/* Trigger the uDMA transfer */
|
|
udma_channel_sw_request(CC2538_RF_CONF_RX_DMA_CHAN);
|
|
|
|
/* Wait for the transfer to complete. */
|
|
while(udma_channel_get_mode(CC2538_RF_CONF_RX_DMA_CHAN));
|
|
} else {
|
|
for(i = 0; i < len; ++i) {
|
|
((unsigned char *)(buf))[i] = REG(RFCORE_SFR_RFDATA);
|
|
PRINTF("%02x", ((unsigned char *)(buf))[i]);
|
|
}
|
|
}
|
|
|
|
/* Read the RSSI and CRC/Corr bytes */
|
|
rssi = ((int8_t)REG(RFCORE_SFR_RFDATA)) - RSSI_OFFSET;
|
|
crc_corr = REG(RFCORE_SFR_RFDATA);
|
|
|
|
PRINTF("%02x%02x\n", (uint8_t)rssi, crc_corr);
|
|
|
|
/* MS bit CRC OK/Not OK, 7 LS Bits, Correlation value */
|
|
if(crc_corr & CRC_BIT_MASK) {
|
|
packetbuf_set_attr(PACKETBUF_ATTR_RSSI, rssi);
|
|
packetbuf_set_attr(PACKETBUF_ATTR_LINK_QUALITY, crc_corr & LQI_BIT_MASK);
|
|
RIMESTATS_ADD(llrx);
|
|
} else {
|
|
RIMESTATS_ADD(badcrc);
|
|
PRINTF("RF: Bad CRC\n");
|
|
CC2538_RF_CSP_ISFLUSHRX();
|
|
return 0;
|
|
}
|
|
|
|
if(!poll_mode) {
|
|
/* If FIFOP==1 and FIFO==0 then we had a FIFO overflow at some point. */
|
|
if(REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_FIFOP) {
|
|
if(REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_FIFO) {
|
|
process_poll(&cc2538_rf_process);
|
|
} else {
|
|
CC2538_RF_CSP_ISFLUSHRX();
|
|
}
|
|
}
|
|
}
|
|
|
|
return len;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static int
|
|
receiving_packet(void)
|
|
{
|
|
PRINTF("RF: Receiving\n");
|
|
|
|
/*
|
|
* SFD high while transmitting and receiving.
|
|
* TX_ACTIVE high only when transmitting
|
|
*
|
|
* FSMSTAT1 & (TX_ACTIVE | SFD) == SFD <=> receiving
|
|
*/
|
|
return (REG(RFCORE_XREG_FSMSTAT1)
|
|
& (RFCORE_XREG_FSMSTAT1_TX_ACTIVE | RFCORE_XREG_FSMSTAT1_SFD))
|
|
== RFCORE_XREG_FSMSTAT1_SFD;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static int
|
|
pending_packet(void)
|
|
{
|
|
PRINTF("RF: Pending\n");
|
|
|
|
return REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_FIFOP;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static radio_result_t
|
|
get_value(radio_param_t param, radio_value_t *value)
|
|
{
|
|
if(!value) {
|
|
return RADIO_RESULT_INVALID_VALUE;
|
|
}
|
|
|
|
switch(param) {
|
|
case RADIO_PARAM_POWER_MODE:
|
|
*value = (REG(RFCORE_XREG_RXENABLE) && RFCORE_XREG_RXENABLE_RXENMASK) == 0
|
|
? RADIO_POWER_MODE_OFF : RADIO_POWER_MODE_ON;
|
|
return RADIO_RESULT_OK;
|
|
case RADIO_PARAM_CHANNEL:
|
|
*value = (radio_value_t)get_channel();
|
|
return RADIO_RESULT_OK;
|
|
case RADIO_PARAM_PAN_ID:
|
|
*value = get_pan_id();
|
|
return RADIO_RESULT_OK;
|
|
case RADIO_PARAM_16BIT_ADDR:
|
|
*value = get_short_addr();
|
|
return RADIO_RESULT_OK;
|
|
case RADIO_PARAM_RX_MODE:
|
|
*value = 0;
|
|
if(REG(RFCORE_XREG_FRMFILT0) & RFCORE_XREG_FRMFILT0_FRAME_FILTER_EN) {
|
|
*value |= RADIO_RX_MODE_ADDRESS_FILTER;
|
|
}
|
|
if(REG(RFCORE_XREG_FRMCTRL0) & RFCORE_XREG_FRMCTRL0_AUTOACK) {
|
|
*value |= RADIO_RX_MODE_AUTOACK;
|
|
}
|
|
if(poll_mode) {
|
|
*value |= RADIO_RX_MODE_POLL_MODE;
|
|
}
|
|
return RADIO_RESULT_OK;
|
|
case RADIO_PARAM_TX_MODE:
|
|
*value = 0;
|
|
if(send_on_cca) {
|
|
*value |= RADIO_TX_MODE_SEND_ON_CCA;
|
|
}
|
|
return RADIO_RESULT_OK;
|
|
case RADIO_PARAM_TXPOWER:
|
|
*value = get_tx_power();
|
|
return RADIO_RESULT_OK;
|
|
case RADIO_PARAM_CCA_THRESHOLD:
|
|
*value = get_cca_threshold();
|
|
return RADIO_RESULT_OK;
|
|
case RADIO_PARAM_RSSI:
|
|
*value = get_rssi();
|
|
return RADIO_RESULT_OK;
|
|
case RADIO_PARAM_LAST_RSSI:
|
|
*value = rssi;
|
|
return RADIO_RESULT_OK;
|
|
case RADIO_PARAM_LAST_LINK_QUALITY:
|
|
*value = crc_corr & LQI_BIT_MASK;
|
|
return RADIO_RESULT_OK;
|
|
case RADIO_CONST_CHANNEL_MIN:
|
|
*value = CC2538_RF_CHANNEL_MIN;
|
|
return RADIO_RESULT_OK;
|
|
case RADIO_CONST_CHANNEL_MAX:
|
|
*value = CC2538_RF_CHANNEL_MAX;
|
|
return RADIO_RESULT_OK;
|
|
case RADIO_CONST_TXPOWER_MIN:
|
|
*value = OUTPUT_POWER_MIN;
|
|
return RADIO_RESULT_OK;
|
|
case RADIO_CONST_TXPOWER_MAX:
|
|
*value = OUTPUT_POWER_MAX;
|
|
return RADIO_RESULT_OK;
|
|
default:
|
|
return RADIO_RESULT_NOT_SUPPORTED;
|
|
}
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static radio_result_t
|
|
set_value(radio_param_t param, radio_value_t value)
|
|
{
|
|
switch(param) {
|
|
case RADIO_PARAM_POWER_MODE:
|
|
if(value == RADIO_POWER_MODE_ON) {
|
|
on();
|
|
return RADIO_RESULT_OK;
|
|
}
|
|
if(value == RADIO_POWER_MODE_OFF) {
|
|
off();
|
|
return RADIO_RESULT_OK;
|
|
}
|
|
return RADIO_RESULT_INVALID_VALUE;
|
|
case RADIO_PARAM_CHANNEL:
|
|
if(value < CC2538_RF_CHANNEL_MIN ||
|
|
value > CC2538_RF_CHANNEL_MAX) {
|
|
return RADIO_RESULT_INVALID_VALUE;
|
|
}
|
|
if(set_channel(value) == CC2538_RF_CHANNEL_SET_ERROR) {
|
|
return RADIO_RESULT_ERROR;
|
|
}
|
|
return RADIO_RESULT_OK;
|
|
case RADIO_PARAM_PAN_ID:
|
|
set_pan_id(value & 0xffff);
|
|
return RADIO_RESULT_OK;
|
|
case RADIO_PARAM_16BIT_ADDR:
|
|
set_short_addr(value & 0xffff);
|
|
return RADIO_RESULT_OK;
|
|
case RADIO_PARAM_RX_MODE:
|
|
if(value & ~(RADIO_RX_MODE_ADDRESS_FILTER |
|
|
RADIO_RX_MODE_AUTOACK |
|
|
RADIO_RX_MODE_POLL_MODE)) {
|
|
return RADIO_RESULT_INVALID_VALUE;
|
|
}
|
|
|
|
set_frame_filtering((value & RADIO_RX_MODE_ADDRESS_FILTER) != 0);
|
|
set_auto_ack((value & RADIO_RX_MODE_AUTOACK) != 0);
|
|
set_poll_mode((value & RADIO_RX_MODE_POLL_MODE) != 0);
|
|
|
|
return RADIO_RESULT_OK;
|
|
case RADIO_PARAM_TX_MODE:
|
|
if(value & ~(RADIO_TX_MODE_SEND_ON_CCA)) {
|
|
return RADIO_RESULT_INVALID_VALUE;
|
|
}
|
|
set_send_on_cca((value & RADIO_TX_MODE_SEND_ON_CCA) != 0);
|
|
return RADIO_RESULT_OK;
|
|
case RADIO_PARAM_TXPOWER:
|
|
if(value < OUTPUT_POWER_MIN || value > OUTPUT_POWER_MAX) {
|
|
return RADIO_RESULT_INVALID_VALUE;
|
|
}
|
|
|
|
set_tx_power(value);
|
|
return RADIO_RESULT_OK;
|
|
case RADIO_PARAM_CCA_THRESHOLD:
|
|
set_cca_threshold(value);
|
|
return RADIO_RESULT_OK;
|
|
default:
|
|
return RADIO_RESULT_NOT_SUPPORTED;
|
|
}
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static radio_result_t
|
|
get_object(radio_param_t param, void *dest, size_t size)
|
|
{
|
|
uint8_t *target;
|
|
int i;
|
|
|
|
if(param == RADIO_PARAM_64BIT_ADDR) {
|
|
if(size != 8 || !dest) {
|
|
return RADIO_RESULT_INVALID_VALUE;
|
|
}
|
|
|
|
target = dest;
|
|
for(i = 0; i < 8; i++) {
|
|
target[i] = ((uint32_t *)RFCORE_FFSM_EXT_ADDR0)[7 - i] & 0xFF;
|
|
}
|
|
|
|
return RADIO_RESULT_OK;
|
|
}
|
|
|
|
if(param == RADIO_PARAM_LAST_PACKET_TIMESTAMP) {
|
|
if(size != sizeof(rtimer_clock_t) || !dest) {
|
|
return RADIO_RESULT_INVALID_VALUE;
|
|
}
|
|
*(rtimer_clock_t *)dest = get_sfd_timestamp();
|
|
return RADIO_RESULT_OK;
|
|
}
|
|
|
|
return RADIO_RESULT_NOT_SUPPORTED;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static radio_result_t
|
|
set_object(radio_param_t param, const void *src, size_t size)
|
|
{
|
|
int i;
|
|
|
|
if(param == RADIO_PARAM_64BIT_ADDR) {
|
|
if(size != 8 || !src) {
|
|
return RADIO_RESULT_INVALID_VALUE;
|
|
}
|
|
|
|
for(i = 0; i < 8; i++) {
|
|
((uint32_t *)RFCORE_FFSM_EXT_ADDR0)[i] = ((uint8_t *)src)[7 - i];
|
|
}
|
|
|
|
return RADIO_RESULT_OK;
|
|
}
|
|
return RADIO_RESULT_NOT_SUPPORTED;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
const struct radio_driver cc2538_rf_driver = {
|
|
init,
|
|
prepare,
|
|
transmit,
|
|
send,
|
|
read,
|
|
channel_clear,
|
|
receiving_packet,
|
|
pending_packet,
|
|
on,
|
|
off,
|
|
get_value,
|
|
set_value,
|
|
get_object,
|
|
set_object
|
|
};
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* \brief Implementation of the cc2538 RF driver process
|
|
*
|
|
* This process is started by init(). It simply sits there waiting for
|
|
* an event. Upon frame reception, the RX ISR will poll this process.
|
|
* Subsequently, the contiki core will generate an event which will
|
|
* call this process so that the received frame can be picked up from
|
|
* the RF RX FIFO
|
|
*
|
|
*/
|
|
PROCESS_THREAD(cc2538_rf_process, ev, data)
|
|
{
|
|
int len;
|
|
PROCESS_BEGIN();
|
|
|
|
while(1) {
|
|
/* Only if we are not in poll mode oder we are in poll mode and transceiver has to be reset */
|
|
PROCESS_YIELD_UNTIL((!poll_mode || (poll_mode && (rf_flags & RF_MUST_RESET))) && (ev == PROCESS_EVENT_POLL));
|
|
|
|
if(!poll_mode) {
|
|
packetbuf_clear();
|
|
len = read(packetbuf_dataptr(), PACKETBUF_SIZE);
|
|
|
|
if(len > 0) {
|
|
packetbuf_set_datalen(len);
|
|
|
|
NETSTACK_RDC.input();
|
|
}
|
|
}
|
|
|
|
/* If we were polled due to an RF error, reset the transceiver */
|
|
if(rf_flags & RF_MUST_RESET) {
|
|
uint8_t was_on;
|
|
rf_flags = 0;
|
|
|
|
/* save state so we know if to switch on again after re-init */
|
|
if((REG(RFCORE_XREG_FSMSTAT0) & RFCORE_XREG_FSMSTAT0_FSM_FFCTRL_STATE) == 0) {
|
|
was_on = 0;
|
|
} else {
|
|
was_on = 1;
|
|
}
|
|
off();
|
|
init();
|
|
if(was_on) {
|
|
/* switch back on */
|
|
on();
|
|
}
|
|
}
|
|
}
|
|
|
|
PROCESS_END();
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* \brief The cc2538 RF RX/TX ISR
|
|
*
|
|
* This is the interrupt service routine for all RF interrupts relating
|
|
* to RX and TX. Error conditions are handled by cc2538_rf_err_isr().
|
|
* Currently, we only acknowledge the FIFOP interrupt source.
|
|
*/
|
|
void
|
|
cc2538_rf_rx_tx_isr(void)
|
|
{
|
|
ENERGEST_ON(ENERGEST_TYPE_IRQ);
|
|
|
|
if(!poll_mode) {
|
|
process_poll(&cc2538_rf_process);
|
|
}
|
|
|
|
/* We only acknowledge FIFOP so we can safely wipe out the entire SFR */
|
|
REG(RFCORE_SFR_RFIRQF0) = 0;
|
|
|
|
ENERGEST_OFF(ENERGEST_TYPE_IRQ);
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* \brief The cc2538 RF Error ISR
|
|
*
|
|
* This is the interrupt service routine for all RF errors. We
|
|
* acknowledge every error type and instead of trying to be smart and
|
|
* act differently depending on error condition, we simply reset the
|
|
* transceiver. RX FIFO overflow is an exception, we ignore this error
|
|
* since read() handles it anyway.
|
|
*
|
|
* However, we don't want to reset within this ISR. If the error occurs
|
|
* while we are reading a frame out of the FIFO, trashing the FIFO in
|
|
* the middle of read(), would result in further errors (RX underflows).
|
|
*
|
|
* Instead, we set a flag and poll the driver process. The process will
|
|
* reset the transceiver without any undesirable consequences.
|
|
*/
|
|
void
|
|
cc2538_rf_err_isr(void)
|
|
{
|
|
ENERGEST_ON(ENERGEST_TYPE_IRQ);
|
|
|
|
PRINTF("RF Error: 0x%08lx\n", REG(RFCORE_SFR_RFERRF));
|
|
|
|
/* If the error is not an RX FIFO overflow, set a flag */
|
|
if(REG(RFCORE_SFR_RFERRF) != RFCORE_SFR_RFERRF_RXOVERF) {
|
|
rf_flags |= RF_MUST_RESET;
|
|
}
|
|
|
|
REG(RFCORE_SFR_RFERRF) = 0;
|
|
|
|
process_poll(&cc2538_rf_process);
|
|
|
|
ENERGEST_OFF(ENERGEST_TYPE_IRQ);
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
void
|
|
cc2538_rf_set_promiscous_mode(char p)
|
|
{
|
|
set_frame_filtering(p);
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
/** @} */
|