dos33fsprogs/fac/plasma_opt.s

229 lines
4.3 KiB
ArmAsm
Raw Normal View History

2023-09-07 00:21:33 -04:00
; code to use the FAC (floating point accumulator)
; to generate plasmagoria sine tables
; 232 bytes = initial implementation
; 218 bytes = increment high byte of destination instead of loading
; 208 bytes = modify 1->4 on the fly
; 205 bytes = make page increment common code
; 198 bytes = convert thirty-two to twenty-four on fly
; 188 bytes = convert forty-seven to thirty-eight with one byte
2023-09-07 00:59:25 -04:00
; 173 bytes = assume constants on same page
; 171 bytes = optimize save/load of loop index
; 169 bytes = optimize multiply by 8
2023-09-07 01:41:10 -04:00
; 166 bytes = separate common sin code
2023-09-07 01:50:55 -04:00
; 164 bytes = move more to common sin code
2023-09-07 01:59:31 -04:00
; 162 bytes = move more to common sin code
2023-09-07 00:21:33 -04:00
qint = $EBF2 ; convert FAC to 32-bit int?
fadd = $E7BE ; FAC = (Y:A)+FAC
movmf = $EB2B ; move fac to mem: round FAC and store at Y:X
fmult = $E97F ; FAC = (Y:A) * FAC
float = $EB93 ; signed value in A to FAC
sin = $EFF1
ARG = $A5 ; A5-AA
FAC = $9D ; 9D-A2
; code uses: 5E/5F "index" in load arg from Y:A
; uses ARG (A5-AA) for argument
; uses FAC (9D-A2)
2023-09-07 01:50:55 -04:00
TEMP1 = $FE
2023-09-07 00:21:33 -04:00
OURX = $FF
sin1 = $2000
sin2 = $2100
sin3 = $2200
save = $2300
HGR = $F3E2
FULLGR = $C052
add_debut:
jsr HGR
bit FULLGR
;====================================================
; sin1[i]=round(47.0+
; 32.0*sin(i*(PI*2.0/256.0))+
; 16.0*sin(2.0*i*(PI*2.0/256.0)));
2023-09-07 00:59:25 -04:00
; sin1[i]=round(47.0+
; 16*(2.0*sin(i*(PI*2.0/256.0))+
; sin(2.0*i*(PI*2.0/256.0)));
2023-09-07 00:21:33 -04:00
; already set up for this one
jsr make_sin_table
;===================================================
; sin2[i]=round(47.0+
; 32.0*sin(4.0*i*(PI*2.0/256.0))+
; 16.0*sin(3.0*i*(PI*2.0/256.0)));
; 47 is same, 32 is same, 16 is same
; convert one to four
lda #$7d ; only one byte different
sta one_input
2023-09-07 00:59:25 -04:00
; load 3 instead of 2 (assume on same page)
2023-09-07 00:21:33 -04:00
lda #<three_input
sta sin_table_input3_smc+1
jsr make_sin_table
;======================================================
; sin3[i]=round(38.0+
; 24.0*sin(3.0*i*(PI*2.0/256.0))+
; 16.0*sin(8.0*i*(PI*2.0/256.0)));
; convert 47 to 38
lda #$18
sta forty_seven+1
; convert 32 to 24
dec thirty_two
lda #$40
sta thirty_two+1
2023-09-07 00:59:25 -04:00
; ideally, convert 4->3
; load 3 input (assume on same page)
2023-09-07 00:21:33 -04:00
lda #<three_input
sta sin_table_input1_smc+1
2023-09-07 00:59:25 -04:00
; convert four to eight
inc one_input ; increment power of two
; load 8 input (assume on same page)
lda #<one_input
2023-09-07 00:21:33 -04:00
sta sin_table_input3_smc+1
jsr make_sin_table
end:
jmp end
;===============================
;===============================
;===============================
;===============================
;===============================
make_sin_table:
2023-09-07 00:59:25 -04:00
ldx #0
2023-09-07 00:21:33 -04:00
sin_loop:
2023-09-07 00:59:25 -04:00
stx OURX
2023-09-07 00:21:33 -04:00
sin_table_input1_smc:
lda #<one_input
2023-09-07 01:41:10 -04:00
; thirtytwo or twentyfour
2023-09-07 01:50:55 -04:00
ldx #<thirty_two
2023-09-07 00:21:33 -04:00
2023-09-07 01:50:55 -04:00
jsr sin_common
2023-09-07 00:59:25 -04:00
2023-09-07 00:21:33 -04:00
jsr movmf ; save FAC to mem
sin_table_input3_smc:
lda #<two_input
2023-09-07 01:50:55 -04:00
; always 16
ldx #<sixteen
2023-09-07 00:21:33 -04:00
2023-09-07 01:41:10 -04:00
jsr sin_common
2023-09-07 00:21:33 -04:00
; add first sine
2023-09-07 01:50:55 -04:00
txa
2023-09-07 00:21:33 -04:00
jsr fadd ; FAC=FAC+(previous result)
2023-09-07 00:59:25 -04:00
; add constant 47 or 38
2023-09-07 00:21:33 -04:00
lda #<forty_seven
ldy #>forty_seven
jsr fadd ; FAC=FAC+constant
jsr qint ; convert to integer
lda FAC+4 ; get bottom byte
ldx OURX
sin_table_dest_smc:
sta sin1,X ; save to memory
2023-09-07 00:59:25 -04:00
inx ; move to next
2023-09-07 00:21:33 -04:00
bne sin_loop ; loop until done
inc sin_table_dest_smc+2 ; point to next location
rts
2023-09-07 01:41:10 -04:00
;==============================
; sin_common
;==============================
; A = low byte for input multiplier
2023-09-07 01:50:55 -04:00
; X = low byte for result multiplier
2023-09-07 00:59:25 -04:00
sin_common:
2023-09-07 01:50:55 -04:00
stx TEMP1
2023-09-07 01:59:31 -04:00
pha
lda OURX
jsr float ; FAC = float(OURX) (again)
pla
2023-09-07 01:50:55 -04:00
ldy #>one_input ; high byte, assume always same
2023-09-07 00:59:25 -04:00
jsr fmult ; FAC=FAC*(constant from RAM)
jsr sin ; FAC=sin(FAC)
2023-09-07 01:50:55 -04:00
ldy #>thirty_two ; high byte, assume always same
lda TEMP1
jsr fmult ; FAC=constant*FAC
ldy #>save
ldx #<save
2023-09-07 00:59:25 -04:00
2023-09-07 01:41:10 -04:00
rts
2023-09-07 00:21:33 -04:00
sixteen:
.byte $85,$00,$00,$00,$00
;twenty_four:
; .byte $85,$40,$00,$00,$00
thirty_two:
.byte $86,$00,$00,$00,$00
;thirty_eight:
; .byte $86,$18,$00,$00,$00
; 2^5 = 32, 1.0011 0000 = 1/8+1/16
forty_seven:
.byte $86,$3C,$00,$00,$00
; 32 * 1.0111 10000 = 1/4+1/8+1/16+1/32
one_input:
; 1*2*pi/256 = .0736310778
.byte $7b,$49,$0F,$da,$a2
two_input:
; 2*2*pi/256 = .0736310778
.byte $7c,$49,$0F,$da,$a2
three_input:
; 3*2*pi/256 = .0736310778
.byte $7d,$16,$cb,$e3,$f9
;four_input:
; ; 4*2*pi/256 = .0736310778
; .byte $7d,$49,$0F,$da,$a2
2023-09-07 00:59:25 -04:00
;eight_input:
; ; 8*2*pi/256 = .196349541
; .byte $7E,$49,$0F,$da,$a2
2023-09-07 00:21:33 -04:00