dos33fsprogs/games/peasant/qboot_stage2.s

633 lines
11 KiB
ArmAsm

; the following lives on sectors $0E and $0D
; why?
; request sector 2 and 4, and the interleave is
; beneath apple dos (3-23)
; Physical (firmware) : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
; DOS33 mapping : 0, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 15
; Beneath Apple DOS
; p86 (dos reference)
;
;WAIT = $FCA8 ;; delay 1/2(26+27A+5A^2) us
.org $900
code_begin:
.byte version
readnib:
slotpatch1: ; smc
lda $c0d1 ; gets set to C08C (Q6L) read
bpl readnib
rts
;===============================
;===============================
;===============================
; seek then read
;===============================
;===============================
;===============================
; Y = starting sector
; A = page to read into
; X = number of sectors to read
;fill address array for one track
seekread:
sty startsec+1
sta tmpadr_smc+1
stx total+1
inittrk:
sec
lda #$10
sbc startsec+1
cmp total+1
bcs it_skip
tax
it_skip:
stx partial1
stx partial2
jsr seek
startsec:
ldy #$d1
;===========================================
; fill in table of addresses we want to read
; corresponding to sectors on the track
; if they are 0, it means we don't need it
tmpadr_loop:
tmpadr_smc:
lda #$d1
sta addrtbl, y
inc tmpadr_smc+1
iny
dec partial1
bne tmpadr_loop
;====================================
; read a sector
;====================================
; first address field
;====================================
; starts with $D5 $AA $96
; then XX YY volume
; then XX YY track
; then XX YY sector
; then XX YY checksum
; then ends with $DE $AA $EB
;====================================
; data field
;====================================
; starts with $D5 $AA $AD
; 342 bytes of data
; XX checksum
; ends with $DE $AA $EB
read:
ldx #0 ; if we don't set this, bad things can happen
; if we start on a data field w/o setting
; the sector first
outer_read:
jsr readnib
inner_read:
cmp #$d5 ; look for $D5 part of addr field
bne outer_read
jsr readnib ; look for $D5 $AA
cmp #$aa
bne inner_read
; look for $D5 $AA $AD
tay ; we need Y=#$AA later
jsr readnib
eor #$ad ; zero A if match
beq check_mode ; WHY?
; if not #$AD, then #$96 is assumed
; so in address field
; following are volume, track, sector
ldy #2 ; volume, track, sector
another:
; these are stored in a weird 4+4 format and this is how
; you decode them
jsr readnib
rol
sta sector_smc+1
jsr readnib
and sector_smc+1 ; now A has the value
dey ; work through the values
bpl another
tay ; A should be sector#?
; Y is now sector # VMW
ldx addrtbl, Y ; fetch corresponding address
; in table.
beq outer_read ; if address 0, not valid, try again
sta sector_smc+1 ; store sector for later
stx adrpatch1+2 ; store address to all of these
stx adrpatch8+2
stx adrpatch2+2
stx adrpatch3+2
stx adrpatch5+2
stx adrpatch7+2
inx
stx adrpatch9+2 ; store address+1 here
dex
dex
stx adrpatch4+2 ; store address-1 here?
stx adrpatch6+2
ldy #$fe ; Y=-2
loop2:
adrpatch1:
lda $d102, Y
pha
iny
bne loop2
branch_read:
bcs outer_read ; branch always
check_mode:
cpx #0
beq outer_read ; loop if not expecting #$AD
loop33:
sta tmpval_smc+1 ; zero rolling checksum
slotpatch2:
loop4:
ldx $c0d1
bpl loop4
lda preshift-$96, X
adrpatch2:
sta $d102, Y ; store 2-bit array
tmpval_smc:
eor #$d1
iny
bne loop33
ldy #$aa
slotpatch3:
loop5:
ldx $c0d1
bpl loop5
eor preshift-$96, X
adrpatch3:
ldx $d102, Y ; bit2tbl
eor grouped+2, X ; first 86 nibbles use group bits 0-1
adrpatch4:
sta $d156, y
iny
bne loop5
and #$fc
ldy #$aa
slotpatch4:
loop6:
ldx $c0d1
bpl loop6
eor preshift-$96, X
adrpatch5:
ldx $d102, Y ; bit2tbl
eor grouped+1, X ; second 86 nibbles use group bits 2-3
adrpatch6:
sta $d1ac, Y
iny
bne loop6
and #$fc
ldx #$ac
slotpatch5:
loop7:
ldy $c0d1
bpl loop7
eor preshift-$96, Y
adrpatch7:
ldy $d100, X ; bit2tbl
eor grouped, Y ; last 84 nibbles use group bits 4-5
adrpatch8:
sta $d100, x
inx
bne loop7
and #$fc
slotpatch6:
loop8:
ldy $c0d1
bpl loop8
eor preshift-$96, Y
cmp #1 ; carry = !zero
ldy #1
loop9:
pla
adrpatch9:
sta $d100, Y
dey
bpl loop9
branch_read2:
bcs branch_read ; branch if checksum failure
sector_smc:
ldy #$d1
txa
sta addrtbl, Y ; zero corresponding address
dec total+1
dec partial2 ; adjust remaining count
; (faster than looping over array)
sec
bne branch_read2 ; read all requested sectors in one track
sta startsec+1 ; this was missing from original code
; leading to trouble on wrap around
; it not starting at sector0
total:
ldx #$d1
beq driveoff
inc phase_smc+1
inc phase_smc+1 ; update current track
jmp inittrk
driveoff:
slotpatch7:
lda $c0d1
rts
;=================================
;=================================
; seek, SEEK!
;=================================
;=================================
; phase_smc+1 = track*2 to seek to
; curtrk+1 = current track
; due to problems when switching drive1/drive
; we include here instead the larger but less fancy
; seek from PRORWTS
; "no tricks here, just the regular stuff" -- qkumba
step = $CC ;(internal) state for stepper motor
;tmptrk = $CD ;(internal) temporary copy of current track
;phase = $CE ;(internal) current phase for seek
;tmpsec = $3c
; X = destination track
; Y = 0
;cu;rtrk_smc:
; lda #0
seek:
;p;hase_smc:
; lda #0
; sta phase
curtrk_smc:
lda #0
ldy #0 ; added
sty step
; asl phase
; txa ; get destination in A
; asl ; multiply to get half track
copy_cur:
tax ; current track
sta tmpval_smc+1 ;tmptrk ; save current track for later
; calculate direction to seek
sec
phase_smc:
sbc #$d1 ; track *2 to seek to?
beq done_seek ; if match, we're there
; update direction
bcs seeking_out ; if positive, seeking out toward T34
seeking_in:
eor #$ff ; negate the result?
inx ; move current track inward
bcc seek_dir_done
seeking_out:
sbc #1 ; difference -1 (carry is set here)
dex ; move current track outward
seek_dir_done:
cmp step ; compare to step
bcc skip_set_step ; if below minimum, don't change?
lda step ; load step value
skip_set_step:
; set acceleration/momentum
cmp #8 ; see if > 8
; our momentum table is 8
; (DOS3.3 it's 12)
; Y maxes out if over 8
bcs skip_update_momentum
tay ; acceleration offset in Y
sec ; carry set is phase on
skip_update_momentum:
txa ; current track in A
pha ; save for later
ldx phase_on_time, Y ; load on time from table
done_seek: ; +++
php ; save flags(?)
bne skip_p ; bra?
loop_mmm:
clc ; set phase off
lda tmpval_smc+1 ;tmptrk ; restore saved track
ldx phase_off_time, Y ; get off time from table
skip_p:
stx sector_smc+1 ;tmpsec ; why
and #3 ; mask to 1 of 3 phases
rol ; multiply by 2, set low bit to carry
; carry holds on/off
tax
lsr ; get low bit in carry for later
; but must do before A destroyed
;unrseek=unrelocdsk+(*-reloc)
slotpatch8:
lda $C0D1, X
seek_delay:
; delay 2+(19*5)-1 = 97 cycles, + 6+2 = 105 cycles = ~100us
seek_delay_outer:
ldx #$13 ; 2
seek_delay_inner:
dex ; 2
bne seek_delay_inner ; 2/3
dec sector_smc+1 ;tmpsec ; 6 holds on/off delay time
bne seek_delay_outer ; 2/3
seek_delay_end:
; C is from the LSR previously? so phase bit
bcs loop_mmm ; if carry set, try again phase off
plp ; restore?
beq seekret ; if zero we were done
pla ; restore current track
inc step ; increment step count
bne copy_cur ; (bra) try again
seekret:
; update current track
ldx phase_smc+1
stx curtrk_smc+1
; the DOS3.3 RWTS waits 25ms after seeking for things to settle
rts
;curtrk_smc: ; FIXME
; lda #0
.if 0
seek:
ldx #0 ; reset acceleration count?
stx step_smc+1
copy_cur:
curtrk_smc:
lda #0 ; current track
sta tmpval_smc+1 ; save current track for later
; calculate direction to seek
sec
phase_smc:
sbc #$d1 ; track*2 to seek to
beq seekret ; if equal, we are already there
; so we are done
; A is distance, update direction
bcs seeking_out ; if positive, seeking out to 34
seeking_in:
eor #$ff ; negate the result? (why?)
inc curtrk_smc+1 ; move track counter inward
bcc ssback ; bra
seeking_out:
adc #$fe ; difference -=1 (carry always 1)
dec curtrk_smc+1 ; move track counter outward
ssback:
cmp step_smc+1 ; compare to step
bcc skip_set_step ; if below minimum, don't change?
;================================
; step the proper length of time
; taking into account momentum?
step_smc:
lda #$d1 ; load step value
skip_set_step:
; set acceleration (???)
cmp #8 ; see if >8
; our on/off
; tables only 8 bytes long
; (dos33 they are 12?)
; what is Y in that case?
; apparently in maxes out
bcs skip11
tay ; acceleration offset in Y
do_phase_on:
sec ; carry set is phase on
skip11:
lda curtrk_smc+1 ; current track in A
ldx phase_on_time, Y ; get phase on time in X
bne do_phase_common ; (bra?)
do_phase_off:
clc ; carry set, phase off
lda tmpval_smc+1 ; restore original track
ldx phase_off_time, Y ; get phase off time in X
do_phase_common:
stx sector_smc+1
; A is the track?
and #3 ; mask to 1 of 4 phases
rol ; double to the 8 phase on/off
; with carry the on/off
tax
slotpatch8:
sta $c0d1, X ; flip the phase
; C080...C087 seeks inward (toward 34)
; C087...C080 seeks outward (to 0)
seek_delay:
seek_delay_outer:
; inner delay
; delay 2+(19*5)-1 = 97 cycles, + 6+2 = 105 cycles = ~100us
ldx #$13 ; 2
seek_delay_inner:
dex ; 2
bne seek_delay_inner ; 2/3
dec sector_smc+1 ; 6 holds the on/off delay time
bne seek_delay_outer ; 2/3
seek_delay_end:
lsr ; bottom bit of A here
; is the carry bit
; from phase on/off
bcs do_phase_off ; repeat, this time off
inc step_smc+1 ; increment step count
bne copy_cur ; bra(?) back to beginning
.endif
; phase on/off tables, in 100us multiples
phase_on_time: .byte $01, $30, $28, $24, $20, $1e, $1d, $1c
phase_off_time: .byte $70, $2c, $26, $22, $1f, $1e, $1d, $1c
addrtbl: .res 16
partial1: .byte $00
partial2: .byte $00
;==========================
; enable drive motor
;==========================
driveon:
slotpatch9:
lda $c0d1 ; turn drive on first
; then you select drive
driveon_disk1:
slotpatch10:
lda $C0d1 ; drive 1 select
; jmp done_drive_select
; this could be more compact
lda CURRENT_DRIVE
cmp #2
bne done_drive_select
driveon_disk2:
slotpatch11:
lda $C0d1 ; drive 2 select
done_drive_select:
; wait 1s
; WAIT takes 1/2(26+27A+5A^2) us
; so for A=255 = (26+6885 +325125)*1/2 = 166018s *6 = ~1s
; 6, 5, 4, 3, 2, 1
wait_1s:
ldx #6 ; 2
wait_1s_loop:
lda #255 ; 2
jsr wait ; 6
dex ; 2
bne wait_1s_loop
rts
load_new:
jsr driveon
lda load_track
asl ; track to start*2
sta phase_smc+1
lda load_sector
tay ; sector to start
lda load_length ; length
tax
lda load_address ; address to load
jsr seekread
rts
load_address:
.byte $00
load_track:
.byte $00
load_sector:
.byte $00
load_length:
.byte $00
.include "wait.s"
code_end:
.assert (>seek_delay_end - >seek_delay) < 1 , error, "seek delay spans page"