dos33fsprogs/gr-sim/tfv_flying.c
2017-08-24 14:40:33 -04:00

784 lines
14 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
#include "gr-sim.h"
#include "tfv_utils.h"
#include "tfv_zp.h"
#include "tfv_sprites.h"
/* Mode7 code based on code from: */
/* http://www.helixsoft.nl/articles/circle/sincos.htm */
static unsigned char flying_map[64]= {
2,15,15,15, 15,15,15, 2,
13,12,12, 8, 4, 4, 0,13,
13,12,12,12, 8, 4, 4,13,
13,12,12, 8, 4, 4, 4,13,
13,12, 9, 9, 8, 4, 4,13,
13,12, 9, 8, 4, 4, 4,13,
13,12, 9, 9, 1, 4, 4,13,
2,13,13,13, 13,13,13, 2};
#define TILE_W 64
#define TILE_H 64
#define MASK_X (TILE_W - 1)
#define MASK_Y (TILE_H - 1)
#define LOWRES_W 40
#define LOWRES_H 40
static int lookup_map(int x, int y) {
int color;
color=2;
x=x&MASK_X;
y=y&MASK_Y;
if ( ((y&0x3)==1) && ((x&7)==0) ) color=14;
if ( ((y&0x3)==3) && ((x&7)==4) ) color=14;
if ((y<8) && (x<8)) {
color=flying_map[(y*8)+x];
}
/* 2 2 2 2 2 2 2 2 */
/* 14 14 2 2 2 2 2 2 */
/* 2 2 2 2 14 14 2 2 */
/* 2 2 2 2 2 2 2 2 */
return color;
}
static int over_water;
// current screen position
static int screen_x, screen_y;
static char angle=0;
#if 1
struct fixed_type {
char i;
unsigned char f;
};
#if 0
// map coordinates
struct fixed_type speed = {0,0};
// step for points in space between two pixels on a horizontal line
struct fixed_type line_dx = {0,0};
struct fixed_type line_dy = {0,0};
// current space position
// height of the camera above the plane
struct fixed_type space_z= {0x04,0x80}; // 4.5;
struct fixed_type BETA = {0xff,0x80}; // -0.5;
#else
// map coordinates
static double double_cx;
static double double_cy;
static struct fixed_type cx = {0,0};
static struct fixed_type cy = {0,0};
static struct fixed_type dx;
static struct fixed_type dy;
#define SPEED_STOPPED 0
static unsigned char speed=SPEED_STOPPED; // 0..4, with 0=stopped
// the distance and horizontal scale of the line we are drawing
static double double_distance=0;
static double double_horizontal_scale=0;
static struct fixed_type distance;
static struct fixed_type horizontal_scale;
// step for points in space between two pixels on a horizontal line
static double line_dx=0;
static double line_dy=0;
// current space position
static double double_space_x,double_space_y;
static struct fixed_type space_x;
static struct fixed_type space_y;
// height of the camera above the plane
static double space_z=4.5;
static double BETA=-0.5;
#endif
static int horizon=-2; // number of pixels line 0 is below the horizon
static double SCALE=16.0;
#define ANGLE_STEPS 16
// FIXME: take advantage of symmetry?
static struct fixed_type fixed_sin[ANGLE_STEPS]={
{0x00,0x00}, // 0.000000=00.00
{0x00,0x61}, // 0.382683=00.61
{0x00,0xb5}, // 0.707107=00.b5
{0x00,0xec}, // 0.923880=00.ec
{0x01,0x00}, // 1.000000=01.00
{0x00,0xec}, // 0.923880=00.ec
{0x00,0xb5}, // 0.707107=00.b5
{0x00,0x61}, // 0.382683=00.61
{0x00,0x00}, // 0.000000=00.00
{0xff,0x9f}, // -0.382683=ff.9f
{0xff,0x4b}, // -0.707107=ff.4b
{0xff,0x14}, // -0.923880=ff.14
{0xff,0x00}, // -1.000000=ff.00
{0xff,0x14}, // -0.923880=ff.14
{0xff,0x4b}, // -0.707107=ff.4b
{0xff,0x9f}, // -0.382683=ff.9f
};
// div by 8
static struct fixed_type fixed_sin_scale[ANGLE_STEPS]={
{0x00,0x00},
{0x00,0x0c},
{0x00,0x16},
{0x00,0x1d},
{0x00,0x20},
{0x00,0x1d},
{0x00,0x16},
{0x00,0x0c},
{0x00,0x00},
{0xff,0xf4},
{0xff,0xea},
{0xff,0xe3},
{0xff,0xe0},
{0xff,0xe3},
{0xff,0xea},
{0xff,0xf4},
};
static double sin_table[ANGLE_STEPS]={
0.000000,
0.382683,
0.707107,
0.923880,
1.000000,
0.923880,
0.707107,
0.382683,
0.000000,
-0.382683,
-0.707107,
-0.923880,
-1.000000,
-0.923880,
-0.707107,
-0.382683,
};
static double our_sin(unsigned char angle) {
return sin_table[angle&0xf];
}
static double our_cos(unsigned char angle) {
return sin_table[(angle+4)&0xf];
}
static void fixed_to_double(struct fixed_type *f, double *d) {
*d=f->i;
*d+=((double)(f->f))/256.0;
}
static void fixed_add(struct fixed_type *x, struct fixed_type *y, struct fixed_type *z) {
int carry;
short sum;
sum=(short)(x->f)+(short)(y->f);
if (sum>=256) carry=1;
else carry=0;
z->f=sum&0xff;
z->i=x->i+y->i+carry;
}
static void double_to_fixed(double d, struct fixed_type *f) {
int temp;
temp=d*256;
f->i=(temp>>8)&0xff;
f->f=temp&0xff;
}
static void fixed_mul(struct fixed_type *x, struct fixed_type *y, struct fixed_type *z) {
int a,b,c;
a=((x->i)<<8)+(x->f);
b=((y->i)<<8)+(y->f);
c=a*b;
c>>=8;
z->i=(c>>8);
z->f=(c&0xff);
}
//
// Non-detailed version
//
//
void draw_background_mode7(void) {
int map_color;
over_water=0;
/* Draw Sky */
/* Originally wanted to be fancy and have sun too, but no */
color_equals(COLOR_MEDIUMBLUE);
for(screen_y=0;screen_y<6;screen_y+=2) {
hlin_double(ram[DRAW_PAGE], 0, 40, screen_y);
}
/* Draw hazy horizon */
color_equals(COLOR_GREY);
hlin_double(ram[DRAW_PAGE], 0, 40, 6);
for (screen_y = 8; screen_y < LOWRES_H; screen_y+=2) {
// then calculate the horizontal scale, or the distance between
// space points on this horizontal line
double_horizontal_scale = space_z / (screen_y + horizon);
double_to_fixed(double_horizontal_scale,&horizontal_scale);
// calculate the distance of the line we are drawing
double_distance = double_horizontal_scale * SCALE;
double_to_fixed(double_distance,&distance);
// printf("Distance=%lf, horizontal-scale=%lf\n",
// distance,horizontal_scale);
// calculate the dx and dy of points in space when we step
// through all points on this line
dx.i=fixed_sin[(angle+8)&0xf].i; // -sin()
dx.f=fixed_sin[(angle+8)&0xf].f; // -sin()
fixed_mul(&dx,&horizontal_scale,&dx);
dy.i=fixed_sin[(angle+4)&0xf].i; // cos()
dy.f=fixed_sin[(angle+4)&0xf].f; // cos()
fixed_mul(&dy,&horizontal_scale,&dy);
fixed_to_double(&dx,&line_dx);
fixed_to_double(&dy,&line_dy);
// Move camera back a bit
double factor;
factor=space_z*BETA;
// calculate the starting position
double_space_x = double_cx +
((double_distance+factor) * our_cos(angle)) -
(LOWRES_W/2 * line_dx);
double_space_y = double_cy +
((double_distance+factor) * our_sin(angle)) -
(LOWRES_W/2 * line_dy);
double_to_fixed(double_space_x,&space_x);
double_to_fixed(double_space_y,&space_y);
// go through all points in this screen line
for (screen_x = 0; screen_x < LOWRES_W-1; screen_x++) {
// get a pixel from the tile and put it on the screen
map_color=lookup_map(space_x.i,space_y.i);
ram[COLOR]=map_color;
ram[COLOR]|=map_color<<4;
if (screen_x==20) {
if (map_color==COLOR_DARKBLUE) over_water=1;
else over_water=0;
}
hlin_double(ram[DRAW_PAGE], screen_x, screen_x+1,
screen_y);
// advance to the next position in space
fixed_add(&space_x,&dx,&space_x);
fixed_add(&space_y,&dy,&space_y);
}
}
}
#define SHIPX 15
int flying(void) {
unsigned char ch;
int shipy;
int turning=0;
int draw_splash=0;
/************************************************/
/* Flying */
/************************************************/
gr();
shipy=20;
while(1) {
if (draw_splash>0) draw_splash--;
ch=grsim_input();
if ((ch=='q') || (ch==27)) break;
if ((ch=='w') || (ch==APPLE_UP)) {
if (shipy>16) {
shipy-=2;
space_z+=1;
}
printf("Z=%lf\n",space_z);
}
if ((ch=='s') || (ch==APPLE_DOWN)) {
if (shipy<28) {
shipy+=2;
space_z-=1;
}
else {
draw_splash=10;
}
printf("Z=%lf\n",space_z);
}
if ((ch=='a') || (ch==APPLE_LEFT)) {
if (turning>0) {
turning=0;
}
else {
turning=-20;
angle-=1;
if (angle<0) angle+=ANGLE_STEPS;
}
}
if ((ch=='d') || (ch==APPLE_RIGHT)) {
if (turning<0) {
turning=0;
}
else {
turning=20;
angle+=1;
if (angle>=ANGLE_STEPS) angle-=ANGLE_STEPS;
}
}
if (ch=='h') {
horizon--;
if (horizon<-4) horizon=4;
printf("horizon=%d\n",horizon);
}
if (ch=='y') {
if (SCALE==20) SCALE=16;
else SCALE=20;
printf("SCALE=%lf\n",SCALE);
}
// increase speed
if (ch=='z') {
if (speed<3) speed++;
}
// decrease speed
if (ch=='x') {
if (speed>0) speed--;
}
// emergency break
if (ch==' ') {
speed=SPEED_STOPPED;
}
if (speed!=SPEED_STOPPED) {
int ii;
dx.i = fixed_sin_scale[(angle+4)&0xf].i; // cos
dx.f = fixed_sin_scale[(angle+4)&0xf].f; // cos
dy.i = fixed_sin_scale[angle&0xf].i;
dy.f = fixed_sin_scale[angle&0xf].f;
for(ii=0;ii<speed;ii++) {
fixed_add(&cx,&dx,&cx);
fixed_add(&cy,&dy,&cy);
}
fixed_to_double(&cx,&double_cx);
fixed_to_double(&cy,&double_cy);
}
draw_background_mode7();//our_angle, flyx, flyy);
if (turning==0) {
if ((speed!=SPEED_STOPPED) && (over_water)&&(draw_splash)) {
grsim_put_sprite(splash_forward,
SHIPX+1,shipy+9);
}
grsim_put_sprite(shadow_forward,SHIPX+3,31+space_z);
grsim_put_sprite(ship_forward,SHIPX,shipy);
}
if (turning<0) {
if ((shipy>25) && (speed!=SPEED_STOPPED)) draw_splash=1;
if (over_water&&draw_splash) {
grsim_put_sprite(splash_left,
SHIPX+1,36);
}
grsim_put_sprite(shadow_left,SHIPX+3,31+space_z);
grsim_put_sprite(ship_left,SHIPX,shipy);
turning++;
}
if (turning>0) {
if ((shipy>25) && (speed!=SPEED_STOPPED)) draw_splash=1;
if (over_water&&draw_splash) {
grsim_put_sprite(splash_right,
SHIPX+1,36);
}
grsim_put_sprite(shadow_right,SHIPX+3,31+space_z);
grsim_put_sprite(ship_right,SHIPX,shipy);
turning--;
}
page_flip();
usleep(20000);
}
return 0;
}
#else
// map coordinates
double cx=0.0,cy=0.0;
static double space_z=4.5; // height of the camera above the plane
static int horizon=-2; // number of pixels line 0 is below the horizon
static double scale_x=20, scale_y=20;
double BETA=-0.5;
#define ANGLE_STEPS 32
double our_sin(unsigned char angle) {
double r;
r=3.14159265358979*2.0*(double)angle/(double)ANGLE_STEPS;
return sin(r);
}
double our_cos(unsigned char angle) {
double r;
r=3.14159265358979*2.0*(double)angle/(double)ANGLE_STEPS;
return cos(r);
}
//
// Detailed version
//
//
void draw_background_mode7(void) {
// the distance and horizontal scale of the line we are drawing
double distance, horizontal_scale;
// step for points in space between two pixels on a horizontal line
double line_dx, line_dy;
// current space position
double space_x, space_y;
int map_color;
over_water=0;
/* Draw Sky */
/* Originally wanted to be fancy and have sun too, but no */
color_equals(COLOR_MEDIUMBLUE);
for(screen_y=0;screen_y<6;screen_y+=2) {
hlin_double(ram[DRAW_PAGE], 0, 40, screen_y);
}
/* Draw hazy horizon */
color_equals(COLOR_GREY);
hlin_double(ram[DRAW_PAGE], 0, 40, 6);
for (screen_y = 8; screen_y < LOWRES_H; screen_y++) {
// first calculate the distance of the line we are drawing
distance = (space_z * scale_y) / (screen_y + horizon);
// then calculate the horizontal scale, or the distance between
// space points on this horizontal line
horizontal_scale = (distance / scale_x);
// calculate the dx and dy of points in space when we step
// through all points on this line
line_dx = -our_sin(angle) * horizontal_scale;
line_dy = our_cos(angle) * horizontal_scale;
double factor;
// Move camera back a bit
factor=space_z*BETA;
// calculate the starting position
space_x = cx + ((distance+factor) * our_cos(angle)) - LOWRES_W/2 * line_dx;
space_y = cy + ((distance+factor) * our_sin(angle)) - LOWRES_W/2 * line_dy;
// go through all points in this screen line
for (screen_x = 0; screen_x < LOWRES_W-1; screen_x++) {
// get a pixel from the tile and put it on the screen
map_color=lookup_map((int)space_x,(int)space_y);
color_equals(map_color);
if (screen_x==20) {
if (map_color==COLOR_DARKBLUE) over_water=1;
else over_water=0;
}
plot(screen_x,screen_y);
// advance to the next position in space
space_x += line_dx;
space_y += line_dy;
}
}
}
#define SHIPX 15
int flying(void) {
unsigned char ch;
int shipy;
int turning=0;
double dy,dx,speed=0;
int draw_splash=0;
/************************************************/
/* Flying */
/************************************************/
gr();
shipy=20;
while(1) {
if (draw_splash>0) draw_splash--;
ch=grsim_input();
if ((ch=='q') || (ch==27)) break;
#if 0
if (ch=='g') {
BETA+=0.1;
printf("Horizon=%lf\n",BETA);
}
if (ch=='h') {
BETA-=0.1;
printf("Horizon=%lf\n",BETA);
}
if (ch=='s') {
scale_x++;
scale_y++;
printf("Scale=%lf\n",scale_x);
}
#endif
if ((ch=='w') || (ch==APPLE_UP)) {
if (shipy>16) {
shipy-=2;
space_z+=1;
}
printf("Z=%lf\n",space_z);
}
if ((ch=='s') || (ch==APPLE_DOWN)) {
if (shipy<28) {
shipy+=2;
space_z-=1;
}
else {
draw_splash=10;
}
printf("Z=%lf\n",space_z);
}
if ((ch=='a') || (ch==APPLE_LEFT)) {
if (turning>0) {
turning=0;
}
else {
turning=-20;
angle-=1;
if (angle<0) angle+=ANGLE_STEPS;
}
}
if ((ch=='d') || (ch==APPLE_RIGHT)) {
if (turning<0) {
turning=0;
}
else {
turning=20;
angle+=1;
if (angle>=ANGLE_STEPS) angle-=ANGLE_STEPS;
}
}
if (ch=='z') {
if (speed>0.5) speed=0.5;
speed+=0.05;
}
if (ch=='x') {
if (speed<-0.5) speed=-0.5;
speed-=0.05;
}
if (ch==' ') {
speed=0;
}
dx = speed * our_cos (angle);
dy = speed * our_sin (angle);
cx += dx;
cy += dy;
draw_background_mode7();//our_angle, flyx, flyy);
if (turning==0) {
if ((speed>0.0) && (over_water)&&(draw_splash)) {
grsim_put_sprite(splash_forward,
SHIPX+1,shipy+9);
}
grsim_put_sprite(shadow_forward,SHIPX+3,31+space_z);
grsim_put_sprite(ship_forward,SHIPX,shipy);
}
if (turning<0) {
if ((shipy>25) && (speed>0.0)) draw_splash=1;
if (over_water&&draw_splash) {
grsim_put_sprite(splash_left,
SHIPX+1,36);
}
grsim_put_sprite(shadow_left,SHIPX+3,31+space_z);
grsim_put_sprite(ship_left,SHIPX,shipy);
turning++;
}
if (turning>0) {
if ((shipy>25) && (speed>0.0)) draw_splash=1;
if (over_water&&draw_splash) {
grsim_put_sprite(splash_right,
SHIPX+1,36);
}
grsim_put_sprite(shadow_right,SHIPX+3,31+space_z);
grsim_put_sprite(ship_right,SHIPX,shipy);
turning--;
}
page_flip();
usleep(20000);
}
return 0;
}
#endif