ii-pix/dither.py

200 lines
6.2 KiB
Python
Raw Normal View History

import argparse
from PIL import Image
import numpy as np
# TODO:
# - use perceptual colour difference model
# - compare to bmp2dhr and a2bestpix
# - look ahead N pixels and compute all 2^N bit patterns, then minimize
# average error
# - optimize Dither.apply() critical path
X_RES = 560
Y_RES = 192
RGB = {
(False, False, False, False): np.array((0, 0, 0)), # Black
(False, False, False, True): np.array((148, 12, 125)), # Magenta
(False, False, True, False): np.array((99, 77, 0)), # Brown
(False, False, True, True): np.array((249, 86, 29)), # Orange
(False, True, False, False): np.array((51, 111, 0)), # Dark green
# XXX RGB values are used as keys in DOTS dict, need to be unique
(False, True, False, True): np.array((126, 126, 125)), # Grey1
(False, True, True, False): np.array((67, 200, 0)), # Green
(False, True, True, True): np.array((221, 206, 23)), # Yellow
(True, False, False, False): np.array((32, 54, 212)), # Dark blue
(True, False, False, True): np.array((188, 55, 255)), # Violet
(True, False, True, False): np.array((126, 126, 126)), # Grey2
(True, False, True, True): np.array((255, 129, 236)), # Pink
(True, True, False, False): np.array((7, 168, 225)), # Med blue
(True, True, False, True): np.array((158, 172, 255)), # Light blue
(True, True, True, False): np.array((93, 248, 133)), # Aqua
(True, True, True, True): np.array((255, 255, 255)), # White
}
NAMES = {
(0, 0, 0): "Black",
(148, 12, 125): "Magenta",
(99, 77, 0): "Brown",
(249, 86, 29): "Orange",
(51, 111, 0): "Dark green",
(126, 126, 125): "Grey1", # XXX
(67, 200, 0): "Green",
(221, 206, 23): "Yellow",
(32, 54, 212): "Dark blue",
(188, 55, 255): "Violet",
(126, 126, 126): "Grey2",
(255, 129, 236): "Pink",
(7, 168, 225): "Med blue",
(158, 172, 255): "Light blue",
(93, 248, 133): "Aqua",
(255, 255, 255): "White"
}
DOTS = {}
for k, v in RGB.items():
DOTS[tuple(v)] = k
def find_closest_color(pixel, last_pixel, x: int):
least_diff = 1e9
best_colour = None
last_dots = DOTS[tuple(last_pixel)]
other_dots = list(last_dots)
other_dots[x % 4] = not other_dots[x % 4]
other_dots = tuple(other_dots)
for v in (RGB[last_dots], RGB[other_dots]):
diff = np.sum(np.power(v - np.array(pixel), 2))
if diff < least_diff:
least_diff = diff
best_colour = v
return best_colour
class Dither:
PATTERN = None
ORIGIN = None
def apply(self, image, x, y, quant_error):
for offset, error_fraction in np.ndenumerate(self.PATTERN / np.sum(
self.PATTERN)):
xx = x + offset[1] - self.ORIGIN[1]
yy = y + offset[0] - self.ORIGIN[0]
if xx < 0 or yy < 0 or xx > (X_RES - 1) or yy > (Y_RES - 1):
continue
new_pixel = image.getpixel((xx, yy)) + error_fraction * quant_error
image.putpixel((xx, yy), tuple(new_pixel.astype(int)))
class FloydSteinbergDither(Dither):
# 0 * 7
# 3 5 1
PATTERN = np.array(((0, 0, 7), (3, 5, 1)))
ORIGIN = (0, 1)
class BuckelsDither(Dither):
# 0 * 2 1
# 1 2 1 0
# 0 1 0 0
PATTERN = np.array(((0, 0, 2, 1), (1, 2, 1, 0), (0, 1, 0, 0)))
ORIGIN = (0, 1)
def open_image(filename: str) -> Image:
im = Image.open(filename)
if im.mode != "RGB":
im = im.convert("RGB")
im.resize((X_RES, Y_RES), resample=Image.LANCZOS)
return im
def dither_image(image: Image, dither: Dither) -> Image:
for y in range(Y_RES):
print(y)
new_pixel = (0, 0, 0)
for x in range(X_RES):
old_pixel = image.getpixel((x, y))
new_pixel = find_closest_color(old_pixel, new_pixel, x)
image.putpixel((x, y), tuple(new_pixel))
quant_error = old_pixel - new_pixel
dither.apply(image, x, y, quant_error)
return image
class Screen:
def __init__(self, image: Image):
self.bitmap = np.zeros((Y_RES, X_RES), dtype=np.bool)
self.main = np.zeros(8192, dtype=np.uint8)
self.aux = np.zeros(8192, dtype=np.uint8)
for y in range(Y_RES):
for x in range(X_RES):
pixel = image.getpixel((x, y))
dots = DOTS[pixel]
phase = x % 4
self.bitmap[y, x] = dots[phase]
@staticmethod
def y_to_base_addr(y: int) -> int:
"""Maps y coordinate to screen memory base address."""
a = y // 64
d = y - 64 * a
b = d // 8
c = d - 8 * b
return 1024 * c + 128 * b + 40 * a
def pack(self):
# The DHGR display encodes 7 pixels across interleaved 4-byte sequences
# of AUX and MAIN memory, as follows:
# PBBBAAAA PDDCCCCB PFEEEEDD PGGGGFFF
# Aux N Main N Aux N+1 Main N+1 (N even)
main_col = np.zeros((Y_RES, X_RES // 14), dtype=np.uint8)
aux_col = np.zeros((Y_RES, X_RES // 14), dtype=np.uint8)
for byte_offset in range(80):
column = np.zeros(Y_RES, dtype=np.uint8)
for bit in range(7):
column |= (self.bitmap[:, 7 * byte_offset + bit].astype(
np.uint8) << bit)
if byte_offset % 2 == 0:
aux_col[:, byte_offset // 2] = column
else:
main_col[:, (byte_offset - 1) // 2] = column
for y in range(Y_RES):
addr = self.y_to_base_addr(y)
self.aux[addr:addr + 40] = aux_col[y, :]
self.main[addr:addr + 40] = main_col[y, :]
def main():
parser = argparse.ArgumentParser()
parser.add_argument("input", type=str, help="Input file to process")
parser.add_argument("output", type=str, help="Output file for ")
args = parser.parse_args()
image = open_image(args.input)
# image.show()
dither = FloydSteinbergDither()
# dither = BuckelsDither()
output = dither_image(image, dither)
output.show()
screen = Screen(output)
bitmap = Image.fromarray(screen.bitmap.astype('uint8') * 255)
# bitmap.show()
screen.pack()
with open("output.bin", "wb") as f:
f.write(screen.main)
f.write(screen.aux)
if __name__ == "__main__":
main()