2020-12-29 18:24:29 +00:00
|
|
|
import argparse
|
|
|
|
from PIL import Image
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
2020-12-29 21:03:17 +00:00
|
|
|
# TODO:
|
|
|
|
# - output binary files that can be viewed on Apple II
|
|
|
|
# - use perceptual colour difference model
|
|
|
|
# - look ahead N pixels and compute all 2^N bit patterns, then minimize
|
|
|
|
# average error
|
|
|
|
# - optimize Dither.apply() critical path
|
|
|
|
|
2020-12-29 18:24:29 +00:00
|
|
|
X_RES = 560
|
|
|
|
Y_RES = 192
|
|
|
|
|
|
|
|
RGB = {
|
|
|
|
(False, False, False, False): np.array((0, 0, 0)), # Black
|
|
|
|
(False, False, False, True): np.array((148, 12, 125)), # Magenta
|
|
|
|
(False, False, True, False): np.array((99, 77, 0)), # Brown
|
|
|
|
(False, False, True, True): np.array((249, 86, 29)), # Orange
|
|
|
|
(False, True, False, False): np.array((51, 111, 0)), # Dark green
|
2020-12-29 20:47:33 +00:00
|
|
|
# XXX RGB values are used as keys in DOTS dict, need to be unique
|
|
|
|
(False, True, False, True): np.array((126, 126, 125)), # Grey1
|
2020-12-29 18:24:29 +00:00
|
|
|
(False, True, True, False): np.array((67, 200, 0)), # Green
|
|
|
|
(False, True, True, True): np.array((221, 206, 23)), # Yellow
|
|
|
|
(True, False, False, False): np.array((32, 54, 212)), # Dark blue
|
|
|
|
(True, False, False, True): np.array((188, 55, 255)), # Violet
|
|
|
|
(True, False, True, False): np.array((126, 126, 126)), # Grey2
|
|
|
|
(True, False, True, True): np.array((255, 129, 236)), # Pink
|
|
|
|
(True, True, False, False): np.array((7, 168, 225)), # Med blue
|
|
|
|
(True, True, False, True): np.array((158, 172, 255)), # Light blue
|
|
|
|
(True, True, True, False): np.array((93, 248, 133)), # Aqua
|
|
|
|
(True, True, True, True): np.array((255, 255, 255)), # White
|
|
|
|
}
|
|
|
|
|
2020-12-29 20:47:33 +00:00
|
|
|
NAMES = {
|
|
|
|
(0, 0, 0): "Black",
|
|
|
|
(148, 12, 125): "Magenta",
|
|
|
|
(99, 77, 0): "Brown",
|
|
|
|
(249, 86, 29): "Orange",
|
|
|
|
(51, 111, 0): "Dark green",
|
|
|
|
(126, 126, 125): "Grey1", # XXX
|
|
|
|
(67, 200, 0): "Green",
|
|
|
|
(221, 206, 23): "Yellow",
|
|
|
|
(32, 54, 212): "Dark blue",
|
|
|
|
(188, 55, 255): "Violet",
|
|
|
|
(126, 126, 126): "Grey2",
|
|
|
|
(255, 129, 236): "Pink",
|
|
|
|
(7, 168, 225): "Med blue",
|
|
|
|
(158, 172, 255): "Light blue",
|
|
|
|
(93, 248, 133): "Aqua",
|
|
|
|
(255, 255, 255): "White"
|
|
|
|
}
|
|
|
|
|
|
|
|
DOTS = {}
|
|
|
|
for k, v in RGB.items():
|
|
|
|
DOTS[tuple(v)] = k
|
|
|
|
|
2020-12-29 18:24:29 +00:00
|
|
|
|
2020-12-29 20:47:33 +00:00
|
|
|
def find_closest_color(pixel, last_pixel, x: int):
|
2020-12-29 18:24:29 +00:00
|
|
|
least_diff = 1e9
|
|
|
|
best_colour = None
|
2020-12-29 20:47:33 +00:00
|
|
|
|
|
|
|
last_dots = DOTS[tuple(last_pixel)]
|
|
|
|
other_dots = list(last_dots)
|
|
|
|
other_dots[x % 4] = not other_dots[x % 4]
|
|
|
|
other_dots = tuple(other_dots)
|
|
|
|
for v in (RGB[last_dots], RGB[other_dots]):
|
2020-12-29 18:24:29 +00:00
|
|
|
diff = np.sum(np.power(v - np.array(pixel), 2))
|
|
|
|
if diff < least_diff:
|
|
|
|
least_diff = diff
|
|
|
|
best_colour = v
|
|
|
|
return best_colour
|
|
|
|
|
|
|
|
|
2020-12-29 20:47:33 +00:00
|
|
|
class Dither:
|
|
|
|
PATTERN = None
|
|
|
|
ORIGIN = None
|
|
|
|
|
|
|
|
def apply(self, image, x, y, quant_error):
|
2020-12-29 21:03:17 +00:00
|
|
|
for offset, error_fraction in np.ndenumerate(self.PATTERN / np.sum(
|
|
|
|
self.PATTERN)):
|
|
|
|
xx = x + offset[1] - self.ORIGIN[1]
|
|
|
|
yy = y + offset[0] - self.ORIGIN[0]
|
|
|
|
if xx < 0 or yy < 0 or xx > (X_RES - 1) or yy > (Y_RES - 1):
|
|
|
|
continue
|
|
|
|
new_pixel = image.getpixel((xx, yy)) + error_fraction * quant_error
|
|
|
|
image.putpixel((xx, yy), tuple(new_pixel.astype(int)))
|
2020-12-29 20:47:33 +00:00
|
|
|
|
|
|
|
|
|
|
|
class FloydSteinbergDither(Dither):
|
|
|
|
# 0 * 7
|
|
|
|
# 3 5 1
|
|
|
|
PATTERN = np.array(((0, 0, 7), (3, 5, 1)))
|
|
|
|
ORIGIN = (0, 1)
|
|
|
|
|
|
|
|
|
|
|
|
class KennawayDither(Dither):
|
|
|
|
# 0 * 7 5 3 1
|
|
|
|
# 3 5 3 1 1 0
|
|
|
|
PATTERN = np.array(((0, 0, 7, 5, 3, 1), (3, 5, 3, 1, 1, 0)))
|
|
|
|
ORIGIN = (0, 1)
|
|
|
|
|
|
|
|
|
2020-12-29 18:24:29 +00:00
|
|
|
def dither(filename):
|
|
|
|
im = Image.open(filename)
|
|
|
|
if im.mode != "RGB":
|
|
|
|
im = im.convert("RGB")
|
|
|
|
im.resize((X_RES, Y_RES), resample=Image.LANCZOS)
|
|
|
|
im.show()
|
2020-12-29 20:47:33 +00:00
|
|
|
|
|
|
|
# ditherer = FloydSteinbergDither()
|
|
|
|
ditherer = KennawayDither()
|
2020-12-29 18:24:29 +00:00
|
|
|
for y in range(Y_RES):
|
|
|
|
print(y)
|
2020-12-29 20:47:33 +00:00
|
|
|
newpixel = (0, 0, 0)
|
2020-12-29 18:24:29 +00:00
|
|
|
for x in range(X_RES):
|
|
|
|
oldpixel = im.getpixel((x, y))
|
|
|
|
newpixel = find_closest_color(oldpixel, newpixel, x)
|
2020-12-29 20:47:33 +00:00
|
|
|
im.putpixel((x, y), tuple(newpixel))
|
2020-12-29 18:24:29 +00:00
|
|
|
quant_error = oldpixel - newpixel
|
2020-12-29 20:47:33 +00:00
|
|
|
ditherer.apply(im, x, y, quant_error)
|
2020-12-29 18:24:29 +00:00
|
|
|
im.show()
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("input", type=str, help="Input file to process")
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
dither(args.input)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|