Use pyclustering for kmedians instead of hand-rolled

Optimize cython code
This commit is contained in:
kris 2021-11-13 17:18:34 +00:00
parent 52af982159
commit 0596aefe0b
2 changed files with 55 additions and 45 deletions

View File

@ -10,7 +10,8 @@ import random
import colour
from PIL import Image
import numpy as np
from sklearn.cluster import KMeans
from pyclustering.cluster.kmedians import kmedians
from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer
import dither as dither_pyx
import dither_pattern
@ -26,9 +27,9 @@ import screen as screen_py
def cluster_palette(image: Image):
line_to_palette = {}
#shuffle_lines = liprint(st(range(200))
#random.shuffle(shuffle_lines)
#for idx, line in enumerate(shuffle_lines):
# shuffle_lines = liprint(st(range(200))
# random.shuffle(shuffle_lines)
# for idx, line in enumerate(shuffle_lines):
# line_to_palette[line] = idx % 16
# for line in range(200):
@ -54,51 +55,60 @@ def cluster_palette(image: Image):
palettes_rgb = {}
palettes_cam = {}
for palette_idx in range(16):
p_lower = max(palette_idx-2, 0)
p_upper = min(palette_idx+2, 16)
p_lower = max(palette_idx - 2, 0)
p_upper = min(palette_idx + 2, 16)
palette_pixels = colours_cam[
int(p_lower * (200/16)) * 320:int(p_upper * (
200/16)) * 320, :]
int(p_lower * (200 / 16)) * 320:int(p_upper * (
200 / 16)) * 320, :]
# kmeans = KMeans(n_clusters=16, max_iter=10000)
# kmeans.fit_predict(palette_pixels)
# palettes_cam[palette_idx] = kmeans.cluster_centers_
fixed_centroids = None
# fixed_centroids = None
# print(np.array(line_colours), fixed_centroids)
palettes_cam[palette_idx] = dither_pyx.k_means_with_fixed_centroids(
16, palette_pixels, fixed_centroids=fixed_centroids, tolerance=1e-6)
# palettes_cam[palette_idx] = dither_pyx.k_means_with_fixed_centroids(
# 16, palette_pixels, fixed_centroids=fixed_centroids,
# tolerance=1e-6)
initial_centers = kmeans_plusplus_initializer(
palette_pixels, 16).initialize()
kmedians_instance = kmedians(palette_pixels, initial_centers)
kmedians_instance.process()
palettes_cam[palette_idx] = np.array(
kmedians_instance.get_medians()).astype(np.float32)
# palette_colours = collections.defaultdict(list)
# for line in range(200):
# palette = line_to_palette[line]
# palette_colours[palette].extend(
# colours_cam[line * 320:(line + 1) * 320])
# for line in range(200):
# palette = line_to_palette[line]
# palette_colours[palette].extend(
# colours_cam[line * 320:(line + 1) * 320])
# For each line grouping, find big palette entries with minimal total
# distance
# For each line grouping, find big palette entries with minimal total
# distance
# palette_cam = None
# for palette_idx in range(16):
# line_colours = palette_colours[palette_idx]
# #if palette_idx < 15:
# # line_colours += palette_colours[palette_idx + 1]
# # if palette_idx < 14:
# # line_colours += palette_colours[palette_idx + 2]
# # if palette_idx > 0:
# # fixed_centroids = palette_cam[:8, :]
# # else:
# fixed_centroids = None
# # print(np.array(line_colours), fixed_centroids)
# palette_cam = dither_pyx.k_means_with_fixed_centroids(16, np.array(
# line_colours), fixed_centroids=fixed_centroids, tolerance=1e-6)
# palette_cam = None
# for palette_idx in range(16):
# line_colours = palette_colours[palette_idx]
# #if palette_idx < 15:
# # line_colours += palette_colours[palette_idx + 1]
# # if palette_idx < 14:
# # line_colours += palette_colours[palette_idx + 2]
# # if palette_idx > 0:
# # fixed_centroids = palette_cam[:8, :]
# # else:
# fixed_centroids = None
# # print(np.array(line_colours), fixed_centroids)
# palette_cam = dither_pyx.k_means_with_fixed_centroids(16, np.array(
# line_colours), fixed_centroids=fixed_centroids, tolerance=1e-6)
#kmeans = KMeans(n_clusters=16, max_iter=10000)
#kmeans.fit_predict(line_colours)
#palette_cam = kmeans.cluster_centers_
# kmeans = KMeans(n_clusters=16, max_iter=10000)
# kmeans.fit_predict(line_colours)
# palette_cam = kmeans.cluster_centers_
with colour.utilities.suppress_warnings(colour_usage_warnings=True):
palette_rgb = colour.convert(palettes_cam[palette_idx], "CAM16UCS", "RGB")
palette_rgb = colour.convert(palettes_cam[palette_idx], "CAM16UCS",
"RGB")
# SHR colour palette only uses 4-bit values
palette_rgb = np.round(palette_rgb * 15) / 15
palettes_rgb[palette_idx] = palette_rgb.astype(np.float32)

View File

@ -337,10 +337,10 @@ def dither_image(
import colour
@cython.boundscheck(True)
@cython.boundscheck(False)
@cython.wraparound(False)
def dither_shr(float[:, :, ::1] working_image, object palettes_cam, object palettes_rgb, float[:,::1] rgb_to_cam16ucs):
cdef int y, x, idx, best_colour_idx
cdef int y, x, idx, best_colour_idx, best_palette
cdef float best_distance, distance
cdef float[::1] best_colour_rgb, pixel_cam, colour_rgb, colour_cam
cdef float quant_error
@ -362,8 +362,8 @@ def dither_shr(float[:, :, ::1] working_image, object palettes_cam, object palet
rgb_to_cam16ucs, working_image[y,x,0], working_image[y,x,1], working_image[y,x,2])
line_cam[x, :] = colour_cam
best_palette = best_palette_for_line(line_cam, palettes_cam, y * 16 / 200, best_palette)
print("-->", best_palette)
best_palette = best_palette_for_line(line_cam, palettes_cam, <int>(y * 16 / 200), best_palette)
# print("-->", best_palette)
palette_rgb = palettes_rgb[best_palette]
line_to_palette[y] = best_palette
@ -373,7 +373,8 @@ def dither_shr(float[:, :, ::1] working_image, object palettes_cam, object palet
best_distance = 1e9
best_colour_idx = -1
for idx, colour_rgb in enumerate(palette_rgb):
for idx in range(16):
colour_rgb = palette_rgb[idx, :]
colour_cam = convert_rgb_to_cam16ucs(rgb_to_cam16ucs, colour_rgb[0], colour_rgb[1], colour_rgb[2])
distance = colour_distance_squared(pixel_cam, colour_cam)
if distance < best_distance:
@ -383,7 +384,6 @@ def dither_shr(float[:, :, ::1] working_image, object palettes_cam, object palet
output_4bit[y, x] = best_colour_idx
for i in range(3):
# output_rgb[y,x,i] = <int>(best_colour_rgb[i] * 255)
quant_error = working_image[y, x, i] - best_colour_rgb[i]
# Floyd-Steinberg dither
@ -451,12 +451,12 @@ def dither_shr(float[:, :, ::1] working_image, object palettes_cam, object palet
# working_image[y + 2, x + 2, i] + quant_error * (1 / 48),
# 0, 1)
return np.array(output_4bit, dtype=np.uint8), line_to_palette #, np.array(output_rgb, dtype=np.uint8)
return np.array(output_4bit, dtype=np.uint8), line_to_palette
import collections
import random
@cython.boundscheck(True)
@cython.boundscheck(False)
@cython.wraparound(False)
def k_means_with_fixed_centroids(
int n_clusters, float[:, ::1] data, float[:, ::1] fixed_centroids = None,
@ -509,9 +509,9 @@ def k_means_with_fixed_centroids(
print(weighted_centroids)
return np.array([c for w, c in sorted(weighted_centroids, reverse=True)], dtype=np.float32)
@cython.boundscheck(True)
@cython.boundscheck(False)
@cython.wraparound(False)
def best_palette_for_line(float [:, ::1] line_cam, object palettes_cam, int base_palette_idx, int last_palette_idx):
cdef int best_palette_for_line(float [:, ::1] line_cam, object palettes_cam, int base_palette_idx, int last_palette_idx):
cdef int palette_idx, best_palette_idx
cdef float best_total_dist, total_dist, best_pixel_dist, pixel_dist
cdef float[:, ::1] palette_cam