mirror of
https://github.com/KrisKennaway/ii-pix.git
synced 2024-12-22 09:29:30 +00:00
Allow modeling screen as 140x192x16 pixels (i.e. ignoring fringing) or
560x192 where each pixel has a choice of two colours. The latter doesn't give good results currently, it produces long runs of colour, presumably when the immediate next choice for dithering is worse than the current one. i.e. it gets easily stuck in a local minimum. Looking ahead N pixels and computing the 2^N options should improve this.
This commit is contained in:
parent
ff7a7365bb
commit
82e5779a3a
241
dither.py
241
dither.py
@ -8,6 +8,7 @@ import colormath.color_diff
|
||||
import colormath.color_objects
|
||||
import numpy as np
|
||||
|
||||
|
||||
# TODO:
|
||||
# - compare to bmp2dhr and a2bestpix
|
||||
# - deal with fringing
|
||||
@ -15,9 +16,6 @@ import numpy as np
|
||||
# average error
|
||||
# - optimize Dither.apply() critical path
|
||||
|
||||
X_RES = 560
|
||||
Y_RES = 192
|
||||
|
||||
|
||||
def srgb_to_linear_array(a: np.ndarray, gamma=2.4) -> np.ndarray:
|
||||
return np.where(a <= 0.04045, a / 12.92, ((a + 0.055) / 1.055) ** gamma)
|
||||
@ -27,6 +25,7 @@ def linear_to_srgb_array(a: np.ndarray, gamma=2.4) -> np.ndarray:
|
||||
return np.where(a <= 0.0031308, a * 12.92, 1.055 * a ** (1.0 / gamma) -
|
||||
0.055)
|
||||
|
||||
|
||||
def srgb_to_linear(im: Image) -> Image:
|
||||
a = np.array(im, dtype=np.float32) / 255.0
|
||||
rgb_linear = srgb_to_linear_array(a, gamma=2.4)
|
||||
@ -62,26 +61,6 @@ RGB = {
|
||||
}
|
||||
|
||||
# OpenEmulator
|
||||
|
||||
# RGB = {
|
||||
# (False, False, False, False): np.array((0, 0, 0)), # Black
|
||||
# (False, False, False, True): np.array((189, 0, 102)), # Magenta
|
||||
# (False, False, True, False): np.array((81, 86, 0)), # Brown
|
||||
# (False, False, True, True): np.array((238, 55, 0)), # Orange
|
||||
# (False, True, False, False): np.array((3, 135, 0)), # Dark green
|
||||
# # XXX RGB values are used as keys in DOTS dict, need to be unique
|
||||
# (False, True, False, True): np.array((111, 111, 111)), # Grey1
|
||||
# (False, True, True, False): np.array((14, 237, 0)), # Green
|
||||
# (False, True, True, True): np.array((204, 213, 0)), # Yellow
|
||||
# (True, False, False, False): np.array((13, 0, 242)), # Dark blue
|
||||
# (True, False, False, True): np.array((221, 0, 241)), # Violet
|
||||
# (True, False, True, False): np.array((112, 112, 112)), # Grey2
|
||||
# (True, False, True, True): np.array((236, 72, 229)), # Pink
|
||||
# (True, True, False, False): np.array((0, 157, 241)), # Med blue
|
||||
# (True, True, False, True): np.array((142, 133, 240)), # Light blue
|
||||
# (True, True, True, False): np.array((39, 247, 117)), # Aqua
|
||||
# (True, True, True, True): np.array((236, 236, 236)), # White
|
||||
# }
|
||||
sRGB = {
|
||||
(False, False, False, False): np.array((0, 0, 0)), # Black
|
||||
(False, False, False, True): np.array((206, 0, 123)), # Magenta
|
||||
@ -101,7 +80,7 @@ sRGB = {
|
||||
(True, True, True, False): np.array((21, 241, 132)), # Aqua
|
||||
(True, True, True, True): np.array((244, 247, 244)), # White
|
||||
}
|
||||
#
|
||||
|
||||
# # Virtual II (sRGB)
|
||||
# sRGB = {
|
||||
# (False, False, False, False): np.array((0, 0, 0)), # Black
|
||||
@ -182,27 +161,63 @@ class CCIR601Distance(ColourDistance):
|
||||
luma_diff * luma_diff)
|
||||
|
||||
|
||||
def find_closest_color(pixel, last_pixel, x: int):
|
||||
class Screen:
|
||||
X_RES = None
|
||||
Y_RES = None
|
||||
X_PIXEL_WIDTH = None
|
||||
|
||||
def __init__(self):
|
||||
self.main = np.zeros(8192, dtype=np.uint8)
|
||||
self.aux = np.zeros(8192, dtype=np.uint8)
|
||||
|
||||
@staticmethod
|
||||
def y_to_base_addr(y: int) -> int:
|
||||
"""Maps y coordinate to screen memory base address."""
|
||||
a = y // 64
|
||||
d = y - 64 * a
|
||||
b = d // 8
|
||||
c = d - 8 * b
|
||||
|
||||
return 1024 * c + 128 * b + 40 * a
|
||||
|
||||
def _image_to_bitmap(self, image: Image) -> np.ndarray:
|
||||
raise NotImplementedError
|
||||
|
||||
def pack(self, image: Image):
|
||||
bitmap = self._image_to_bitmap(image)
|
||||
# The DHGR display encodes 7 pixels across interleaved 4-byte sequences
|
||||
# of AUX and MAIN memory, as follows:
|
||||
# PBBBAAAA PDDCCCCB PFEEEEDD PGGGGFFF
|
||||
# Aux N Main N Aux N+1 Main N+1 (N even)
|
||||
main_col = np.zeros(
|
||||
(self.Y_RES, self.X_RES * self.X_PIXEL_WIDTH // 14), dtype=np.uint8)
|
||||
aux_col = np.zeros(
|
||||
(self.Y_RES, self.X_RES * self.X_PIXEL_WIDTH // 14), dtype=np.uint8)
|
||||
for byte_offset in range(80):
|
||||
column = np.zeros(self.Y_RES, dtype=np.uint8)
|
||||
for bit in range(7):
|
||||
column |= (bitmap[:, 7 * byte_offset + bit].astype(
|
||||
np.uint8) << bit)
|
||||
if byte_offset % 2 == 0:
|
||||
aux_col[:, byte_offset // 2] = column
|
||||
else:
|
||||
main_col[:, (byte_offset - 1) // 2] = column
|
||||
|
||||
for y in range(self.Y_RES):
|
||||
addr = self.y_to_base_addr(y)
|
||||
self.aux[addr:addr + 40] = aux_col[y, :]
|
||||
self.main[addr:addr + 40] = main_col[y, :]
|
||||
|
||||
@staticmethod
|
||||
def pixel_palette_options(last_pixel, x: int):
|
||||
raise NotImplementedError
|
||||
|
||||
@staticmethod
|
||||
def find_closest_color(pixel, palette_options, differ: ColourDistance):
|
||||
least_diff = 1e9
|
||||
best_colour = None
|
||||
|
||||
last_dots = DOTS[tuple(last_pixel)]
|
||||
other_dots = list(last_dots)
|
||||
other_dots[x % 4] = not other_dots[x % 4]
|
||||
other_dots = tuple(other_dots)
|
||||
for v in (RGB[last_dots], RGB[other_dots]):
|
||||
diff = np.sum(np.power(v - np.array(pixel), 2))
|
||||
if diff < least_diff:
|
||||
least_diff = diff
|
||||
best_colour = v
|
||||
return best_colour
|
||||
|
||||
|
||||
def find_closest_color(pixel, last_pixel, x: int, differ: ColourDistance):
|
||||
least_diff = 1e9
|
||||
best_colour = None
|
||||
|
||||
for v in RGB.values():
|
||||
for v in palette_options:
|
||||
diff = differ.distance(tuple(v), pixel)
|
||||
if diff < least_diff:
|
||||
least_diff = diff
|
||||
@ -210,16 +225,65 @@ def find_closest_color(pixel, last_pixel, x: int, differ: ColourDistance):
|
||||
return best_colour
|
||||
|
||||
|
||||
class DHGR140Screen(Screen):
|
||||
"""DHGR screen ignoring colour fringing, i.e. treating as 140x192x16."""
|
||||
|
||||
X_RES = 140
|
||||
Y_RES = 192
|
||||
X_PIXEL_WIDTH = 4
|
||||
|
||||
def _image_to_bitmap(self, image: Image) -> np.ndarray:
|
||||
bitmap = np.zeros(
|
||||
(self.Y_RES, self.X_RES * self.X_PIXEL_WIDTH), dtype=np.bool)
|
||||
for y in range(self.Y_RES):
|
||||
for x in range(self.X_RES):
|
||||
pixel = image.getpixel((x, y))
|
||||
dots = DOTS[pixel]
|
||||
bitmap[y, x * self.X_PIXEL_WIDTH:(
|
||||
(x + 1) * self.X_PIXEL_WIDTH)] = dots
|
||||
return bitmap
|
||||
|
||||
@staticmethod
|
||||
def pixel_palette_options(last_pixel, x: int):
|
||||
return RGB.values()
|
||||
|
||||
|
||||
class DHGR560Screen(Screen):
|
||||
"""DHGR screen including colour fringing."""
|
||||
X_RES = 560
|
||||
Y_RES = 192
|
||||
X_PIXEL_WIDTH = 1
|
||||
|
||||
def _image_to_bitmap(self, image: Image) -> np.ndarray:
|
||||
bitmap = np.zeros((self.Y_RES, self.X_RES), dtype=np.bool)
|
||||
for y in range(self.Y_RES):
|
||||
for x in range(self.X_RES):
|
||||
pixel = image.getpixel((x, y))
|
||||
dots = DOTS[pixel]
|
||||
phase = x % 4
|
||||
bitmap[y, x] = dots[phase]
|
||||
return bitmap
|
||||
|
||||
def pixel_palette_options(self, last_pixel, x: int):
|
||||
last_dots = DOTS[tuple(last_pixel)]
|
||||
other_dots = list(last_dots)
|
||||
other_dots[x % 4] = not other_dots[x % 4]
|
||||
other_dots = tuple(other_dots)
|
||||
return RGB[last_dots], RGB[other_dots]
|
||||
|
||||
|
||||
class Dither:
|
||||
PATTERN = None
|
||||
ORIGIN = None
|
||||
|
||||
def apply(self, image, x, y, quant_error):
|
||||
def apply(self, screen: Screen, image: Image, x: int, y: int,
|
||||
quant_error: float):
|
||||
for offset, error_fraction in np.ndenumerate(self.PATTERN / np.sum(
|
||||
self.PATTERN)):
|
||||
xx = x + offset[1] - self.ORIGIN[1]
|
||||
yy = y + offset[0] - self.ORIGIN[0]
|
||||
if xx < 0 or yy < 0 or xx > (X_RES // 4 - 1) or yy > (Y_RES - 1):
|
||||
if xx < 0 or yy < 0 or xx > (screen.X_RES - 1) or (
|
||||
yy > (screen.Y_RES - 1)):
|
||||
continue
|
||||
new_pixel = image.getpixel((xx, yy)) + error_fraction * quant_error
|
||||
image.putpixel((xx, yy), tuple(new_pixel.astype(int)))
|
||||
@ -269,85 +333,44 @@ def SRGBResize(im, size, filter):
|
||||
return Image.fromarray(arrOut)
|
||||
|
||||
|
||||
def open_image(filename: str) -> Image:
|
||||
def open_image(screen: Screen, filename: str) -> Image:
|
||||
im = Image.open(filename)
|
||||
# TODO: convert to sRGB colour profile explicitly, in case it has some other
|
||||
# profile already.
|
||||
if im.mode != "RGB":
|
||||
im = im.convert("RGB")
|
||||
# rgb_linear = srgb_to_linear(np.array(im, dtype=np.float32) / 255.0)
|
||||
# im = Image.fromarray(rgb_linear * 255)
|
||||
return srgb_to_linear(SRGBResize(im, (X_RES // 4, Y_RES), Image.LANCZOS))
|
||||
# return SRGBResize(im, (X_RES // 4, Y_RES), Image.LANCZOS)
|
||||
return srgb_to_linear(
|
||||
SRGBResize(im, (screen.X_RES, screen.Y_RES),
|
||||
Image.LANCZOS))
|
||||
|
||||
|
||||
def dither_image(image: Image, dither: Dither, differ: ColourDistance) -> Image:
|
||||
for y in range(Y_RES):
|
||||
def dither_image(
|
||||
screen: Screen, image: Image, dither: Dither, differ: ColourDistance
|
||||
) -> Image:
|
||||
for y in range(screen.Y_RES):
|
||||
print(y)
|
||||
new_pixel = (0, 0, 0)
|
||||
for x in range(X_RES // 4):
|
||||
for x in range(screen.X_RES):
|
||||
old_pixel = image.getpixel((x, y))
|
||||
new_pixel = find_closest_color(old_pixel, new_pixel, x, differ)
|
||||
palette_choices = screen.pixel_palette_options(new_pixel, x)
|
||||
new_pixel = screen.find_closest_color(
|
||||
old_pixel, palette_choices, differ)
|
||||
image.putpixel((x, y), tuple(new_pixel))
|
||||
quant_error = old_pixel - new_pixel
|
||||
dither.apply(image, x, y, quant_error)
|
||||
dither.apply(screen, image, x, y, quant_error)
|
||||
return image
|
||||
|
||||
|
||||
class Screen:
|
||||
def __init__(self, image: Image):
|
||||
self.bitmap = np.zeros((Y_RES, X_RES), dtype=np.bool)
|
||||
|
||||
self.main = np.zeros(8192, dtype=np.uint8)
|
||||
self.aux = np.zeros(8192, dtype=np.uint8)
|
||||
|
||||
for y in range(Y_RES):
|
||||
for x in range(X_RES // 4):
|
||||
pixel = image.getpixel((x, y))
|
||||
dots = DOTS[pixel]
|
||||
# phase = x % 4
|
||||
# self.bitmap[y, x] = dots[phase]
|
||||
self.bitmap[y, x * 4:(x + 1) * 4] = dots
|
||||
|
||||
@staticmethod
|
||||
def y_to_base_addr(y: int) -> int:
|
||||
"""Maps y coordinate to screen memory base address."""
|
||||
a = y // 64
|
||||
d = y - 64 * a
|
||||
b = d // 8
|
||||
c = d - 8 * b
|
||||
|
||||
return 1024 * c + 128 * b + 40 * a
|
||||
|
||||
def pack(self):
|
||||
# The DHGR display encodes 7 pixels across interleaved 4-byte sequences
|
||||
# of AUX and MAIN memory, as follows:
|
||||
# PBBBAAAA PDDCCCCB PFEEEEDD PGGGGFFF
|
||||
# Aux N Main N Aux N+1 Main N+1 (N even)
|
||||
main_col = np.zeros((Y_RES, X_RES // 14), dtype=np.uint8)
|
||||
aux_col = np.zeros((Y_RES, X_RES // 14), dtype=np.uint8)
|
||||
for byte_offset in range(80):
|
||||
column = np.zeros(Y_RES, dtype=np.uint8)
|
||||
for bit in range(7):
|
||||
column |= (self.bitmap[:, 7 * byte_offset + bit].astype(
|
||||
np.uint8) << bit)
|
||||
if byte_offset % 2 == 0:
|
||||
aux_col[:, byte_offset // 2] = column
|
||||
else:
|
||||
main_col[:, (byte_offset - 1) // 2] = column
|
||||
|
||||
for y in range(Y_RES):
|
||||
addr = self.y_to_base_addr(y)
|
||||
self.aux[addr:addr + 40] = aux_col[y, :]
|
||||
self.main[addr:addr + 40] = main_col[y, :]
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("input", type=str, help="Input file to process")
|
||||
parser.add_argument("output", type=str, help="Output file for ")
|
||||
|
||||
args = parser.parse_args()
|
||||
image = open_image(args.input)
|
||||
# screen = DHGR140Screen()
|
||||
screen = DHGR560Screen()
|
||||
|
||||
args = parser.parse_args()
|
||||
image = open_image(screen, args.input)
|
||||
image.show()
|
||||
|
||||
# dither = FloydSteinbergDither()
|
||||
@ -357,16 +380,14 @@ def main():
|
||||
# differ = CIE2000Distance()
|
||||
differ = CCIR601Distance()
|
||||
|
||||
output = dither_image(image, dither, differ)
|
||||
# output.show()
|
||||
screen = Screen(output)
|
||||
output = dither_image(screen, image, dither, differ)
|
||||
linear_to_srgb(output).show()
|
||||
# bitmap = Image.fromarray(screen.bitmap.astype('uint8') * 255)
|
||||
screen.pack()
|
||||
screen.pack(output)
|
||||
|
||||
with open(args.output, "wb") as f:
|
||||
f.write(screen.main)
|
||||
f.write(screen.aux)
|
||||
f.write(bytes(screen.main))
|
||||
f.write(bytes(screen.aux))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
Loading…
Reference in New Issue
Block a user