Unify DHR and HGR implementation in screen.py

This commit is contained in:
kris 2023-02-02 23:53:48 +00:00
parent f019823505
commit b0aa38fe06
1 changed files with 108 additions and 207 deletions

315
screen.py
View File

@ -125,41 +125,124 @@ class DHGRScreen:
self.main[addr:addr + 40] = main_col[y, :]
return
class HGRScreen:
class NTSCScreen:
NTSC_PHASE_SHIFT = None
def _sin(self, pos):
x = pos % 12 + self.NTSC_PHASE_SHIFT * 3
return np.sin(x * 2 * np.pi / 12)
def _cos(self, pos):
x = pos % 12 + self.NTSC_PHASE_SHIFT * 3
return np.cos(x * 2 * np.pi / 12)
def _read(self, line, pos):
if pos < 0:
return 0
return 1 if line[pos] else 0
def bitmap_to_image_ntsc(self, bitmap: np.ndarray) -> np.ndarray:
y_width = 12
u_width = 24
v_width = 24
contrast = 1
# TODO: This is necessary to match OpenEmulator. I think it is because
# they introduce an extra (unexplained) factor of 2 when applying the
# Chebyshev/Lanczos filtering to the u and v components.
saturation = 2
# TODO: this phase shift is necessary to match OpenEmulator. I'm not
# sure where it comes from - e.g. it doesn't match the phaseInfo
# calculation for the signal phase at the start of the visible region.
hue = 0.2 * (2 * np.pi)
# Apply effect of saturation
yuv_to_rgb = np.array(
((1, 0, 0), (0, saturation, 0), (0, 0, saturation)),
dtype=np.float32)
# Apply hue phase rotation
yuv_to_rgb = np.matmul(np.array(
((1, 0, 0), (0, np.cos(hue), np.sin(hue)), (0, -np.sin(hue),
np.cos(hue)))),
yuv_to_rgb)
# Y'UV to R'G'B' conversion
yuv_to_rgb = np.matmul(np.array(
((1, 0, 1.139883), (1, -0.394642, -.5806227), (1, 2.032062, 0))),
yuv_to_rgb)
# Apply effect of contrast
yuv_to_rgb *= contrast
out_rgb = np.empty((bitmap.shape[0], bitmap.shape[1] * 3, 3),
dtype=np.uint8)
for y in range(bitmap.shape[0]):
ysum = 0
usum = 0
vsum = 0
line = np.repeat(bitmap[y], 3)
for x in range(bitmap.shape[1] * 3):
ysum += self._read(line, x) - self._read(line, x - y_width)
usum += self._read(line, x) * self._sin(x) - self._read(
line, x - u_width) * self._sin((x - u_width))
vsum += self._read(line, x) * self._cos(x) - self._read(
line, x - v_width) * self._cos((x - v_width))
rgb = np.matmul(
yuv_to_rgb, np.array(
(ysum / y_width, usum / u_width,
vsum / v_width)).reshape((3, 1))).reshape(3)
r = min(255, max(0, rgb[0] * 255))
g = min(255, max(0, rgb[1] * 255))
b = min(255, max(0, rgb[2] * 255))
out_rgb[y, x, :] = (r, g, b)
return out_rgb
def bitmap_to_image_rgb(self, bitmap: np.ndarray) -> np.ndarray:
"""Convert our 2-bit bitmap image into a RGB image.
Colour at every pixel is determined by the value of an n-bit sliding
window and x % 4, which give the index into our RGB palette.
"""
image_rgb = np.empty((self.Y_RES, self.X_RES, 3), dtype=np.uint8)
for y in range(self.Y_RES):
bitmap_window = [False] * self.palette.PALETTE_DEPTH
for x in range(self.X_RES):
# Maintain a sliding window of pixels of width PALETTE_DEPTH
bitmap_window = bitmap_window[1:] + [bitmap[y, x]]
image_rgb[y, x, :] = self.palette.RGB[
self.palette.bitmap_to_idx(
# Mapping from bit pattern to colour is rotated by
# NTSC phase shift
np.roll(
np.array(bitmap_window, dtype=bool),
self.NTSC_PHASE_SHIFT
)
), x % 4]
return image_rgb
class DHGRNTSCScreen(DHGRScreen, NTSCScreen):
def __init__(self, palette: palette_py.Palette):
self.palette = palette
super(DHGRNTSCScreen, self).__init__()
NTSC_PHASE_SHIFT = 0
class HGRScreen(NTSCScreen):
X_RES = 560
Y_RES = 192
MODE = Mode.HI_RES
NTSC_PHASE_SHIFT = 3
def __init__(self, palette: palette_py.Palette):
self.main = np.zeros(8192, dtype=np.uint8)
self.palette = palette
super(HGRScreen, self).__init__()
@staticmethod
def y_to_base_addr(y: int) -> int:
"""Maps y coordinate to screen memory base address."""
a = y // 64
d = y - 64 * a
b = d // 8
c = d - 8 * b
return 1024 * c + 128 * b + 40 * a
@staticmethod
def compute_fat_pixels(screen_byte, last_pixels):
result = 0
for i in range(7):
bit = (screen_byte >> i) & 0b1
fat_bit = bit << 1 | bit
result |= fat_bit << (2 * i)
if screen_byte & 0x80:
# Palette bit shifts to the right
result <<= 1
result |= (last_pixels >> 7)
return result
def pack_bytes(self, linear_bytemap: np.ndarray):
"""Packs an image into memory format (8K main)."""
@ -167,185 +250,3 @@ class HGRScreen:
addr = self.y_to_base_addr(y)
self.main[addr:addr + 40] = linear_bytemap[y, :]
return
def bitmap_to_image_rgb(self, bitmap: np.ndarray) -> np.ndarray:
"""Convert our 2-bit bitmap image into a RGB image.
Colour at every pixel is determined by the value of an n-bit sliding
window and x % 4, which give the index into our RGB palette.
"""
image_rgb = np.empty((self.Y_RES, self.X_RES, 3), dtype=np.uint8)
for y in range(self.Y_RES):
bitmap_window = [False] * self.palette.PALETTE_DEPTH
for x in range(self.X_RES):
# Maintain a sliding window of pixels of width PALETTE_DEPTH
bitmap_window = bitmap_window[1:] + [bitmap[y, x]]
image_rgb[y, x, :] = self.palette.RGB[
self.palette.bitmap_to_idx(
np.array(bitmap_window, dtype=bool)), x % 4]
return image_rgb
@staticmethod
def _sin(pos, phase0=9):
x = pos % 12 + phase0
return np.sin(x * 2 * np.pi / 12)
@staticmethod
def _cos(pos, phase0=9):
x = pos % 12 + phase0
return np.cos(x * 2 * np.pi / 12)
def _read(self, line, pos):
if pos < 0:
return 0
return 1 if line[pos] else 0
def bitmap_to_image_ntsc(self, bitmap: np.ndarray) -> np.ndarray:
y_width = 12
u_width = 24
v_width = 24
contrast = 1
# TODO: This is necessary to match OpenEmulator. I think it is because
# they introduce an extra (unexplained) factor of 2 when applying the
# Chebyshev/Lanczos filtering to the u and v components.
saturation = 2
# TODO: this phase shift is necessary to match OpenEmulator. I'm not
# sure where it comes from - e.g. it doesn't match the phaseInfo
# calculation for the signal phase at the start of the visible region.
hue = 0.2 * (2 * np.pi)
# Apply effect of saturation
yuv_to_rgb = np.array(
((1, 0, 0), (0, saturation, 0), (0, 0, saturation)),
dtype=np.float32)
# Apply hue phase rotation
yuv_to_rgb = np.matmul(np.array(
((1, 0, 0), (0, np.cos(hue), np.sin(hue)), (0, -np.sin(hue),
np.cos(hue)))),
yuv_to_rgb)
# Y'UV to R'G'B' conversion
yuv_to_rgb = np.matmul(np.array(
((1, 0, 1.139883), (1, -0.394642, -.5806227), (1, 2.032062, 0))),
yuv_to_rgb)
# Apply effect of contrast
yuv_to_rgb *= contrast
out_rgb = np.empty((bitmap.shape[0], bitmap.shape[1] * 3, 3),
dtype=np.uint8)
for y in range(bitmap.shape[0]):
ysum = 0
usum = 0
vsum = 0
line = np.repeat(bitmap[y], 3)
for x in range(bitmap.shape[1] * 3):
ysum += self._read(line, x) - self._read(line, x - y_width)
usum += self._read(line, x) * self._sin(x) - self._read(
line, x - u_width) * self._sin((x - u_width))
vsum += self._read(line, x) * self._cos(x) - self._read(
line, x - v_width) * self._cos((x - v_width))
rgb = np.matmul(
yuv_to_rgb, np.array(
(ysum / y_width, usum / u_width,
vsum / v_width)).reshape((3, 1))).reshape(3)
r = min(255, max(0, rgb[0] * 255))
g = min(255, max(0, rgb[1] * 255))
b = min(255, max(0, rgb[2] * 255))
out_rgb[y, x, :] = (r, g, b)
return out_rgb
class DHGRNTSCScreen(DHGRScreen):
def __init__(self, palette: palette_py.Palette):
self.palette = palette
super(DHGRNTSCScreen, self).__init__()
def bitmap_to_image_rgb(self, bitmap: np.ndarray) -> np.ndarray:
"""Convert our 2-bit bitmap image into a RGB image.
Colour at every pixel is determined by the value of an n-bit sliding
window and x % 4, which give the index into our RGB palette.
"""
image_rgb = np.empty((self.Y_RES, self.X_RES, 3), dtype=np.uint8)
for y in range(self.Y_RES):
bitmap_window = [False] * self.palette.PALETTE_DEPTH
for x in range(self.X_RES):
# Maintain a sliding window of pixels of width PALETTE_DEPTH
bitmap_window = bitmap_window[1:] + [bitmap[y, x]]
image_rgb[y, x, :] = self.palette.RGB[
self.palette.bitmap_to_idx(
np.array(bitmap_window, dtype=bool)), x % 4]
return image_rgb
@staticmethod
def _sin(pos, phase0=0):
x = pos % 12 + phase0
return np.sin(x * 2 * np.pi / 12)
@staticmethod
def _cos(pos, phase0=0):
x = pos % 12 + phase0
return np.cos(x * 2 * np.pi / 12)
def _read(self, line, pos):
if pos < 0:
return 0
return 1 if line[pos] else 0
def bitmap_to_image_ntsc(self, bitmap: np.ndarray) -> np.ndarray:
y_width = 12
u_width = 24
v_width = 24
contrast = 1
# TODO: This is necessary to match OpenEmulator. I think it is because
# they introduce an extra (unexplained) factor of 2 when applying the
# Chebyshev/Lanczos filtering to the u and v components.
saturation = 2
# TODO: this phase shift is necessary to match OpenEmulator. I'm not
# sure where it comes from - e.g. it doesn't match the phaseInfo
# calculation for the signal phase at the start of the visible region.
hue = 0.2 * (2 * np.pi)
# Apply effect of saturation
yuv_to_rgb = np.array(
((1, 0, 0), (0, saturation, 0), (0, 0, saturation)),
dtype=np.float32)
# Apply hue phase rotation
yuv_to_rgb = np.matmul(np.array(
((1, 0, 0), (0, np.cos(hue), np.sin(hue)), (0, -np.sin(hue),
np.cos(hue)))),
yuv_to_rgb)
# Y'UV to R'G'B' conversion
yuv_to_rgb = np.matmul(np.array(
((1, 0, 1.139883), (1, -0.394642, -.5806227), (1, 2.032062, 0))),
yuv_to_rgb)
# Apply effect of contrast
yuv_to_rgb *= contrast
out_rgb = np.empty((bitmap.shape[0], bitmap.shape[1] * 3, 3),
dtype=np.uint8)
for y in range(bitmap.shape[0]):
ysum = 0
usum = 0
vsum = 0
line = np.repeat(bitmap[y], 3)
for x in range(bitmap.shape[1] * 3):
ysum += self._read(line, x) - self._read(line, x - y_width)
usum += self._read(line, x) * self._sin(x) - self._read(
line, x - u_width) * self._sin((x - u_width))
vsum += self._read(line, x) * self._cos(x) - self._read(
line, x - v_width) * self._cos((x - v_width))
rgb = np.matmul(
yuv_to_rgb, np.array(
(ysum / y_width, usum / u_width,
vsum / v_width)).reshape((3, 1))).reshape(3)
r = min(255, max(0, rgb[0] * 255))
g = min(255, max(0, rgb[1] * 255))
b = min(255, max(0, rgb[2] * 255))
out_rgb[y, x, :] = (r, g, b)
return out_rgb