Clean up and optimize

This commit is contained in:
kris 2021-01-10 20:10:32 +00:00
parent 61b8171586
commit ec691f5d6d
2 changed files with 63 additions and 177 deletions

215
dither.py
View File

@ -6,12 +6,10 @@ import pickle
from typing import Tuple
from PIL import Image
import colour.difference
import numpy as np
# TODO:
# - precompute lab differences
# - only lookahead for 560px
# - palette class
# - compare to bmp2dhr and a2bestpix
@ -25,7 +23,6 @@ def linear_to_srgb_array(a: np.ndarray, gamma=2.4) -> np.ndarray:
0.055)
# XXX work uniformly with 255 or 1.0 range
def srgb_to_linear(im: np.ndarray) -> np.ndarray:
rgb_linear = srgb_to_linear_array(im / 255.0, gamma=2.4)
return (np.clip(rgb_linear, 0.0, 1.0) * 255).astype(np.float32)
@ -128,72 +125,25 @@ for k, v in sRGB.items():
class ColourDistance:
@staticmethod
def distance(rgb1: np.ndarray, rgb2: np.ndarray) -> float:
def distance(rgb1: np.ndarray, rgb2: np.ndarray) -> np.ndarray:
raise NotImplementedError
class RGBDistance(ColourDistance):
"""Euclidean squared distance in RGB colour space."""
@staticmethod
def distance(rgb1: np.ndarray, rgb2: np.ndarray) -> float:
return float(np.asscalar(np.sum(np.power(np.array(rgb1) -
np.array(rgb2), 2))))
def rgb_to_lab(rgb: np.ndarray):
srgb = np.clip(
linear_to_srgb_array(np.array(rgb, dtype=np.float32) / 255), 0.0,
1.0)
xyz = colour.sRGB_to_XYZ(srgb)
return colour.XYZ_to_Lab(xyz)
LAB = {}
for k, v in RGB.items():
LAB[k] = rgb_to_lab(v)
class CIE2000Distance(ColourDistance):
"""CIE2000 delta-E distance."""
def __init__(self):
with bz2.open("nearest.pickle.bz2", "rb") as f:
self._distances = pickle.load(f)
assert self._distances.dtype == np.uint8
@staticmethod
def _flatten_rgb(rgb):
return (rgb[..., 0] << 16) + (rgb[..., 1] << 8) + (rgb[..., 2])
def distance(self, rgb: np.ndarray, bit4: np.ndarray) -> float:
frgb = self._flatten_rgb(np.clip(rgb, 0, 255).astype(np.int))
return self._distances[frgb, bit4] # .astype(np.int)
class LABEuclideanDistance(ColourDistance):
"""Euclidean distance in LAB colour space."""
@staticmethod
def distance(lab1: np.ndarray, lab2: np.ndarray) -> float:
return np.sqrt(np.sum(np.power(lab1 - lab2, 2), axis=2))
# class CCIR601Distance(ColourDistance):
# @staticmethod
# def _to_luma(rgb: np.ndarray):
# return rgb[0] * 0.299 + rgb[1] * 0.587 + rgb[2] * 0.114
#
# def distance(self, rgb1: np.ndarray, rgb2: np.ndarray) -> float:
# delta_rgb = ((rgb1[0] - rgb2[0]) / 255, (rgb1[1] - rgb2[1]) / 255,
# (rgb1[2] - rgb2[2]) / 255)
# luma_diff = (self._to_luma(rgb1) - self._to_luma(rgb2)) / 255
#
# # TODO: this is the formula bmp2dhr uses but what motivates it?
# return (
# delta_rgb[0] * delta_rgb[0] * 0.299 +
# delta_rgb[1] * delta_rgb[1] * 0.587 +
# delta_rgb[2] * delta_rgb[2] * 0.114) * 0.75 + (
# luma_diff * luma_diff)
def distance(self, rgb: np.ndarray, bit4: np.ndarray) -> np.ndarray:
rgb24 = self._flatten_rgb(np.clip(rgb, 0, 255).astype(np.int))
return self._distances[rgb24, bit4].astype(np.int)
class Screen:
@ -247,13 +197,6 @@ class Screen:
def pixel_palette_options(last_pixel, x: int):
raise NotImplementedError
# @staticmethod
# def find_closest_color(
# pixel, palette_options, palette_options_lab, differ:
# ColourDistance):
# best = np.argmin(differ.distance(pixel, palette_options_lab))
# return palette_options[best]
class DHGR140Screen(Screen):
"""DHGR screen ignoring colour fringing, i.e. treating as 140x192x16."""
@ -275,10 +218,7 @@ class DHGR140Screen(Screen):
@staticmethod
def pixel_palette_options(last_pixel_4bit, x: int):
return (
np.array(list(RGB.keys())),
np.array(list(RGB.values())),
np.array(list(LAB.values())))
return np.array(list(RGB.keys())), np.array(list(RGB.values()))
class DHGR560Screen(Screen):
@ -306,27 +246,13 @@ class DHGR560Screen(Screen):
other_pixel_4bit = DOTS_TO_4BIT[other_dots]
return (
np.array([last_pixel_4bit, other_pixel_4bit]),
np.array([RGB[last_pixel_4bit], RGB[other_pixel_4bit]]),
np.array([LAB[last_pixel_4bit], LAB[other_pixel_4bit]]))
# last_dots = DOTS[last_pixel_4bit]
# dots_zero = list(last_dots)
# dots_zero[x % 4] = False
# dots_one = list(last_dots)
# dots_one[x % 4] = True
# pixel_zero_4bit = DOTS_TO_4BIT[dots_zero]
# pixel_one_4bit = DOTS_TO_4BIT[dots_one]
# return (
# np.array([pixel_zero_4bit, pixel_one_4bit]),
# np.array([RGB[pixel_zero_4bit], RGB[pixel_one_4bit]]),
# np.array([LAB[pixel_zero_4bit], LAB[pixel_one_4bit]]))
np.array([RGB[last_pixel_4bit], RGB[other_pixel_4bit]]))
class Dither:
PATTERN = None
ORIGIN = None
# XXX extend image region to avoid need for boundary box clipping
@functools.lru_cache(None)
def x_dither_bounds(self, screen: Screen, x: int):
pshape = self.PATTERN.shape
@ -338,7 +264,8 @@ class Dither:
return el, er, xl, xr
def y_dither_bounds(self, screen: Screen, y: int):
@functools.lru_cache(None)
def y_dither_bounds(self, screen: Screen, y: int, one_line=False):
pshape = self.PATTERN.shape
et = max(self.ORIGIN[0] - y, 0)
eb = min(pshape[0], screen.Y_RES - 1 - y)
@ -346,30 +273,39 @@ class Dither:
yt = y - self.ORIGIN[0] + et
yb = y - self.ORIGIN[0] + eb
if one_line:
yb = yt + 1
eb = et + 1
return et, eb, yt, yb
def apply(self, screen: Screen, image: np.ndarray, x: int, y: int,
quant_error: np.ndarray, one_line=False):
pshape = self.PATTERN.shape
error = self.PATTERN.reshape(
(pshape[0], pshape[1], 1)) * quant_error.reshape((1, 1, 3))
error = self.PATTERN * quant_error.reshape((1, 1, 3))
el, er, xl, xr = self.x_dither_bounds(screen, x)
et, eb, yt, yb = self.y_dither_bounds(screen, y)
if one_line:
yb = yt + 1
eb = et + 1
# TODO: compare without clipping here, i.e. allow RGB values to exceed
# 0-255 range
# print(image.dtype, error.dtype)
# print("quant_error=", self.PATTERN, error)
et, eb, yt, yb = self.y_dither_bounds(screen, y, one_line)
# We could avoid clipping here, i.e. allow RGB values to extend beyond
# 0..255 to capture a larger range of residual error. This is faster
# but seems to reduce image quality.
# XXX extend image region to avoid need for boundary box clipping
image[yt:yb, xl:xr, :] = np.clip(
image[yt:yb, xl:xr, :] + error[et:eb, el:er, :], 0, 255)
def apply_one_line(self, screen: Screen, image: np.ndarray, x: int, y: int,
quant_error: np.ndarray):
error = self.PATTERN[0, :] * quant_error.reshape(1, 3)
el, er, xl, xr = self.x_dither_bounds(screen, x)
image[y, xl:xr, :] = np.clip(
image[y, xl:xr, :] + error[el:er, :], 0, 255)
class FloydSteinbergDither(Dither):
# 0 * 7
# 3 5 1
PATTERN = np.array(((0, 0, 7), (3, 5, 1))) / 16
PATTERN = np.array(((0, 0, 7), (3, 5, 1)),
dtype=np.float32).reshape(2, 3, 1) / np.float(16)
# XXX X_ORIGIN since ORIGIN[0] == 0
ORIGIN = (0, 1)
@ -377,7 +313,8 @@ class BuckelsDither(Dither):
# 0 * 2 1
# 1 2 1 0
# 0 1 0 0
PATTERN = np.array(((0, 0, 2, 1), (1, 2, 1, 0), (0, 1, 0, 0))) / 8
PATTERN = np.array(((0, 0, 2, 1), (1, 2, 1, 0), (0, 1, 0, 0)),
dtype=np.float32).reshape(3, 4, 1) / np.float32(8)
ORIGIN = (0, 1)
@ -386,7 +323,7 @@ class JarvisDither(Dither):
# 3 5 7 5 3
# 1 3 5 3 1
PATTERN = np.array(((0, 0, 0, 7, 5), (3, 5, 7, 5, 3), (1, 3, 5, 3, 1)),
dtype=np.float32) / np.float32(48)
dtype=np.float32).reshape(3, 5, 1) / np.float32(48)
ORIGIN = (0, 2)
@ -423,60 +360,26 @@ def open_image(screen: Screen, filename: str) -> np.ndarray:
def lookahead_options(screen, lookahead, last_pixel_4bit, x):
options_4bit = np.empty((2 ** lookahead, lookahead), dtype=np.uint8)
options_rgb = np.empty((2 ** lookahead, lookahead, 3), dtype=np.float32)
# options_lab = np.empty((2 ** lookahead, lookahead, 3), dtype=np.float32)
for i in range(2 ** lookahead):
output_pixel_4bit = last_pixel_4bit
for j in range(lookahead):
xx = x + j
palette_choices_4bit, palette_choices_rgb, _ = \
palette_choices_4bit, palette_choices_rgb = \
screen.pixel_palette_options(output_pixel_4bit, xx)
output_pixel_4bit = palette_choices_4bit[(i & (1 << j)) >> j]
output_pixel_rgb = np.array(
palette_choices_rgb[(i & (1 << j)) >> j])
# output_pixel_lab = np.array(
# palette_choices_lab[(i & (1 << j)) >> j])
# XXX copy
options_4bit[i, j] = output_pixel_4bit
# options_lab[i, j, :] = np.copy(output_pixel_lab)
options_rgb[i, j, :] = np.copy(output_pixel_rgb)
return options_4bit, options_rgb # , options_lab
# def ideal_dither(
# screen: Screen, image_4bit: np.ndarray, image_rgb: np.ndarray,
# image_lab: np.ndarray, dither: Dither, differ: ColourDistance, x, y,
# lookahead) -> np.ndarray:
# et, eb, el, er, yt, yb, xl, xr = dither.dither_bounds(screen, x, y)
# # XXX tighten bounding box
# ideal_dither = np.empty_like(image_rgb)
# ideal_dither[yt:yb, :, :] = np.copy(image_rgb[yt:yb, :, :])
#
# ideal_dither_lab = np.empty_like(image_lab)
# ideal_dither_lab[yt:yb, :, :] = np.copy(image_lab[yt:yb, :, :])
#
# palette_choices = np.array(list(RGB.values()))
# palette_choices_lab = np.array(list(LAB.values()))
# for xx in range(x, min(max(x + lookahead, xr), screen.X_RES)):
# input_pixel = np.copy(ideal_dither[y, xx, :])
# input_pixel_lab = rgb_to_lab(np.clip(input_pixel), 0, 255)
# ideal_dither_lab[y, xx, :] = input_pixel_lab
# output_pixel = screen.find_closest_color(input_pixel_lab,
# palette_choices,
# palette_choices_lab,
# differ)
# quant_error = input_pixel - output_pixel
# ideal_dither[y, xx, :] = output_pixel
# # XXX don't care about other y values
# dither.apply(screen, ideal_dither, xx, y, quant_error)
#
# return ideal_dither_lab
return options_4bit, options_rgb
def dither_lookahead(
screen: Screen, image_rgb: np.ndarray, dither: Dither, differ:
ColourDistance, x, y, last_pixel_4bit, lookahead
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
) -> Tuple[np.ndarray, np.ndarray]:
el, er, xl, xr = dither.x_dither_bounds(screen, x)
# X coord value of larger of dither bounding box or lookahead horizon
@ -490,8 +393,6 @@ def dither_lookahead(
options_4bit, options_rgb = lookahead_options(
screen, lookahead, last_pixel_4bit, x % 4)
# print("options", options_4bit.dtype, options_rgb.dtype)
# print(options_4bit)
for i in range(xxr - x):
# options_rgb choices are fixed, but we can still distribute
# quantization error from having made these choices, in order to compute
@ -499,36 +400,27 @@ def dither_lookahead(
input_pixels = np.copy(lah_image_rgb[:, i, :])
output_pixels = options_rgb[:, i, :]
quant_error = input_pixels - output_pixels
# print(quant_error.dtype)
# Don't update the input at position x (since we've already chosen
# fixed outputs), but do propagate quantization errors to positions >x
# so we can compensate for how good/bad these choices were
# XXX vectorize
for j in range(2 ** lookahead):
# print(quant_error[j])
dither.apply(
screen, lah_image_rgb[j, :, :].reshape(1, -1, 3),
i, 0, quant_error[j], one_line=True)
dither.apply_one_line(screen,
lah_image_rgb[j, :, :].reshape(1, -1, 3),
i, 0, quant_error[j])
# print("options=", options_rgb)
# print("rgb=",lah_image_rgb)
# lah_image_lab = rgb_to_lab(np.clip(lah_image_rgb[:, 0:lookahead, :], 0,
# 255))
#print("input=", image_rgb[y, x:xxr, :])
#print("options=", options_4bit)
#print("lah", np.clip(lah_image_rgb[:, 0:lookahead, :], 0, 255))
error = differ.distance(np.clip(
lah_image_rgb[:, 0:lookahead, :], 0, 255), options_4bit)
# print(error.dtype)
# print(lah_image_lab)
#print("error=", error)
# print("error=", error)
# print(error.shape)
total_error = np.sum(np.power(error, 2), axis=1)
#print("total_error=", total_error)
# print("total_error=", total_error)
best = np.argmin(total_error)
#print("best=", best)
#print("best 4bit=", options_4bit[best, 0].item(), options_rgb[best, 0, :])
# print("best=", best)
# print("best 4bit=", options_4bit[best, 0].item(), options_rgb[best, 0, :])
return options_4bit[best, 0].item(), options_rgb[best, 0, :]
@ -537,36 +429,23 @@ def dither_image(
ColourDistance, lookahead) -> Tuple[np.ndarray, np.ndarray]:
image_4bit = np.empty(
(image_rgb.shape[0], image_rgb.shape[1]), dtype=np.uint8)
# image_lab = rgb_to_lab(image_rgb)
# pattern = dither.PATTERN
for y in range(screen.Y_RES):
print(y)
output_pixel_4bit = np.uint8(0)
# output_pixel_rgb = RGB[output_pixel_4bit]
for x in range(screen.X_RES):
# for x in range(pattern.ORIGIN[1], pattern.ORIGIN[1] + screen.X_RES):
input_pixel_rgb = np.copy(image_rgb[y, x, :])
# Make sure lookahead region is updated from previously applied
# dithering
# et, eb, el, er, yt, yb, xl, xr = dither.dither_bounds(screen,
# x, y)
# image_lab[y, x:xr, :] = rgb_to_lab(
# np.clip(image_rgb[y, x:xr, :], 0, 255))
# ideal_lab = ideal_dither(screen, image_rgb, image_lab, dither,
# differ, x, y, lookahead)
output_pixel_4bit, output_pixel_rgb = \
dither_lookahead(screen, image_rgb, dither, differ, x, y,
output_pixel_4bit, lookahead)
image_4bit[y, x] = output_pixel_4bit
image_rgb[y, x, :] = output_pixel_rgb
# print(output_pixel_rgb, output_pixel_lab)
quant_error = input_pixel_rgb - output_pixel_rgb
# print("quant_error=", quant_error)
# print("dither quant", quant_error.dtype)
dither.apply(screen, image_rgb, x, y, quant_error)
# if y == 1:
# return
return image_4bit, image_rgb
@ -591,8 +470,6 @@ def main():
dither = JarvisDither()
differ = CIE2000Distance()
# differ = LABEuclideanDistance()
# differ = CCIR601Distance()
output_4bit, output_rgb = dither_image(screen, image, dither, differ,
lookahead=args.lookahead)

View File

@ -8,22 +8,31 @@ import numpy as np
COLOURS = 256
def rgb_to_lab(rgb: np.ndarray):
srgb = np.clip(
dither.linear_to_srgb_array(rgb.astype(np.float32) / 255), 0.0,
1.0)
xyz = colour.sRGB_to_XYZ(srgb)
return colour.XYZ_to_Lab(xyz)
def nearest_colours():
diffs = np.empty((COLOURS ** 3, 16), dtype=np.float32)
all_rgb = np.array(tuple(np.ndindex(COLOURS, COLOURS, COLOURS)),
dtype=np.uint8)
all_srgb = dither.linear_to_srgb_array(all_rgb / 255)
all_xyz = colour.sRGB_to_XYZ(all_srgb)
all_lab = colour.XYZ_to_Lab(all_xyz)
all_lab = rgb_to_lab(all_rgb)
for i, p in dither.LAB.items():
for i, palette_rgb in dither.RGB.items():
print(i)
diffs[:, i] = colour.difference.delta_E_CIE2000(all_lab, p)
palette_lab = rgb_to_lab(palette_rgb)
diffs[:, i] = colour.difference.delta_E_CIE2000(all_lab, palette_lab)
return diffs
norm = np.max(diffs)
print(norm)
return (diffs / norm * 255).astype(np.uint8)
#return diffs
n = nearest_colours()
with bz2.open("nearest.pickle.bz2", "wb") as f:
with bz2.open("nearest2.pickle.bz2", "wb") as f:
pickle.dump(n, f)