mirror of
https://github.com/KrisKennaway/ii-pix.git
synced 2025-04-04 23:29:46 +00:00
Refactor and add comments
This commit is contained in:
parent
bb70eea7b0
commit
f2f07ddc04
148
convert.py
148
convert.py
@ -2,6 +2,7 @@
|
||||
|
||||
import argparse
|
||||
import os.path
|
||||
from typing import Tuple, List
|
||||
|
||||
from PIL import Image
|
||||
import colour
|
||||
@ -9,6 +10,7 @@ import numpy as np
|
||||
from sklearn import cluster
|
||||
|
||||
from os import environ
|
||||
|
||||
environ['PYGAME_HIDE_SUPPORT_PROMPT'] = '1'
|
||||
import pygame
|
||||
|
||||
@ -23,12 +25,15 @@ import screen as screen_py
|
||||
# - support LR/DLR
|
||||
# - support HGR
|
||||
|
||||
|
||||
class ClusterPalette:
|
||||
def __init__(self, image: Image):
|
||||
def __init__(
|
||||
self, image: Image):
|
||||
self._colours_cam = self._image_colours_cam(image)
|
||||
self._best_palette_distances = [1e9] * 16
|
||||
self._errors = [1e9] * 16
|
||||
self._palettes_cam = np.empty((16, 16, 3), dtype=np.float32)
|
||||
self._palettes_rgb = np.empty((16, 16, 3), dtype=np.float32)
|
||||
self._global_palette = np.empty((16, 16, 3), dtype=np.float32)
|
||||
|
||||
def _image_colours_cam(self, image: Image):
|
||||
colours_rgb = np.asarray(image).reshape((-1, 3))
|
||||
@ -42,14 +47,45 @@ class ClusterPalette:
|
||||
starting point for the sub-palettes. This should help when the image
|
||||
has large blocks of colour since the sub-palettes will tend to pick the
|
||||
same colours."""
|
||||
|
||||
clusters = cluster.MiniBatchKMeans(n_clusters=16, max_iter=10000)
|
||||
clusters.fit_predict(self._colours_cam)
|
||||
return clusters.cluster_centers_
|
||||
|
||||
def iterate(self):
|
||||
def propose_palettes(self) -> Tuple[np.ndarray, np.ndarray, List[float]]:
|
||||
"""Attempt to find new palettes that locally improve image quality.
|
||||
|
||||
Re-fit a set of 16 palettes from (overlapping) line ranges of the
|
||||
source image, using k-means clustering in CAM16-UCS colour space.
|
||||
|
||||
We maintain the total image error for the pixels on which the 16
|
||||
palettes are clustered. A new palette that increases this local
|
||||
image error is rejected.
|
||||
|
||||
New palettes that reduce local error cannot be applied immediately
|
||||
though, because they may cause an increase in *global* image error
|
||||
when dithering. i.e. they would reduce the overall image quality.
|
||||
|
||||
The current (locally) best palettes are returned and can be applied
|
||||
using accept_palettes().
|
||||
"""
|
||||
|
||||
# Compute a new 16-colour global palette for the entire image,
|
||||
# used as the starting center positions for k-means clustering of the
|
||||
# individual palettes
|
||||
self._global_palette = self._fit_global_palette()
|
||||
|
||||
new_errors = list(self._errors)
|
||||
new_palettes_cam = np.copy(self._palettes_cam)
|
||||
new_palettes_rgb = np.copy(self._palettes_rgb)
|
||||
|
||||
# The 16 palettes are striped across consecutive (overlapping) line
|
||||
# ranges. The basic unit is 200/16 = 12.5 lines, but we extend the
|
||||
# line range to cover a multiple of this so that the palette ranges
|
||||
# overlap. Since nearby lines tend to have similar colours, this has
|
||||
# the effect of smoothing out the colour transitions across palettes.
|
||||
palette_band_width = 3
|
||||
for palette_idx in range(16):
|
||||
palette_band_width = 3
|
||||
p_lower = max(palette_idx + 0.5 - (palette_band_width / 2), 0)
|
||||
p_upper = min(palette_idx + 0.5 + (palette_band_width / 2), 16)
|
||||
# TODO: dynamically tune palette cuts
|
||||
@ -58,34 +94,41 @@ class ClusterPalette:
|
||||
200 / 16)) * 320, :]
|
||||
|
||||
# TODO: clustering should be aware of the fact that we will
|
||||
# down-quantize to a 4-bit RGB value afterwards. i.e. we should
|
||||
# quantize to a 4-bit RGB value afterwards. i.e. we should
|
||||
# not pick multiple centroids that will quantize to the same RGB
|
||||
# value since we'll "waste" a palette entry. This doesn't seem to
|
||||
# be a major issue in practise though, and fixing it would require
|
||||
# implementing our own (optimized) k-means.
|
||||
best_wce = self._best_palette_distances[palette_idx]
|
||||
# TODO: tune tolerance
|
||||
clusters = cluster.MiniBatchKMeans(
|
||||
n_clusters=16, max_iter=10000, init=self._global_palette,
|
||||
n_init=1)
|
||||
clusters.fit_predict(palette_pixels)
|
||||
if clusters.inertia_ < best_wce:
|
||||
self._palettes_cam[palette_idx, :, :] = np.array(
|
||||
clusters.cluster_centers_).astype(np.float32)
|
||||
best_wce = clusters.inertia_
|
||||
self._best_palette_distances[palette_idx] = best_wce
|
||||
palette_error = clusters.inertia_
|
||||
if palette_error >= self._errors[palette_idx]:
|
||||
# Not a local improvement to existing palette
|
||||
continue
|
||||
|
||||
# Suppress divide by zero warning,
|
||||
# https://github.com/colour-science/colour/issues/900
|
||||
with colour.utilities.suppress_warnings(python_warnings=True):
|
||||
palette_rgb = colour.convert(
|
||||
self._palettes_cam[palette_idx], "CAM16UCS", "RGB")
|
||||
# SHR colour palette only uses 4-bit values
|
||||
palette_rgb = np.round(palette_rgb * 15) / 15
|
||||
self._palettes_rgb[palette_idx, :, :] = palette_rgb.astype(
|
||||
np.float32)
|
||||
palette_cam = np.array(clusters.cluster_centers_).astype(np.float32)
|
||||
# Suppress divide by zero warning,
|
||||
# https://github.com/colour-science/colour/issues/900
|
||||
with colour.utilities.suppress_warnings(python_warnings=True):
|
||||
# SHR colour palette only uses 4-bit RGB values
|
||||
palette_rgb = (np.round(colour.convert(
|
||||
palette_cam, "CAM16UCS", "RGB") * 15) / 15).astype(
|
||||
np.float32)
|
||||
new_palettes_cam[palette_idx, :, :] = palette_cam
|
||||
new_palettes_rgb[palette_idx, :, :] = palette_rgb
|
||||
new_errors[palette_idx] = palette_error
|
||||
|
||||
return self._palettes_cam, self._palettes_rgb
|
||||
return new_palettes_cam, new_palettes_rgb, new_errors
|
||||
|
||||
def accept_palettes(
|
||||
self, new_palettes_cam: np.ndarray,
|
||||
new_palettes_rgb: np.ndarray, new_errors: List[float]):
|
||||
self._palettes_cam = np.copy(new_palettes_cam)
|
||||
self._palettes_rgb = np.copy(new_palettes_rgb)
|
||||
self._errors = list(new_errors)
|
||||
|
||||
|
||||
def main():
|
||||
@ -147,8 +190,6 @@ def main():
|
||||
image_py.resize(image, screen.X_RES, screen.Y_RES,
|
||||
gamma=args.gamma_correct)).astype(np.float32) / 255
|
||||
|
||||
iigs_palette = np.empty((16, 16, 3), dtype=np.uint8)
|
||||
|
||||
# TODO: flags
|
||||
penalty = 1e9
|
||||
iterations = 50
|
||||
@ -162,42 +203,47 @@ def main():
|
||||
pygame.display.flip()
|
||||
|
||||
total_image_error = 1e9
|
||||
cluster_palette = ClusterPalette(rgb)
|
||||
iterations_since_improvement = 0
|
||||
while iterations_since_improvement < iterations:
|
||||
# TODO: clean this up - e.g. pass in an acceptance lambda to iterate()
|
||||
old_best_palette_distances = cluster_palette._best_palette_distances
|
||||
old_palettes_cam = cluster_palette._palettes_cam
|
||||
old_palettes_rgb = cluster_palette._palettes_rgb
|
||||
|
||||
new_palettes_cam, new_palettes_rgb = cluster_palette.iterate()
|
||||
output_4bit, line_to_palette, new_total_image_error = \
|
||||
palette_iigs = np.empty((16, 16, 3), dtype=np.uint8)
|
||||
cluster_palette = ClusterPalette(rgb)
|
||||
|
||||
while iterations_since_improvement < iterations:
|
||||
new_palettes_cam, new_palettes_rgb, new_palette_errors = (
|
||||
cluster_palette.propose_palettes())
|
||||
|
||||
# Recompute image with proposed palettes and check whether it has
|
||||
# lower total image error than our previous best.
|
||||
new_output_4bit, new_line_to_palette, new_total_image_error = \
|
||||
dither_pyx.dither_shr(
|
||||
rgb, new_palettes_cam, new_palettes_rgb, rgb_to_cam16,
|
||||
float(penalty)
|
||||
)
|
||||
|
||||
if new_total_image_error < total_image_error:
|
||||
if total_image_error < 1e9:
|
||||
print("Improved quality +%f%% (%f)" % (
|
||||
(1 - new_total_image_error / total_image_error) * 100,
|
||||
new_total_image_error))
|
||||
total_image_error = new_total_image_error
|
||||
palettes_rgb = new_palettes_rgb
|
||||
iterations_since_improvement = 0
|
||||
else:
|
||||
cluster_palette._palettes_cam = old_palettes_cam
|
||||
cluster_palette._palettes_rgb = old_palettes_rgb
|
||||
cluster_palette._best_palette_distances = old_best_palette_distances
|
||||
float(penalty))
|
||||
if new_total_image_error >= total_image_error:
|
||||
iterations_since_improvement += 1
|
||||
continue
|
||||
|
||||
# We found a globally better set of palettes
|
||||
iterations_since_improvement = 0
|
||||
cluster_palette.accept_palettes(
|
||||
new_palettes_cam, new_palettes_rgb, new_palette_errors)
|
||||
|
||||
if total_image_error < 1e9:
|
||||
print("Improved quality +%f%% (%f)" % (
|
||||
(1 - new_total_image_error / total_image_error) * 100,
|
||||
new_total_image_error))
|
||||
output_4bit = new_output_4bit
|
||||
line_to_palette = new_line_to_palette
|
||||
total_image_error = new_total_image_error
|
||||
palettes_rgb = new_palettes_rgb
|
||||
|
||||
# Recompute 4-bit //gs RGB palettes
|
||||
for i in range(16):
|
||||
iigs_palette[i, :, :] = (
|
||||
palette_iigs[i, :, :] = (
|
||||
np.round(image_py.linear_to_srgb(
|
||||
palettes_rgb[i, :, :] * 255) / 255 * 15)).astype(np.uint8)
|
||||
screen.set_palette(i, iigs_palette[i, :, :])
|
||||
screen.set_palette(i, palette_iigs[i, :, :])
|
||||
|
||||
# Recompute current screen RGB image
|
||||
screen.set_pixels(output_4bit)
|
||||
output_rgb = np.empty((200, 320, 3), dtype=np.uint8)
|
||||
for i in range(200):
|
||||
@ -225,12 +271,12 @@ def main():
|
||||
srgb_output=True)
|
||||
|
||||
if args.show_output:
|
||||
surface = pygame.surfarray.make_surface(np.asarray(
|
||||
out_image).transpose((1, 0, 2)))
|
||||
surface = pygame.surfarray.make_surface(
|
||||
np.asarray(out_image).transpose((1, 0, 2))) # flip y/x axes
|
||||
canvas.blit(surface, (0, 0))
|
||||
pygame.display.flip()
|
||||
|
||||
unique_colours = np.unique(iigs_palette.reshape(-1, 3), axis=0).shape[0]
|
||||
unique_colours = np.unique(palette_iigs.reshape(-1, 3), axis=0).shape[0]
|
||||
print("%d unique colours" % unique_colours)
|
||||
|
||||
# Save Double hi-res image
|
||||
|
Loading…
x
Reference in New Issue
Block a user